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ART ICLE Open Ac ce s s

The apple REFPOP—a reference population
for genomics-assisted breeding in apple
Michaela Jung1,2, Morgane Roth2,16, Maria José Aranzana 3,4, Annemarie Auwerkerken5, Marco Bink6,7,
Caroline Denancé8, Christian Dujak4, Charles-Eric Durel8, Carolina Font i Forcada3, Celia M. Cantin3,9, Walter Guerra10,
Nicholas P. Howard 11,12, Beat Keller1,2, Mariusz Lewandowski13, Matthew Ordidge14, Marijn Rymenants5,6,15,
Nadia Sanin10, Bruno Studer1, Edward Zurawicz13, François Laurens8, Andrea Patocchi2 and Hélène Muranty8

Abstract
Breeding of apple is a long-term and costly process due to the time and space requirements for screening selection
candidates. Genomics-assisted breeding utilizes genomic and phenotypic information to increase the selection
efficiency in breeding programs, and measurements of phenotypes in different environments can facilitate the
application of the approach under various climatic conditions. Here we present an apple reference population: the
apple REFPOP, a large collection formed of 534 genotypes planted in six European countries, as a unique tool to
accelerate apple breeding. The population consisted of 269 accessions and 265 progeny from 27 parental
combinations, representing the diversity in cultivated apple and current European breeding material, respectively. A
high-density genome-wide dataset of 303,239 SNPs was produced as a combined output of two SNP arrays of
different densities using marker imputation with an imputation accuracy of 0.95. Based on the genotypic data, linkage
disequilibrium was low and population structure was weak. Two well-studied phenological traits of horticultural
importance were measured. We found marker–trait associations in several previously identified genomic regions and
maximum predictive abilities of 0.57 and 0.75 for floral emergence and harvest date, respectively. With decreasing SNP
density, the detection of significant marker–trait associations varied depending on trait architecture. Regardless of the
trait, 10,000 SNPs sufficed to maximize genomic prediction ability. We confirm the suitability of the apple REFPOP
design for genomics-assisted breeding, especially for breeding programs using related germplasm, and emphasize the
advantages of a coordinated and multinational effort for customizing apple breeding methods in the genomics era.

Introduction
Apple (Malus × domestica Borkh.) is one of the most

economically valuable fruit crops in temperate regions1.
Thousands of cultivars are grown in national and private
repositories around the globe. Extensive genetic variation
described in the European apple germplasm illustrates the
available genetic diversity among cultivars2,3. Only a
fraction of the existing apple cultivars is commercially
used. Although ongoing breeding programs worldwide

aim to create new cultivars adapted to consumer demands
and changing climate, these goals could be difficult to
reach within the narrow elite genetic pool of modern
breeding material4.
Since the advent of genomics, genotyping tools have

begun to produce affordable genome-wide marker data.
Large datasets are being analyzed to explore
genotype–phenotype relationships in genome-wide asso-
ciation studies (GWAS) and to allow genomic prediction.
Particularly, genomic prediction5 has revolutionized
breeding and more than doubled genetic progress of
major livestock such as cattle6. The method relies upon
models fitted to broad datasets of genotypes and pheno-
types from a training population. The aim is to predict the
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agronomic performance of breeding material related to
the training set based on the marker information alone.
For the application of genomic prediction in fruit trees,

apple became a model species due to its economic
importance and the range of available research resources7.
Genomic prediction in apple was tested for the first time
by Kumar et al. in 20128. However, this and further stu-
dies have been based on a limited number of genetic
markers and/or been carried out at a local scale9–14.
The prediction accuracy of genomic prediction models

generally increases with the number of markers used to
genotype the training population, reaching a plateau
depending on the architecture of the trait, the number of
individuals in the training population, the size of the
genome and linkage disequilibrium15. Low population
structure2 and rapid linkage disequilibrium decay in highly
diverse apple germplasm3 underlie the need for dense SNP
marker datasets for GWAS. Considerable progress has
been made in the development of genomic resources in
apple16. Creation of low and medium density SNP arrays,
such as the Illumina Infinium® 20K SNP genotyping array
(20K array)17 was followed by the establishment of the
Affymetrix Axiom® Apple 480K SNP genotyping array
(480K array) with more than 480K SNPs18. Using this SNP
array for apple, markers significantly associated with
phenological traits in several germplasm collections have
been successfully discovered by GWAS3. Although the
high marker density of the 480K array may lead to higher
prediction accuracies than achieved before, no genomic
prediction study was conducted using this array so far.
Commercial apple breeding programs still cannot afford
large-scale genotyping of their germplasm with expensive
tools. Therefore, a balance between genotyping density,
costs, and predictive ability should be found for the
application of genomic prediction in breeding.
Here, we present an apple reference population: the

apple REFPOP. The population has been replicated across
six environments in Europe and designed for comparing
two management practices, which will allow for a thor-
ough and unique study of the effects of genotype, envir-
onment, and management as well as their interactions on
apple phenotypes. The main objectives of this study were
to consolidate the high-density SNP marker dataset for all
apple REFPOP genotypes, apply the SNP marker dataset
when describing population characteristics of the apple
REFPOP and prove suitability of the apple REPOP design
for genomics-assisted breeding. Success of the genomics-
assisted breeding may depend on characteristics such as
marker density, trait architecture or size of the training
population10,15. For the first time in apple, these aspects
could be tested with (i) GWAS and genomic prediction
using the high-density 480K array marker dataset, (ii) a
comparison of the effects of SNP density on GWAS and
genomic prediction, and (iii) the prediction precision

analysis. Our further aim was to discuss the use of the
apple REFPOP for genomic prediction in multiple envir-
onments, across multiple traits and multi-management
practices and to facilitate the improvement of apple
breeding using the established apple REFPOP.

Results
Composition of the apple REFPOP
The apple REFPOP was ultimately built with (i) 269

diploid accessions representing a wide range of genetic
diversity in apple, originating from various geographic
regions around the globe and (ii) 265 diploid progeny from
27 parental combinations from several European breeding
programs (Supplementary Tables 1 and 2). Similar to a
previous study2, 194 European accessions were classified
according to their origin into (i) Northern and Eastern
Europe incl. Russia and Baltic countries (NEE, number of
accessions n= 28), (ii) Western and Central Europe
(WCE, n= 134), (iii) Southern Europe with accessions
from Spain, Italy, and Portugal (SE, n= 22), and (iv)
Southeastern Europe containing accessions from Romania,
Northern Macedonia, Moldova, Bulgaria, and Turkey
(SEE, n= 10). The 69 non-European accessions originated
from (i) Australia and New Zealand (ANZ, n= 8), (ii)
Canada (CAN, n= 16), (iii) Japan (JPN, n= 9), (iv) United
States of America (USA, n= 34), and (v) South Africa
(ZAF, n= 2). Six accessions previously analyzed with the
480K array but of unknown origin were also included in
the apple REFPOP.

