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_ Abstract
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University of Reading, UK Due to the wide separation of time-scales in geophysical fluid dynamics,
3pepartment of Mathematical Sciences, semi-implicit time integrators are commonly used in operational atmospheric
University of Bath, UK forecast models. They guarantee the stable treatment of fast (acoustic and grav-
Correspondence ity) waves, while not suffering from severe restrictions on the time-step size. To
Eike H. Miiller, Department of propagate the state of the atmosphere forward in time, a nonlinear equation for
Mathematical Sciences, University of the prognostic variables has to be solved at every time step. Since the nonlin-
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Email: e.mueller@bath.ac.uk earity is typically weak, this is done with a small number of Newton or Picard

iterations, which in turn require the efficient solution of a large system of linear
equations with (1% S 10°) unknowns. This linear solve is often the computa-
tionally most costly part of the model. In this article an efficient linear solver for
the LFRic next-generation model currently being developed by the Met Office
is described. The model uses an advanced mimetic finite element discretisation
which makes the construction of efficient solvers challenging as compared to
models using standard finite-difference and finite-volume methods. The linear
solver hinges on a bespoke multigrid preconditioner of the Schur-complement
system for the pressure correction. By comparing it to Krylov subspace methods,
the superior performance and robustness of the multigrid algorithm is demon-
strated for standard test cases and realistic model set-ups. In production mode,
the model will have to run in parallel on hundreds of thousands of processing
elements. As confirmed by numerical experiments, one particular advantage of
the multigrid solver is its excellent parallel scalability due to its avoidance of
expensive global reduction operations.
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1 | INTRODUCTION

Operational models for numerical climate and weather
prediction must solve the equations of fluid dynamics in
a very short space of time. State-of-the art implementa-
tions rely on accurate spatial discretisations and efficient
time-stepping algorithms. To make efficient use of modern
supercomputers they have to exploit many levels of par-
allelism (such as SIMD/SIMT, threading on a single node
and message-passing on distributed memory systems) and
scale to hundreds of thousands of processing elements.
Semi-implicit time integrators are commonly employed
since they allow the stable treatment of fast acoustic waves,
which carry very little energy but have to be included in
a fully compressible formulation. The implicit treatment
of the acoustic modes allows the model to be run with
a relatively large time step. The size of the time step is
only restricted by advection, which is generally around
one order of magnitude slower horizontally than acoustic
oscillations and two orders of magnitude slower vertically.
The main computational cost of semi-implicit models is
the repeated solution of a very large sparse system of linear
equations. While standard iterative solution algorithms
exist, the linear system is ill-conditioned, which leads to
the very slow convergence of Krylov subspace methods.
This is a particularly serious problem for massively par-
allel implementations due to their very large number of
global reduction operations (arising from vector dot prod-
ucts and norms in each Krylov iteration). Preconditioners,
which solve an approximate version of the linear system,
overcome this issue and dramatically reduce the num-
ber of Krylov iterations and global communications. The
construction of an efficient preconditioner is non-trivial
and requires careful exploitation of the specific properties
of the system to be solved. For global atmospheric mod-
els, two key features that have to be taken into account
are (a) the high aspect ratio arising from the shallow
domain, and (b) the finite speed of sound in compress-
ible formulations, which limits the effective distance over
which different points in the domain are correlated during
one time step. Typically, the preconditioner is based on a
Schur-complement approach. This reduces the problem to
an elliptic equation for the pressure correction, which can
then be solved with standard methods.

1.1 | Multigrid Solver

Hierarchical methods such as Multigrid solver (Trotten-
berg et al, 2001) are often employed for the solution of
elliptic systems, as they have a computational complex-
ity which grows linearly with the number of unknowns.
Miller and Scheichl (2014) contains a recent review of
linear solvers in atmospheric modelling (see also Steppeler

et al, 2003). There, the performance of a multigrid solver
based on the tensor-product algorithm described in Borm
and Hiptmair (2001) was applied to a simplified model
system which is representative of the linear system for
the pressure correction. The key idea is to use a vertical
line relaxation smoother together with semi-coarsening
in the horizontal direction only. Furthermore, due to the
finite speed of sound in compressible models, it is suffi-
cient to use a relatively small number of multigrid levels
ofL log,CFLy, where CFL, = ¢ t Xxis the horizontal
acoustic Courantnumber. The much higher vertical acous-
tic Courant number CFL, = ¢ t z does not cause any
problems as vertical sound propagation is treated exactly
by the line relaxation smoother. Since advective trans-
port is about an order of magnitude slower than acoustic
pressure oscillations, CFL 10 andL 4 irrespective of
the model resolution. As was demonstrated in Muller and
Scheichl (2014) and Sandbacét al. (2015), this sshallowZ
multigrid works well, and avoids expensive global com-
munications. It also significantly simplifies the parallel
decomposition, since it is only necessary to (horizontally)
partition the coarsest grid, which still has a large num-
ber of cells and allows a relatively fine-grained domain
decomposition. For example, one coarse grid cell could
be assigned to a node on a supercomputer, exploiting
additional shared-memory parallelism on the cells of the
4-51 3= 64 fine grid cells.

The tensor-product multigrid algorithm was applied
to more realistic model equations in Dedneret al. (2016),
and its performance on a cluster with 16,384 graphics pro-
cessing units (GPUs) was demonstrated in Mulleet al.
(2015b).

1.2 | Solvers for finite element
discretisations

One challenge of standard latitude...longitude models,
which is becoming more pronounced with increasing
model resolution, is the convergence of grid lines at the
Poles. Due to the resulting small grid cells at high lat-
itudes, this leads to severe time-step constrictions, slow
solver convergence and poor parallel scalability due to
global coupling at the Poles. To overcome this problem,
there has been a push towards using different meshes
which avoid this issue (see the review in Staniforth and
Thuburn, 2012). However, ensuring the accurate discreti-
sation of the continuous equations and the exact conserva-
tion of certain physical quantities on these non-orthogonal
grids requires advanced discretisations. While low-order
finite-volume methods (Ringler et al, 2010; Thuburn
and Cotter, 2012; Thuburnet al, 2013) and high-order
collocated spectral element methods (Fourniegt al, 2004;
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Giraldo and Restelli, 2008) do exist, the mimetic finite ele-
ment approach developed in Cotter and Shipton (2012),
Cotter and Thuburn (2014) and Thuburn and Cotter (2015)
for the shallow-water equations is particularly attractive
since it generalises to arbitrary discretisation order, has
good wave dispersion properties, avoids spurious compu-
tational modes and allows the approximate conservation
of certain physical quantities in the discrete equations. At
lowest order on orthogonal meshes it reduces to the exten-
sively studied C-grid staggering in the horizontal direction.

