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Abstract Accurate and reliable gridded data sets are important for analyzing extreme weather and
climate events. Specifically, these data sets should produce extreme value statistics that are close to
reality. Here we use various statistical methods to evaluate the quality of four gridded data products in
representing daily precipitation extremes. The data products are the COSMO‐REA6 regional reanalysis, the
ERA5 global reanalysis, and the E‐OBS and HYRAS gridded observation‐based data sets. The statistical
methods we use offer a thorough insight into the quality of the different data sets by providing temporal and
spatial extreme value statistics of daily precipitation. Our results show that all data sets except HYRAS
underestimate the magnitude of daily precipitation extremes when compared with weather station data.
Moreover, the reanalysis data sets give generally worse extreme value statistics of daily precipitation than the
gridded observation‐based data sets. In particular, the reanalysis data sets often fail in reproducing the
accurate timing of observed daily precipitation extremes.

Plain Language Summary Gridded data products provide long‐term estimates of climate
variables such as temperature and precipitation at regularly spaced grids on the Earth. They are an
important source for the research of extreme weather. For example, for investigating the change in
frequency and intensity of heavy precipitation over time. To achieve reliable results, we need such data
products to be able to accurately represent extreme weather events. To verify if this is the case, we evaluate
the quality of several gridded data products in representing heavy daily precipitation events and find that
there is room for improvement.

1. Introduction

Reanalysis and gridded observation‐based data sets provide long‐term estimates of climate variables on a grid
covering the globe or a region. Reanalysis data are produced by blending a large number of observations and
forecasts from a numerical weather prediction system (Bollmeyer et al., 2015; Hersbach et al., 2020), while
the gridded observation‐based data sets are created by interpolating weather station observations onto a reg-
ularly spaced grid (Cornes et al., 2018; Rauthe et al., 2013). These gridded data products have found wide
application in atmospheric and climate sciences. For instance, they are used to identify climate variability
and change, to evaluate climate model simulations, and to investigate extreme weather and climate events.

Extreme climate and weather events are of utmost importance to many aspects of ecosystems, the economy
and society. They are not only of interest to the climate and weather communities but are also a big concern
for the financial sector and the insurance industry, since they can have severe impacts on economic damages
(Franzke, 2017; Franzke & Czupryna, 2020; Houser et al., 2015). Because reanalysis and gridded
observation‐based data sets typically cover several decades or longer, they are able to provide a decent
amount of data for us to analyze extreme weather and climate events, which are rare by definition.
Considering the wide use of gridded data products for analyzing extreme weather and climate events
(Bach et al., 2016; Blender et al., 2017; Donat et al., 2016; Dulière et al., 2011; Garfinkel & Harnik, 2017;
Sienz et al., 2010), there is a need to carefully assess howwell these products actually perform in representing
these events. Temperature and precipitation are two meteorological variables that are highly relevant to our
lives. Previous studies have shown that precipitation extremes in gridded data products are often less
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reliable, compared to temperature extremes (Donat et al., 2014; Kharin et al., 2005; Lockhoff et al., 2019;
Mannshardt‐Shamseldin et al., 2010; Zolina et al., 2004). Therefore, in this paper, we evaluate four gridded
data products in terms of their performance on representing daily precipitation extremes over Germany. The
investigation of daily precipitation extremes is relevant for flood risk assessment. We take advantage of the
high‐density precipitation observations provided by the German Weather Service (Deutscher Wetterdienst;
DWD) to validate the daily precipitation extremes represented in the gridded data products.

