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Dynamics of interacting magnetic nanoparticles:
effective behavior from competition between
Brownian and Néel relaxation

Patrick Ilg *a and Martin Kröger b

The intriguing properties of magnetic nanoparticles have sparked a growing number of theoretical

studies as well as practical applications. Here, we provide the first comprehensive study of the influence

of interactions on the two main relaxation mechanisms: internal (Néel) and Brownian relaxation. While

non-interacting magnetic nanoparticles show Debye behavior with an effective relaxation time, many

authors use this model also for the interacting case. Since Néel relaxation is typically a thermally

activated process on times scales that are many orders of magnitude larger than the underlying

micromagnetic times, we use extensive computer simulations employing a Brownian dynamics/Monte-Carlo

algorithm to show that dipolar interactions lead to significant deviations from the Debye behavior. We find

that Néel and Brownian relaxation can be considered as independent processes for short enough times until

dipolar interactions lead to a coupling of these mechanisms, making the interpretation more difficult. We

provide mean-field arguments that describe these short and long-time, effective relaxation times

well for weak up to moderate interaction strengths. Our findings about the coupling of Brownian and

Néel process and the effective relaxation time provide an important theoretical insight that will have

also important consequences for the interpretation of magnetic susceptibility measurements and

magnetorelaxometry analysis.

1 Introduction

Magnetic nanoparticles (MNPs) possess fascinating properties
that can be exploited in several engineering and biomedical
applications.1–4 With typical diameters of their magnetic core
on the order of 5–30 nm, MNPs are magnetic monodomain
particles and therefore show ‘‘superparamagnetic’’ behavior.5 It
is well-known that two basic mechanisms govern the magneti-
zation relaxation of MNPs: (i) internal magnetization relaxation
within the MNP, so-called Néel relaxation, on time scale tN, and
(ii) so-called Brownian relaxation on time scale tB by rotational
diffusion of the whole MNP when the particle is suspended in a
viscous liquid (see Fig. 1). The relative contribution of Brownian
and Néel relaxation is crucial for optimal use of MNPs in many
technical as well as biomedical applications, such as hyper-
thermia.3,6 Therefore, methods for determining their relative
importance are currently being explored, helping to find the
optimal colloids for the given application.7,8 For ferrofluids,
where MNPs are suspended in a non-magnetic carrier fluid,

Rosensweig assumed that both relaxation processes occur indepen-
dently so that the corresponding rates can be added up to yield an
effective relaxation given by5

1

teff
¼ 1

tB
þ 1

tN
(1)

Eqn (1) is fundamental for ferrofluid research and is used in
numerous textbooks and research articles (see e.g. ref. 9, 10 and
references therein). However, one should bear in mind that

Fig. 1 Schematic of the two basic relaxation mechanisms. Brownian
relaxation: entire particle including its magnetic moment l rotates in fluid.
Néel relaxation: direction of magnetic moment rotates within particle
core. In the thermally activated regime considered here, deviations from
the easy axis are energetically disfavored and short-lived and thus
neglected in our implementation of the Néel relaxation dynamics.
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eqn (1) was originally suggested for non-interacting MNPs in the
absence of external fields.

Since tN grows almost exponentially with the magnetic
volume of the nanoparticle, while tB grows only linearly with
its hydrodynamic volume, different ratios tN/tB can be realized
for core–shell particles with the same magnetic material by
different sizes of the magnetic core and different thickness of
the nonmagnetic shell (Section 2). The dependence of tB and tN

on the strength of an external magnetic field has recently been
determined experimentally by comparing the field-dependent
magnetic susceptibility in the fluid and freeze-dried state for very
dilute conditions.11 In another set of very recent experiments, the
concentration dependence of the magnetization relaxation has
been measured and the Brownian and Néel contributions have
been identified.7 While the effective Brownian relaxation time
was found to increase with increasing concentration, a weaker,
opposite behavior was observed for the effective Néel relaxation
time. Furthermore, the corresponding dynamic magnetic
susceptibility deviates strongly from the Debye law for non-
interacting MNPs and the effective relaxation time (1) is not
sufficient to describe the behavior. Intriguingly, some experiments
suggest that Brownian effects seem to play a role under conditions
where only Néel relaxation was expected.12 In addition, hysteresis
measurements pointed out the importance of dipolar inter-
actions for magnetic losses that are relevant e.g. in hyperthermia
applications.13

A number of computer simulation studies have investigated
the magnetization dynamics when Brownian and Néel relaxation
are both present. Few of these studies have thereby incorporated
the stochastic Landau–Lifshitz–Gilbert (LLG) equation for a faith-
ful representation of the internal magnetization dynamics14–16 as
suggested by Shliomis and Stepanov.17,18 In the physically relevant
regime where Néel relaxation is a rare, thermally activated process,
the LLG approach is computationally very inefficient. Therefore,
kinetic Monte-Carlo schemes have been used19,20 to simulate the
magnetization response of frozen multi-core magnetic particles to
oscillating fields. For ferrofluids, a Monte-Carlo scheme to
equilibrate the magnetic moments alongside their translational
diffusion was proposed.21 Recently, a diffusion-jump model was
proposed to efficiently model internal Néel relaxation as a
thermally activated jump process alongside the Brownian rotational
diffusion of the MNPs.22 For non-interacting MNPs, good agreement
with the underlying model of Shliomis and Stepanov was found over
a reasonable range of model parameters.

However, since the magnetic properties of interacting MNPs
are much less understood,23–25 we here address the question
about the validity and form of eqn (1) for interacting MNPs. In
ref. 25, concentration effects on the effective relaxation time in
magnetorelaxometry were observed experimentally, but due to
the lack of theoretical models were interpreted in terms of non-
interacting particles. How do tB and tN depend on concentration
and dipolar interaction strength? How meaningful is the distinction
between Brownian and Néel relaxation in an interacting system? To
answer these questions, we build on the model proposed in ref. 22
and perform extensive Brownian dynamics simulations of the
translational and rotational dynamics of interacting dipolar particles

coupled to thermally activated Néel relaxation processes for a broad
range of concentrations and dipolar interaction strengths.

The paper is organized as follows. Section 2 provides for-
mulation of the diffusion-jump model for interacting MNPs.
Results of extensive computer simulations of this model are
presented and analysed in Section 3. In particular, Sections 3.3
and 3.4 deal with the case that only Brownian and Néel relaxation
is present, respectively. The corresponding models, denoted as
brownian rigid dipole (RBD) model and frozen ferrofluid with
Néel flip/magnetization reversal (FFMR) model, specified in
Appendix B, are special cases of the full model (coupled case),
for which results are presented in Section 3.4. Conclusions are
offered in Section 4.

2 Model formulation

Consider a system of N interacting particles in a volume V
corresponding to the number density n = N/V. Let ri and li = mui

denote the position and magnetic moment of particle i, respectively,
where m denotes the magnitude and ui the three-dimensional unit
vector of the orientation of its magnetic moment. For simplicity we
here consider monodisperse systems. To better represent experi-
mental systems with significant polydispersity in nanoparticle
sizes, generalizing the model is straightforward (e.g. along the
lines of ref. 26).

The potential energy of the system in the presence of an
external magnetic field H can be expressed as

F ¼ �kBT
XN
i¼1

ui � hi;loc þ
1

2

X
iaj

Fs
ij (2)

where kB and T are Boltzmann’s constant and temperature,
respectively. The spherically symmetric potential Fs models
steric repulsion. Following common practice,27,28 we employ a
purely repulsive Lennard-Jones potential,

Fs
ij ¼

4e s=rij
� �12� s=rij

� �6h i
; rij o rcut

0; rij � rcut

8<
: (3)

with rij = |ri� rj| the distance between particles i and j, rcut = 21/6s,
the interaction strength e and the Lennard-Jones diameter s as a
measure for the spherical diameter of the particle. The dimension-
less local field acting on particle i is given by

hi;loc ¼ h� l
X
jð jaiÞ

s=rij
� �3

1� 3r̂ij r̂ij
� �

� uj ; (4)

where h = m0mH/kBT denotes the dimensionless magnetic field,
l = m0m

2/(4ps3kBT) the dimensionless strength of the dipole–dipole
interaction relative to thermal energy, and m0 the permeability of
free space. The equilibrium properties of system described by
eqn (2) depend strongly on l and the volume fraction f = nps3/6.29

In principle, eqn (2) should be supplemented by the magnetic
anisotropy energy Kvm(ui�ni)

2 due to deviations of the magnetic
moment direction from the particle’s easy axis orientation ni,
where K is the anisotropy constant of the magnetic material and
vm the volume of the magnetic core of the nanoparticle.10,18,30
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Here, we consider MNPs that are sufficiently large with a corre-
spondingly large magnetic anisotropy energy Kvm that magnetic
moment and easy axis can be considered to be well-aligned. For
iron oxide nanoparticles, K E 104 J m�3, this means we consider
magnetic core diameters larger than 12 nm, so that k = Kvm/
kBT \ 2 at room temperature, whereas for cobalt nanoparticles,
K E 2 � 105 J m�3, already magnetic core diameters greater than
5 nm lead to k \ 3. We note that experiments have confirmed
that magnetization reversals of individual MNPs on the order of
15–30 nm are well-described by thermal activation over a single-
energy barrier.31 We use this classical picture in the diffusion-
jump model that we describe next.