Marker imputation and validation of the imputation
output
Missing marker values in the reference set obtained from

the 480K array (see “Material and methods” section, Table 1)
were inferred through a minor imputation step to obtain a
full dataset of 303,239 SNPs covering the 17 apple chro-
mosomes. This minor imputation step was performed for a
collection of 1356 accessions (including 269 apple REFPOP
accessions) and six progeny genotyped in separate stu-
dies18,19. Subsequently, a major marker imputation applied
to the 259 of the 265 progeny that were genotyped with the
20K array (the remaining 6 progeny with 480K array data
available were included in the reference set) increased the
marker density from 7060 to 303,239 SNPs (97.7% of marker
values imputed). Additionally, imputation accuracy of 0.96
and 0.94 when calculating Pearson correlations between
imputed and original values across individuals and across
markers, respectively, was estimated for 86 genotypes from
two parental combinations, ‘Fuji’ × ‘Pinova’ and ‘Golden
Delicious’× ‘Renetta Grigia di Torriana’.

Linkage disequilibrium and population structure
From the complete set of genome-wide SNP data for

both apple REFPOP accessions and progeny, rapid decay
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of linkage disequilibrium was found (Fig. 1a). The loess
smoother fitted to r2 values of SNPs within a 5 kb distance
dropped below a threshold of 0.2 at distance of 2.52 kb,
the curve being very flat (Fig. 1b). Average r2 calculated at
100, 5, 1 kb and 100 bp was 0.14, 0.21, 0.21, and 0.24,
respectively. Separate analysis of the accession and pro-
geny group showed a similar pattern of linkage dis-
equilibrium in both groups (Supplementary Figs. 1 and 2).
In an unrooted neighbor-joining tree of apple REFPOP

accessions (Fig. 2a), the non-European accessions clustered
at the upper side of the tree with a transition towards the
European accessions clustering at the lower branches. In
the principal component analysis (PCA) of the accession
group (Fig. 2b), the first two principal components
explained only 7.6% of the total variance in genetic markers.
The first principal component showed a slight differentia-
tion between European and non-European accessions with
the majority of the non-European accessions positioned on
the right side of the plot. The second principal component
displayed a weak latitudinal cline in the European acces-
sions with the southern and northern European accessions
placed towards the opposite extremes of the second com-
ponent. Progeny, added to the PCA as supplementary
individuals after PCA loadings were estimated, were
grouped tightly together among the accessions although
they did not form any separate cluster (Fig. 2b). The

ADMIXTURE analysis revealed that two local minima of
the cross-validation error were reached at the number of
clusters K= 14 and K= 17 (Supplementary Fig. 1). For the
first minimum (K= 14), genotypes sorted by cluster
membership within groups defined by geographic region of
origin appeared highly admixed (Fig. 2c). A PCA of the
progeny group with 13 parents of the crosses included as
supplementary individuals showed that the first two prin-
cipal components described 10.4% of the total variance in
the genomic data and the parents fell among the many
small clusters formed by members of distinct parental
combinations (Supplementary Fig. 4). From all population
structure analyses, we concluded that the apple REFPOP
was composed of diverse germplasm with very weak
population structure together with high levels of admixture.

Phenotypic analyses
Using the spatial analysis of field trials with splines,

spatial patterns were captured appropriately for all envir-
onments and traits as suggested by the homogeneous
residuals (Eq. (1)). Estimated effective dimensions of the
spatial model, which are helpful for characterizing the
importance of model components20, showed a generally
larger field variation due to spatial effects for floral
emergence than for harvest date (Supplementary Table 3).
Differences between environments for both floral

Fig. 1 Linkage disequilibrium decay in the apple reference population. Linkage disequilibrium with a loess smoother for a distances
betweenSNPs across the span of chromosomes, and b for SNPs within a 5 kb distance

Table 1 Overview of the unique genotypes used in the genotype imputation

Number of unique genotypes Set of data Population type SNP array resolution

269 Reference Accessions, apple REFPOP 480K

1,087 Reference Accessions, additional material 480K

6a Reference 1 parental combination, apple REFPOP 480K

259 Imputation 27 parental combinations, apple REFPOP 20K

86b Validation 2 parental combinations, additional material 480K

a6 progeny of ‘Fuji’ × ‘Pinova’
b40 progeny of ‘Fuji’ × ‘Pinova’ and 46 progeny of ‘Golden Delicious’ × ‘Renetta Grigia di Torriana’
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emergence and harvest date were visualized using adjusted
phenotypic values of each tree in every environment
(Fig. 3a, b). Based on this adjusted phenotypic data from
2018, trees began flowering during a narrow period ran-
ging between 16 days in Switzerland and 47 days in France.
On average, the flowering began earlier at the southern
sites (Spain and Italy). By contrast, harvest dates were
distributed across a much longer time span of 99–150 days
in Switzerland and Spain, respectively. As with the floral
emergence, the mean harvest dates tended to be the ear-
liest in the southern European sites. When comparing the
adjusted data to the raw data, we found a small systematic
increase in individual-location clonal mean heritability for
all environments and both traits (Fig. 3c). Values of the
individual-location clonal mean heritability after the
adjustment were generally high for both traits and larger
for harvest date than for floral emergence. Floral emer-
gence data from Poland with individual-location clonal
mean heritability below 0.1 were excluded. Using the
adjusted phenotypic values of each tree from the remain-
ing environments to estimate the phenotypic least-square
means of genotypes across environments, the obtained
values were distributed across a narrow period of 33 days
for floral emergence whereas the values of harvest date
were distributed over 97 days (Fig. 3d).
Predicted values of genotypes adjusted for spatial het-

erogeneity within each environment showed that indivi-
dual genotypes appeared to respond differently to the

various environments, with an apparent broader variation
among genotypes for harvest date than for floral emer-
gence (Fig. 4a, b). When modeling the effects of envir-
onment, genotype and their interaction (see “Material and
methods” section, Eq. (5)), the proportion of variance in
floral emergence explained by the environment, genotype,
and genotype by environment interaction was 43%, 22%,
and 18%, respectively (Fig. 4c). For harvest date, the
environment explained only 5%, whilst genotype
explained 74% and genotype by environment interaction
explained 12% of the overall variance (Fig. 4c). Confidence
intervals for the estimated variances of random effects of
genotype, genotype by environment interaction, and
residuals were distinct from zero and therefore, the gen-
otypes differed in the evaluated trait and interacted with
the environment (Supplementary Figs. 5 and 6).

Genome-wide association and prediction analyses
The application of GWAS to apple REFPOP dataset

identified three markers associated with floral emergence
(Fig. 5a, see Supplementary Table 4 for a list of p-values).
Reported p-values were closely below the log-transformed
Bonferroni-corrected significance threshold for GWAS
performed with the full set of 480K array SNPs; all three
associations were significant at density of 150,000 SNPs.
Two SNPs were located at the top of chromosome 9
(proportion of explained phenotypic variance r2 of 0.07
and 0.03) and a third one on chromosome 11 (r2= 0.10).