In many previous studies, climate extreme indices are computed to investigate temperature and precipita-
tion extremes (Donat et al., 2014, 2016; Dulière et al., 2011). These indices are recommended by the
Expert Team on Climate Change Detection and Indices (ETCCDI; Zhang et al., 2011), such as annual max-
imum value of daily maximum temperature, and number of days with daily precipitation greater than a
threshold. Moreover, approaches from extreme value theory (EVT; Coles, 2001) provide a more in‐depth
investigation of extreme weather and climate events through modeling the extreme values by a statistical
model, such as a Gamma distribution (Zolina et al., 2004), a generalized extreme value distribution
(Kharin et al., 2005; Mannshardt‐Shamseldin et al., 2010), and a generalized Pareto (GP) distribution
(Blender et al., 2017; Sienz et al., 2010; Zahid et al., 2017). These models are able to model data which are
highly skewed and have heavy‐tailed distributions and, thus, are highly non‐Gaussian. There are also some
other methods that were used in previous studies, including using the fractions skill score to assess the skill
of a data set to represent the occurrence of extreme events in a reference data set (Lockhoff et al., 2019), and
using the Taylor diagram to characterize the spatial structure of extreme events (Kharin et al., 2005).

In this paper, we use several statistical methods to evaluate daily precipitation extremes. We first use the GP
distribution to model daily precipitation extremes at different locations. We then use the extremal coefficient
(Cooley et al., 2006) to analyze the spatial characteristics of daily precipitation extremes. The spatial charac-
teristics were often not investigated in previous extreme precipitation studies. Then, we use the conditional
probability to examine the concurrent event occurrence properties of daily precipitation extremes. Finally,
we use the extremal index (Ferro & Segers, 2003) to investigate the temporal clustering characteristics of
daily precipitation extremes. The use of these statistical methods provide us with new insights into the qual-
ity and accuracy of gridded precipitation data products.

This paper is organized as follows: In section 2, we introduce the used statistical methods; in section 3, we
present the four gridded data products and station observations; in section 4, we compare daily precipitation
extremes in gridded data products with the observations; and in section 5, we conclude and discuss our
results.

2. Methods
2.1. Statistical Modeling of Daily Precipitation Extremes

We select extreme values as the daily rainfall amount that exceeds the 90th percentile. The GP distribution
has theoretical justification for fitting such threshold exceedances, and the probability density function
(PDF) is given by (see, e.g., Coles, 2001):

f ðx; u; σ; ξÞ ¼
1
σ

1þ ξ
ðx − uÞ

σ

� �−1=ξ − 1

; ξ ≠ 0;

1
σ
exp −

ðx − uÞ
σ

� �
; ξ ¼ 0; :

8>><
>>:

(1)

where u, σ, and ξ are referred to as the threshold, scale and shape parameters, respectively. As we use a
relative threshold, it becomes a good indicator for the magnitude of the selected precipitation extremes.
The scale parameter reflects the statistical dispersion of the probability distribution, namely, to which
extend it is squeezed or stretched. The shape parameter determines the decay rate of the distribution, that
is, how fast the relative likelihood of the occurrence of precipitation extremes decreases as their magni-
tudes increase. A positive shape parameter characterizes a power‐law decay, a zero‐valued one means
an exponential decay, and a negative one indicates a fast decay and thus a bounded distribution. As seen
from Equation 1, an increase of the shape or scale parameter results both in a higher probability of the
rainfall of the same amount. To make the scale parameter independent from the threshold, we
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introduce a modified scale parameter: σ∗ ¼ σ − ξu. For determining whether the GP distribution is a valid
model for the values above the chosen threshold, we adopt two methods: (i) the mean excess function
(MEF) (Coles, 2001) and (ii) a chi‐square goodness‐of‐fit test (Bódai, 2017). Both measures indicate that
our chosen threshold is high enough for a GPD to fit daily precipitation extremes well (not shown). For
estimating the scale and shape parameters, we use a Bayesian estimation approach from the R package
extRemes (Gilleland & Katz, 2016). The uncertainty of the estimates is given by the credible interval,
which is the Bayesian equivalent of the confidence interval.