Having defined the interaction potential, we also need to
specify the dynamics of the system. We assume over-damped
motion in a viscous carrier fluid of viscosity Zs with translational
and rotational friction coefficients x and xrot, respectively. The
single particle Brownian diffusion time is given by tB = xrot/2kBT
with xrot = pZss

3, where Zs denotes the solvent viscosity. Let
F(�r,�u;t) denote the probability density to find the position and
magnetization orientation at time t, with the short notation

�r = r1,. . .,rN, �u = u1,. . .,uN. We propose the following model for
the translational and rotational dynamics

@

@t
F ¼ LF þ Q½F �; (5)

with the Fokker–Planck operator

LF ¼ �
XN
i¼1

=i � j � ri �
1

x
=iF

� �
F � kBT

x
=iF

� 	

�
XN
i¼1

Li � X� 1

xrot
LiF

� �
F � kBT

xrot
LiF

� 	
;

(6)

with =i � q/qri and the rotational operator Li � ui � @=@ui. The
first and second line describe translational and rotational
diffusion subject to the interaction potential F and an imposed
flow field with (transpose) velocity gradient j and (one-half)
vorticity X. Thus, the model reduces for Q = 0 to the ‘‘rigid dipole
model’’ (tN -N) where Néel relaxation is fully suppressed and the
magnetic moment is assumed to remain permanently fixed within
the particle. The rigid dipole model is frequently used to study
equilibrium and nonequilibrium dynamics32 in ferrofluids.

The term Q in eqn (5) describes Néel relaxation as jump
processes �u - �u

0,

Q½F � ¼
ð
½wðr; ujr; u0ÞFðr; u0; tÞ � wðr; u0jr; uÞFðr; u; tÞ�du0; (7)

with transition rates w. Equations of the type (5) with (6) and (7) are
known in the literature as ‘‘differential Chapman–Kolmogorov’’
equations.33 In order to complete the model, we therefore need to
specify the transition rates w in eqn (7). We here follow ref. 22 and
assume sufficiently large magnetic anisotropy energies k that the
magnetic moments are well-aligned with the particle’s easy axis,
ui = �ni, so that the transition rates w vanish unless ui

0 = �ui.
Assuming furthermore individual and statistically independent

magnetization reversals, �u
(i) � u1,. . .,ui�1, �ui, ui+1. . .,uN, we use

the ansatz

wðr; ujr; u0Þ ¼
XN
i¼1

d u0 � uðiÞ

 �

Liðr; uÞ: (8)

We ensure that the Boltzmann equilibrium Feq B exp[�F/kBT]
is a stationary solution to the dynamics (5), i.e. Q[Feq] = 0, by the
detailed balance condition

Feqðr; uÞ
Feq r; uðiÞð Þ ¼

Li r; u
ðiÞ� �

Liðr; uÞ
¼ exp 2

XN
i¼1

ui � hi;loc

" #
: (9)

Generalizing the model proposed in ref. 22 to include dipolar
interactions we choose

Li(�r,�u) = L0 exp[�ui�hi,loc], (10)

which satisfies the detailed balance condition (9) identically.
Through the local field hi,loc given by eqn (4), the rates Li

include dipolar interactions. Choosing the constant L0 = 1/(2tN)
ensures the correct limit in the absence of external fields and
dipolar interactions22 (Appendix A). Our model can also be used
to study the blocking temperature in relation to the field-cooled
and zero-field cooled magnetization, extending previous studies
on non-interacting MNPs.34 Some authors found it necessary to
include distributions of magnetic anisotropy constants, repre-
senting the energy barriers of individual particles.12 This could be
incorporated in the present model by a distribution of L0 values.
The dependence of the single-particle Néel relaxation time tN on
the anisotropy parameter k was already derived by Brown and
reads tN ¼ t0

ffiffiffi
p
p

ek=2



2k3=2
� �

for k \ 2, where t0 is typically in
the order of 10�10–10�9 s, usually two to four orders of magnitude
smaller than tN.10 Therefore, by eliminating the time scale t0, our
diffusion-jump model is orders of magnitude more efficient than
approaches based on the LLG equation that need to resolve the
fast internal magnetization dynamics on the time scale t0.

To summarize, the magnetic particles are specified by the
dimensionless parameters l and tB/tN, denoting the dipolar
interaction parameter and the ratio of single-particle Brown and
Néel relaxation times, respectively. The many-particle system is
characterized by the amount and size of such magnetic particles,
described by the volume fraction f, and the strength of the steric
repulsion given by e = kBT.

3 Results and discussion
3.1 Simulation approach

To solve the coupled model described by eqn (5)–(10), we
consider a time step Dt short enough so that the solution to
eqn (5) can be approximated by

F(t + Dt) E eDtLF(t) + DtQ[F(t)]. (11)

For simplicity we used the short notation F(t) for the probability
density F(�r,�u;t). The first term on the right hand side of eqn (11)
represents Brownian translational and rotational motion described
by the Fokker–Planck operator (6), whereas the second term
describes magnetization reversals according to eqn (7)–(10).
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The numerical solution can therefore be broken up in two
independent parts per time step: (i) Brownian dynamics simulations
are employed to advance particles’ positions and orientations for a
time step Dt according to the translational and rotational Brownian
motion (6). This step is identical to many previous simulation
studies on ferrofluids that used the rigid-dipole approximation
(see e.g. ref. 32 and references therein). (ii) A kinetic Monte-Carlo
scheme to implement the jump processes described by Q[F]:
(a) Select a dipole i at random and calculate the effective rate
Li = Li(�r(t),�u(t)). (b) Flip the orientation of the magnetic
dipole, ui - �ui, with probability p = 1 � e�DtLi. (c) repeat
steps (a) and (b) N times.

Parts (i) and (ii) conclude one integration step time of length Dt.
More details on the algorithm are given in Appendix B. This hybrid
algorithm where Brownian dynamics and kinetic Monte-Carlo
steps are alternated is similar to stochastic reaction-diffusion
algorithms.33,35

The main quantity of interest in this study is the instanta-
neous magnetization which is defined as the total magnetic
moment per unit volume,

MðtÞ ¼ m
V

XN
i¼1

ðð
uiFðr; u; tÞdrdu �MsatUðtÞĤ; (12)

where we have defined the saturation magnetization Msat = Nm/V
and the unit vector parallel to the external field direction Ĥ. The
reduced magnetization U is defined by U(t) = Ĥ�M(t)/Msat.

Before discussing the validity and interpretation of eqn (1) for
interacting magnetic nanoparticles, we first study the Brownian
(RBD model) and Néel (FFMR model) relaxation separately in
Sections 3.2 and 3.3, before addressing their combined effect
(coupled model) in Section 3.4. To prevent confusion from the
outset, we are going to use a unique notation (Table 1) for relaxation
times occurring under different circumstances. The single particle
relaxation times are the basic quantities determined by the nano-
particle and the solvent. Since dipolar interactions lead in general to
non-exponential relaxation, we characterise the relaxation of the
interacting system by the short-time behavior tshort and an effective,
integrated relaxation time �t. We also fit the relaxation to a super-
position of exponential decays with tn the relaxation time of mode n.
Experimental data can be analyzed the same way. The various
relaxation times are necessary to characterize the features of the
full time-dependent signal in a compact fashion.

