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Abstract

In this paper, we econometrically examine the performance of Salience Theory (ST) for

explaining observed behavior outside of a fully defined state contingent setting. Using a

well known data set, we find that only a minority of people act consistently in the way pro-

posed by ST when confronted with lottery choices for which only marginal probabilities are

presented. By estimating the implied dependence structure of payoffs consistent with ST,

only a minority of people infer independent payoffs when attaching probabilities to states,

a finding at odds with ST. Instead, a majority treat lotteries as having positively correlated

payoffs which raises questions about the independence assumption in ST. Finally, we also

find that ST explains choice behaviour less consistently than Expected Utility. Thus, ST

should not be assumed to be superior to the most prominent models within the literature

when employed outside of particular contexts.
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1 Introduction

Bordalo et al. (2012) offer a psychologically grounded theory of choice under risk generally

referred to as Salience Theory (ST). Under ST, ‘states’ that have discordant payoffs receive

more attention and greater weight in the determination of people’s choices relative to states

that have similar payoffs. Bordalo et al. (2012) suggests people are ‘local thinkers’, who

re-weight probabilities based on comparison of payoffs under different states. Importantly,

local thinkers do not value a lottery in isolation, but relative to alternatives. In this sense

ST, unlike Expected Utility (EU) theory, is a state contingent theory of choice under risk.

In this paper, we examine ST using von Neumann and Morgenstern (vNM) lottery pairs.

vNM lottery pairs are not framed such that each payoff, or pair of payoffs, is associated with

a state. Rather, they are associated only with probabilities and associated payoffs. We refer

to these as non-state contingent lottery pairs. Local thinkers (as defined by Bordalo et al.,

2012) compare payoffs within states that have associated state probabilities. Consequently,

local thinkers require not only that the marginal distributions of payoffs be defined, but also

their joint distribution across lotteries. If the joint distributions are not defined objectively

then local thinkers must determine them subjectively. Thus, a local thinker faces not only

‘risk’ but ambiguity when choosing between non-state contingent lottery pairs.1

When applying ST, it is commonly assumed that local thinkers treat all possible com-

binations of payoffs across lotteries as potential states, with payoffs being treated indepen-

dently. We refer to this model property as the Independent Gambles Assumption (IGA).

Specifically, under IGA, each subjective state probability is the product of the two payoff

probabilities defining that state. However, quite reasonably, payoffs over two lotteries may

be perceived as ‘correlated’. For example, a local thinker might believe that a state defined

by the highest payoff of one lottery in conjunction with the lowest payoff of another lottery

is unlikely. Therefore, there is little justification for assuming the IGA when treating agents

as local thinkers.

A simple example can illustrate the importance of the IGA. Assume an employee needs

to get to work on time. If they arrive on time they get paid $10, and zero otherwise. They

can go to work by bus or train. The train costs $3 and there is a 90% they will get there.

The bus is cheaper at $1 but there is only a 80% chance they will get to work on time.

Which mode of transport to choose? We can think of the choice of transport as a lottery,

so that lottery A is train and lottery B is bus. For these lotteries, we know the respective

payoffs and associated probabilities. For a fully state contingent description of this problem

there would be four possibilities: train and bus on time; train on time and bus late; train

1It is possible that there may be a possible preference for skewness related to the influence of salience of
the payoffs on the choice between lotteries.
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late and bus on time; and train late and bus late. With the information provided, we know

the marginal probabilities but to apply a state contingent theory we need work out the state

probabilities. The easiest way of generating these probabilities is to assume that whether the

train is on time and the bus is on time are completely independent. This assumption, which

avoids the need to generate joint distributions is what we refer to as the IGA. However, the

employee might reasonably or unreasonably think that the train arriving on time and bus

arriving on time are not necessarily independent because there is a chance that they are

correlated because of some exogenous event like the weather. Thus, if this is the case then

the IGA is not necessarily valid.