2.2. The Extremal Coefficient

Accurately modeling the spatial dependence of daily precipitation extremes is a key factor for the generation
of gridded precipitation data sets since this will ensure that the spatial structures of extreme events are cap-
tured. However, standard correlation analysis is not able to reliably measure the dependence of extremes at
two locations, because correlation analysis focuses more on normal events and not extremes (Porcu
et al., 2012). Hence, we use the extremal coefficient (Cooley et al., 2006):

θ̂ðhÞ ¼ 1þ 2νðhÞ
1 − 2νðhÞ; (2)

with

νðhÞ ¼ 1
2
E½jFðzðx þ hÞÞ−FðzðxÞÞj�; (3)

where h is the distance between two locations and FðzÞ ¼ expð−1=zÞ. The extremal coefficient varies from
1 to 2, with 1 denoting perfect dependence and 2 independence between two locations. For more details
and applications of the extremal coefficients, see Schlather and Tawn (2003), Davison et al. (2012),
Ribatet (2017), and Yang et al. (2020a). We used the R package SpatialExtremes (Ribatet, 2019) to compute
the extremal coefficient.

2.3. The Conditional Probability

We use the conditional probability to measure the temporal correspondence between the daily precipitation
extremes in gridded data products and observed daily precipitation extremes, which is calculated by using
the approach of Blender et al. (2017):

Pðp ≥ ujp∗ ≥ uÞ ¼ Pðp ≥ u∩p∗ ≥ uÞ
Pðp∗ ≥ uÞ ; (4)

where p denotes the precipitation values in gridded data products, p∗ denotes observed precipitation
values, and u is the threshold used to select precipitation extremes. The joint probability P(p≥ u ∩ p∗ ≥
u) is estimated by dividing the frequencies of the precipitation extremes occurring simultaneously in
two data sets by the size of the precipitation data. The marginal probability P(p∗ ≥ u) is estimated in a
similar way. Equation 4 gives the probability of an extreme event to occur in gridded data products given
that the event has been observed. A value of 1 means that all observed extreme events are reproduced by
gridded data products at the same time. Therefore, it measures the skill of gridded data products to repre-
sent the exact occurrence time of observed extreme events.

2.4. The Extremal Index

We use the extremal index to measure the degree of clustering, or temporal dependence, of daily precipita-
tion extremes. One interpretation of the extremal index is that its inverse is approximately the mean cluster
length of extremes in time. Typically flooding events are triggered by extreme precipitation events occurring
over consecutive days. These consecutive occurring extremes constitute a cluster of extremes. Taking
account of this clustering is important for risk assessment (Moloney et al., 2019). For estimating the extremal
index, we use the interval method described by Ferro and Segers (2003)
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~θ ¼ 2 ∑N − 1
i¼1 ðTi − 1Þ� �2

ðN − 1Þ∑N − 1
i¼1 ðTi − 1ÞðTi − 2Þ; (5)

where N is the number of extremes and Ti is the time between the (i+ 1)th and ith extremes. The extremal
index has a value range between 0 and 1, where a value of 1 indicates that the extremes occur indepen-
dently from each other, while a value smaller than 1 means that they appear in clusters and there is tem-
poral dependency, with long‐range dependence (Franzke et al., 2020) for a value of 0. See Ferro and
Segers (2003) for more details. The computation of the extremal index is available with the R package
extRemes (Gilleland & Katz, 2016).

3. Data

We evaluate daily precipitation extremes given by a regional reanalysis, a global reanalysis, and two gridded
observation‐based data sets over the time period 1995–2018 over Germany. The daily precipitation extremes
are defined as the daily rainfall amounts that exceed the 90th percentile of the rainfall amounts within the
investigated period. As reference data, we use weather station observations provided by the DWD Climate
Data Center: Historical daily precipitation observations for Germany, version v007, 2019 (Freydank, 2014;
Kaspar et al., 2013; Spengler, 2002). The daily precipitation observations are measured at 06:30 UTC. We
choose 701 stations which have data over the used time period and are homogeneously located throughout
Germany.

3.1. The COSMO‐REA6 Regional Reanalysis

COSMO‐REA6 is provided by the Hans Ertel Centre for Weather Research of the DWD, which covers the
European domain with a spatial resolution of 0.055°, corresponding to about 6 km grid point distance
(Bollmeyer et al., 2015). COSMO‐REA6 is created based on the DWD's COSMO operational numerical
weather prediction model and uses a nudging technique for data assimilation. The COSMO model uses
the scheme proposed by Tiedtke (1989) for the parametrization of convection. Precipitation observations
are not assimilated in COSMO‐REA6, however, the assimilation of other observations—the observations
of prognostic variables for precipitation such as updraft, temperature, and pressure—still contributes to con-
straining of precipitation. The regional reanalyses can show large systematic errors for precipitation due to
the lack of assimilation of observations into the reanalysis data set (Bach et al., 2016).