3.2 Brownian relaxation for rigid dipoles (RBD model)

Computer simulation studies of ferrofluids frequently rely on the
rigid-dipole approximation (RBD model), where Néel relaxation is
completely ignored (tN - N).29,32,36–38 In this section, we study

this model of interacting magnetic nanoparticles, UB(t), for a wide
range of particle concentration and interaction strengths. Fig. 2
shows a selection of our computer simulation results for the
magnetization relaxation after a strong ordering magnetic field
has been switched off at time t = 0. Results for different volume
fractions f and dipolar interaction strengths l are shown,
corresponding to different values of the Langevin susceptibility
wL = 8lf. We find from Fig. 2 that the magnetization relaxation
deviates from a single-exponential behavior except for very weak
interaction strengths. Therefore, we use the multi-mode ansatz

UBðtÞ ¼
Xk=2
n¼0

cne
�t=tB;n (13)

to fit our simulation data, where k = 2, 4,. . . denotes the number of
parameters, tB,n denotes the relaxation time of mode n and cn the
corresponding weight. Note that the relaxation spectrum {tB,n} can
in principle be determined from the Laplace transform of the
signal, where the shortest relaxation time captures the initial
decay, while the longest relaxation time describes the exponential
decay at long times. The short-time behavior is always given by the
single-particle relaxation time, UB(t) = 1� t/tB + O(t2). Therefore, we

determine c0 and tB,0 from
Pk=2
n¼0

cn ¼ 1 and
Pk=2
n¼0

cn


tB;n ¼ 1=tB. In

addition, we use the convention tB,n 4 tB,n+1 for n 4 0 so that tB,1

denotes the longest relaxation time.
Using a Bayesian information criterion (Appendix B.5 for

further details), we determine the minimum number of para-
meters k in eqn (13) needed for a quantitative description of the
magnetization relaxation data. Fig. 3 shows the result for k in
the wL� f parameter space. We observe that pronounced multi-
mode relaxation is found for small concentrations and large
values of wL, i.e. large dipolar interaction strengths l.

We use a cluster analysis in order to investigate structure
formation in this system directly. Following earlier works,39,40

we define two particles to belong to the same cluster if their
dipolar interaction energy is within 75% of the contact energy
of two aligned dipoles. From the cluster analysis, we find that

Table 1 Different relaxation times for the Brownian RBD (subscript B),
Néelian FFMR (subscript N), and coupled models

RBD model FFMR model Coupled

Single particle tB tN teff

Short-time tB tshort
N tshort

Mode n tB,n tN,n tn

Effective �tB �tN �t

Fig. 2 RBD model. Magnetization relaxation UB(t), eqn (12) from a strongly
magnetized initial state as a function of scaled time t/tB. The three panels
correspond to Langevin susceptibilities (a) wL = 0.5, (b) 1 and (c) 5,
respectively. In each panel, the concentration increases from top to
bottom from f = 0.02 to 0.4 as indicated in the legend. Measured data
shown in gray, our fits using (13) with k according to Fig. 3 are colored.
Fitted longest relaxation times tB,1 shown in Fig. 4.
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clusters start spanning the simulation box massively for large
dipolar interaction strengths l \ lfs with lfs = 8, whereas our
results seem not to be significantly effected by finite-size effects
for l t lfs.

Fitting our numerical results for the magnetization relaxation
in the RBD model, Fig. 2, to the form (13), we obtain the effective
Brownian relaxation times tB,n for a range of concentrations and
interaction strengths. In Fig. 4, we show the longest effective
Brownian relaxation times tB,1 normalized by the single-particle tB

as a function of wL. For relatively weak interactions, we find that the
increase of the longest effective relaxation time tB,1 is well described
by the so-called first order modified-mean field model,41,42

tMMF
B,1 = tB(1 + wL/3) (14)

The derivation of eqn (14) within mean-field theory is provided
in Appendix C. Our findings are in good agreement with those
of Sindt et al.,42 who found that eqn (14) provides a good
description up to wL t 1 for l t 4. For stronger interactions,
Fig. 4 shows that the relaxation times grow significantly stronger
than predicted by the modified mean-field model. This result is in
qualitative agreement with earlier findings of slow relaxation pro-
cesses in strongly interacting ferrofluids using the same rigid-dipole
model.36 We also note that the relaxation times are no longer a
function of wL alone, but depend on the volume fraction f and l
separately. This finding is in line with predictions from cluster
expansions for the magnetization43 and magnetoviscosity.44 As a
word of caution, we estimate that finite-size effects for l4 lfs affect
those data with tB,1 \ 100tB.

Fig. 5 shows that the deviation of the relaxation time from
the modified mean field prediction is a function of l only and
can be captured in the form

tB;1
.
tMMF
B;1 ¼

1; lo lc

a l� lcð Þz; l � lc

(
(15)

where a E 40, lc = 4.9 � 0.5 and z = 0.4 � 0.1. The strong
increase in the Brownian relaxation time beyond the modified
mean-field prediction shown in Fig. 5 and indicated by eqn (15)
suggests that major structure formation occurs in dilute systems for
l \ 5. Our cluster analysis confirms this conclusion. In addition,
this conclusion is also in line with previous computer simulations of
various dipolar model systems that have established the formation
of chains and rings in the dilute, strongly interacting regime.29,45

3.3 Néel relaxation for immobile particles (FFMR model)

In order to study the Néel relaxation process in isolation, we
consider in this section immobile particles by suppressing Brow-
nian motion completely (tB - N). For a better comparison, we
start with the same initial conditions as used in Section 3.2, i.e.
we first perform standard BD simulations in the presence of a
strong ordering external field to prepare initial configurations.
Once steady state is reached, at time t = 0 we instantaneously
switch off the external field and run the FFMR model. The frozen
particle configuration represents a quenched disorder and we
later need to average our results over independently prepared
equilibrium starting configurations. Such systems and the corres-
ponding field-cooled magnetization have attracted considerable
interest in the literature on solid magnetic materials and spin
glasses due to slow relaxation processes.46,47 In view of bio-
medical applications, more studies on magnetic properties of
immobile MNPs have appeared in recent years (see e.g. Zhao
et al.16 for a simulation study on magnetization relaxation of
non-interacting MNPs and Jonasson et al.20 where dipolar
interactions within a multi-core particle are included).

Fig. 6 shows our FFMR model result for the relaxation of the
reduced magnetization UN(t) = M(t)/Msat averaged over indepen-
dent, frozen particle configurations from a strongly magnetized
initial state. For weak interactions, we observe a single-exponential
decay. Upon increasing the interaction strength wL and depending
on volume fraction f, we find both, the appearance of a remanent
magnetization Mr = UNMsat 4 0, and two slightly different

Fig. 3 RBD model. The minimum number of parameters k in the magnetiza-
tion relaxation eqn (13) determined by a Bayesian information criterion for
different points in the wL� f parameter plane. The shaded gray area shows the
regime l 4 lfs with lfs = 8, corresponding to significant finite-size effects.

Fig. 4 RBD model. The longest effective Brownian relaxation time tB,1

normalized by the bare relaxation time tB as a function of the Langevin
susceptibility wL (on a semilogarithmic scale). Dashed line shows the
prediction of the modified mean-field model (14). Panel (a) is a zoom of
panel (b) for small wL values.

Fig. 5 RBD model. The longest Brownian relaxation time tB,1 scaled by
the prediction tMMF

B,1 , eqn (14) versus dipolar interaction strength l. Solid
black line shows the approximation (15). Same data as shown in Fig. 4.
Panel (a) shows the data on a linear, panel (b) in a double-logarithmic scale.
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relaxation times, tshort
N o �tN, where tshort

N characterizes the initial
decay of the magnetization. The appearance of a remanent
magnetisation Mr in field-cooled magnetic systems at low
temperatures has been observed experimentally.48 One expects
Mr 4 0.5Msat, i.e. UN 4 0.5, for ferromagnetic interactions and
Mr o 0.5Msat for anti-ferromagnetic interactions.46

We identify the short-time relaxation time tshort
N (Fig. 7a)

from our data (exemplarily shown in Fig. 6) by the inverse
initial slope of d ln UN/dt for times smaller than 0.05tN. The
remaining characteristics UN and �tN are obtained reliably with
tshort

N at hand. Because more than two different relaxation times
are not required to fit all our results with a relative deviation
of less than 1% to an expression of the form (13) with k = 2 for
U(t) � UN, we use the ansatz

UN(t) = UN + (c � UN)e�t/tN,1 + (1 � c)e�t/tN,2 (16)

where tN,2 = tN,1t
short
N (1 � c)/[tN,1 + tshort

N (UN � c)], UN A [0,1],
c A [0,1] and c � UN A [0,1]. With this unique choice for tN,2,
eqn (16) exhibits by construction the four required features,
UN(0) = 1, UN(t) = 1 � t/tshort

N + O(t2), lim
t!1

UNðtÞ ¼ U1, as well as

an exponential decrease at t c tN,1 Z tshort
N that is governed by

relaxation time tN,1 in the absence of a remanent magnetization.

An effective relaxation time �tN we determine uniquely, also in
the presence of nonvanishing UN, via

�tN ¼
ð1
0

UNðtÞ �U1½ �dt (17)

with UN(t) from eqn (16) to capture the regime of times beyond
simulation time. We thus have �tN = (c � UN)tN,1 + (1 � c)tN,2

using the parameters already obtained. Both, the resulting
remanent UN and effective relaxation time �tN, are shown versus
wL for various f in Fig. 7b and c.