Fig. 2 Structure of the apple reference population. a Unrooted neighbor-joining tree of the accession group, colors correspond to the legend in
“b”. b Principal component analysis of the accession group with progeny group as supplementary individuals encircled with a normal confidence
ellipse (constructed using a multivariate normal distribution, level 0.95). Plot of the first two principal components with their respective proportion of
the total variance shown within brackets. c ADMIXTURE bar plot of the accession group for K= 14. Labels in plots “a” to “c” refer to the geographic
origin of genotypes: ZAF (South Africa), JPN (Japan), ANZ (Australia and New Zealand), CAN (Canada), USA (United States of America), WCE (Western
and Central Europe), NEE (Northern and Eastern Europe), SE (Southern Europe), SEE (Southeastern Europe), U (accessions of unknown geographic
origin), and P representing the progeny group in plot “b”. In plot “c”, each group of genotypes with a common geographic origin is labeled at its
right side
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Four SNPs were identified to be significantly associated
with harvest date using the full set of 480K array SNPs
(Fig. 5b, see Supplementary Table 5 for a list of p-values).
The strongest association was found on the chromosome

3 (r2= 0.39) with another significantly associated marker
at a distance of 5.3Mb (r2 ≈ 0). Two SNPs on chromo-
some 10 (r2= 0.15) and on chromosome 16 (r2= 0.11)
were also significantly associated with harvest date. The

Fig. 3 Distributions and heritability of the phenotypic data. a, b Violin plots of floral emergence and harvest date for individual environments
using the adjusted phenotypic values of each tree. Gray and black circles denote mean and median values, respectively. c Individual-location clonal
mean heritability for two analyzed traits with values before and after the correction of spatial heterogeneity. d Density plot of phenotypic least-
square means of genotypes across environments with environmental effects removed, calculated from the adjusted phenotypic values of each tree
corrected for spatial heterogeneity within environments. The environments were labeled with codes: Belgium (BEL), Switzerland (CHE), Spain (ESP),
France (FRA), and Italy (ITA)

Fig. 4 Visualization of variability between traits (floral emergence and harvest date), genotypes (both apple REFPOP groups) and
environments. a, b Predicted values of genotypes adjusted for spatial heterogeneity within each environment, 30 randomly chosen genotypes were
highlighted with colors. Order of the environments corresponds to their latitude. The environments were labeled with codes: Spain (ESP), Italy (ITA),
Switzerland (CHE), France (FRA), and Belgium (BEL). c Stacked bar plots with the variance of the fixed effect of environment and the random effects of
genotype, genotype by environment interaction, and residuals; calculated from the model following Eq. (5) (see “Material and methods” section)
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QQ-plots for both traits indicated a good model fit
(Supplementary Figs. 7 and 8).
With the full set of 480K array SNPs, floral emergence

was predicted using the RR-BLUP model with an average
predictive ability of 0.57, whereas the multi-location clo-
nal mean heritability was equal to 0.86 for this trait
(Fig. 5c). Average predictive ability of harvest date was
0.75 with the multi-location clonal mean heritability of
0.97 for the trait.
Comparison of GWAS performance under various SNP

densities showed that the number of significant

associations was higher for harvest date than for floral
emergence at all densities (Fig. 5d). For floral emergence,
the number of significant associations increased up to
density of 150,000 SNPs. Beyond this density, the number
of significant associations decreased. The number
remained at zero for the 12K marker set (12,374 SNPs)
thinned for linkage disequilibrium. For harvest date, the
number of significant associations was low (~1) for SNP
densities of 0.5–1K. Across all densities larger than 1K,
the number of significant associations with harvest date
remained high (≥2). For the 12K marker set thinned for

Fig. 5 Results of the genome-wide association study (GWAS) and genomic prediction analysis. Manhattan plots for a floral emergence and
b harvest date with log-transformed p-values obtained with GWAS and Bonferroni-corrected significance threshold indicated with dashed line.
c Genomic predictive ability measured with Pearson correlation coefficient, multi-location clonal mean heritability, and average predictive ability.
Comparison of the number of significant associations in d GWAS and e genomic predictive ability measured with the respective mean values and
their 95% confidence intervals under various SNP densities obtained through three feature selection strategies (see “Materials and methods” section).
Plots “d” and “e” share a common legend placed in “e”. f, g Expected precision of genomic estimated breeding values (GEBVs) with different training
population sizes N, number of effective markers M in linkage disequilibrium with the genes underlying the trait and two heritability values h2 of f 0.5
and g 0.8. The N values correspond to a minimum of 10 individuals, and to the sizes of the accession group (N= 269), the whole apple REFPOP (N=
534) and a population of an approximately double size of the apple REFPOP (N= 1000)
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linkage disequilibrium, two significant associations on one
chromosome were found. Similar to GWAS, predictive
ability of genomic prediction was higher for harvest date
than for floral emergence at all densities (Fig. 5e). For
both traits, the plateau in predictive ability was reached at
a density of 10K SNPs and the difference between pre-
dictive ability at 500 and 10,000 SNPs was ~0.1.
The precision analysis of genomic prediction (Fig. 5f, g)

allowed the assessment of the trait architecture and her-
itability ranges that may lead to satisfying precision of
genomic estimated breeding values. For a training popu-
lation with a size of N= 10, very high precision values
(precision ≥ 0.8) may be expected only for simple, oligo-
genic traits (number of markers underlying the trait M ≤
10). With a training population of the size of the apple
REFPOP accession group (N= 269), more complex traits
with M= 100 may be predicted with very high precision if
the heritability was high (h2= 0.8), but with a decrease in
precision for a moderate heritability (h2= 0.5). A training
population size equal to that of the whole apple REFPOP
(N= 534) may be sufficient to predict traits with M= 100
for both high and moderate heritabilities with very high
precision. The precision analysis indicated that highly
precise predictions for traits with very complex archi-
tecture (100 <M ≤ 1000) may be possible if heritability
was high and the training population had approximately
twice the size of the apple REFPOP (N= 1000). However,
the increase in estimated precision from N= 534 to N=
1000 was comparably smaller than the increase from N=
269 to N= 534.

Discussion
Composition of the apple REFPOP
This study is the first report on the apple REFPOP, a

reference population created to advance apple breeding
with genomics-assisted methods. The population is divi-
ded into an accession and a progeny group. Genotypes of
its accession group (all diploid) were chosen to represent
a wide range of geographic origins and capitalize on the
previously available high-density SNP array data. The
progeny group stemmed from eight different European
breeding programs to represent current tendencies in
European apple breeding. For the progeny group, the
choice of genotypes was mainly based on genetic distance
sampling within progeny groups derived from a number
of parental combinations. On the contrary, the choice of
genotypes for the accession group did not correspond to a
core collection design which generally aims at maximizing
genetic diversity21. The incorporation of both cultivated
accessions and modern breeding material is expected to
promote the applicability of the apple REFPOP for
genomics-assisted breeding beyond the scope of most
current breeding programs, whose genetic bases are
generally narrow22. Also, since relatedness between

training and breeding populations is a crucial factor for
successful genomic prediction13, the European breeding
programs can directly profit from the outcomes of the
project because their breeding material has been included
in the apple REFPOP. Furthermore, due to the high
admixture of the accessions, which stem from across the
globe, the levels of diversity in the apple REFPOP appear
to be adequate to predict the performance of a broad
spectrum of novel breeding material.