This article builds on the work of Melvin et al. (2019),
which describes the recently developed GungHo dynami-
cal core employed in the LFRic model. The mimetic finite
element discretisation used there is combined with a ver-
tical discretisation (described in Nataleet al, 2016; Melvin
et al, 2018), which is similar to Charney...Phillips stag-
gering, and a mass-conserving finite-volume advection
scheme.

A particular challenge of mimetic finite element dis-
cretisations is the significantly more complex structure
of the discretised linear equation system, which has
to be solved repeatedly at every time step. For tradi-
tional finite-difference and finite-volume discretisations
on structured grids the Schur-complement can be formed,
and ... provided the resulting pressure equation is solved
to sufficiently high accuracy ... the preconditioner is exact.
However, this is not possible for the finite element discreti-
sations considered here, since the velocity mass matrix is
not (block-) diagonal. Instead, the linear system is pre-
conditioned by constructing an approximate Schur com-
plement using velocity mass lumping. As demonstrated
for a gravity-wave system in Mitchell and Miller (2016),
this method is efficient if one V-cycle of the same bespoke
tensor-product multigrid algorithm is used to solve the
pressure system. As shown there, the method also works
for next-to-lowest-order discretisations if g-refinement is
used on the finest level of the multigrid hierarchy.

In this article it is shown how the method can be
extended to solve the full equations of motion, that is, the
Euler equations for a perfect gas in a rotating frame. The
efficiency of the multigrid algorithm is demonstrated by
alternatively solving the pressure correction equation with
a Krylov subspace method. As will be shown by running
on hundreds of thousands of processing cores and solving
problems with more than one billion (10°) unknowns, the
multigrid also improves the parallel scalability since ... in
contrast to the Krylov method ... the multigrid V-cycle does
not require any global reductions.

1.3 | Implementation

To achieve optimal performance, an efficient implementa-
tion is required. In a continuously diversifying hardware

Royal Meteorological Society

landscape the code has to be performance portable. In gen-
eral, the LFRic model uses an implementation which is
based on the separation-of-concerns approach described
in Adams et al. (2019). The composability of iterative
methods and preconditioners is exploited to easily swap
components of the complex hierarchical solver in an
object-oriented Fortran 2003 framework (see sect. 6 in
Adamsetal, 2019).

1.4 | Structure

This article is organised as follows. Once the research is
put into context by reviewing related work in Section 2,
the mixed finite element discretisation is described and
the construction of a Schur-complement preconditioner
for the linear system is discussed in Section 3. The proper-
ties of the elliptic pressure operator are used to construct a
bespoke multigrid preconditioner. After outlining the par-
allel implementation in the LFRic framework in Section 4,
numerical results for performance and parallel scalabil-
ity are presented in Section 5. Conclusions are drawn and
future work is discussed in Section 6.

2 | CONTEXT AND RELATED
WORK

2.1 | Semi-implicit time-stepping
methods

One of the perceived drawbacks of semi-implicit mod-
els is the additional complexity required to solve a large
nonlinear problem. Iterative solvers introduce global com-
munications, which potentially limits scalability and per-
formance; this can become a serious issue for operational
forecast systems that run on large supercomputers and
have to deliver results on very tight time-scales. Never-
theless, the comprehensive review of linear solver tech-
niques for atmospheric applications in Miller and Sche-
ichl (2014) shows that semi-implicit models deserve seri-
ous consideration. Looking at actively developed dynam-
ical cores that target massively parallel supercomput-
ers, of the 11 non-hydrostatic implementations compared
in the recent Dynamical Core Model Intercomparison
Project (DCMIP-2016) presented in Ullrichet al. (2017),
two are semi-implicit: the Canadian GEM finite differ-
ence code (Yehet al, 2002) and FVM (Kihnlein et al,
2019), the next-generation finite-volume version of the
Integrated Forecasting System (IFS) (Tempertoet al,
2001; Wediet al,, 2015) developed at the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF); the
current spectral-transform model used by ECMWF is
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also semi-implicit. To solve the linear equation system

core. Again this vertically implicit solver is equivalent to

these models use different approaches. IFS employs a the block-Jacobi smoother in the fully implicit multigrid

global spectral transform, which diagonalises the opera-
tor in Fourier spaces. Although this approach inherently
involves expensive all-to-all communications, scalability
can be improved by exploiting properties of the spher-
ical harmonics (Wedi et al, 2013). The solution of the
pressure system in IFS-FVM with a generalised conjugate
residual (GCR) method is described in Smolarkiewicz and
Szmelter (2011); the preconditioner exactly inverts the ver-
tical part of the operator, similarly to the line relaxation
strategy which is used in the smoother for the multigrid
algorithm in this work. To solve the three-dimensional
elliptic boundary value problem in the GEM model, a ver-
tical transform is used to reduce it to a set of decoupled
two-dimensional problems, which are solved iteratively
(see Cotéet al,, 1998).

All of the above semi-implicit models use second-order
accurate finite-difference/finite-volume discretisations or
the spectral-transform approach. In contrast, actively
developed massively parallel high-order spectral ele-
ment codes include NUMA (Giraldo et al,, 2013), which
uses an implicit...explicit (IMEX) time integrator, the
CAM-SE/HOMME dynamical core used by Denniset al.
(2012) in the ACME climate model, and Tempest (Ull-
rich, 2014; Guerra and Ullrich, 2016). Collocating the
guadrature points with nodal points in the continu-
ous Galerkin (CG) formulation of NUMA results in a
diagonal-velocity mass matrix, which allows the construc-
tion of a Schur-complement pressure system. This system
is then solved with an iterative method. This is in contrast
to the mixed finite element approach employed here, for
which the velocity mass matrix is non-diagonal. To address
thisissue, the outer system is solved iteratively and precon-
ditioned with an approximate Schur complement based on
a lumped mass matrix. It should be noted, however, that
the construction of an efficient linear solver for the discon-
tinuous Galerkin (DG) version of NUMA is significantly
more challenging, since the numerical flux augments the
velocity mass matrix by artificial diffusion terms. Over-
coming this problem is a topic of current research, and
it is argued in Peraireet al. (2010) and Kanget al. (2020)
that hybridisable DG methods appear to be particularly
suitable. As discussed below, applying a similar hybridised
approach to the mixed finite element formulation is a
promising direction for future work.