Currently, there is limited econometric evidence in the literature as to the relative pre-

dictive power of ST. For example, Booth and Nolen (2012) demonstrate that salience affects

men and women differently, with men being affected more. Königsheim et al. (2019) provide

estimates for parameters of ST, finding results in line with Bordalo et al. (2012), though

their results show substantial heterogeneity. Furthermore, Kontek (2016) and Kontek (2018)

observe that ST has a number of serious limitations including violation of the monotonicity

assumption and undefined certainty equivalent for certain probability ranges.

Importantly, the antecedent literature does not focus on the applicability of ST outside

of the fully specified state contingent domain. To address this, we employ data generated by

Stott (2006) (see Appendix A for the full data set) to econometrically examine the relative

predictive performance of ST. Specifically, we compare the performance of ST relative to

EU theory. The comparison with EU theory has been done as a means to consider the

predictive power of ST vis-a-vis EU theory. We use the Stott (2006) data set because it

is freely available and as such the results we present can be readily replicated. Also, an

attractive feature of the data set is that it was designed in such a way that it does not

implicitly favour any specific decision theory. In summary, our results contribute to the

existing econometric literature that has examined ST as well as the literature that considers

various theoretical limitations of ST.

In terms of our econometric analysis, we present results for a range of model specifica-

tions and behavioral assumptions including the IGA following Balcombe and Fraser (2015).

Overall, we find less support for ST than Bordalo et al. (2012), consistent with Kontek

(2016) and Kontek (2018). Specifically, we do not find evidence supporting the IGA with

this data set. In terms of model comparison, we find less support for ST than EU the-

ory. Importantly, EU theory is known to perform worse than Cumulative Prospect Theory

(CPT) for this data set (see Stott (2006); Balcombe and Fraser (2015)) and we use identical

model specifications to Balcombe and Fraser (2015) such that our results transitively imply

that ST is outperformed econometrically by CPT.
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2 An outline of Salience Theory

Assume there are two lotteries (i, j)

li = (pi, xi) and lj = (pj, xj) (1)

where pi = (pi1,....,piM) and pj = (pj1,...., pjN), are the probabilities, and xi = (xi1,...., xiM)

and xj = (xj1,...., xjN) are the payoffs of the lottery, of dimension M and N respectively.

Given lotteries, i and j, BGS proceed by hypothesizing a state space D composed of the set

of states {ξmn}m,n such that ξmn is uniquely associated with the payoffs (xim, xjn) . Next

define xim as the payoff associated with the event ξim and xjn as the payoff associated with

ξjn, the state being defined by ξmn = ξim ∩ ξjn which has an associated probability πmn

for which nmπmn = 1. The dimension of D (which may include probability zero states) is,

therefore, S = M ×N. An economic agent evaluates each lottery (i) relative to lottery (j)

according to the value of each payoff v (xim) such that

Ui =n

∑
m

πmnv (xim) (2)

The salience function [equation (5) in BGS] is:

σmn =
|xin − xjm|

|xin|+ |xjm|+ θ
(3)

assuming some θ > 0. The numerator captures the ordering property of the lotteries i

and j, and the denominator takes account of the diminishing sensitivity property whereby

salience decreases the further a state’s payoff is from zero. Given salience values are used to

transform probabilities denoting rmn as the rank of σmn (with one being highest, and ties

receiving the same rank) the “weight” is:

wmn =
δrmn

nmδrmnπmn
(4)

where δrmn measures how much salience “distorts” decision weights. If the δrmn equal

one then we have the typical EU decision maker. Finally, ωmn, are computed from the

probabilities that a specific state occurs, which are computed as:

ωmn = wmnπmn (5)

This is equivalent to equation (8) in Bordalo et al (2012). Unlikely events will be over-
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weighted if they have salient payoffs, and they will be under-weighted otherwise. BGS argue

that empirical evidence supports the construction of πmn from independent lotteries using

pi and pj:

πmn = pimpjn (6)

However, alternative non-independent constructions are plausible. For example,

πmn = P (ξim ∩ ξjn)

such that we have M × N potential states requiring (M × N) − 1 unknowns to be

constructed. This is done by ordering states with the highest to lowest where given τ ∈
[−1, 1] , a split region can be constructed as:

πmn = pjnpim + τ × (pjnpim) I (τ < 0) + τ × (min (pjn, pim)− (pjnpim)) I (τ > 0) (7)

At τ = 0, we have independence; τ = −1 represents the most extreme negative correlation;

and, τ = 1 gives the most extreme positive correlation. τ can be estimated alongside θ and

δ.

As outlined in Balcombe and Fraser (2015), the parameters of interest in the models

(i.e., Ωs ∈ Ω) are in only one of two forms. That is, we parameterize our models by using

a normal variate ϑs that is then transformed according to

Ωs = t1 (ϑs;ϕls , ϕus) = ϕls + (ϕus − ϕls)
eϑs

1 + eϑs

or

Ωs = t2 (ϑs) = exp (ϑs)

where ϑ ∈ R (8)

In the case of t1 (ϑ;ϕl, ϕu) the transformed parameter lies within the interval (ϕl, ϕu).

We set the values for the interval a priori in accordance with the inequality constraints

outlined above for the three model specifications.

In general, the priors for parameters of the form t1 (ϑ;ϕl, ϕu) are (ϑ ∼ N (0, ζ)) where

they are assigned a variance ζ equal to 9
4
. This means that there is an approximately

uniform prior within the specified interval, although there is marginally less mass at the

very extremes. This implies that we are being ‘non-informative’ about the values except

that we have specified the interval over which the parameters lie.

Taking each parameter in turn we first consider the parameters priors that are trans-

formed according to t1. In this case we set δ = t1 (ϑδ; 0, 1) and τ = t1 (ϑτ ;−1, 1) . For
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the other two parameters we employ the t2 transformation. For the power value function,

which at the individual level must allow scope for some individuals to display convexity,

we set our prior such that α = t2 (ϑα) Pr (α < 0.1) = 0.10 and Pr (α < 2) = 0.90. This

equates to having 75% of the prior mass in the concave region. For our final parameter, we

have φ = t2 (ϑφ) where ϑφ has a prior standard deviation of 3. By undertaking sensitivity

analysis, we established that doubling or halving this standard deviation had little impact

on the overall results we present.

How Much Does Correlation Matter in

Salience Models?

To motivate this issue we take the case that Bordalo et al. (2012) use as an illustration in

their paper. First, we examine the lottery pair L1 (2, 400) L2 (2, 400) (page 1247). They

write this as:

L1 (2, 400) =


Pay Prob

2, 500 0.33

0 0.01

2, 400 0.66

 : L2 (2, 400) =

{
Pay Prob

2, 400 1

}

In a state form representation we could write this as

Payoff 1 Payoff 2 Prob

State 1 2,500 2,400 0.33

State 2 0 2,400 0.01

State 3 2,400 2,400 0.66

Bordalo et al. (2012) use this as an example of how salience can be constructed and

understood. However, the fact that there was a sure option (2,400) distributed across all

three states means that there was an automatic mapping from payoff probabilities to state

probabilities. The fact that this is not always the case can be made clear by examining the

second lottery pairing L1 (0) L2 (0) .

L1 (0) =


Pay Prob

2, 500 0.33

0 0.67

 : L2 (0) =


Pay Prob

2, 400 0.34

0 0.66


Here, we can construct three particularly interesting cases. There is an independence

construction (a), then (b) is under the assumption that the high payments are ”mutually

exclusive”, and (c) when payoffs are in a sense the most positively correlated.
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Payoff 1 Payoff 2 Prob (a) Prob (b) Prob (c)

State 1 2,500 2,400 0.113 0 0.33

State 2 2,500 0 0.218 0.33 0

State 3 0 2,400 0.227 0.34 0.01

State 4 0 0 0.442 0.33 0.66

Our main point here is that the potential for economic agents to construct (b) or (c) is

not at all implausible, and this leads to very different results.