Expanding genomic information via imputation
Lately, resources for high-density marker genotyping in

apple became available with the development of the 480K
array18, but using this array remained costly. Here, we
combined the high-density marker information of the
accessions with the recently inferred pedigrees for
numerous cultivars19 to perform a large-scale marker
imputation of the progeny group genotyped with the 20K
array17. Although marker imputation has been routinely
applied at large scales in well-studied organisms such as
cattle before23, here we report for the first time a large
scale, high-density imputation in apple. The imputation
has multiplied the amount of marker information by ~43×
for the progeny group at relatively low cost. A high
imputation accuracy was achieved, which is comparable
to a similar study in poplar24. To evaluate the imputation
accuracy, two parental combinations ‘Fuji’ × ‘Pinova’ and
‘Golden Delicious’ × ‘Renetta Grigia di Torriana’ consist-
ing together of 86 progeny with known high-density
marker data were used. The parents ‘Fuji’ and ‘Pinova’ are
present in the pedigree of five and three parental com-
binations of the imputation set, respectively. The parent
‘Golden Delicious’ can be found in all of the pedigrees
from the imputation set, and therefore, relates to the
whole progeny group of the apple REFPOP. Although the
pedigree of ‘Renetta Grigia di Torriana’ is unknown, both
parental combinations ‘Fuji’ × ‘Pinova’ and ‘Golden Deli-
cious’ × ‘Renetta Grigia di Torriana’ are strongly related to
the imputation set and therefore may provide a useful
estimate of the imputation accuracy in other imputed
parental combinations. An attempt to improve the
imputation accuracy might include expanding the refer-
ence set with all 19 parents of the parental combinations
as well as some of their ancestors for which high-density
marker genotype data are not yet available.

Insights into apple population genomics
Earlier studies with lower density of genome-wide SNPs

found that their number of markers was insufficient for
GWAS because of a rapid decay in linkage disequilibrium
in apple10,25. In concordance with previous findings, we
found a strong linkage disequilibrium decay over short
distances in the apple REFPOP dataset, the pattern of
decay being very similar to that described by Urrestarazu
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et al.3 The linkage disequilibrium decay was observed in
the apple REFPOP from a distance as short as ~2.5 kb.
Given the genome size of a doubled haploid derivative of
‘Golden Delicious’, estimated to 651Mb26, and the num-
ber of markers in this study, our marker resolution cor-
responded to one marker per ~2.1 kb on average. Based
on this value, each group of loci in linkage disequilibrium
should be on average represented by one marker. Thus,
the marker coverage we report seems appropriate for
genome-wide analyses, which is supported by our GWAS
and prediction analyses. Due to the heterogeneity in the
marker density over the genome, the statistical power
could be reduced in specific regions with low SNP density.
Partial differentiation between European and non-

European accessions in our material is consistent with
significant differences between Old World and New
World varieties found by Migicovsky et al.10 The weak
latitudinal cline in the European accessions may reflect
the population structure reported in this germplasm by
Urrestarazu et al.2 The overall weak population structure
in the apple REFPOP accession group, which was similar
to a previously described weak genetic structure in apples
of European origin, presumably reflected the generally
highly admixed apple germplasm that is a result of the
prominent gene flow characteristic of the cultivated apple
gene pool2,27.

An efficient design for genomics-assisted breeding
We applied GWAS using the multi-locus mixed-model

(MLMM) method28, which accounts for potential con-
founding effects of kinship and population structure.
Thus, this method allows to combine highly related plant
material, like in a pedigree-based-analysis, and more
diversified, unrelated individuals to integrate different
levels of linkage disequilibrium in the same analysis,
hence maximizing the chances of finding regions asso-
ciated with the target trait. By performing GWAS on the
apple REFPOP dataset, SNPs associated with phenotypic
variation could be identified and assigned to previously
known genomic regions. A genomic region located on
chromosome 9 was significantly associated with the trait
floral emergence. Quantitative trait loci (QTL) at close
locations were previously identified for floral bud break,
floral emergence, and flowering period3,29,30. The second
SNP association with floral emergence was located on
chromosome 11 approximately 1Mb downstream from a
SNP identified by Urrestarazu et al.3 This association may
be related to a minor QTL on chromosome 11 discovered
using best linear unbiased predictors for genotype by year
interaction effect of one season for the mapping of QTLs
associated to bud break date (a trait highly correlated to
floral emergence) in the study of Allard et al.30 For harvest
date, one significantly associated SNP on chromosome 3
was located 14,610 bp upstream from the transcription

factor NAC18.1 listed as gene MD03G1222600 on the
GDDH13 v1.1 genome26. Other studies have identified
associations between NAC18.1 and harvest date, and the
gene is a known member of a family of conserved tran-
scriptional regulators involved in ripening3,10. Another
SNP on chromosome 3 associated with harvest date was
located ~1Mb upstream from a marker reported before
by Urrestarazu et al.3 The remaining two SNP associa-
tions were found on chromosomes 10 and 16 where QTL
for harvest date have also been discovered before3,31. The
identification of SNPs associated with both phenology
traits in well-characterized genomic regions and for one
possible minor QTL indicates the suitability of the apple
REFPOP for discovering other alleles with large and small
effects on trait variability in apple. Although novel
marker–trait associations could not be identified and their
number was lower than in Urrestarazu et al.3, who also
used genotypic data of the 480K array, the number of
reported marker–trait associations in this work was
higher than in GWAS studies using lower SNP densities
obtained by genotyping by sequencing10,32.
Applying a genomic prediction model with cross-vali-

dation, we were able to predict both phenology traits
with moderate to high predictive ability when compared
to the predictions for different apple traits reported
previously8–11,13, although cross-validation may have
inflated predictive ability compared to a potential inde-
pendent validation with a test set33. To our knowledge,
floral emergence has not been predicted in apple before;
in this work, an average predictive ability of 0.57 was
reached for this trait. The predictions for harvest date
had an average predictive ability of 0.75, which was
higher than any previously reached accuracies of this, or
equivalent, traits in apple10,11. The presented genomic
prediction methodology may be directly applied for the
breeding of floral emergence and harvest date. In parti-
cular, breeding programs using germplasm related to the
apple REFPOP may capitalize on this work.
The high SNP density in this study allowed for powerful