3.2. The ERA5 Global Reanalysis

ERA5 is produced by the European Centre for Medium‐Range Weather Forecasts (ECMWF), covering the
Earth with a horizontal resolution of 31 km (Hersbach et al., 2020). ERA5 is created based on the
ECMWF Integrated Forecasting System (IFS) and a hybrid increment 4D‐Var data assimilation system
(Bonavita et al., 2016). The precipitation in ERA5 is generated by a large‐scale cloud and precipitation
scheme (Forbes & Ahlgrimm, 2014; Forbes & Tompkins, 2011; Tiedtke, 1993) and a convection scheme
(Bechtold et al., 2008; Hirons et al., 2013; Tiedtke, 1989). In addition to the conventional observations assimi-
lated in COSMO‐REA6, ERA5 assimilates the NCEP stage IV quantitative precipitation estimates produced
over the United States (Hersbach et al., 2020).

3.3. The E‐OBS Gridded Observation‐Based Data Set

E‐OBS (version v20.0e) is provided by the European Climate Assessment and Dataset consortium (Cornes
et al., 2018). E‐OBS provides gridded fields with a spatial resolution of 0.1° which corresponds to approxi-
mately 10 km grid point distance. This gridded observation‐based data set is derived frommeteorological sta-
tion observations. In the gridding procedure, a generalized additive model (Wood, 2006) is fitted to the
station values of daily precipitation to represent the long‐range spatial correlations in the data. It models
the square of the nonzero daily precipitation as a smoothed function of longitude and latitude, plus a
smoothed function of squared monthly precipitation totals. The square root transformation reduces the
skewness in the precipitation data. The model is fitted using penalized likelihood maximization
(Wood, 2006). The monthly totals are gridded using a trivariate thin‐plate spline (Cornes et al., 2018).
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3.4. The HYRAS (REGNIE) Gridded Precipitation Data Set

HYRAS is provided by the DWD Climate Data Center, covering Germany with a high spatial resolution of
1 km (Rauthe et al., 2013). This gridded daily precipitation data set is formed from station observations using
the REGNIE method, in which a multiple linear regression is applied to create background fields of precipi-
tation. The response variables in the regression are monthly precipitation totals, and the explanatory vari-
ables are geographical longitude and latitude, height above sea level, exposition, and mountain slope. The
regression coefficients for one area are calculated using all available stations in that area and using the least
squares method. The residuals of the regression are interpolated from the closest stations using inverse dis-
tance weighting if a grid box contains no observations. The ratios of daily precipitation to the background
fields at the stations are also interpolated using inverse distance weighting. The interpolated values of daily
precipitation at grid points are finally determined by multiplying the ratios with the background fields
(Rauthe et al., 2013). A big advantage of the REGNIE method is that it does not smooth the observed preci-
pitation extremes in the gridded field (Rauthe et al., 2013).

For consistency, we linearly interpolate the daily precipitation data of COSMO‐REA6, ERA5, and E‐OBS to
station locations and choose the HYRAS grid point that is at the nearest to the respective station. Our results
are robust against the choice of the interpolation method. The daily precipitation value in reanalysis data
sets is obtainedby accumulating hourly values from 0700 to 0600 UTC, in order to make it consistent with
the observed daily value that is valid for the time period from 0630 to 0630 UTC.

4. Results
4.1. The Probability Density Distribution of Daily Precipitation Extremes

Figure 1 shows the geographical distribution of the threshold values, shape, and scale parameter estimates
for station observations. The highest threshold values are shown along the southern boundary of
Germanyand also in a small region in western Germany. One common feature of these areas is that they
are at relatively higher elevation (≥300m). In contrast, smaller threshold values are found in northeastern
Germany where the altitude is lower. Moreover, the threshold values in summer are generally larger than
in other seasons. The geographical structure of the scale parameter estimates is similar to that of the thresh-
old values. The smallest scale parameter estimates are found in winter and the largest estimates are in sum-
mer. In comparison with the threshold and scale parameter, a geographical structure of the shape parameter
is unclear. However, at most stations the shape parameter is positive, indicating that the probability of the
occurrence of extreme daily precipitation events decreases following a power‐law as their magnitude
increases. This implies that there is a nonnegligible probability of getting a daily rainfall amount that is
much larger than the threshold value.