While the fully implicit version of NUMA has been
optimised on modern chip architectures (see Abdet al,
2019), the massively parallel scaling tests in Miilleet al.
(2015a) are reported for the horizontally explicit vertically
implicit (HEVI) variant of the model, in which only the
vertical couplings are treated implicitly. The same HEVI
time integrator can also be used by the Tempest dynamical

algorithm and the preconditioner in Kiithnlein etal.(2019).
The discretisation used by the semi-implicit GUSTO
code developed at Imperial College London is based on
Natale et al. (2016), Yamazakiet al. (2017) and Shipton
et al. (2018), and is very similar to the one used in this
work. In contrast to LFRic, which is developed for opera-
tional use, GUSTO is aresearch model implemented in the
Firedrake Python code-generation framework described in
Rathgeberetal.(2017). It uses the iterative solvers and pre-
conditioners from the PETSc library (see Balagt al, 1997)
to solve the linear system. By default, the elliptic pressure
operator is inverted with a black-box algebraic multigrid
(AMG) algorithm. While in Mitchell and Muller (2016)
AMG has been shown to give comparable performance
to the bespoke geometric multigrid preconditioners devel-
oped here, using off-the-shelf AMG libraries in the LFRic
code is not feasible due to their incompatible parallelisa-
tion strategy. It would also introduce undesirable software
dependencies for a key component of the model.

2.2 |
models

Parallel multigrid and atmospheric

Multigrid algorithms allow the solution of ill-conditioned
elliptic partial differential equations in a time that is pro-
portional to the number of unknowns in the system. Due
to this algorithmically optimal performance, they are often
the method of choice for large-scale applications in geo-
physical modelling. The hypre library (Falgout and Yang,
2002) contains massively parallel multigrid implementa-
tions, including BoomerAMG, and has been shown to
scale to hundreds of thousands of cores in Bakest al.
(2012). Similarly, the scalability of the AMG solver in the
DUNE library (Blatt and Bastian, 2006) has been demon-
strated in Ippisch and Blatt (2011), and Notay and Napov
(2015) describe another highly parallel AMG implementa-
tion. In Gmeiner et al.(2014), massively parallel multigrid
methods based on hybrid hierarchical grids are used to
solve problems with 162 unknowns on more than 200,000
compute cores.

While these results clearly show the significant poten-
tial of parallel multigrid algorithms, it is evident from the
review in Miller and Scheichl (2014) that they are rarely
used in semi-implicit atmospheric models. An exception is
the recent implementation of the MPAS model. In Sand-
bachet al. (2015), it is shown that a semi-implicit method
with a multigrid solver can be competitive with fully
explicit time integrators. A conditional semi-coarsening
multigrid for the ENDGame dynamical core (Woodet al.,,
2014) used by the Met Office is described in Buckeridge
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and Scheichl (2010) and is currently implemented in
the Unified Model code. Another recent application of
the multigrid in a non-hydrostatic model is given in Yi

(2018). Two-dimensional multigrid solvers for the Pois-
son equation on different spherical grids relevant for
atmospheric modelling are compared in Heikeset al.

(2013). More importantly, the work in Yanget al. (2016)

showed that domain-decomposition-based multigrid algo-
rithms can be used to solve the Euler equations with
0.77 10% unknowns. That paper received the 2016 Gor-
don Prize for showing that the code scales to 10 million

Royal Meteorological Society

domain D, which describes either the global atmosphere
or a local area model (LAM); for further details on the rel-
evant boundary conditions see Melviret al. (2019). While
this article describes the development of multigrid solvers
for global models, the method can be easily adapted for
LAMs.

3.2 | Finite element discretisation

To discretise Equation 1 in space, the mimetic finite ele-
ment discretisation from Cotter and Shipton (2012) and

cores and achieves 7.95 PetaFLOP performance on the nataleet al.(2016) is used. For this, four principal function

TaihuLight supercomputer. Note, however, that none of
the models described in this section are based on the
advanced finite element discretisations that are used in
this work.

3 | METHODS

In the following, the mimetic finite element discretisa-
tion of the Euler equations in the LFRic dynamical core is
reviewed. By exploiting the structure of the pressure cor-
rection equation in the approximate Schur-complement
solver, an efficient tensor-product multigrid algorithm is
constructed.

3.1 | Continuous equations

The dynamical core of the model solves the Euler
equations for a perfect gas in a rotating frame:

—l::é(x uxuS2 xu
é%(u ws 5 ¢
—t=§ (u), 1)
—=Su ,
t
s _R
Po

At every point in time the state of the atmospherex =

(u, , , ) isdescribed by the three-dimensional fields for
(vector-valued) velocityu, density , potential temperature

and (Exner) pressure . In Equation 1 is the geopo-
tential suchthat =S g, where the vectorg denotes the
gravitational acceleration and the Earthes rotation vector
is denoted by . Ris the gas constant per unit mass and

= R ¢, whereg, is the specific heat at constant pressure;
Po is a reference pressure. The equations are solved in a

spacesW,, i = 0,1, 2,3, of varying degrees of continuity
are constructed. These function spaces are related by the
de Rham complex (Bott and Tu, 2013)

X

W, WA W, Wa. 2
Pressure and density are naturally discretised in the
entirely discontinuous spaceWs, while the space W,
which describes vector-valued fields with a continuous
normal component, is used for velocity. At ordep on hexa-
hedral elements the spac¥V is the Raviart... Thomas space
RT, and W3 is the scalar discontinuous Galerkin space
QR®. As will be important later on, note that the space
W = Wg Wg can be written as the direct sum of a com-
ponent W which only contains vectors pointing in the
vertical direction and the spaceNg such that the elements
of Wg are purely horizontal vector fields. In the absence
of orography, these two spaces are orthogonal in the sense

that

u®™ u@dv =0 forall u®
D

W} and u®@  W3x

Note thatW?3 is continuous in the vertical direction and
discontinuous in the tangential direction, whereas\Ng is
continuous in the horizontal direction only. To discretise
the potential temperature field, an additional spacé&V is
introduced. W is the scalar-valued equivalent otV and
has the same continuity. The lowest orderg= 0) function
spaces are shown in Figure 1. Choosing suitable basis func-
tionsvi( ) Wy, ;( ) Wsandwj( ) W thatdepend
on the spatial coordinate , the discretised fields at thenth
model time stept can be written as follows:

un( )= uvi( ) W,
j

()= M) Ws
j

()= fw() W,
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W, = W.® W,

FIGURE 1
discretisation

Function spaces used in the finite element

jnj() Ws.

j

()=

For each quantity a the corresponding vector of
unknowns is written as & = [ag,ap, f ] .