GWAS and genomic prediction analyses, with overall
lower performance for floral emergence than harvest date.
Floral emergence appeared under weak genetic control
with the majority of phenotypic variance explained by the
effects of environment and genotype by environment
interaction. Markers significantly associated with the trait
explained a low proportion of the phenotypic variance in
our study, pointing to a complex genetic architecture of
floral emergence with many influential genomic regions
yet uncovered. With SNP density increasing up to 150,000
SNPs, increasing amount of the phenotypic variance of
floral emergence can be explained with GWAS.
Environment-specific GWAS or GWAS with phenotypes
from across several seasons and locations may allow for
improved GWAS performance in floral emergence. For
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harvest date, a trait under strong genetic control with a
large proportion of the phenotypic variance explained by a
few major genomic regions, our results suggest that SNP
density as low as 10,000 markers may be required to
discover genomic associations with the trait. The 10,000
marker subset was also sufficient to reach a plateau of the
predictive ability in genomic prediction of both traits, with
the difference in predictive ability between traits possibly
attributable to the trait architecture. As previously shown
in American cranberry15, the SNP density at which the
plateau of predictive ability is reached may be specific to
the apple REFPOP independently of the traits, but may
differ for other populations of the same species. These
results can have a practical impact on apple breeding,
where cost-effective genotyping of 10K SNPs may be
sufficient for precise genomic prediction. In breeding
research, the same genotyping coverage may be adequate
to perform GWAS of oligogenic traits. For complex traits
under strong environmental control such as floral emer-
gence, high-density SNP marker datasets remain desirable
in GWAS. Future modeling including the effects of
environment and genotype by environment interaction
may contribute to a higher precision of genomic predic-
tion in complex traits.
In our study, the size of the SNP marker dataset seemed

to affect the genomic prediction ability stronger than the
feature selection method. On the contrary, a higher power
of GWAS to detect marker–trait associations can be
obtained with a smaller SNP marker dataset than with a
larger set of SNPs depending on the representation of
genes underlying the traits in the SNP marker dataset.
This way, more marker–trait associations could be
revealed with the 7060 SNPs of the 20K array than using
SNPs pruned for linkage disequilibrium and such pruning
should be avoided prior to GWAS.
In the light of prediction precision analysis, the lower

predictive ability for floral emergence may be explained by
a higher complexity of this trait, together with lower
heritability. Importantly, the results were very likely
impacted by the low phenotypic variability of floral
emergence in the season of 2018. Additional phenotyping
seasons will likely contribute to a better representation of
the flowering variability in the population.

Prospect of the apple REFPOP for multi-environment,
multi-management and multi-trait testing
The performance of breeding material in tested as well

as untested but similar environments can be predicted
accurately using genomic prediction models taking into
account genotype by environment interactions34. We
found a moderate but noticeable effect of the genotype by
environment interaction on both phenology traits eval-
uated in 2018, which contrasts with the limited effect of
genotype by environment interaction on a trait similar to

harvest date reported in sweet cherry34. The replication of
the apple REFPOP across six environments will enable the
inclusion of these interactions into genomic prediction
models. Furthermore, GWAS across separate environ-
ments can be performed in the future to identify
environment-specific associations and evaluate the stabi-
lity of associations across environments.
The apple REFPOP was also designed for comparing

different management practices: one part of every orchard
was grown under the conventional practice of each
region, to evaluate the response of the germplasm to
environmental effects; the second part can be managed in
order to evaluate response to managements such as
reduction of irrigation or pesticide application. However,
the second management practice has not been applied so
far to allow the trees to mature. Incorporating genotype
by management and genotype by environment by man-
agement interactions in prediction models may help select
new material adapted to drier climates or with stronger
resistance to apple pests and diseases.
In addition to the multi-environment and multi-

management design, protocols for phenotyping of var-
ious traits have been applied since 2018 to evaluate the
apple REFPOP. More than 10 different traits including
yield, fruit quality and phenology are being simulta-
neously phenotyped with the same method at the six
environments. Genotypes are replicated at least twice at
each of the environments; each tree is evaluated for all
traits separately to allow for variance decomposition up to
the individual level (i.e., the tree). Using multi-trait
genomic prediction models, prediction of traits with low
heritability or labor-intensive phenotyping can be sup-
ported by genetically correlated traits with higher herit-
ability and available phenotypes35,36.

Conclusion
This study benefits from a collaborative European

approach dedicated to the improvement of apple breeding
via genomics-assisted methods. A reference population,
which sampled diverse apple germplasm and current
European breeding material at larger scales than most
current breeding programs, has been established. An
extensive set of high-density SNP marker data has been
assembled via cost-effective validated marker imputation
while making use of the recently available SNP arrays and
pedigrees. The imputation method of localized haplotype
clustering together with the consolidated high-density
SNP marker dataset can be implemented as a standard for
cost-effective genomics-assisted breeding. Our diversity
and quantitative genetics analyses showed that the refer-
ence population is representative of the current apple
diversity and breeding material, and that the associated
genotypic resources and experimental design allow for the
development and application of genomics-assisted
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breeding methods in apple. This work emphasized the
positive effects of high marker density on GWAS and the
role of trait architecture in both GWAS and genomic
prediction. The apple REFPOP with its unique multi-
environment, multi-management and multi-trait design
represents a rich source of data for future environment-
specific GWAS and genomic predictions. Particularly, the
predictions produced with models accounting for the
interaction effects between genotype, environment, and
management, as well as using multi-trait modeling can
help untangle the effects underlying the traits and ulti-
mately improve the efficiency and success of apple
breeding. The apple REFPOP will be the cornerstone of
many future projects including the application of genomic
selection in apple and the work on apple in the EU-
H2020-INVITE project (2019–2024).

Materials and methods
Composition of apple REFPOP plant material
The apple REFPOP collection composed of accessions

and progeny was designed and established by the colla-
borators of the FruitBreedomics project7. The accession
group consisted of old and modern diploid accessions
representing a wide range of genetic diversity in apple.
Simple sequence repeat data obtained by Fernández-Fer-
nández37, Lassois et al.21 and Urrestarazu et al.2 were used
to allocate unique genotype code (so-called MUNQ, for
Malus UNiQue genotype code as described by Muranty
et al.19) to the accessions included in these studies, which
resulted in 1292 unique genotypes available for further
choice. When possible, passport data of the accessions
belonging to each unique genotype were used to identify
its country or region of origin. To form the accession
group, a subset of the unique genotypes was created. All
possible unique genotypes were chosen when <15 geno-
types were available per each country or region of origin.
For origins represented by a larger number of accessions,
priority was given to the genotypes already analyzed with
the Axiom®Apple480K array18. Additional genotypes of
each origin were chosen randomly so that the overall
number of selected genotypes per origin was proportional
to the number of genotypes of this origin in the whole
collection of unique genotypes. Unique genotypes pre-
viously analyzed with the 480K array but of unknown
origin were also included. Additionally, five accessions
(‘Red Winter’, ‘O53T136’, ‘Priscilla-NL’, ‘P7 R4A4’, and
X6398) considered as founders in the progeny group
pedigree were added to the accession group. Most acces-
sions were chosen from the apple germplasm collection of
the National Fruit Collection, Brogdale, United Kingdom
in order to simplify collection of the plant material. The
budwood of the founders stemmed from two sources:
France’s National Research Institute for Agriculture, Food
and Environment (INRAE), Angers, France and