For weakly interacting systems (wL t 0.5), we expect UN = 0
when starting with sufficiently random positions,30 whereas
UN E 0.5 was found in the low-temperature regime in an
earlier study where particles occupy randomly the sites of a
regular lattice for volume fractions f o 0.5 and l = 1.48 These
authors found that dipolar interactions can lead to UN 4 0 also
in the high-temperature regime. Our FFMR model results
(Fig. 7b) confirm these expectations, while UN quickly exceeds
0.5 with increasing wL. Beyond wL E 3 all systems up to the
largest volume fractions exhibit a remanent magnetization.

From Fig. 7a and c we find that the short time tshort
N drops

almost mono-exponentially with respect to wL, while the effective
Néel relaxation time �tN decreases only approximately linearly
with wL. The relaxation times approach unique curves with
increasing concentration, i.e. decreasing l. To understand these
behaviors, we here offer simple mean-field arguments for (i) the
short-time relaxation tshort

N and (ii) the effective relaxation time
�tN. From eqn (5)–(7), we find dUN/dt = �tN

�1he�u�hlocuzit where
UN(t) = huzit and the local field hloc defined by eqn (4). Since we
are dealing with an interacting many-particle system, we do not
expect to find a closed-form solution to this equation, and thus
treat problem (i) and (ii) using a mean-field approach.

(i) For the short-time relaxation from a strongly ordered initial
state, we can use a factorization approximation he�u�hlocuzit E
he�u�hlocitUN(t). Together with a first-order cumulant expansion,
we find dUN/dt E �UN/tshort

N with the short-time effective
relaxation time tshort

N = tNehu�hloci. To make further progress, we
need to approximate the local field. For weak to moderate
dipolar interactions, we adopt the modified mean-field model,
hloc E h + wLhui.41 For strong interactions, we follow the chain-
formation model49 and include in the local field only the

Fig. 6 FFMR model. Magnetization relaxation UN(t) averaged over 10
independent, frozen particle configurations from a strongly magnetized
initial state as a function of reduced time t/tN for different f. Each panel
has its own wL value. Measured data (black) shown together with the
approximant (16). Note the different range of UN values for the largest wL.
A zoom into the short time window is provided in the appendix, Fig. 13.

Fig. 7 FFMR model. Quantities characterizing the magnetization dynamics in the absence of Brownian relaxation. The following quantities had been
evaluated via eqn (16) from the measured data: (a) inverse short relaxation time tshort

N , (b) remanent reduced magnetization UN, and (c) inverse effective
Néel relaxation time �tN normalized by the bare relaxation time tN, all as a function of the Langevin susceptibility wL. Solid line in (a) and dashed line in (c)
highlight predictions of the mean-field estimates (18) (ba = 1) and (19) (s = 1), respectively.
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contributions from a single, perfectly straight chain. Using in
addition that UN E 1 for short times, we arrive at the estimate

tN/tshort
N E e�bawL (18)

where ba = 1 for weak and moderate dipolar interactions and
ba = z/(4f) in the chain-forming regime, where z defined in
eqn (44) depends weakly on the mean chain length (more
details on the derivation can be found in the Appendix D).
We observe that eqn (18) describes the FFMR data in Fig. 7a
accurately for weak interactions and also explains qualitatively
the behavior for stronger interactions.

(ii) Estimating the effective relaxation time �tN is more
challenging. For weak dipolar interactions, we again use the
modified mean-field approximation for hloc. We solve the
differential equation for UN to first order in wL to arrive at
the effective relaxation time

tN/�tN E 1 � swL (19)

with s = 5/9. The corresponding calculation in the chain-formation
regime leads to a more complicated expression, but might be
approximated by (19) with s = 5z/(36f). Details of the calculation
are given in Appendix D. We emphasize that these theoretical
estimates assume UN = 0 and therefore apply only for moderate
to strong but not too strong interactions. Comparing the prediction
(19) to Fig. 7c, we find that the mean-field predictions are qualita-
tively correct. However, they are quantitatively less accurate than for
the short-time regime.

Finally a word of caution on interpreting �tN, eqn (17), seems in
order. While �tN is well-defined also when UN 4 0, its interpreta-
tion as an effective relaxation time becomes more and more
questionable as UN increases. Therefore, we have omitted in
Fig. 7c those data for which UN 4 0.

3.4 Effective relaxation in coupled system

Having studied the effect of inter-particle interactions on
Brownian and Néel relaxation via the RBD and FFMR models
separately in Sections 3.2 and 3.3, we now investigate the fully
coupled system where Brownian translational and rotational
motion occurs simultaneously with Néel processes. As above, we
equilibrate a number of statistically independent configurations
in the presence of a strong external magnetic field. At t = 0, the
field is turned off instantaneously and we follow the relaxation
dynamics as described by the differential Chapman–Kolmogorov
eqn (5). Snapshots of some particle configuration during relaxation
are shown in Fig. 8.

The resulting relaxation behavior of the reduced magnetization
U(t) as a function of time for selected parameter values is shown
in Fig. 10. It shows some similarities with the corresponding
Fig. 7 for the FFMR model. We now carefully analyse the data
and perform a thorough comparison. From the inverse initial
slope of ln U(t) versus time t, we determine the effective short-
time relaxation time tshort. The values obtained for tshort are
shown in Fig. 11 as teff/tshort versus wL for different volume
fractions f and different ratios tN/tB. For vanishing inter-
actions, wL - 0, tshort becomes identical to the single-particle
effective relaxation time teff defined in eqn (1). Fig. 11 shows

that dipolar interactions lead to a significant increase of tshort

compared to teff. We find that the mean-field prediction

1

tMF
short

¼ 1

tB
þ e�wL

tN
(20)

describes this increase quite accurately for f \ 0.1. Details on
the derivation of eqn (20) are given in Appendix E. For more
dilute systems, the mean-field prediction is accurate only for
weak enough dipolar interactions but underpredicts tshort for
larger values of l. It is interesting to note that the Néel con-
tribution to 1/tshort vanishes for large wL so that 1/tshort - 1/tB.
These observations are very similar to the FFMR case when only
Néel relaxation is present. Since we know from the RBD model
that dipolar interactions do not affect the short-time relaxation
when Néel processes are absent, we conclude that Brownian
and Néel relaxation can be considered as independent processes
at short times. Therefore, the effective short-time relaxation rate
1/tshort is to a very good approximation the sum of the Brownian
and Néel short-time relaxation rates.

Analysing the relaxation curves in Fig. 10 in more detail, we
find that they can be described very accurately by a super-
position of decaying exponentials,

UðtÞ ¼
Xk=2
n¼0

cne
�t=tn ; (21)

in the same form as in the RBD case, eqn (13). Indeed, the data
(in black) are indistinguishable on the scale of the plot from the

Fig. 8 Coupled model. Snapshots of particle configurations at different
times during relaxation for N = 4000 particles, wL = 0.9, f = 0.1, tN/tB = 0.1.
The time t and corresponding reduced magnetization U(t) are indicated in
each panel. The colour scheme encodes the projection of the magnetic
moments on the direction of the orienting field (now switched off).

Fig. 9 Coupled model. The minimum number of parameters k in the
magnetization relaxation eqn (21) determined by a Bayesian information
criterion. Different points in the wL–f–(tB/tN) parameter space are shown,
where tB/tN – four values for each (wL,f)-pair – increases from front to
back.
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fit (in color) in Fig. 10. Note that for weak interactions, wL = 0.1,
results for different volume fractions f superimpose on the
same curve. For larger wL, however, this is no longer the case
and smaller f corresponding to larger l lead to slower relaxation.
We determine the minimum number of parameters k needed in
the fits shown in Fig. 10 from a Bayesian information criterion
(Appendix B.5). In Fig. 9, we show the results for the minimum

number of parameters k needed in the fits for the coupled
system. For sufficiently weak interactions, we find k = 0, i.e. a
single-exponential relaxation. In this case, the relaxation time has
already been identified above from the short-time behavior. We
find that additional modes of relaxation are needed for stronger
interactions in a very similar manner as for the RBD model
(Fig. 3). Interestingly, for most points in the wL–f plane, different
values of tB/tN do not change the number of modes needed for an
accurate fit.