3.3 | Linear system
The time discretisation described in Melvinet al.(2019) is
semi-implicit and uses a finite-volume transport scheme.
This requires the solution of a nonlinear equation to obtain
the state vectorx™?® = (unt?, 1 ™ ™l 5t the next
time step. The nonlinear system can be written compactly
as
x"H=0 3)
Equation 3 is solved iteratively with a quasi-Newton
method. For this a sequence of states®, k=0,1,2,f ,
Npe with x©@ = x?, x(Nw) = x(*1) js constructed such that
x)x =5 (x®) with x =x®DSx® (4
The linear operator (x ), which needs to be inverted
in every Newton step, is an approximation to the Jacobian
of .Following Woodetal.(2014), itis obtained by lineari-
sation around areference state = (0, , , ),whichis
updated at every time step. Introducingk = (u, , , )
and following Melvin et al. (2019), the linear system in
Equation 4 can be written down in matrix form as

M, © SP, SG u S .
D Mj S
= )
P, M S
SM, SP, M S

The exact form of the individual operators in
Equation 5 is given in Melvin et al. (2019) and the matrix
D isdefinedasD u = D(f ) D( u),wherethe mass
flux f* is defined as the product of the reference density

sampled at velocity nodal points pointwise multiplied
by the velocity field u. Note that the expression in Melvin

etal.(2019, theireqn. 81) for isincorrectand should be

(k)| 15_
Cdety 182 pO( >

k & (©)

such that both the linearised left-hand side and the nonlin-
ear right-hand side are non-dimensionalised. To interpret
the different operators, it is instructive to also write down

the continuum equivalent of the equations for the state

(U LA B | ):

u+ gt z(z u)+2 xu
+ u th( + ) =Ty,
+ t (u)=r,
+  tu =r,
—§— —+— =1, 7
1S %
where = %are relaxation parameters, and , and

are the continuous reference profiles around which the
equation is linearised. The unit normal vector in the verti-
cal direction is denoted az and the quantity is defined
as =1+ , t?N? with the Brunt...Vaisala frequency

=9g(; ) .Incontrastto Woodetal.(2014), the hor-
izontal couplings are not neglected inP ,, and will only
be dropped in the approximate Schur complement con-
structed in Section 3.4. The block-diagonal entries in the
4x 4 matrix in Equation 5 are modified mass matrices of
the W,, W3 and W spaces, possibly weighted by refer-
ence profiles M, , similar to the off-diagonal M, ). The
term in the upper-left corner of the matrix in Equation 5
is the velocity mass matrix augmented by contributions
from Rayleigh damping (optionally only applied to the ver-
tical component of the velocity vector near the model lid;
see Melvinet al, 2019) and the implicit treatment of the
Coriolis term,

M; €=M+ t(M + M), ®)
where
Me)j =2 vi (x v)dV,
D
While M3, M; and M, do not contain couplings to

unknowns in neighbouring cells, and M only couples
between unknowns in the same vertical columnM, € con-
tains couplings in all directions. This prevents the exact
solution of Equation 5 with a Schur-complement approach
as in Woodet al.(2014), since the inverse o1, ©is dense.
Instead, the system in Equation 5 is solved with an iter-
ative Krylov subspace solver, which only requires appli-
cation of the sparse operator (x ) itself. The solver is
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preconditioned with the approximate Schur complement
described in the following section.

3.4 | Schur-complement preconditioner

To obtain an approximate solution of the linear system in
Equation 5, first all instances of the mass matrixM are

replaced by a lumped, diagonal versiom such that the
diagonal entries ofM are the row sums ofM . As in Wood

et al. (2014), only the part ofP , that acts on the vertical
part of the velocity field is kept. The resulting operatoiP 2'2

maps from the subspac&V; Wy to W .

Algebraically, the following steps correspond to mul-
tiplication by the upper block-triangular matrix (Step
1), solution of the block-diagonal matrix (Step 2) and
back-substitution through multiplication by the lower
block-triangular matrix (Step 3) in the Schur-complement
approach (Zhang, 2006).

Step la.Use

S1,x >
=M (SP,u S ) 9
to eliminate . In the resulting 3x 3 system, replace the
M, + P, mM>p ) é)n the diagonal by a
lumped diagonal approximationM, ~ such that the diago-

. , —.,C _ .
nal entries of M, ¢ are the row sums ofM, . This leads to
asystemforu, and only:

. —.,C
matrix M, =

M, © 6 u &,
D Ms =5 , (10
S1 ~ ~—
P,M>'P,? SM, M, S
with
— _ = S1
u— u 2 ]
T = sp,MTt (11)

Note that ... in contrast to Equation 5 ... the (block-) diago-
nal entries of the 3x 3 system in Equation 10 have sparse
inverses, and it is possible to form the exact Schur comple-

ment.
Step 1b. Similarly, eliminate density from Equation 10
using o 5
=M3SD uS ) (12)

to obtain a 2x 2 system foru and . Finally, eliminate

velocity with
u=(M;PG $T) (13)
to get an equation for the pressure increment only:
H = =387 +(M;9% ,$Mm, M5! (14)

Royal Meteorological Society

The Helmholtz operatorH Wj3; W3 is defined as
H=M, +(P,M>'P 2+ M, M$ID )(M;)SiG .
(15)
Step 2: Approximately solve the Helmholtz equation
in Equation 14 for . For this, one multigrid V-cycle as
described in Section 3.6 is used.
Step 3: Given , recover u,
Equations 13,12 and 9.

and using

3.5 | Structure of the Helmholtz operator
Understanding the structure of the Helmholtz operator
H is crucial for the construction of a robust multigrid
algorithm for the approximate solution of Equation 14.
The tensor-product multigrid method which will be used
here was first described for simpler equations and dis-
cretisations in Bérm and Hiptmair (2001) and applied to
mixed finite element problems in atmospheric modelling
in Mitchell and Muller (2016).

