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Abstract. Estimates of peatland carbon fluxes based on remote sensing data are a useful addition to monitoring 15 
methods in these remote and precious ecosystems, but there are questions as to whether large-scale estimates are 16 
reliable given the small-scale heterogeneity of many peatlands.  Our objective was to consider the reliability of 17 
models based on Earth Observations for estimating ecosystem photosynthesis at different scales using the 18 
Forsinard Flows RSPB reserve in Northern Scotland as our study site. Three sites across the reserve were 19 
monitored during the growing season of 2017. One site is near-natural blanket bog, and the other two are at 20 
different stages of the restoration process after removal of commercial conifer forestry. At each site we measured 21 
small (flux chamber) and landscape scale (eddy covariance) CO2 fluxes, small scale spectral data using a handheld 22 
spectrometer, and obtained corresponding satellite data from MODIS. The variables influencing GPP at small 23 
scale, including microforms and dominant vegetation species, were assessed using exploratory factor analysis. A 24 
GPP model using land surface temperature and a measure of greenness from remote sensing data was tested and 25 
compared to chamber and eddy covariance CO2 fluxes; this model returned good results at all scales (Pearson’s 26 
correlations of 0.57 to 0.71 at small scale, 0.76 to 0.86 at large scale). We found that the effect of microtopography 27 
on GPP fluxes at the study sites was spatially and temporally inconsistent, although connected to water content 28 
and vegetation species. The GPP fluxes measured using EC were larger than those using chambers at all sites, and 29 
the reliability of the TG model at different scales was dependent on the measurement methods used for calibration 30 
and validation. This suggests that GPP measurements from remote sensing are robust at all scales, but that the 31 
methods used for calibration and validation will impact accuracy.  32 
 33 
Keywords: TG model, photosynthesis, NDVI, satellite, blanket bog 34 
 35 

*Corresponding author: K.lees@exeter.ac.uk 36 
 37 

1 Introduction 38 

Peatlands are important ecosystems for carbon sequestration, but many areas in the Northern 39 

Hemisphere have experienced degradation through human land use. As an organic-rich, water-40 

saturated substrate, peat stores huge amounts of carbon relative to the land area it occupies due 41 

to inhibited decomposition. In Scotland, peatlands store 56% of total soil carbon whilst 42 

occupying 24% of the land area (Chapman et al., 2009). Many peatland areas have, however, 43 

been subject to managements such as draining, grazing, burning and planting for commercial 44 
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forestry, which have reduced saturation and increased bulk density of the peat (JNCC, 2011). 45 

Restoration of peatland areas is of interest to policy makers as a carbon emissions abatement 46 

scheme (IUCN, 2016; European Commission, 2018), but needs to be based on a robust 47 

understanding of peatland ecosystems in order to effectively reverse previous damage. 48 

Practitioners need techniques to assess changes in peatland carbon fluxes at a landscape scale 49 

in order to measure the success of restoration processes and detect where to focus further 50 

efforts.  51 

Upscaling of ecosystem processes is an important research area in ecology, as landscape and 52 

regional scale estimates are needed for policy decisions and carbon accounting (Fu et al., 2014; 53 

Le Clec’h et al., 2018). Blanket bogs (peatland covering large areas and sustained by rainfall 54 

and relatively low annual temperature fluctuations (Lindsay, 2010)) in particular have small-55 

scale heterogeneity in topographic features known as hummocks and hollows, which can vary 56 

at scales of less than a metre (Belyea and Clymo, 2001). This microtopographical variation 57 

influences vegetation communities, which can induce significant variation in carbon fluxes 58 

(Dinsmore et al., 2009; Arroyo-Mora et al., 2018; Peichl et al., 2018).  59 

Conventional methods of carbon dioxide (CO2) exchange measurement include flux chambers 60 

and Eddy Covariance (EC) towers, both of which cover relatively small areas and are expensive 61 

to manage and maintain. Remote sensing has the potential to help monitor carbon fluxes in 62 

these important, remote and extensive areas that are difficult to access for conventional field-63 

based measurements as well as sensitive to trampling, yet little testing of methods has been 64 

carried out (Lees et al., 2018). The existence of satellites with very fine spatial resolution (to 65 

tens of metres in freely accessible data) means that studies can now consider variation within 66 

a landscape, but the microtopography of blanket bogs is still at a scale that is too fine to be 67 

detectable from non-commercial satellite data (Becker et al., 2008). Models using satellite data 68 

to estimate carbon fluxes are being developed to cover large areas (Lees et al., 2018) and have 69 
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recently shown successes in estimating carbon fluxes from peatland landscapes (Kross, 70 