Since the interpretation of the longest relaxation time in a
multi-mode fit can be unclear when the corresponding weight
is small, we define an effective relaxation time for the coupled
system analogue to eqn (17) as

�t ¼
ð1
0

UðtÞdt (22)

Note that Brownian relaxation enforces UN = 0. Definition (22)
of �t we find to be very useful and robust. Fig. 11b shows the
inverse of �t scaled with the single-particle effective relaxation
time teff, eqn (1). Since our fits to U(t) are very accurate, we

evaluate �t from eqn (22) as �t ¼
Pk=2
n¼0

cntn using the fit values of tn

and cn. We observe from Fig. 11 a that dipolar interactions lead to
a strong increase in �t that, contrary to the short-time relaxation,
does not level off at large wL. We find from Fig. 11b that the mean-
field prediction for �t,

�tMF ¼ tMFtan
�1 ffiffiffiffiffi

b1
pffiffiffiffiffi
b1
p (23)

is not as accurate as the one for tshort, but provides a good
description for weak and moderate interaction strengths. Eqn (23)
holds for wL o 3 and (wL � 1)tB o tN and we have defined tMF =
teff/(1 � wL/3) and b1 = wL(tN� 2tB)/[(3 � wL)(tN + tB)]. Details on the
derivation of eqn (23) are given in Appendix E. For stronger
interactions, mean-field theory predicts a vanishing rate 1/�t at
some critical value of wL, whereas the simulations show a
gradual decrease, deviating from the mean-field predictions
earlier the larger l.

The effective relaxation time �t increases with wL as shown in
Fig. 12a on a linear scale. Interestingly, a stronger increase of �t
relative to the non-interacting teff is seen when compared to the
relative increase of tB,1 relative to tB obtained using the RBD
model (Fig. 4). For small enough wL, this increase of �t is well
described by the mean-field result (23). For smaller f corres-
ponding to larger dipolar interaction strength l, the data start
to diverge earlier from the mean-field result. In order to better
analyse deviations from the mean-field result, Fig. 12b shows the
effective relaxation time �t, eqn (22), scaled with the mean-field
prediction (61) versus the dipolar interaction parameter l. As
mentioned above, the mean-field result (23) predicts a divergence
of �t at sufficiently strong interactions, but (61) provides a good
approximation for wL o 1. Therefore, we consider in Fig. 12b the
mean-field result (61) which does not diverge but is accurate up
to second order in wL only. From Fig. 12b, we observe an S-shaped
curve, where the mean-field result holds quite well for small l,
but seriously underestimates the simulation results for larger l.

Fig. 10 Coupled model. The magnetization relaxation U(t) as a function of
reduced time t/teff for tB/tN = 1 (each panel has a different wL value).
Measured data (black) together with our fits to eqn (21) using a Bayesian
information criterion, see Appendix (B.5) and Fig. 9. Different panels
correspond to different values of wL, with different volume fractions f
color-coded as indicated in the legend.

Fig. 11 Coupled model. The scaled, (a) inverse short-time relaxation time
teff/tshort and (b) inverse effective relaxation time teff/�t are shown versus
the Langevin susceptibility wL for various volume fractions f. In each panel
tN increases from bottom to top: yellow, tN/tB = 0.1; green, tN/tB = 0.25;
blue, tN/tB = 1.0; purple, tN/tB = 2.5. Dashed lines indicate the mean-field
prediction (20) for tshort and (23) for �t.
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We also note that data collapse is encouraging, even though not
as good as in the case where only Brownian relaxation is present,
Fig. 5. The onset of the strong increase of �t/�tMF occurs around
l E 5, very similar to our RBD model observations. Therefore,
an improved theory for Brownian relaxation in strongly inter-
acting systems is very likely to lead to correspondingly improved
predictions also in the coupled case.

3.5 Magnetic susceptibility for coupled system

Measurements of the dynamic magnetic susceptibility ~w(o) are
more common than magnetization relaxation experiments U(t).
From a theoretical point of view, these quantities are related by
~w(o) = w0[1 � ioC̃(io)], where w0 denotes the static susceptibility

and ~CðsÞ ¼
Ð1
0 CðtÞe�stdt the Laplace-transform of the magnetiza-

tion fluctuation C(t) = hu(t)�u(0)i. Thanks to the fluctuation–
dissipation theorem, we can identify C(t) with the relaxation
function U(t). We note that by definition C̃(0) = �t and therefore
the low-frequency behavior is given by ~w(o) = w0[1� io�t + O(o2)],
i.e. governed by the effective relaxation time defined in eqn (22).

For the coupled system, we have seen in Section 3.4 that
the relaxation is very well described by a weighted sum of
exponentials, eqn (21). Using this form, we evaluate the real
and imaginary part of the dynamic susceptibility, ~w = w0 � iw00 as

w0ðoÞ
w0
¼ 1�

Xk=2
n¼0

cn
otnð Þ2

1þ otnð Þ2
(24)

w00ðoÞ
w0
¼
Xk=2
n¼0

cn
otn

1þ otnð Þ2
(25)

From Fig. 9, we find only a small parameter region with k = 0,
corresponding to the classical Debye model. In the rest of the
parameter space, however, dipolar interactions lead to a multi-
mode relaxation and corresponding deviations from the
simple Debye behavior. The multi-mode nature of the magnetic
susceptibility prohibits the unique definition of a single char-
acteristic relaxation time from w00. Similar difficulties are
encountered in interpreting the non-exponential magnetization
relaxation. While defining an effective relaxation time from

relaxation measurements via eqn (22) is common, many
authors identify relaxation times with peaks in w00. While this
approach has been used to identify Brownian and Néel relaxation
times when those processes happen on well separated time
scales,7,8 our results show that such a separation runs into
problems when dipolar interactions are present and time scales
are not well separated, since the individual tn already contain
Brownian and Néel contributions.

4 Conclusions and outlook

With the current work, we provide a comprehensive study of the
effective magnetization dynamics of interacting magnetic nano-
particles in solution when Brownian and Néel processes are
both present. We perform extensive computer simulation studies
using Brownian Dynamics coupled with Monte-Carlo methods of
magnetization reversals to simulate the magnetization relaxation
after a strong ordering field is switched off.

First, we study Brownian (RBD model, Section 3.2) and Néel
(FFMR model, Section 3.3) contributions separately, before
considering the coupled case when both processes are active
(Section 3.4). In all three cases, we find that dipolar interactions
lead to deviations from a single-exponential decay. Therefore, a
careful analysis of the data is required. For the RBD model we
find that the short-time relaxation is unaffected by dipolar
interactions, whereas in the other cases, the effective short-time
relaxation time increases. We propose a mean-field argument
that captures this increase rather well. The long-time or inte-
grated effective relaxation time is found to increase due to dipolar
interactions in all our simulations. Using the RBD model we
confirm earlier findings that the increase in the long-time
relaxation time is well described by the modified mean-field
theory for weak to moderate interaction strengths.42 We also
show that corrections to this result for stronger interactions
should be sought in terms of the dipolar interaction strength l,
rather than wL. For Néel relaxation in the absence of Brownian
motion (FFMR model), we propose a mean-field argument to
explain the increase of the effective relaxation time. We note that
an earlier study found that dipolar interactions reduce rather
than increase the Néel relaxation time.50 However, in the latter
work, the authors consider CoPt core–shell nanoparticles that are
compressed into dense conglomerates. Therefore, it would be
interesting to extend our studies to higher volume fractions to
find out conditions under which the effective Néel relaxation
would be enhanced due to dipolar interactions.

When Brownian and Néel processes are both present
(coupled model), we find that the corresponding rates from
the RBD and FFMR model are in general not additive for
interacting systems. Accordingly, equations of the form (1) hold
only for very weak dipolar interactions. A noteworthy exception
is the short-time relaxation, ln U(t) = �t/tshort + O(t2) for t - 0,
where the coupled rate 1/tshort is well described as the sum of
the short time RBD and FFMR rates. Therefore, in interacting
systems, Brownian and Néel relaxation can be considered as
independent processes for very short times only. Since our

Fig. 12 Coupled model. (a) Reduced effective relaxation time �t (22) versus
wL for various f and tN/tB = 1/4, up to wL = 1. Results are quite insensitive to
the precise value of tN. Both the mean field result (23) (thick solid black)
and its expansion (61) (dashed black) are shown for comparison. The mean
field expression is not able to capture data for wL 4 1 well. (b) The effective
relaxation time �t scaled with the second-order mean-field prediction (61)
versus the dimensionless dipolar interaction strength l. Data for all available
wL, f and tN/tB values are shown. Black dashed line indicates the mean-field
prediction (61).

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
Se

pt
em

be
r 

20
20

. D
ow

nl
oa

de
d 

on
 1

0/
7/

20
20

 1
0:

29
:4

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0cp04377j


Phys. Chem. Chem. Phys. This journal is©the Owner Societies 2020

findings apply also to magnetic susceptibility spectra, their
interpretation is challenging when the single particle Brownian
and Néel relaxation times are comparable.