The threshold value and the scale and shape parameters characterize different aspects of the distribution of
daily precipitation extremes. The threshold value gives the minimal magnitude of the top 10% of the largest
daily precipitation values, whilst the shape and scale parameters describe how these precipitation extremes
are distributed. The difference between the shape and scale parameters is that the former emphasises how
the distribution decays, while the scale parameter shows how wide is the range of the magnitudes for most
of daily precipitation extremes. In our computations, the shape parameter estimates vary from −0.24 to 0.43
with a credible interval of [−0.15, +0.18] for each station, and the scale parameter estimate changes between
1.2 and 17.6 with a credible interval of about ±1.0. Therefore, the geographical variation of the scale para-
meter is more pronounced.

Figure 2 compares the distribution of threshold values and shape and scale parameter estimates between dif-
ferent gridded data products and station observations. The two gridded observation‐based data sets (E‐OBS
and HYRAS) give closer threshold values and parameter estimates to the station observations than the two
reanalysis data sets (COSMO‐REA6 and ERA5). The largest disagreement between the reanalysis data sets
and station observations is found in the scale parameter; the reanalyses have generally smaller scale para-
meter estimates than the observations, especially in summer and spring. Additionally, COSMO‐REA6 gives
lower threshold values and slightly larger shape parameter estimates than station observations in general in
summer. Compared to the scale parameter and threshold, the difference in the shape parameter is small, so
that the major difference between daily precipitation extremes in gridded data products and station observa-
tions is mainly revealed by the threshold and scale parameter. A smaller scale parameter indicates that the
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distribution of daily precipitation extremes is more squeezed to its lower bound rather than stretched out.
In other words, it means that more extremes have values close to the respective threshold. Therefore, a
smaller scale parameter reflects an underestimation of the magnitude of the observed daily precipitation
extremes in gridded data products. For instance, the observed maximum daily precipitation in the
investigated period at 701 weather stations is 251.1 mm, while the maximum values in HYRAS, E‐OBS,
COSMO‐REA6, and ERA5 are 243.8, 192.9, 164.4, and 131.6 mm, respectively. However, it should be
noted that precipitation observations are measured at a particular location, whereas the precipitation data
in gridded data products represent averages over a grid box. As a result the magnitude of daily

Figure 1. The threshold values and shape and scale parameter estimates of the fitted GP distributions for observed daily precipitation extremes at 701 weather
stations throughout Germany. The threshold values are the 90th percentile of daily precipitation values at each location. The scale and shape parameters
describe the statistical dispersion and tail behavior of the distribution of daily precipitation extremes, respectively.
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precipitation extremes in a gridded data set with a lower resolution tends to be smaller than that in a gridded
data set with a higher resolution.

4.2. Temporal and Spatial Dependence of Daily Precipitation Extremes

Figure 3 presents the spatial and temporal dependence of daily precipitation extremes, and how often the
gridded data products represent the occurrence of the observed extreme events. The two reanalysis data sets
have lower conditional probabilities than the two gridded observation‐based data sets (see Figure 3a). In
summer, the conditional probabilities of COSMO‐REA6 and ERA5 are only about 0.5, indicating that almost
half of all extreme events in these two data sets do not occur at the same time as in the observations. Also for
the gridded observation‐based data sets, the timing of daily precipitation extremes is captured worse in sum-
mer than in the other seasons. Precipitation is often caused by convection in summer, and this type of pre-
cipitation is generally intense and may suddenly start and stop with the formation and dissipation of active
cumulus and cumulonimbus clouds. Therefore, its timing is hard to be captured by a forecast model.
Assimilating precipitation observations can potentially improve the timing of daily precipitation extremes
in reanalysis data sets.