Seaquist and Roulet, 2016; Lees, Quaife, et al., 2019), but there is still uncertainty over whether 71 

these models can adequately detect the variation from small-scale peatland heterogeneity 72 

(Zhang et al., 2007; Arroyo-Mora et al., 2018). The focus of this study is therefore to assess 73 

whether the small-scale variations in carbon fluxes due to microtopography can be detected 74 

using remote sensing data, and whether large scale estimates using these techniques are a 75 

reliable estimate of the average fluxes resulting from these mosaic landscapes.  76 

A Temperature and Greenness (TG) model is specifically considered in this study, as this has 77 

previously been shown to give good agreement with EC data over the same study area as used 78 

in this work (Lees, Quaife, et al., 2019). This model combines a measure of land surface 79 

temperature with a vegetation index, in this case the Normalised Difference Vegetation Index 80 

(NDVI), to give an estimate of Gross Primary Productivity (GPP). 81 

The aim of this work is to consider what factors affect GPP in blanket bog, and whether the 82 

results from large scale models using satellite data can give reliable estimates of photosynthesis 83 

measurements made at smaller scales. We hypothesise that the TG model will give good 84 

agreement with chamber flux data at the small scale, and with EC data at the larger scale. We 85 

also expect that the measurements and estimates at different spatial scales will show similar 86 

results in both patterns and values. The approaches are tested at the Forsinard Flows RSPB 87 

(Royal Society for the Protection of Birds) reserve, which is an ideal study location as it has a 88 

chronosequence of areas undergoing restoration from commercial forestry (Hancock et al., 89 

2018), and long-term Eddy Covariance (EC) monitoring of greenhouse gas emissions 90 

(Hambley et al., 2019) at several of the restoration sites. 91 

2 Methods 92 

2.1. Field sites 93 
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This research is based at three field sites within the Forsinard Flows RSPB reserve in Northern 94 

Scotland (approx. 58.36, -4.04 to 58.43, -3.63, WGS84). The reserve is part of the much larger 95 

blanket bog Flow Country EU Natura site. Cross Lochs is a near natural site (see Levy and 96 

Gray, (2015), where no drainage has been applied. An EC tower is located at 58.3703,-3.9644 97 

(WGS84), elevation 211 m.  98 

Talaheel and Lonielist are both sites undergoing restoration, which were previously drained 99 

and subsequently planted for commercial conifer (sitka spruce Picea sitchensis and lodgepole 100 

pine Pinus contorta) forestry in the mid to late 1980s.  101 

Talaheel was initially felled in 1998, with the trees laid into the planting furrows; some areas 102 

have since undergone partial further landscaping (which affects half the points in this study) to 103 

crush the decomposing conifer brash and to create peat dams in the furrows (winter 2015/16). 104 

This has led to raised water levels across the site (see Hancock et al., 2018). The EC tower is 105 

located at 58.4146, -3.8006 (WGS84), elevation 196 m. 106 

The conifer plantation at Lonielist was felled in winter 2003/2004. At the time of measurement, 107 

it retained the distinctive pattern of ridges on which the trees were planted, and drainage ditches 108 

infilled with the felled trees. This site had undergone no further management until the end of 109 

this project (-end of 2017). The EC tower is located at 58.3910, -3.7651 (WGS84), elevation 110 

180 m. 111 

All three sites are subject to some light grazing by wild red deer (Cervus elephantus). Talaheel 112 

is fenced as part of a larger enclosure including some forestry, although some deer are present 113 

inside the fence, whilst Lonielist and Cross Lochs are entirely open to grazing. 114 

Small scale measurement points were set up in the area within each site’s EC tower footprint. 115 

The precise distances from the tower and dominant wind directions (Northwest and Southwest) 116 

were determined from Hambley (2016) to incorporate appropriate locations within the average 117 
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flux tower footprints. At each site two perpendicular crossing transects were set up, one 118 

including five points and extending away from the tower into the dominant wind direction, and 119 

one including four points and extending into the secondary wind direction (see Figure 1). At 120 

Lonielist the main transect was 80 m and the secondary transect was 60 m, with all points 20 121 

m apart. At Talaheel the transects were 100 m and 75 m with the points 25 m apart, and at 122 

Cross Lochs the transects were 120 m and 90 m with points 30 m apart. At each point two PVC 123 

collars (24 cm in diameter) were placed: one on higher microforms (ridges in the restored sites, 124 

hummocks at Cross Lochs) and one on lower microforms (in the furrows at the restored sites, 125 

hollows at Cross Lochs); therefore, there were 16 collars at each of the three sites. The collars 126 

were 8 cm depth and were inserted to approximately 4 cm below ground. At least 24 hours 127 

were allowed between collar insertion and first measurements.  128 

 129 

Figure 1 – Location of points within the tower footprint. Two collars, one on a higher microform and one in a 130 
lower area, were placed at each point. 131 