First, consider the sparsity pattern of the Helmholtz
operator H. In each cell of the grid, it contains cou-
plings to its four direct horizontal neighbours. In addition,
it couples to the two cells immediately above and the
two cells immediately below. Including the self-coupling,
this results in a nine-cell stencil, independent of the
order of discretisation p (see Figure 2). Second, it is
important to take into account how the components of
H depend on the time-step size t, the horizontal grid
spacing Xx and the vertical grid spacing z. For this,
first note that the weighted weak derivativeD can be
decomposed into a vertical and horizontal partD =
D Z+D "withD 2 W5 WzandD " W) Ws.
Since the lumped mass matrix is diagonal, it is the sum
of two terms, M, © = M3 <+ M3 <" with M, <" wh
wh andM; < W2 WZ. Using this decomposition, the
Helmholtz operator can be written as the sum of four
terms:

H= My +P,M>'P_%(M; %G
Ho Di
+ My MDD 2(M; “%S1G
3 3 2

v4
D2

+ M, MSID (M, “MEG (16)

0;
In order to interpret the different parts of H it is con-

structive to derive the corresponding Schur-complement

operator for the continuous linear system given in
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FIGURE 2  Stencil of the Helmholtz operatorH (all grey
cells) and of the operatoH, (dark grey cells). For clarity, only a
two-dimensional cross-section of the stencil is shown; in three
dimensionsH has nine entries (instead of seven as for the standard
near-neighbour stencil) andH, has three en tries

Equation 7. To be consistent with the substitutionP ,
P 2’2 above, the third part of Equation 7 is replaced by

+ tu, r . The resulting pressure operator is
1 o -
h= — § utchﬁﬂ(z)z
ho &
S1 )
S t2 _ Z( z
%18
&
é _ h ( h)' 17
&TE (a7

where |, is the horizontal gradient operator. Up to scaling
by the local volume of the grid cell it is therefore possible
toidentify Ho =ho, D} = df, Dj = dj andDf) = dj). With the
definitions of the linear operators in Melvin et al. (2019),
it is easy to see that the different parts ofl depend on the
grid spacing and time-step size as

Ho X Z,

2 2

; o~z X t
D1, D5 —

Dy z t% (18)
Further observe that with T = and the ratio of
the specific heat capacities (1S ) = G G the (squared)
speed of sound is given by = ¢, ¢, RT = Cos
Assuming that the reference profiles are slowly varymg,

thisimplies thatthe ratiosd]  ho, d5 hoanddg hg scale
as
N2c2
dZ hg e t2
d2 hy & t%
d hy & t2 (19)

Combining this with Equation 18 results in the esti-
mates

N2 2
D} H, NE €
g z
Gt

D; Ho — = CFL,
t 2

DI Hy <=~ =CFL

where CFL, and CFL, are the vertical and horizontal
acoustic Courant numbers. Note also that the relative size
of Dg and Dg is given by the squared aspectratip x  2)?,
and the relative size ofD] and D; decreases  z as the
vertical grid spacing goes to zero.

To proceed further, the Helmholtz operator is split
into two parts, H = H,+ H, such that H, contains the
couplings to neighbouring cells in the vertical direction
only. If the degrees of freedom are ordered consecutively
in the vertical direction, H; is a block-diagonal matrix.
Each block describes the couplings in one vertical col-
umn; furthermore, solution of the systemH, = r for
some right-hand sider requires the independent solution
of a block-pentadiagonal system in each column. Follow-
ing the scaling arguments above, and observing that the
operatorsD? and D7 only contribute to H, it can be seen
that for high aspect ratios z X, the dominant part of
the operatorH is given byH,. This observation is crucial
for the following construction of a robust tensor-product
multigrid algorithm.

3.6 | Multigrid solver
Starting from some initial guess, an approximate solution
of Equation 14 can be obtained with a block-Jacobi itera-
tion S. To avoid the expensive block-pentadiagonal solve,
the next-to-nearest-neighbour couplings id ; are dropped
to obtain a block-tridiagonal H,; see Figure 2. With this
matrix, one iteration of the block-Jacobi method is
+ HI'( SH ), (20)
where is an over-relaxation factor. The shorthand
BlockJacobi(H, , ,, niad is used fornj,c applications
of the block Jacobi iteration in Equation 20. Multiplication
by HZ in Equation 20 corresponds to the solution of the
block-tridiagonal linear system, which can be carried out
independently in each vertical column. The tridiagonal
solve can be done, for example, with the Thomas algorithm
(see, e.g., Presst al, 2007). When applyingH to  to
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calculate the residual SH in Equation 20, the vertical ~ the error by recursively solving the residual equation on

terms Dé and D7 in Equation 16 are treated exactly. the next-coarsest level.

It is well known that stationary methods such as the
Jacobi iteration converge extremely slowly since they only : — O 0
reduce the high-frequency error components. This issueis Algorithm 1. Multigrid  V-cycle, ={H", 7
overcome by multigrid methods (Trottenberget al, 2001, ¢’} MGVeyele( ), . Npre, Npos)

contains a comprehensive treatment of the topic), which

construct a hierarchy of grids with associated (nested) ; : L Ltréir;rseSolve(H('-) L)y
finite element function spaces, in particularWs = W(31) 3 else ’
w® f W Followingthe tensor-productapproach  ,. ()  giockJacobi HO, O, O, noe)
in Bérm and Hiptmair (2001), the grid is only coarsened 5. () OSHO O
in the horizontal direction. By applying a small number of 6: (+D)  Restrict( ())
smoother iterations on each level, the error is reduced at . (+)
gll length scales. In the follpwmg thellndex {1,f ,L} 8: (+)  MGveycle ()}, +1,, Npres Npost)
is used to label the multigrid level, with L = 1 correspond- o () () + prolongate( ( *1)
ing to the fine-grid level on which the solution is to be 10: () BlockJacobi (H(), (), (), Npos)
found. Let{ ¢’} and{ O)} be the set of solution vec- 11: end if
tors and right-hand sides on all levels, with W= and :
(@ = | Since the function spaces are nested, the obvi-
ous prolongation W(3 +1) Wé) from a coarse space The natural way of (approxim_ately)_ solving the
to the next-finest multigrid level is the natural injection equation on the coarsest level =L is by inverting the
matrix directly or by applying a Krylov subspace method.
(+D O, (21)  Inaparallelimplementation this requires expensive global
communications. As explained in Sandbactet al. (2015)
with and Muller and Scheichl (2014), this is not necessary in
our case. To see this, observe that the relative size of
Ocy= D)y  forallpoints  D. the zero-order termHg and the second derivative in the