We note that our study explored the regime 0.1 r tN/tB r 10.
For larger values of tN/tB, the rigid-dipole approximation becomes
more and more accurate. In the opposite limit of dominant Néel
relaxation, tN { tB, pronounced two-step relaxation was observed
experimentally in ref. 7. This regime is left for future research.

Finally, we want to emphasize that the coupled model studied
here of combining Brownian translational and rotational dynamics
with Néel-type magnetization reversals can be simulated very
efficiently. The efficiency relies on modeling the Néel process as
thermally activated magnetization reversals via Monte-Carlo
methods. This physically appealing picture underlies also
Brown’s classical treatment (see e.g. ref. 10 and references
therein). It breaks down, however, for particles with sufficiently
small magnetic core, where the energy barriers for deviations of
the particle’s magnetic moment from their easy axis (anisotropy
energy) become equal to or even smaller than the thermal
energy. In the latter case, the internal magnetization dynamics
should rather be simulated with the stochastic LLG equation.
While the stochastic approach is considered to provide a more
faithful representation of the internal magnetization dynamics,
this model becomes very inefficient for ferrofluids containing
magnetic nanoparticles with large anisotropy energies. There-
fore, we propose our model to susbstitute the LLG approach in
the physically relevant regime of large anisotropy barriers where
magnetization reversals can be modelled as thermally activated
events. It is well-suited for studying further, e.g. field-dependent
properties of interacting ferrofluids.
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A Néel contribution to magnetization
relaxation

In terms of the probability density F(�r,�u;t), the time-dependent
magnetization is defined by eqn (12). Using eqn (5), the
magnetization dynamics can be expressed as

d

dt
M ¼ m

V

XN
i¼1

ðð
ui LFðr; u; tÞ þ Q½F �ðr; u; tÞf gdG; (26)

where dG � dudr and the first and second term describe the
contribution due to Brownian dynamics and Néel relaxation,
respectively. For the present modeling of Néel relaxation by
eqn (7) and (8), we find for the contribution of dipole iðð

uiQ½F �ðr; uÞdG ¼
X
j

ðð
ui Lj uð jÞ


 �
F uð jÞ; r

 �

� LjðuÞFðu; rÞ
h i

dG

¼ � 2

ðð
uiLiðuÞFðu; rÞdG;

(27)

where we made use of a change of integration variables from

�u to �u
( j) and �u

(i) for j a i and j = i, respectively. In the absence of
external fields and dipolar interactions (of particular relevance
for the FFMR model), we find from eqn (10) that Li reduces to
L0 = 1/(2tN) and eqn (27) leads to a contribution �M/tN to the
magnetization relaxation.

B Implementation of RBD, FFMR, and
coupled model

All three parts of our algorithm to be described below
(orientation-BD, translation-BD, flip-MC) can be independently
switched on or off, which allows us to prepare the conditions
required for the various ‘experiments’, and to define three
models. The frozen ferrofluid with Néel flip/magnetization
reversal (FFMR model) uses the flip-MC part only. The Brownian
rigid dipole (RBD model) uses orientation and translation BD
only. The full BD + MC algorithm including all parts is denoted
as coupled model.

For a sphere of diameter s, the Brownian translational
and rotational friction coefficients are respectively given by
x = 3pZss and xrot = pZss

3 with solvent viscosity Zs. We use the
Brownian rotational relaxation time tB = xrot/2kBT to introduce
reduced units. For a system with given f and rRF and periodic
box size Z2rRF = 16s for our choice of rRF, the number of
particles must exceed 48frRF

3/ps3 E 7823f. In this section we
omit all units s, e and tB, as they do not appear in the
algorithm.

B.1 Orientation-BD

The orientational Brownian dynamics corresponding to :ui =

(xi +
:

W) � ui with xi ¼ �xrot�1LiF ¼ ui � hloci =2 and
Wiener process W reads, using the abbreviation ai = hloc

i,y cosfi �
hloc

i,x sinfi,

Dzi ¼ 1� zi
2

� �
hloci;z � aizi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� zi2

p
� zi

h iDt
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� zi2

p
DW ;

Dfi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� zi2
p hloci;y cosfi � hloci;x sinfi


 �Dt
2
þ DW

� 	

(28)

with a time step Dt, and reflecting boundary conditions for
zi A [�1,1]. The DW’s are independent random numbers with
hDW2i = Dt. The constraints |ui| = 1 are taken care of auto-
matically, as we switched to spherical coordinates to represent
ui by an angle fi and its zi-component. We use equally dis-

tributed random numbers z A [0,1] and DW ¼
ffiffiffiffiffiffiffiffi
3Dt
p

ð2z� 1Þ to
generate them. Calculations are done using the reaction-field
approximation with metallic boundary conditions, which

amounts to replacing hloc
i by hloci þ lrRF

�3P
k

uk in eqn (28).

Several test of the above algorithm were performed, checking
e.g. the correct stationary magnetization and rotational diffusion
in the non-interacting case.

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
Se

pt
em

be
r 

20
20

. D
ow

nl
oa

de
d 

on
 1

0/
7/

20
20

 1
0:

29
:4

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0cp04377j


This journal is©the Owner Societies 2020 Phys. Chem. Chem. Phys.

B.2 Translation-BD

The translational Brownian dynamics corresponding to _r ¼
�x�1riFþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=x

p
_W is governed by

Dri ¼
X
kai

lGik þ
4

T

2� rik
6

� �
rik14

rik

� 	
Dtþ DWffiffiffi

3
p (29)

with

Gik ¼
r̂ik ui � uk � 5 ui � r̂ikð Þ uk � r̂ikð Þ½ � þ uk � r̂ikð Þui þ ui � r̂ikð Þuk

2rik4

(30)

and rik = ri � rk, rik = |rik|, r̂ = r/r, where the components of DW are
all independent random numbers with hDW2i = Dt, and generated
as in Section B.1. The sum in (29) does not run over all k a i. For
the first term lGik it runs over all k with rik r rRF. The second LJ
part involves only terms with rik r rcut = 21/6. We verified the
correct translational diffusion in the non-interacting case.

B.3 Flip-MC

As has been noted in ref. 22, the ansatz (10) can be generalized to

Li(�r,�u) = L0r(|xi|)exp[�xi] (31)

with xi = ui�hi,loc which satisfies the detailed balance condition (9)
identically for all choices of functions r with r 4 0 and r(0) = 1.
Note that the choice r = 1 lead to Arrhenius-like expression (10),
whereas r(x) = sech(x) leads to Glauber-like rates of the form
Li = (2tN)�1[1 + tanh(�x)]. Also the phenomenological expression
r(x) = cosh(ax) has been considered22 with parameter 0 r a r 1.

We use a Monte-Carlo scheme to implement this jump
process. At each time step Dt, every magnetic moment is flipped
with its individual probability pi = 1 � exp(�DtLi) with Li =
L0r(|xi|)exp(�xi) and xi = ui�hloc

i , where hloc
i is the same local

field appearing in eqn (28), and thus already available at no
additional computation cost. If not otherwise stated, r(x) = 1 is
used. For the non-interacting case, we verified the equilibrium
fluctuations satisfy hu1(t)�u1(0)i = e�t/tN.

B.4 Orientation relaxation ‘experiments’

To measure the effective orientational relaxation time, starting
from a state of fully saturated magnetization M = mez that is
realized in the limit h - N, we prepared equilibrated systems
with initial 8izi = 1 in the presence of translation-BD only. At
time t = 0 we set h = 0 and either continue running using the
FFMR, the RBD, or the coupled model. In each case we measure
the decorrelation function hhui�ezii(t) = M(t)�ez/Msat � U(t),
where the average is taken not only over all particles i, but also
an ensemble of equilibrated initial configurations. The satura-
tion magnetization is defined by Msat = nm with n = N/V the
number density.

The limiting case of noninteracting particles, or wL - 0, we
study using many particles upon switching off the translation-
BD and setting l = 0. Under these conditions each of the three
cases (i)–(iii) is characterized by a monoexponential decay
(UN = 0), with the following relaxation times (i) �tN(L0) = tN,
(ii) �tB = tB, and (iii) we confirm that U(t) = exp(�t/teff) with teff

defined in eqn (1). The result can be considered trivial as the
rotation-BD and flip-MC are completely independent in the
absence of interactions, and because there is no reason for a
trapped orientation.

For the remaining results to presented we investigated 300
different systems with all combinations of wL A {0.1, 0.2,. . ., 0.9,
1, 1.5, 2, 3, 4, 5}, fA {0.02, 0.05, 0.1, 0.2, 0.4}, and L0 A {0.2, 1, 2, 5}
or tN A {2.5, 1, 0.25, 0.1}, implying l’s to reside within the range lA
[0.03, 31]. For each set of parameters we run all three models, and
evaluated UN(t), UB(t), U(t), as well as the corresponding character-
istic times �tN, tB,1, tB,2, t1, t2, and coefficients cB, c, and UN.