Wageningen University and Research (WUR), Wagenin-
gen, The Netherlands. Availability of budwood from trees
affected the numbers of chosen accessions. Therefore,
accessions often had to be either (i) replaced with a dif-
ferent accession of the same MUNQ or (ii) excluded in
case no other accession corresponding to the unique
genotype was available or could provide enough budwood.
Additionally, the triploid accession ‘Biesterfelder Renette’
(MUNQ 1106.1) and the accession ‘Karinable’ (MUNQ
7828) with no available SNP data were excluded from the
analysis, although planted in the orchards.
The progeny group of the apple REFPOP included 27

full-sib parental combinations previously used in the Eur-
opean project FruitBreedomics7. These full-sib parental
combinations originated from eight different breeding
programs and they were obtained from 32 parents while 13
of the parents were included in the accession group. For
most parental combinations, genotypic information was
available ahead of this study, with different genotyping
density depending on the parental combination. Twenty-
two parental combinations had been genotyped with the
20K array7,17,38. In addition, in the frame of a pilot study of
genomic selection9, three other parental combinations
were genotyped with a custom 512 SNPs array using the
TaqMan OpenArray technology covering the whole gen-
ome at a very low density. Finally, for two parental com-
binations, whole genome data were not available.
A subset of 10 individuals per parental combination was

chosen to form the progeny group of the REFPOP. For the
25 parental combinations for whom the whole genome
marker data was available, 10 individuals were chosen
using a genetic distance sampling strategy39. In all cases,
the 10 individuals formed the center of each of the clus-
ters defined by genetic distance. Where budwood was not
available in sufficient numbers, they were either (i)
replaced by individuals closest to the center of the same
cluster or (ii) excluded from the progeny group leading to
fewer than 10 genotypes per parental combination being
chosen (as in the case of parental combinations X6679 ×
X6808 and X6679 × X6417). From the parental combi-
nation ‘Jonathan’ × ‘Prima’, 11 progeny were included in
the REFPOP. One progeny of the ‘Dalinette’ × X6681
parental combination (NOVADI/0830) was found as tri-
ploid using 20K genotypic data and thus excluded from
the analysis, although planted in the orchards. For the two
parental combinations without whole genome marker
data available, individuals were chosen randomly.

Multiplication of plant material and planting design
In 2015, budwood from each apple genotype was col-

lected and grafted onto ‘M9’ rootstocks. The grafting was
performed in three different nurseries, i.e., at (i) INRAE
Angers, France, (ii) Better3Fruit, Rillaar, Belgium, and (iii)
Consorzio Italiano Vivaisti, San Giuseppe, Italy. The
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following year, grafted trees were planted across six
contrasting environments, each located in (i) Rillaar,
Belgium, (ii) Angers, France, (iii) Laimburg, Italy, (iv)
Skierniewice, Poland, (v) Lleida, Spain, and (vi) Wädens-
wil, Switzerland. The environments ranged across several
biogeographical regions in Europe, i.e., the Mediterranean
in Spain, Atlantic in France and Belgium, Alpine in Italy
and Continental biogeographical region in Switzerland
and Poland40. Depending on the environment, planting
distance within and between tree rows ranged from 0.9 to
1.3 m and 3.2–3.6 m, respectively. All orchards were
divided into two parts: the first part was to be managed
with the common agricultural practice of the country, the
second was to receive alternative management conditions
(e.g., low pesticide or water input). So far, both parts have
been managed in the same way. The first part consisted of
two randomized complete blocks, totaling together 1068
trees, each block containing one replicate per genotype.
The second part also consisted of two randomized com-
plete blocks, each containing one representative of
approx. one-third of the genotypes (on average 184 gen-
otypes). Every environment shared about half of these
genotypes (92 on average) with one of the other countries
(country pairs: Belgium–Italy, France–Switzerland,
Poland–Spain). Additionally, each environment shared on
average 34 genotypes with three further countries. The
blocks within parts were used to ensure that two repli-
cates of the same genotype were not planted at a close
proximity to each other, but were not intended to block
for environmental effects. The two parts were physically
separated by a row of trees comprised of additional
representatives of genotypes included in the apple
REFPOP as well as other material. Since the alternative
management regimes were not applied in the initial years,
the trees in the barrier, as well as trees in what would later
be the alternative management scenario may have con-
tributed phenotypic values for traits in 2018. Three con-
trol genotypes ‘Gala’, ‘Golden Delicious’, and Modì®

‘CIVG198’ were each replicated 48 and 18 times in the
first and the second part of the orchard, respectively.

Molecular marker genotyping
A SNP marker dataset for the apple REFPOP was pro-

duced using two overlapping SNP arrays of different
resolution. The genotypic data generated with the 480K
array for a total of 1356 unique genotypes were retrieved
from previous studies3,19. The SNP marker dataset
included all apple REFPOP accessions (including 13 par-
ents of the apple REFPOP progeny group) and additional
unique genotypes later used as a reference set for marker
imputation. The applied filtering strategy differed from
the original one described by Bianco et al.18 in discarding
the quality prediction based on metrics of the SNP clus-
ters and making use of the pedigree, which was

reconstructed in a recent study using all genotyped
diploid unique genotypes19. For more details about SNP
filtering, see Supplementary Methods 1. The SNP posi-
tions consistent with the apple reference genome based
on the doubled haploid GDDH13 v1.126 were used.
Markers unassigned to the 17 apple chromosomes were
excluded, resulting in a dataset of 303,239 biallelic SNPs.
Genomic data for the apple REFPOP progeny group

were generated using the 20K array. For 210 progeny from
22 parental combinations, the data were already avail-
able7,17,38. The 49 remaining progeny from parental
combinations X338 × ‘Braeburn’, ACW 11303 × ACW
18522, ACW 13652 × ACW 11567, ‘Dalinette’ × X6681,
and X6398 × ‘Pinova’ were genotyped with the 20K array
within the framework of this study. All 20K array SNPs
were filtered and the allele data for the remaining SNPs
were curated to ensure the data made logical marker
inheritance and co-segregation patterns following the
methods and principles described by Vanderzande et al.41

The set of 20K-array-generated markers was aligned to
the 480K array marker set and 7060 of the 20K array SNPs
were retained for further analysis.