horizontal direction D*z‘ is proportional to the squared,
The corresponding linear operator acting on the inverse grid spacing x. Since the grid spacing doubles
degrees-of-freedom-vector (dof-vector)( *Y canbewritt  on each subsequent level, the relative size of the two
ten asProlongate( ¢ *Y). Equation 21 naturally induces  terms in the Helmholtz operator reduces to ¢ SUCFL2
a restriction ~ W{’  W{* on the corresponding where, as above, CF is the acoustic Courant num-
dual spaces (denoted by *): ber in the horizontal direction. As the vertical terms are
treated exactly in the block-Jacobi smoother, the condi-
r() o CFD), tion number of the Helmholtz operator will be (1) on
levels log,(CFLy) + 1. Hence, it is sufficient to pick
with L = log,(CFLy) + 1 and simply apply a few iterations of
rC+DC CHDy = (O (o (+Dy) the block-Jacobi smoother. For typical atmospheric appli-
cations, CFL, 10 and hence it is sufficient to work
for all functions ( *9 Wg *D. The corresponding lin-  with L 4 levels. As demonstrated in Miller and Sche-
ear operator acting on the vector () representing the ichl (2014), this shallow multigrid approach also greatly
dual one-formr( ) is written asRestrict(  ( )); note thatthe  reduces global communications.
level-dependent residual () is different from the quan-
tities that appear on the right-hand side of Equation 5.
The Helmholtz operators on the coarse levels are con- 3.7 | Computational complexity
structed by representing the reference profiles on those lev-
els and re-discretising the operator. This is more efficient Although the multigrid method requires additional calcu-
than assembling it via the expensive Galerkin triple-matrix  lations on the coarse levels, its computational complexity
product. is proportional to the number of unknowns. The time
Based on these ingredients, it is now possible to spentinone multigrid V-cycle in Algorithm 1 is dominated
write down the recursive multigrid V-cycle in Algorithm by two contributions: the multiplication with the matrix
1. Starting from some initial guess =  and the  HO) and the vertical solve, i.e., the application ofH ))51.
right-hand side @ = on the finest level, this reduces  These operations are required in the residual calculation
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and the block-Jacobi algorithm, which is used for both
pre-/post-smoothing and the approximate solution of the
coarse-level system withngarse block-Jacobi iterations.
Let Cy and CHZ be the cost per unknown for those two
operations. For a pressure system wittN unknowns the

computational cost per multigrid V-cycle is

LS1
Costy.cycle = (( Npre + npost)(CH + CHz) + Cy)N 45+t
=1
+ NeoarsdC + Hyy )N4SH

4
é((npre + npost)(CH + CHz) + Cu)N, (22)
where the approximation in the last line is valid for
4§L+l 1.

In contrast, solving the Helmholtz pressure system
with gliter iterations of a BICGStab method, preconditioned
by H;", involves a cost of

Coskicestap= (2Miter(Ch + Cy ) + Cu)N.

While the multigrid V-cycle contains more
nearest-neighbour parallel communications in the form
of halo exchanges, these can easily be overlapped with
computations via asynchronous calls to the message
passing interface (MPI). In contrast, the BiCGStab solver
requires four global sums per iteration (including one
for monitoring convergence in the residual norm). While
communication-avoiding variants of Krylov solvers exist
(see the overview in Hoemmen, 2010, and recent work
on BiCGStab in Carsonet al, 2013), this will not over-
come the fundamental issue. Several BiCGStab iterations
with global communications are required to achieve the
same reduction in the pressure residual as in a multigrid
V-cycle. As the numerical results in Section 5.2 demon-
strate, this reduces the scalability of Krylov subspace
solvers for the pressure correction equation.

3.8 | Memory requirements

The memory requirements of the different solvers for the
pressure equation are quantified by counting the number
of dof-vectors they need to store. Since the matri{ has a
nine-point stencil and the LU-factorisation of the tridiag-
onal matrix H; is required in the block-Jacobi iteration in
Equation 20, storing the matrix requires the same memory
as 12 dof-vectors. As can be seen from Algorithm 1, on each
level of the multigrid hierarchy the three vectors <, ()
and () are stored in addition to the Helmholtz matrix,
resulting in a total memory requirement of 15 dof-vectors
on each level. However, since the number of unknowns

is reduced by a factor of 4 in each coarsening step, the
memory requirements on the coarser levels are signifi-
cantly reduced. In the standalone multigrid iteration, two
additional vectors are required on the finest level to mon-
itor convergence. Assuming that a dof-vector on the finest
level containsN unknowns, this results in a total memory
requirement of

1
MemoryMuItigrid =15 1+ Z

1
+ =+ N + 2N < 22N
16 f
for the multigrid method. This should be compared to the
BiCGStab solver: in addition to the solution, right-hand
side and matrix, this uses eight temporary vectors, result-
ing in a total storage requirement of

Memorygicgstap= 22N.

The memory requirements of other solver combinations
considered in this work are in the same ballpark. Using
a standalone block-Jacobi iteration requires the storage of
16 dof-vectors, whereas the equivalent of no more than 28
dof-vectors has to be stored if BICGStab is preconditioned
with a multigrid V-cycle.

4 | IMPLEMENTATION

As described in Adamset al. (2019), the LFRic code
is designed around a separation-of-concerns philoso-
phy originally introduced in this context in Ford et al.
(2013). It provides well-defined abstractions for isolat-
ing high-level scientific code from computational issues
related to low-level optimisation and parallelisation, with
the aim of achieving performance portability on differ-
ent parallel hardware platforms. The model developer (an
atmospheric scientist or numerical algorithm specialist)
writes two kinds of code:

€ local kernels which describe the operations that are
executed in one vertical column of the mesh;

€ high-level algorithms which orchestrate the kernel
calls.

The PSyclone code-generation system (see Ford and
Porter, 2019) automatically generates optimised wrapper
subroutines for the parallel execution of the kernels over
the grid. PSyclone can generate code for execution on dis-
tributed memory machines via MPI and shared-memory
parallelisation with OpenMP, as well as mixed-mode par-
allelisation; it also supports threaded implementations on
GPUs. Depending on the data dependencies, which are
specified by attaching access descriptors to the kernels,
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appropriate MPI calls (e.qg., for halo exchanges) are auto-
matically inserted into the generated code.