The extremal index reveals a seasonal change of the strength of the clustering of daily precipitation extremes
(see Figure 3b): The extremes tend to appear in clusters in winter, whereas they occur more independently in
summer. This is again a result of different types of precipitation. In summer, the convective precipitation
such as rain showers are dominant, which usually occur independently from each other. Whilst in winter
large‐scale precipitation such as precipitation caused by frontal uplift occurs more often and can last from
several hours to days. This seasonal change of the extremal index is not clearly shown by COSMO‐REA6.
Furthermore, we observe some spatial features of the degree of clustering of daily precipitation extremes
over Germany: The daily precipitation extremes at the stations in Northeast Germany have a lower degree

Figure 2. Density ridgeline plots of threshold values, and shape and scale parameter estimates of the fitted GP distributions for daily precipitation extremes in
station observations and four gridded data products.
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of clustering, while the precipitation extremes at the southern stations, particularly the stations along the
southern boundary, are more likely to occur in clusters (not shown). The reason of this could be that oro-
graphic precipitation (caused by rising terrain, such as a mountain) often takes place in the southern bound-
ary of Germany.

We finally compare the extremal coefficients between gridded data products and station observations. As
shown in Figure 3c, all gridded data products except HYRAS disagree to a relatively large extent with the
station observations. The daily precipitation extremes in E‐OBS have systematically a higher spatial depen-
dence compared to station observations regardless of their distance. The daily precipitation extremes in
COSMO‐REA6 and ERA5 show a higher dependence when the distances are small but a lower dependence
as the distance increases. COSMO‐REA6 gives closer extremal coefficients to station observations than
ERA5 when the distance is small.

Figure 3. The comparison of daily precipitation extremes between gridded data products and station observations in terms of (a) the conditional probability of
concurrent occurrence of daily precipitation extremes; (b) the extremal index, which reveals the temporal dependency of daily precipitation extremes, with
lower dependence as the value increases; (c) the extremal coefficients, which indicates the spatial dependence of daily precipitation extremes, with lower
dependence as the value increases.
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5. Conclusion and Discussion

We evaluate the quality of four gridded data products in representing daily precipitation extremes over
Germany. We find that daily precipitation extremes in gridded observation‐based data sets are generally clo-
ser to observed daily precipitation extremes than in reanalysis data sets, in terms of their density distribution,
spatial and temporal dependence, and timing. The performance of these data sets is not only influenced by
their resolution but also, most importantly, influenced by the different methods used to produce
precipitation data.

The precipitation data in the two reanalysis data sets are generated by precipitation parameterization
schemes in the respective forecast model. Because COSMO‐REA6 does not assimilate precipitation observa-
tions, the contribution of data assimilation to the precipitation output is limited to an indirect constraint of
precipitation due to the assimilation of observations of prognostic variables that influence precipitation such
as vertical wind. ERA5 assimilates precipitation observation equivalents produced over the United States but
not over our investigated region. Therefore, the contribution of data assimilation to precipitation data in
ERA5 is similar to that to COSMO‐REA6. An improvement of precipitation data in reanalyses can be poten-
tially achieved by assimilating precipitation observations or equivalents. The precipitation observations
should not be limited to station gauge data, but also include the data measured by other instruments such
as rain radar systems. In addition to COSMO‐REA6, DWD provides a convective‐scale regional reanalysis
for Central Europe (COSMO‐REA2), which has a spatial resolution of 2 km, and indeed assimilates radar
precipitation estimates using latent‐heat nudging (Wahl et al., 2017). However, COSMO‐REA2 is only avail-
able over a short period from 2007 to 2013, and for this reason, we have not included it in our study. The
impact of a higher model resolution and assimilation of radar precipitation estimates on precipitation can
be found in Wahl et al. (2017). The ECMWF model (IFS) and DWD model (COSMO) both use convection
schemes based on Tiedtke (1989), but in IFS a large upgrade has been made (Bechtold et al., 2008; Hirons
et al., 2013). Moreover, IFS uses a large‐scale cloud scheme to generate large‐scale precipitation (Forbes &
Ahlgrimm, 2014; Forbes & Tompkins, 2011; Tiedtke, 1993). The upgrades of the convection and cloud
schemes in IFS are probably the reason for the better representation of daily precipitation extremes in
ERA5 than COSMO‐REA6. Currently, a nonhydrostatic extension of IFS is in use at ECMWF for research
purposes. Since 2003, DWD has been developing a convective‐scale model called COSMO‐DE, which is a
version of COSMO and partially resolves organized convection (Stephan et al., 2008). The use of such models
might improve extreme precipitation in reanalysis data.