 132 

2.2. Chamber flux measurements 133 

Monthly in situ CO2 flux measurements beginning March and ending September 2017 were 134 

taken using a LICOR-8100A (LICOR Inc., Lincoln, Nebraska, USA) portable infrared gas 135 

analyser and custom Perspex chambers of 24 cm diameter and 30 cm height. Small 9V battery-136 

operated fans were installed within the chambers to circulate the air. The two chambers, one 137 

clear and one covered with a blackout cloth, were sealed to the collars using rubber mastic 138 
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(Terostat), and consecutive measurements were taken with a brief aeration period as the 139 

chambers were exchanged. Each measurement period was five minutes, with a 20 second pre-140 

measurement stabilisation period. Chamber flux measurements were usually taken between 8 141 

am and 2 pm, although this was sometimes altered due to weather conditions. Each collar was 142 

measured once with a clear-chamber and once with a blackout chamber on each visit except 143 

when adverse weather conditions prevented a full dataset being collected. 144 

2.3. Field spectrometry 145 

Spectral measurements in the field were taken on the same visits as the chamber flux data 146 

collection using a handheld SVC HR-1024 (Spectra Vista Corporation, spectral resolution 3.5 147 

to 9.5 nm) spectroradiometer mounted on a monopod and held approximately 1m from the 148 

surface using an 8˚ FOV lens with an on-the-ground footprint within the diameter of the collars. 149 

The spectral range of the instrument is from 337 nm to 2521 nm.  Three measurements were 150 

taken of the vegetation within each collar, at three different angles to minimise structural effects 151 

(opposite the position of the sun and at 90˚ to either side). A Spectralon reference panel was 152 

also measured before each observation (within a minute) to normalise from radiance to 153 

reflectance.  154 

The Normalised Difference Vegetation Index (NDVI) is calculated from the difference 155 

between reflectance in red wavelengths of light, which plants absorb strongly, and the near-156 

infrared (NIR), which plants reflect:  157 

NDVI = (RNIR – Rred )/ (RNIR + Rred )                      (1) 158 

In this study we calculated the red and NIR bands as the average of the values in wavelengths 159 

630-680 nm and 845-885 nm respectively.  160 

2.4. Other factors measured in the field 161 
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Photosynthetically Active Radiation (PAR) was measured outside the chamber during clear 162 

chamber measurements. Soil moisture was measured using a moisture probe with 6 cm prongs 163 

(Theta probe ML2x connected to HH2 moisture meter, Delta-T Devices). At the Lonielist site, 164 

dipwells were inserted within a metre of each collar, and the water level was monitored 165 

manually at the same time as the spectral measurements were taken. A lollipop thermometer 166 

(Fisherbrand, accurate to ± 1˚C) was used to measure soil temperature outside the collar at two 167 

different depths, 5 cm and 15 cm. The thermometer was also used to measure temperature 168 

within the vegetation inside the chamber at the start and end of each flux measurement. These 169 

measurements were taken on the same dates and at the same plots as other monitoring (above).  170 

To consider the different vegetation communities of the microforms, the species within the 171 

collars were surveyed in June 2017. All species were recorded as percentage cover over the 172 

area of the collar, and overlapping canopies sometimes allowed total percentage cover to be 173 

over 100%. Six species which were found at all three sites were selected as indicators of 174 

microform vegetation communities. These are shown in Table I. 175 

Table I – species selected which were present at all three sites, which microform they prefer, and their average 176 
(and standard deviation) percentage coverage in collars at each site. 177 

 178 

Common 

name 

Latin name Hummock or 

Hollow 

Lonielist Talaheel Cross 

Lochs 

Heather Calluna vulgaris Hummock 7.5 ± 11.7 

% 

4.7 ± 9.8 

% 

9.7 ± 9.5 

% 

Common 

cotton grass 

Eriophorum 

angustifolium 

Hollow 10.9 ± 

13.6 % 

17.9 ± 15 

% 

9.4 ± 10.5 

% 

Reindeer 

lichen 

Cladonia portentosa Hummock 12.8 ± 18 

% 

17.6 ± 

26.9 % 

11.4 ± 

18.2 % 

Red 

bogmoss 

Sphagnum 

capillifolium 

Hummock 19.9 ± 

22.5 % 

16.7 ± 

30.1 % 

27.7 ± 

18.1 % 

Red-

stemmed 

feather 

moss 

Pleurozium schreberi Hollow 12.3 ± 

22.1 % 

23.6 ± 

27.9 % 

3.9 ± 7.2 

% 
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Deer grass Trichiophorum 

germanicum 

Hollow 0.6 ± 2.5 

% 

4.9 ± 8.3 

% 

21.8 ± 

21.6 % 

 179 

2.5. Eddy Covariance 180 

Eddy covariance data from the whole of 2017 was used, except for Lonielist where data 181 

collection began on the 24th of March.  182 

Net ecosystem exchange of CO2 (NEE) at Lonielist was measured using a LI-7200 enclosed 183 