B.5 Multi-exponential fitting of the relaxation function

In this section, we deal with the problem of how to characterize
the region in the three-dimensional (f � wL � tN/tB) parameter
space where relaxation is monoexponential to a good approxi-
mation. For each system we measured N data points (ti,Ui) with
uncertainties si and we have competing fits Ufit(t) with several
exponentials. For the FFMR model, cf. eqn (16), containing k = 4
(or less) parameters: tN,1, tN,2, UN, c. For the RBD and coupled
model, cf. eqn (13) and (21) with parameters {tB,n,cn} and {tn,cn},
respectively. For each of those fit functions, we define the
corresponding quantities

wk
2 ¼ N�1

XN
i¼1

Ui �Ufit tið Þ
1�U1

� 	2
(32)

where UN a 0 occurs only in case of the FFMR model. Since
uncertainties si in our data do not vary significantly, they do
not appear in eqn (32).

We generally expect fits with larger number of parameters k to be
more accurate than with lower k. But to decide whether the double-
or multi-exponential fit is preferable or rather overfitting the data,
we employ the Bayesian information criterion (BIC) defined by

BICk = Nwk
2 + k ln N (33)

We conclude that the k-parametric fit is appropriate if BICk is
the smallest of all BIC’s.

We find that for the RBD model the short-time behavior is
always given by the single particle tB. Therefore, dipolar inter-
actions lead to a multi-exponential decay with two (k = 2), three
(k = 4) or four (k = 6) modes, see Fig. 3. For the FFMR model, the
decay is monoexponential for k = 1, monoexponential with offset
for k = 2, double-exponential without offset for k = 3, and k = 4 is
found to be irrelevant by its BIC value. In the coupled case, we
find a single-exponential regime (k = 0) as well as superposition
of two (k = 2) and three (k = 4) exponentials, see Fig. 9.

C Mean-field arguments for RBD
relaxation
C.1 Short-time RBD dynamics

Consider the magnetization dynamics (26) in the absence of
Néel relaxation,

tB
d

dt
hui ¼ �hui þ 1

2
hloch i � uu � hloch ið Þ (34)
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Using the modified mean-field approximation,41 we approximate
the local field by hloc E h + wLhui. Let n denote the orientation of
the ordering field. We assume that the magnetization remains
parallel to n during the relaxation where the field has been
switched off, hui = UBn. Assuming furthermore uniaxial sym-
metry, huui = S2nn + (1 � S2)I/3, where I denotes the three-
dimensional unit matrix, we can rewrite eqn (34) as

tB
d

dt
UB ¼ � 1� wL

3
1� S2ð Þ

h i
UB (35)

where S2 = hP2(u�n)i and P2(x) = (3x2 � 1)/2 denotes the second
Legendre polynomial. Starting from a strongly oriented initial
state, UB E S2 E 1, we find from eqn (35) that the short-time
relaxation is given by the bare single-particle Brownian relaxation
time, tB, i.e. remains unaffected by interparticle interactions.

C.2 Effective RBD relaxation time

For longer times, eqn (35) predicts a non-exponential decay due
to the time-dependence of S2. Using a simple closure approxi-
mation S2 E UB

2, we arrive at the ordinary differential equation
tb
:

UB + UB = �bUB
3, where

tb ¼
tB

1� wL=3
(36)

and b = wL/[3 � wL]. The solution of this differential equation to
the initial condition UB(0) = 1 reads

UBðtÞ ¼
e�t=tbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b 1� e�2t=tbð Þ
p (37)

From eqn (37), we recover the short-time behavior UB = 1� t/tB +
O(t2) for t { tb and an exponential decay for long times
governed by tb. Note that eqn (37) agrees to first order in wL

with the mean-field result for the RBD model, tMMF
B,1 = tB(1 + wL/3),

eqn (14). Our mean-field arguments therefore confirm the
result (14) derived earlier. It should be noted that no expansion
in wL was used in the derivation of eqn (37) and therefore the
result is expected to hold in the whole regime where the
modified mean-field approximation and the closure relation
S2 E UB

2 apply.
Defining an effective relaxation time �tB ¼

Ð1
0 UBðtÞdt, we

find from (37) for small wL

�tMF
B ¼ tb 1� b

3
þ b2

5
þ . . .

� 	
¼ tB 1þ 2

9
wL þ

8

135
wL

2 þ O wL
3

� �� 	
(38)

Since the linear term is quite close to the mean-field result for
the long-time relaxation, tMMF

B,1 , the longest and the effective
relaxation times agree quite well for small wL.

D Mean-field arguments for FFMR
relaxation

Let n denote the direction of the external field with which the
system was prepared and UN(t) = hu�nit the time-dependent

scaled magnetization. Point of departure is the magnetization
dynamics (26) and (27), in the absence of Brownian motion,

d

dt
UN ¼ �

1

tN
e�u�hlocðu � nÞ
� �

t
(39)

D.1 Short-time FFMR dynamics

Fig. 13 shows the initial magnetization relaxation UN(t) when
Brownian relaxation is absent. For the short-time dynamics, the
system remains in the vicinity of the highly oriented initial
state. Therefore, we use a factorization approximation

dUN

dt
¼ � 1

tN
e�u�hlocðu � nÞ
� �

t
	 � 1

tN
e�u�hloc
� �

t
UNðtÞ (40)

Inserting eqn (40) into (39) and using a cumulant expansion, we
arrive at

dUN

dt
	 � 1

tshortN

UNðtÞ; t
 tN (41)

with tN/tshort
N = he�u�hlocit = e�k1+k2/2+. . ., where the first cumulants

are defined by k1 = hu�hlocit, k2 = h(u�hloc)2it � hu�hlocit2.
In order to evaluate the cumulants, we need to specify

the local field. In the regime of weak up to moderate
dipolar interactions, we use the modified mean-field model41

where hloc E h + wLhui. After the field is switched off, this
expression becomes hloc = wLUNn. With this, the cumulants
can be evaluated, k1 = wLUN

2 and k2 = wL
2UN

2[2S2 � UN + 1]/3,
where S2 = hP2(u�n)i and P2 denotes the second Legendre
polynomial. For short times where the magnetic moments are
still strongly aligned, UN E S2 E 1, we find k1 E wL and k2 E 0
and therefore

tN/tshort
N E e�wL, l t 1 (42)

For stronger dipolar interactions, the modified mean-field
model fails due to significant chain formation. In this regime,
we follow the chain-formation model49 and assume that the

Fig. 13 FFMR model. Initial magnetization relaxation UN(t) averaged over
10 independent, frozen particle configurations from a strongly magnetized
initial state as a function of reduced time t/tN for different wL and f.
Measured data (black) shown together with the approximant (16). Note the
different range of UN values for the largest wL.

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
Se

pt
em

be
r 

20
20

. D
ow

nl
oa

de
d 

on
 1

0/
7/

20
20

 1
0:

29
:4

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0cp04377j


This journal is©the Owner Societies 2020 Phys. Chem. Chem. Phys.

local field can be approximated by the contributions from
neighboring particles within a single, perfectly straight chain,

hloc 	 �l
X
jðaiÞ

uj � 3 uj � n
� �

n

ji � jj3 (43)

Assuming furthermore that all particles in the chain are still
oriented in direction of the ordering field (which is now
switched off), uj = n, we find that we can approximate the local
field contribution as u�hloc E 2lz(u�n)2, where

z ¼
X
jðaiÞ
ji � jj�3

* +
(44)

and the average is performed over all particles i in the chain.
We note that z is monotonously increasing with increasing
chain length and reaches its asymptotic value 2z(3) E 2.404
for infinite chain lengths. With this approximation for the
chain-formation regime, the cumulants can be evaluated to
give k1 = 2lz[1 + 2S2]/3 and

k2 ¼ 4l2z2
8

35
S4 �

4

9
S2

2 þ 8

63
S2 þ

4

45

� 	
(45)

For short times where the magnetic moments are still strongly
aligned, S4 E S2 E 1, we find k1 E 2lz and k2 E 0 so that

tN/tshort
N E e�2lz, 1 t l t 5 (46)

With the definition of the Langevin susceptibility wL = 8lf, we
can rewrite this expression in the form (18) with ba = z/(4f).