As is common in atmospheric modelling codes, and
consistent with the tensor-product multigrid algorithm
described in the article, the grid is only partitioned
in the horizontal direction and the elementary kernels
operate on contiguous data stored in individual verti-
cal columns. By using a structured memory layout in
the vertical direction, any costs of indirect addressing in
the horizontal direction from logically unstructured grids
can be hidden; this was already observed in MacDonald
et al.(2011) and confirmed for tensor-multigrid solvers in
Dedneret al. (2016).

To implement the solvers described in this article, the
user will have to write the iterative solver algorithm and
kernels for applying the appropriate finite element matri-
ces or carrying out the block-tridiagonal solves in each
column.

4.1 | Solver Application Programming
Interface

For the complex solvers and preconditioners described in
this article the parameter space is very large: different
Krylov solvers for the outer mixed system in Equation 4
and for the Helmholtz pressure equation in Equation 14
will lead to varying overall runtimes. The performance
of the multigrid preconditioner depends on the num-
ber of levels, the value of the over-relaxation parameter,
the number of pre- and post-smoothing steps, and the
choice of coarse-level solver. To explore different con-
figurations and allow for the easy switching of compo-
nents, an object-oriented framework for iterative solvers
has been implemented in LFRic as described in Adams
et al. (2019). Similar to the DUNE Iterative Solver Tem-
plate Library (Blatt and Bastian, 2006) and PETSc (Balay
et al, 1997), this avoids re-implementation of the itera-
tive solver and aids reproducibility. Based on this library of
iterative solvers, the user has to provide problem-specific
linear operators and preconditioner objects.

For this, three abstract data types are defined in the
code:

€ avector typewhich supports linear algebra operations
such asaxpy updates § y+ x) and dot products
( =Xy = Xy

€ alinear operator typewhich acts on vectors< and imple-
ments the operationy  Ax;

€ apreconditioner typewhich implements the operation
X Py, where x approximately solves the equation
Ax =Y.

Royal Meteorological Society

This allows the implementation of different Krylov
subspace solvers, which are parametrised over the linear
operator A and the corresponding preconditionerP, both
of which are derived from their respective abstract base
types. So far, the following solvers of the general form
K@A,P,[ ]) (where is a tolerance on the target residual
reduction) are available in LFRic:

€ conjugate gradientCG(A, P, );

€ generalised minimal residual GMRESA, P, );

€ stabilised biconjugate gradientBiCGStab(A, P, );
€ generalised conjugate residualGCR(A, P, );

€ anull-solver (preconditioner only), PreOnly(A,P).

All solvers operate on instances of a concrete
eld_vector type, which is derived from the abstract
base-vector type and contains a collection of dof-vectors.
More specifically, to implement the linear solver with
the Schur-complement preconditioner for the linear
system described in Section 3.3, an operatoAmixed,
which represents the matrix in Equation 5 and acts on a
eld_vector for the statex =(u, , , ), was created.
The corresponding Schur-complement preconditioner
Pmixed acts on eld_vector s of the same form and, as dis-
cussed in Section 3.4, contains a call to a Krylov subspace
method Ky (Ay,Py) for solving the Helmholtz problem
in Equation 14. Here the operator Ay represents the
Helmholtz operator in Equation 15 and Py is a pre-
conditioner; both Ay and Py act on single-component
eld_vector objects of the formx, = (). Both the multi-
grid preconditioner PM®(L, , npre, Nposy) described in
Section 3.6 and a single-level methoaﬁa‘)( , Njad, which
corresponds to nj,c applications of the block-Jacobi
iteration in Equation 20, were implemented.

Thus the general nested solver can be written as

Kmixed(Amixed, Pmixed(KH (AH ’ I::'H ’ H)), ) (23)

5 | RESULTS

To identify the most promising preconditioner, first the
performance of different solvers for the pressure correction
in Equation 14 is explored on a relatively small number
of compute cores in Section 5.1, before massively paral-
lel scaling tests for a smaller subset of solver configura-
tions are presented in Section 5.2. Finally, robustness with
respect to the time-step size is quantified in Section 5.3.
All tests were run on the Met Office Cray XC40 supercom-
puter using the Aries interconnect. Each node comprises
dual-socket, 18-core Broadwell Intel Xeon processors, that
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TABLE 1  Pressure solver configurations
used in Section 5.1
Line relaxation

Krylov (' 1)

MG(L)

Krylov-MG ( 4,

is, 36 CPU cores per node. The model was compiled with
the Intel 17 Fortran compiler (version 17.0.0.098).

5.1 | Algorithmic performance
and pressure solver comparison

In all cases a GCR solver with a tolerance of = 1056 is
used to solve the mixed system in Equation 4; sometimes
this will also be referred to as the eouter solveZ below.
Although other methods are available for this option, an
investigation of the mixed solver is not the focus of this
article and so only this method, as used in Melviret al.
(2019), is considered. To test the algorithmic performance
of the solver, the model is run on the baroclinic-wave test
case of Ullrich et al. (2014), which models the develop-
ment of midlatitude atmospheric wave dynamics. Apart
from the semi-implicit solver, the model set-up is the same
as described in Melvinet al. (2019) with the following
exceptions:

1. To improve long time-step stability, the continuity
equation is handled in an (iterated) implicit manner,
instead of an explicit one as in Melvinet al. (2019); that
is, their egn. 22 becomes

,+ =S t, F (24)
with F u™ m14(18 )u" "sampled pointwise.

To improve the accuracy of the advection operator over

non-uniform meshes, a two-dimensional horizontal

polynomial reconstruction of the potential temperature
field is used instead of the one-dimensional reconstruc-
tion of Melvin etal.(2019). This reconstruction follows
the method of Thuburn and Cotter (2012), except here
the polynomial is always evaluated at fixed points in

Pressure solver

Kn H Py
PreOnly " P:_fac)(O.S, 10)
1052 P{2(1.0,2)
BICGStab 10% PY9(1.0, 1)
106 PY9(1.0, 1)
PM9(1,08,2,2)
PreOnly PM9(2,08,2,2)
PM9(3,08,2,2)
(MG)
. PM9)(4,0.8,2,2)
S MG)
1052 PM"9(4,038,2,2)
L) BICGStab 105 P9 (4,0.8,2,2)
S (MG)
10%6 PM9(4,08,2,2)

space instead of at Gauss points of the swept area as in
Thuburn and Cotter (2012).