For example, under linear utility and assuming the parameters used in Bordalo et al.

(2012) with respect to the salience function, assuming that θ = 0.1, with δ = 0.73, the

weighting parameter (as defined in Bordalo et al. by their equation (7) and the relative

utilities of (a), (b) and (c) above are 245.7, 304.1 and 0.1 respectively. Interestingly, these

results are in agreement that the third state version gives almost indifference between the

two gambles.2

Finally, it only needs a minimal shift in the parameters of the salience function to yield

negative values for (c) and positive values for (a) and (b). For example, if we employ δ = 0.67

we have (a) 330.8, (b) 394.1 and (c) -3.5. Therefore, how people interpret correlation is

material and as such needs to be considered when examining relative model performance.

3 Model specification

The Bordalo et al. (2012) ST model can be estimated by treating the difference in utilities

between two lotteries as a deterministic signal with a stochastic ‘link’. We specify the

utility function as v (x) = xα only, given its support in previous studies (see Stott (2006)

and Balcombe and Fraser (2015)) as well as in Bordalo et al. (2012). The ST model is

implemented using (3), together with (4). θ is only weakly identified since multiple values

for θ give identical salience ranks for states Therefore, we set θ = 0.1 throughout. This

choice of parameter value is identical to Bordalo et al. (2012, p. 1264). The dependence

relationship in equation (7) is specified by τ . Finally, we embed the utility difference between

lotteries i and j, ∆ij = Ui − Uj within a link function

F (∆ij, φ)

2For example, using the last column probabilities (Prob(c)) ordered according to the State 1 to State
4, the calculations are under equation (3) σ′ ' (0.0204, 0.99996, .999958, .00000), therefore r′ ' (3, 1, 2, 4),
and under equation (4) ω′ ' (0.399, 0.00, 0.017, 0.584). Under linear utility v′1 = (2500, 2500, 0, 0) and
v′2 = (2400, 0, 2400, 0) then U1 = ω′x1 ' 999.396;U2 = ω′x2 ' 999.247;U1 − U2 = 0.15.
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that gives the probability that lottery i is chosen over lottery j. We employ four alterna-

tive link functions (beta, probit, logit and constant probability). Therefore, we have the

parameter set Ω = (α, δ, τ, φ) and three specifications:

1. EU-Model: Expected Utility - δ = 0, τ = 0, α > 0

2. SWI-Model: Salience With Independence - δ ∈ (0, 1), τ = 0 and α > 0

3. SWD-Model: Salience With Dependence - δ ∈ (0, 1), τ = (−1, 1) and α > 0

4 Estimation, inference and results

Estimation uses adaptive Markov Chain Monte Carlo for each individual. After conver-

gence, the mean and standard deviation for the parameters are recorded. The Logged

Marginal Likelihood (LML) is computed for individual k for model t, denoted as lkt. Larger

l′kts indicate greater support for model t for individual k. At the aggregate level, the

marginal likelihood for model t over all individuals is obtained by:

mkt = exp

(
lkt −

T∑
t=1

exp(lkt)

T

)
(9)

Responses were elicited using a gamble format used by Stott (2006) where all respon-

dents were asked to choose between 90 lottery pairs, each with two payoffs. Estimates are

generated for all 90 individuals using the EU, SWI and SWD models covered above. We

present the aggregate LMLs for each model in Table 1.