D.2 Effective FFMR relaxation time

D.2.1 Moderate dipolar interactions. In order to estimate
the effective relaxation time (17) of the FFMR model, we want to
first derive its magnetization relaxation UN(t) as predicted
with the help of the modified mean-field approximation. Our
starting point is the magnetization relaxation eqn (39) for weak
dipolar interactions,

d

dt
UN ¼ �

1

tN
e�u�hlocuz
� �

t
	 � 1

tN
e�wLu�huiuz

D E
t

	 � 1

tN
1� wL

1þ 2S2ðtÞ
3

� �
UNðtÞ þ O wL

2
� � (47)

Truncating at first order in wL and assuming the simple closure
approximation S2(t) E UN

2(t), we arrive at the nonlinear differential
equation ta

:
UN + UN = aUN

3, with the long-time relaxation time
ta = tN/(1� wL/3) and a = 2wL/(3� wL). Obviously, the range of validity
of the approximation (47) is restricted to wL o 3. The solution to this
differential equation for the initial condition UN(0) = 1 reads

UNðtÞ ¼
e�t=taffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a e�2t=ta � 1ð Þ
p (48)

For long times, t c (ta/2), we indeed find an exponential decay
governed by ta, UN B e�t/ta. For short times, t { ta, we find from
eqn (48)

UNðtÞ 	 1� ð1� aÞ t
ta
þ O t=tað Þ2 	 1� t=tshortN þ O t=tað Þ2

with the short-time relaxation tshort
N = tN/(1 � wL). From eqn (48),

we find that the magnetization relaxation deviates stronger from
a single-exponential decay the larger wL becomes.

With UN(t) from eqn (48) at hand, we calculate the effective
relaxation time from eqn (17), �tN ¼

Ð1
0 UNðtÞdt, to find

�tMF
N ¼ tajðaÞ ¼

tNjðaÞ
1� wL=3

(49)

with

jðaÞ ¼
ð1
0

e�xdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a e�2x � 1ð Þ

p ¼ csch�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� aÞ=a

p
ffiffiffi
a
p (50)

and where the last equality holds when a A [0,1]. Since
j(a) = 1 + a/3 + a2/5 + O(a3) for a - 0, we find that for weak
dipolar interactions

�tMF
N 	 tN 1þ 5

9
wL þ

47

135
wL

2 þ O wL
3

� �� 	
(51)

D.2.2 Chain-formation regime. In order to estimate the
effective relaxation time in the chain-formation regime of the
FFMR model, we assume that the factorization approximation
(40) remains valid during the whole relaxation process. There-
fore, we consider

d

dt
UN ¼ �

e�k1

tN
UN (52)

where we truncated the cumulant expansion after the first
term with

k1 ¼ 2lz ðu � nÞ2
� �

¼ 2lz
2S2 þ 1ð Þ

3
(53)

Inserting k1 into (52) and using the same closure approxi-
mation S2 E UN

2 as we did for moderate dipolar interactions,
we arrive at a closed ordinary differential equation for UN,
ta(dUN/dt) = �exp(�aUN

2)UN, where ta = tN exp[(2/3)lz] and
a = 4lz/3. The solution for UN(t) can only be given in implicit
form as

t

ta
¼ 1

2
EiðaÞ � Ei aUN

2
� �� �

(54)

where Ei(x) is the exponential integral. From eqn (54), we
find the effective relaxation time by a change of integration
variables as

�tMF
N ¼

ð1
0

t UNð ÞdUN ¼ tN
1

2
ea=2

ffiffiffi
p
a

r
erfi

ffiffiffi
a
p

(55)

where erfi(x) denotes the imaginary error function. For
very strong dipolar interactions, l - N, this expression
becomes �tN E tN3e2lz/(8lz), whereas in the opposite limit

�tN 	 tN 1þ 10

9
zlþ 94

135
z2l2 þ O l3

� �� 	
. Thus, we might approx-

imate the corresponding relaxation rate in the form of eqn (19)
with (10/9)zl = swL or s = 5z/(36f). Note, however, that the chain-
formation model does not apply for too small values of l and
therefore we expect s = 5z/(36f) to overpredict the observed
relaxation rate.
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E Mean-field arguments for relaxation
in the coupled system
E.1 Short-time dynamics

Consider now the magnetization dynamics (26) when both,
Brownian and Néel relaxation is present. Combining the
corresponding expressions for the RBD and FFMR models
(Appendices C and D) for the regime of weak to moderate
interactions, where the modified mean-field approximation can
be applied, we arrive at

d

dt
U ¼ � 1

tB
1� wL

3
1� S2ð Þ

h i
U � 1

tN
1� wL

3
1þ 2S2ð Þ

h i
U (56)

From eqn (56), we find that the short-time relaxation (where
S2 E 1) is governed by the weighted sum of the RBD and FFMR
individual particle rates,

1

tMF
short

¼ 1

tB
þ 1� wL

tN
(57)

Eqn (57) was derived for the case of weak to moderate interactions.
We have seen above that eqn (42) provides a better description for
the short-time FFMR contribution for larger values of wL. Assuming
independent Brownian and Néel contributions to the short-time
relaxation, we propose to generalise eqn (57) to

1

tMF
short

¼ 1

tB
þ e�wL

tN
(58)

E.2 Effective relaxation time

In order to describe the full time evolution, we once again
employ the simple closure approximation S2 E U2. With this
approximation, eqn (56) can be brought into the form tMF :U +
U = �b1U3, where

1

tMF
¼ 1� wL=3

teff
(59)

and teff denotes the effective relaxation time for isolated
particles, 1/teff = 1/tB + 1/tN. The coefficient b1 is given by
b1 = wLt

MF(1/tB � 2/tN)/3. Since the time evolution equation
is formally identical to the one encountered for the RBD
model, we find the same functional form for the magnetisation
relaxation,

UðtÞ ¼ e�t=t
MFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b1 1� e�2t=tMF
� �q (60)

This U(t) exhibits an exponential relaxation with tMF at long times
(t c tMF) and a short-time regime with U(t) = 1 � t/tMF

short + O(t2).
Eqn (60) implies, for wL o 3 and (wL� 1)tB o tN, that the effective
relaxation time defined in eqn (22) is given by eqn (23), where
for negative b1 the expression can be rewritten with the identity
tan�1(ix) = i tanh�1(x). For weak interactions we find from
eqn (23)

�tMF ¼ tMF 1� b1

3
þ b1

2

5
þ . . .

� �
¼ teff 1þ u1wL þ u2wL

2 þ O wL
3

� �� �
(61)

with u1 = [(2/9)tN + (5/9)tB]/(tN + tB) and u2 = (8tN
2 + 28tNtB +

47tB
2)/[135(tN + tB)2]. Therefore, to second order in wL we find

teff
�tMF

¼ 1� u1wL þ u1
2 � u2

� �
wL

2 þ O wL
3

� �

¼ 1� 5tB þ 2tN
9 tB þ tNð ÞwL �

4 2tB � tNð Þ2

405 tB þ tNð Þ2
wL

2 þ O wL
3

� � (62)

Note that equation reduces for tB - N to the FFMR model
(61), and for tN - N to the result (38) we obtained for the
RBD model.

F Dynamic magnetic susceptibility

In order to calculate the dynamic magnetic susceptibility, we
first need to find the Laplace-transform of the relaxation
function. Using the mean-field result for the coupled system
(60), or similarly (48) for the FFMR model, we find

~CðsÞ ¼
ð1
0

e�t=t
MF

e�stffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b1 1� e�2t=tMF

� �q dt

¼ tMF

1þ stMFð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b1
p 2F1

1

2
;
1þ stMF

2
;
3þ stMF

2
;

b1

1þ b1

� 	

¼ tMF

1þ stMF
1� b1

3þ stMF
þ 3b1

2

3þ stMFð Þ 5þ stMFð Þ þ O b1
3

� �� 	
(63)

with the hypergeometric function 2F1 in the 2nd line. Inserting
this expression into ~w(o) = w0[1� ioC̃(io)], we find ~w = w0 � iw00 with

w0ðoÞ ¼ w0
1þ y2

1þ b1
4y2

9þ y2
� 3b1

2 23� y2
� �

y2

9þ y2ð Þ 25þ y2ð Þ

� 	
(64)

w00ðoÞ ¼ w0y
1þ y2

1� b1
3� y2

9þ y2
þ 3b1

2 15� 9y2

9þ y2ð Þ 25þ y2ð Þ

� 	
(65)

up to second order in b1. For ease of notation, we defined the
reduced frequency y = otMF. It is interesting to note that the mean-
field model predicts deviations from the Debye model not in terms
of additional Debye modes, but in the above form, with tMF,
eqn (59) as basic time scale. The whole ~w(o) behavior is available
from the second line of eqn (63), including its low and high
frequency characteristics, but the coefficients of an expansion in
terms of o cannot be obtained in closed analytic form; they are
available numerically. From eqn (61), we verify that the low-
frequency behavior w00(o) = w0�tMFo + O(o3) is governed by the
effective relaxation time �tMF, consistent with its definition.
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