The model is run on a C192 mesh (& 192x 192 cells)
with  50km horizontal resolution and 30 levels in the
vertical following a quadratic stretching such that the
smallest vertical grid spacing is 200m. This results in
39.3 1(F total degrees of freedom, with 6.610° pressure
unknowns. The time step is t = 1200s, which results in
a horizontal-wave Courant number of CFl; = ¢ t X
7.9 with ¢g= 340msSt. The vertical Courant number is
CFL,=c¢ t z 1800 (near the surface).

Different methods are used to solve the pressure cor-
rection equation in Equation (14):

Line relaxation : 10 iterations of the block-Jacobi

solver.

MG(L): Single geometric multigrid V-cycle with a vary-

ing number of levelsL = 1,2,3,4 and a block-Jacobi line

smoother on each level.

Krylov( 4) and Krylov-MG( 4,L): BICGStab itera-

tion with a relative tolerance of = 102,103, 1056

and one of the following preconditioners:

a. One iteration of the block-Jacobi
[Krylov( )]

b. Single geometric multigrid V-cycle withL = 4 levels
[Krylov-MG( n,L)]

N

w

method

Following the notation in Equation 23, the solver con-
figurations are summarised in Table 1. The Krylov solver
with 4 = 1056 corresponds to the solver set-up used in
Melvin et al. (2019). Two pre- and post-smoothing steps
with an over-relaxation parameter = 0.8 are used in the
multigrid algorithm; the number of smoothing steps on the
coarsest level i91¢parse= 4.
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Number of iterations and time per linear solve for both the outer mixed solvé!™ and the

solve

Mixed solve Pressure solve Solver
Pressure solver Iterations ti::l)v . Iterations t;’;)lve Set-up
Line relaxation 24.54 0.33 10 0.0075 0.018
Krylov(1052) 15.10 0.39 15.12 0.0196 0.020
Krylov(10%3) 15.03 0.52 22.59 0.0276 0.019
Krylov(10%6) 14.03 0.96 52.50 0.0571 0.018
MG(1) 35.29 0.38 " 0.0047 0.018
MG(2) 19.51 0.23 " 0.0058 0.027
MG(3) 15.24 0.19 " 0.0067 0.026
MG(4) 15.12 0.20 ” 0.0073 0.026
Krylov-MG(1052,4) 15.04 0.26 1.58 0.0117 0.028
Krylov-MG(10%3,4) 15.03 0.34 2.21 0.0165 0.026
Krylov-MG(10%6,4) 15.03 0.63 4.37 0.0350 0.026

Notes Set-up time per mixed solve for the linear operators is given in the final column. All numbers are averaged over the
total run of the baroclinic-wave test case on the C192 mesh described in Section 5.1. Times are given in seconds.

The test is run for 8 days of simulation time (768 time
steps) on 64 nodes of the Cray XC40 with six MPI ranks per
node and six OpenMP threads per rank.

The accuracy of the linear system is governed by the
solution obtained for Equation 5, which in all cases uses
the same GCR solver and relative tolerance = 10°.
Therefore, there is very little difference in the solutions
obtained from the different solver set-ups in Table 1,
with the maximum difference in surface pressure after 8
days of simulation being 0.00026 as compared to the
Krylov(lOéG) configuration.

Table 2 lists the average number of outer, mixed-solver
iterations per semi-implicit solve and the average num-
ber of iterations per pressure solve for each of the set-ups
described above and summarised in Table 1. Note that
in each time step the mixed solver is called four times
to solve a nonlinear problem and Table 2 shows the
average times for asingle linear solve; these times are
visualised in Figure 3. For completeness, results for the
one-level multigrid method are also reported. Although
in essence this simply corresponds to four applications
of the line smoother, sincenye + Npost= 4 this guarantees
that the same number of fine-level smoother iterations
is used for all multigrid results. The multigrid methods
(provided more than one level is used) result in a signif-
icant reduction in the time taken for each linear solve
and, compared to the Krylov methods, require roughly the
same number of outer iterations. In particular, solving the

total ——

pressure solve

line relaxation
Krylov(ey =107%)
Krylov(ey =107%)
Krylov((,, 10-9)
G(L=1)

MG(L =2)
MG(L =3)
( )

)

)

)

=

G(L=4
Krylov-MG(ey =102, L =4
Krylov-MG(ey =10"% L =4
Krylov-MG(ey =10% L =4

0.0 0.2 0.4 0.6 0.8 1.0
time [s]

FIGURE 3 Breakdown of solver times for the

baroclinic-wave test case on the C192 mesh described in Section 5.1.
Both the total time per solve and the time spent in the pressure
solver (filled bars) are shown

pressure correction equation to a relatively tight tolerance
of 4 = 10°¢ does not reduce the number of outer GCR
iterations. This implies that the main error in the approx-

imate Schur-complement solve is due to mass lumping,
and not to an inexact solution of the pressure equation.
Overall, a single multigrid V-cycle with L = 3 levels gives

the best performance. Increasing the number of multi-

grid levels further does not provide any advantage since
the problem is already well-conditioned after two coars-
ening steps, and adding further coarse levels will make
the method slightly more expensive. Although stand-alone
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TABLE 3 Node configurations and local problem sizes for parallel strong scaling runs in Section 5.2
Local unknowns
Nodes Threads Local columns Mixed Pressure
384 13,824 24 24 103,968 17,280
864 31,104 16x% 16 46,528 7,680
1,536 55,296 112 26,352 4,320
3,456 124,416 8x8 11,872 1,920

line relaxation provides a cheap pressure solver (without
any global sums), this is offset by a significant increase in
the number of outer iterations such that the overall cost is
not competitive with the multigrid method. In fact (look-
ing at the final column of Table 2), 10 iterations of the
block-Jacobi solver are slightly more expensive than the
four-level multigrid V-cycle with two pre-/post-smoothing
steps; this is not too far off the theoretical cost estimate
in Equation 22. As the results for the Krylov-MG method
show, there is no advantage in wrapping the multigrid
V-cycle in a Krylov solver.

Although the use of the multigrid preconditioner sig-
nificantly improves the speed of the linear solver, it does
come with additional set