Table 1: Logged Marginal Likelihoods by model type

Beta Probit Logit Constant Probability
EU -3728.59 -3813.39 -3860.66 -4025.37
SWI -3745.17 -3836.82 -3878.54 -4172.07
SWD -3740.78 -3829.99 -3873.52 -4166.33

Higher LMLs in Table 1, indicate more support for a model specification when imposed

on all individuals. We find that: EU � SWD �SWI (where � denotes preference). Thus,

at the aggregate level the EU model has the highest support. The salience model that allows

for dependence across the states (τ 6= 0) is preferred. For links, the preference is: Beta

�Probit�Logit�Constant Probability. The model rankings of the EU, SWD and SWI are

invariant to the link.
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That the EU is supported in aggregate, does not mean that it best characterises everyone.

Given that SWI has less support, and the Beta link had the most support, we further

compared the EU and SWD models with the Beta link. Model probabilities of the SWD

model relative to the EU model by individual are presented in Figure 1. Most individuals

have a low probability for SWD, but fourteen respondents have model probabilities almost

equal to one. Thus, as in Balcombe and Fraser (2015), there is considerable heterogeneity

in model support across individuals. We found that choosing θ = 0.1 is not pivotal to model

selection since rankings of lotteries are relatively insensitive to θ.

Figure 1: Individual Model Probabilities of the SWD model

We also report estimates for δ (posterior means) for the SWD specification. A histogram

for these is given in Figure 2. The greater mass of the histogram is in the upper region

(greater than 0.7). While these mean values give the impression of being somewhat below

one, most have 95% credible intervals (i.e. higher density regions) with upper bounds close

to one. This suggests most respondents behaved in a manner that is broadly consistent

with EU, with a minority of participants behaving in accordance with ST.

Finally, we consider the robustness of the IGA assumption. The histogram for τ (indi-

vidual posterior means) is presented in Figure 3. In this case0, the mass of the distribution

is above zero, indicating that, under ST, the majority of individuals perceive payoffs in the
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Figure 2: δ by individual

Figure 3: τ by Individual
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lottery pairs to have positively correlated payoffs across possible states. Specifically, if a

state contains two relatively large payoffs, or two relatively small payoffs, the subjective

probability of these states is higher than would be obtained by multiplying the respective

payoff probabilities. This finding is at odds with Bordalo et al. (2012) who report results

(in their Appendix 2) supporting IGA.

5 Conclusion

We examine the performance of the salience specification under risk introduced by Bordalo

et al. (2012) outside of a fully defined state contingent setting. We extend their empirical

implementation by analysing lottery preferences from Stott (2006) where only the marginal

distributions of the lottery pairs are defined a priori. Under salience, payoffs in vNM

lottery pairs are commonly treated by local thinkers as being positively correlated, when

no such assumption is made explicit. In terms of overall support for salience, a minority

of respondents behave consistently with ST compared to EU. In addition, previous research

has found that EU could not explain the Stott (2006) data relative to CPT. Thus, ST should

not be assumed to be superior to the most prominent models within the literature when

employed outside of particular contexts. Our work does not preclude the existence of ‘local

thinkers’ since local thinking requires an additional cognitive burden when the states and

their probabilities are not fully defined objectively. We suggest, however, that local thinking

is perhaps a context specific strategy employed by some respondents only.

Finally, our results are based on the examination of a single data set that has relatively

low average payoffs. In theory, for both EU and ST, increasing the magnitude

of real payoffs should not lead to a change in behaviour. However, in practice

this need not be the case when empirical examining risky choices that entail

high real payoffs. For example, the degree of state contingent correlation may

change when economic agents are making decisions under risk with higher real

payoffs than those examined here. Additionally, the parametric assumptions

we have employed for both EU and ST may break down under extremely large

real payoffs, accentuating errors that are implicit in the econometric model

specifications, and reducing the predictive power of both theories. As such, further

examinations of ST using lottery data that include larger stakes would be a useful exercise

to undertake in an effort to further our understanding of the strengths and weaknesses of

ST.
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6 Appendix A

A copy of the Stott (2006) data that has been employed in this paper is provided. For

details regarding data collection and associated experimental design please refer to Stott

(2006).
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