Marker imputation
Due to the difference in marker resolution of the SNP

arrays that were used to generate the SNP marker datasets,
marker imputation was performed to provide high-density
SNP marker information across the whole apple REFPOP.
Genotypes included in the apple REFPOP and additional
genotypes involved only in the imputation were used either
as (i) reference for the imputation or (ii) imputation set or
(iii) validation set (Table 1). First, a reference set of 480K
array data was formed from 1356 accessions and six pro-
geny of the cross ‘Fuji’ × ‘Pinova’ that had been previously
used for validation of the 480K array and the analysis of
apple pedigrees18,19. Second, the imputation set was
formed of the remaining 259 progeny from 27 parental
combinations (i.e., including the remaining four progeny
from the parental combination ‘Fuji’ × ‘Pinova’ that were
not included in the validation set). Third, 40 additional
progeny of the parental combination ‘Fuji’ × ‘Pinova’ and 46
progeny of ‘Golden Delicious’ × ‘Renetta Grigia di Torriana’
which had all been genotyped using the 480K array18, but
none of which had been chosen for inclusion in the apple
REFPOP, were designated as a validation set.
The imputation was performed with the localized hap-

lotype clustering implemented in the software Beagle 4.0
using pedigree information42. In the first step, reference
genotypes (Table 1, reference set of data) along with the
recently inferred pedigrees19 were supplied to the pro-
gram for the inference of haplotype phase and minor
marker imputation in the reference set. To prepare data
for the second step of imputation, SNP density of the
validation set (480K array data, see also Table 1, validation
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set of data) was decreased to the density of the imputation
set (20K array data, see also Table 1, imputation set of
data) in order to spike the imputation set with known
samples of the validation set. In the second step of the
imputation, phased reference genotypes along with the
pedigrees were used to impute missing marker values in
the extended imputation set (i.e., both imputation set and
reduced-density validation set samples). Imputation
accuracy in the validation set was then evaluated by
computing the Pearson correlation between the imputed
and original high-density SNP genotypic values in the
validation set controls.

Genomic data analyses
Linkage disequilibrium
Linkage disequilibrium statistics were calculated as a

square of the correlation coefficient (r2) between pairs of
SNPs on each chromosome with the R package snpStats43.
To reduce computational time, SNPs of each chromo-
some were sampled randomly to include one tenth of the
markers per chromosome in the r2 calculation, which
resulted in 4.6 × 108 marker combinations. A loess
smoother (α= 0.5) was fitted to 100,000 randomly chosen
r2 values across the whole span of chromosomes. Addi-
tionally, the loess smoother (α= 0.5) was calculated for all
obtained r2 values for pairs of SNPs within a 5 kb distance.
To determine the distance between SNPs at which the r2

dropped below 0.2, average r2 was calculated at 100, 5, 1,
and 0.1 kb (100 bp) as a mean of all r2 within a window of
100 bp around each of the values.

Population structure
The neighbor-joining method as implemented in the R

package ape44 was used to estimate and visualize an
unrooted neighbor-joining tree. Principal component
analysis (PCA) with supplementary individuals was per-
formed with the R package FactoMineR45. Tenfold cross-
validation for the number of populations K= {1, 2, …, 20}
was performed with ADMIXTURE 1.3, a program for
estimating ancestry in unrelated individuals46. ADMIX-
TURE was used with default settings and a subset of
markers filtered according to the program’s manual. To
avoid spurious effects of high linkage disequilibrium
between adjacent markers, SNPs were removed in sliding
windows of 50 SNPs advanced by 10 SNPs when squared
correlation was >0.1 for pairs of variants, leading to a
subset of 12,374 SNPs. The correct K value was identified
at the lowest cross-validation error. As structure is best
estimated among unrelated (or weakly related) indivi-
duals, the neighbor-joining tree and ADMIXTURE were
estimated for the accession group only. For the population
structure analyses, the European accessions were divided
into several broad regions of origin to compensate for the
uncertainty around the exact origin of old varieties2.

Phenotype scoring
Two phenotypic traits were evaluated at the six plan-

tation sites in 2018. Floral emergence of each tree was
recorded as the date when 10% of flowers opened47.
Harvest date was measured as the date when more than
50% of the fruits reached full physiological maturity, as
determined by iodine coloration or expert knowledge47.
Both traits were evaluated for each of the replicate trees
individually. Deviation from the phenotyping protocol for
harvest date led to exclusion of harvest date recorded in
Poland. After measurements, dates were converted to
counts of days starting at the beginning of the year in
which they were measured.

Phenotypic data analyses
Raw phenotypic values were corrected for spatial het-

erogeneity individually within environments to obtain the
adjusted phenotypic values of each tree. The corrected as
well as uncorrected (raw) phenotypic values were used to
estimate the individual-location clonal mean heritability.
The adjusted phenotypic values of each tree were further
used to fit a mixed model including the effects of geno-
type, environment and their interaction. The variance of
each effect was calculated from the fitted mixed model to
estimate multi-location clonal mean heritability and the
fraction of phenotypic variation associated with the
effects. Finally, the adjusted phenotypic values of each tree
were used to obtain phenotypic least-square means of
genotypes across environments, i.e., a single mean phe-
notypic value for each genotype.

Correction of spatial heterogeneity
To account for spatial variation of the complete block

design, e.g., due to different soil composition or water
availability in the orchards, and to predict adjusted phe-
notypic values of each tree, spatial heterogeneity in the
phenotypic data was modeled separately for each envir-
onment and trait using the spatial analysis of field trials
with splines (SpATS)20. To specify the smooth compo-
nent, a two-dimensional penalized tensor-product of
marginal B-spline basis functions based on the P-spline
ANOVA approach (PS-ANOVA) was defined with the
default settings as a function of covariates plantation row
and column, further denoted as f(u, v). The following
linear mixed model was fitted

y ¼ f ðu; vÞ þ Zgcg þ Zrcr þ Zccc þ ε; ð1Þ

with y being the vector of phenotypic values measured for
each tree, u and v denoting the numeric positions, i.e.,
rows and columns, the vectors cg, cr and cc being the
random effect coefficients for the genotypes, rows and
columns (as factors) associated with the design matrices
Zg, Zr and Zc, respectively, the ε denoting the random
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error vector. Spatial independence assumption of the
error vector was visually assessed using a residuals’ spatial
plot for each model fit as described by Rodríguez-Álvarez
et al.20 To characterize the importance of model
components, effective dimensions associated with each
random factor (cg, cr, and cc), the PS-ANOVA spatial
trend (fv(v), fu(u),uhv(v),vhu(u) and fu,v(u,v)) and the total
effective dimension EDs (sum of partial effective dimen-
sions associated with each component of the PS-ANOVA
spatial trend) were assessed20. Predicted values of
genotypes adjusted for spatial heterogeneity within each
environment were produced with random model terms of
the smooth component and the random row and column
effects excluded from the predictions. These values were
used to visualize variability between traits and sites.
Residuals for each tree (i.e., each replicate of a genotype)
were extracted from the model fit and summed with the
corresponding predicted values of genotypes adjusted for
spatial heterogeneity within each environment to obtain
adjusted phenotypic values of each tree.

Broad-sense heritability and phenotypic variation
To evaluate the efficiency of the spatial correction

method when comparing raw data with data adjusted for
spatial heterogeneity, individual-location clonal mean
heritability H2 was estimated for each of the traits and
environments before and after the spatial correction. A
random-effects model was fitted for each environment via
restricted maximum likelihood (R package lmer48)

yik ¼ μþ gi þ εik ; ð2Þ

where yik was the kth phenotypic value from genotype i
(adjusted and non-adjusted phenotypic values of each
tree), µ was the grand mean, gi was the random effect of
the ith genotype and εik was the error term. Individual-
location clonal mean heritability was calculated from
variance components of the model as total genotypic
variance σ2

g over the phenotypic variance σ2
p

H2 ¼ σ2
g

σ2
p
; ð3Þ

where the phenotypic variance was calculated from the
genotypic variance, error variance σ2

ε and the mean
number of replications nr .