The daily precipitation extremes in E‐OBS improve over the reanalyses. However, they still show some dis-
crepancy in representing the statistics of the observed daily precipitation extremes. Particularly, the daily
precipitation extremes in E‐OBS have a systematically larger spatial dependence than observed. E‐OBS is
available on a 0.1 and 0.25 degree grid, and the high‐resolution one performs better in our evaluation of daily
precipitation extremes (not shown). HYRAS performs even better than E‐OBS in representing daily precipi-
tation extremes. The extreme value statistics of daily precipitation in HYRAS are almost the same as that in
station observations. This is a benefit of using a different gridding method and a denser observations net-
work. In E‐OBS, daily precipitation data are modeled by a smoothed function of geographical factors, while
in HYRAS, monthly precipitation totals are modeled, so that the daily precipitation proportions are not
smoothed. This results in that HYRAS does not smear out daily precipitation extremes in contrast to other
interpolation methods with smoothing (Rauthe et al., 2013). Moreover, HYRAS uses a higher number of sta-
tion observations over Germany and has a higher resolution than E‐OBS. The high density of observations
also makes the preservation of the station vales for the respective grids possible (Rauthe et al., 2013). As the
density of observations is a key factor in determining the quality of gridded precipitation data, we suggest to
consider the additional use of satellite and radar data for the production of gridded data sets. Another area of
potential improvement would be to explicitly consider extreme value statistics in the gridding procedure so
that the tail behavior will be better matched. For example, the coefficients of the statistical model in the
gridding procedure are determined by the bulk of precipitation data not extremes. Therefore, they are opti-
mized for the normal precipitation events (Hu et al., 2019).

The better performance of the gridded observation‐based data sets in representing daily precipitation
extremes does not necessarily mean that the gridded observation‐based data sets are better than reanalyses.
Reanalysis is a three‐dimensional data set, consisting of a large number of atmospheric, land, and oceanic
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climate variables, while gridded observation‐based data sets are two‐dimensional and contain only a few cli-
mate variables. Moreover, gridded observation‐based data sets require dense station observations, whilst rea-
nalysis uses a numerical model and can assimilate various types of observations that are measured from
different instruments, for example, satellite observations. This allows reanalysis to cover the region where
in situ observations are sparse, such as over the ocean.

In addition to the validation of daily precipitation extremes in gridded data products using station observa-
tions, we demonstrate the use of several statistical methods to evaluate extreme values in gridded data pro-
ducts. These methods go beyond standard correlation analysis and provide new insights into the behavior of
extreme events such as daily precipitation extremes. These methods can also be used to evaluate climate
models (Yang et al., 2020a, 2020b) and can be applied to other variables as well. The choice of using daily
data is limited by data availability. Subdaily or hourly extremes are also relevant to flood forecasting, espe-
cially for urban flooding. The evaluation of these precipitation extremes is as important as for daily extremes.
The gridding method REGNIE can also be applied to create a hourly gridded precipitation data set (Van
Osnabrugge et al., 2017). This data set can be updated to near real‐time, making it suitable for operational
flood forecasting and drought monitoring (Van Osnabrugge et al., 2017).

Data Availability Statement

The historical daily precipitation observations for Germany, COSMO‐REA6 reanalysis, and REGNIE grids of
daily precipitation (HYRAS) are accessible via https://opendata.dwd.de. E‐OBS data set is accessible via
https://www.ecad.eu/download/ensembles/download.php. ERA5 hourly total precipitation data is accessi-
ble via https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab¼overview.
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