σ2
p ¼ σ2

g þ
σ2
ε

nr
; ð4Þ

The individual-location clonal mean heritability was
used to eliminate one trial with the heritability value
below 0.1.

For the remaining environments, multi-location clonal
mean heritability was estimated for each trait with a pooled
analysis across environments using mixed-effects models
fitted via restricted maximum likelihood (R package lmer48)

yijk ¼ μþ gi þ lj þ glij þ εijk ; ð5Þ

where yijk was the kth adjusted phenotypic value of each
tree from genotype i in environment j, µ was the grand
mean, gi was the random effect of the ith genotype, lj was
the fixed effect of the jth environment, glij the interaction
effect between the ith genotype and jth environment
(random) and εijk was the error term. Then, multi-location
clonal mean heritability was calculated using Eq. (3) with
the phenotypic variance estimated as

σ2
p ¼ σ2

g þ
σ2
gl

nl
þ σ2ε
nlnr

; ð6Þ

where σ2gl was the genotype by environment interaction
variance and nl the number of environments.
From the model fit according to Eq. (5), variance of each

random effect was calculated. The fraction of phenotypic
variation associated with the fixed effect was estimated as
the variance of the vector of values predicted from the
model fit when all random effects were set to zero. To
assess the precision of the random effects, confidence
intervals for the variance components were estimated
using profiling likelihood method.

Phenotypic least-square means
Phenotypic least-square mean of each genotype across

environments was estimated from the adjusted pheno-
typic values of each tree corrected for spatial hetero-
geneity within the environments. First, a multiple linear
regression model was fitted for each trait

yijk ¼ μþ gi þ lj þ εijk ð7Þ

where yijk was the kth adjusted phenotypic value of each
tree from genotype i in environment j, µ was the grand
mean, gi was the effect of the ith genotype, lj was the effect
of the jth environment and εijk was the error term. Second,
phenotypic least-square means (or LS-means) of genotypes
across environments were calculated with the R package
doBy49. The phenotypic least square means of genotypes
across environments were used later for genome-wide
association analyses and genomic prediction.

Genome-wide association and prediction analysis
Genome-wide association study
The multi-locus mixed model (MLMM) method28, a

stepwise mixed-model regression for mapping complex
traits under population structure, was applied to perform
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GWAS for both apple REFPOP groups together. As a
response variable, the phenotypic least-square means of
genotypes across environments were used. MLMM was
used as implemented in the R package GAPIT 3.050 with
default settings and SNPs with low minor allele frequency
(0.05) removed. Marker–trait associations were found as
significant for p-values falling below a Bonferroni-
corrected significance threshold α*= α/m with α= 0.05
and m representing the number of tested markers. The
proportion of phenotypic variance explained by each SNP
marker significantly associated to the phenotypic least-
square means of genotypes across environments was
estimated as a coefficient of determination (r2). The r2 was
estimated from a simple linear regression model fitted
using the numeric marker values of a single SNP as pre-
dictor and phenotypic least-square means of genotypes
across environments as response.

Genomic prediction
The RR-BLUP model51 was used for genomic prediction

of breeding values. The model was defined as

y ¼ WGuþ ε ð8Þ

with the y being the vector of phenotypic least-square
means of genotypes across environments, W the design
matrix relating genotypes to y, G the SNP matrix, u �
Nð0; Iσ2

uÞ the vector of SNPmarker effects, and ε the vector
of errors. Five-fold cross-validation was applied with the
model and data of the whole apple REFPOP, each run
masking 20% of the genotypes as validation set. Marker
effects (BLUPs) were generated from the remaining 80% of
the genotypes to make predictions for the validation set.
Predictive ability was estimated as an average value of
Pearson correlation coefficient calculated between observed
phenotypic least-square means of genotypes across envir-
onments from each validation set and predictions for the
same genotypes. The cross-validation was repeated 100
times, the five folds being chosen randomly without
replacement before each of the repetitions.

Comparison of GWAS and genomic prediction performance
under various SNP densities
Additionally to the analyses with the full set of 303,239

SNPs produced with the 480K array, different subsets of
SNPs were used to perform the GWAS and genomic pre-
diction to investigate the effect of feature selection approa-
ches on model performance. SNPs in subsets were chosen
according to three main feature selection strategies, (i) the
SNP set from the 20K array (7060 SNPs) available in the full
SNP marker dataset, (ii) the SNP set thinned according to
linkage disequilibrium (12,374 SNPs, for details see popu-
lation structure analysis described above), and (iii) an
unsupervised SNP choice. For this latter strategy, data

subsets were built for densities of 500, 1000, 5000, 10,000,
50,000, 100,000, 150,000, 200,000, and 250,000 markers. As
suggested by Bermingham et al.52, the markers were chosen
evenly spaced from a random starting point. Since the 480K
array was designed to cover not only the genic regions, but
also to reach a uniform coverage of non-genic regions18, the
order of the markers on chromosomes was used as a proxy
for their physical distance when sampling. For each of the
nine SNP densities, the SNP choice was repeated with 10
different seeds resulting in 90 subsets. For these subsets,
GWAS and genomic prediction were performed as descri-
bed above, with the five-fold cross-validation of the genomic
prediction being repeated 10 times for each subset. The
number of significant associations detected by GWAS was
determined as the number of regions containing SNPs with
p-values falling below a Bonferroni-corrected significance
threshold. Mean number of the significant associations in
GWAS and mean prediction ability of the genomic pre-
diction as well as their 95% confidence interval were cal-
culated for each number of chosen markers.

Analysis of prediction precision
Expectations of the precision of genomic estimated

breeding values were approximated based on Eq. (9), i.e.,
Eq. (5) in the original article by Elsen53. The approxima-
tion of the precision (r̂2) of genomic estimated breeding
values was determined for different values of parameters
influenced by the experimental design (i.e., species,
population size and composition, SNP density, environ-
ments, or trait architecture) as

r̂2 ffi Nh2

Nh2 þMð1� h2Þ ð9Þ

with M the number of loci in linkage disequilibrium with
genes underlying the trait, N the population size, and h2 the
heritability. Parameter values were chosen to encompass
and extrapolate beyond the apple REFPOP design: N taking
values of 10, 269, 534, and 1000, M between 1 and 106 and
h2 being equal to 0.5 (moderate) or 0.8 (high). To interpret
the output, trait architecture was classified using M into
oligogenic (M ≤ 10), complex (10 <M ≤ 100), and very
complex (100 <M ≤ 1000). Precision of genomic estimated
breeding values was considered very high when equal or
larger than 0.8. All statistical analyses and data formatting
in this article were performed with R54 and visualized with
the R package ggplot255, unless stated otherwise.
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