CO2/H2O infrared gas analyser (LI-COR Biosciences Inc. Lincoln, NE, USA), and a Gill HS-184 

50 3-D sonic anemometer (Gill Instruments, Lymington, UK). Data was collected at 20Hz 185 

frequency and recorded every half-hour onto a 16GB USB by the LI-7550 Analyzer Interface 186 

Unit (LICOR Biosciences, Inc. NE, USA). An insulated 1-meter intake tube was used and the 187 

flow was controlled by the Flow Module (7200-101, Li-Cor Inc., Nebraska, USA) to be about 188 

15L/min.  The instruments were mounted on top of a scaffolding-tower at 2.90 m height, 189 

pointing into the predominant wind direction (W-SW, 240˚ North offset). 190 

At Talaheel, NEE was measured using the LI-7500A open path CO2/H2O gas analyser (LI-191 

COR Biosciences Inc. Lincoln, NE, USA) with a custom enclosure added to the analyser to 192 

create an enclosed system (Clement et al., 2009), and a CSAT sonic anemometer (Campbell 193 

Scientific, Logan, USA) (Hambley et al., 2019). Data was measured at 10Hz frequency and 194 

recorded every half-hour on a flash-card by the CR5000 datalogger.  Instruments were set-up 195 

at 4.3 m height on a scaffolding tower. 196 

At Cross Lochs NEE was measured by the IRGASON - an open-path infra-red gas analyser 197 

integrated into a 3D-CSAT anemometer, and controlled by the EC100 electronics control 198 

module (Campbell Scientific Ltd. UK).  Data was measured at 10Hz, processed by the onboard 199 

EasyFluxDL software (Campbell Scientific Ltd. UK) into half-hourly corrected and averaged 200 

fluxes and recorded on a flashcard by the CR3000 datalogger.  EasyFluxDL software processes 201 
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the EC data using commonly used corrections in the scientific literature (Campbell Scientific, 202 

2016). The instruments were set up at 2.3 m height on a tri-pod tower, pointing 310o NW in 203 

the predominant wind direction.  204 

The flux data collected by the EC systems at Lonielist and Talaheel were processed using the 205 

EddyPro® software (v7.0.4, Li-Cor Inc, Nebraska, USA), in Express mode, on a PC in the 206 

office.  Similar to EasyFluxDL, EddyPro® uses the most accepted and cited techniques in 207 

scientific literature to compute fully-processed half-hourly fluxes. For more details on 208 

EddyPro®, please see the EddyPro® manual (LI-COR Biosciences, 2017) and Fratini and 209 

Mauder (2014). The processed half-hourly NEE fluxes from all three sites were further 210 

processed in a custom R-software script (R Core Team, 2018) to quality check the data – 211 

making sure that each half hour had at least 80% of records, that each half hour NEE value was 212 

within 3.5 standard deviations of the running 10-hour means and that the data was within 213 

physically plausible values for each ecosystem.  Using R-code adapted from 214 

"http://footprint.kljun.net/download.php" [November 2018]), a flux footprint analysis was 215 

performed following Kljun et al. (2015) to ensure that all fluxes originated from within 80% 216 

of the area of interest.  Footprint filtered NEE fluxes were gap-filled and partitioned into GPP 217 

and Re, following the methods and code (REddyProc, R-script) of Wutzler et al. (2018).  This 218 

script also estimated the u-star threshold for the data, which was used to further filter out data 219 

during times of low turbulence, before partitioning and gap-filling. 220 

Measurements at Lonielist began in March, so 23% of the data was missing at the start of the 221 

2017 year.  26% of available (13550 hh) NEE half-hours were gap-filled at Lonielist, 52% at 222 

Talaheel (of 17520 hh), and 60% at Cross Lochs (of 17520hh).   223 

For comparison with the chamber and spectrometer data (TG1, see Section 2.7), the EC half-224 

hourly data covering the same time periods as the chamber flux measurements were used, 225 

doubled to give an hourly timestep. For comparison with the TG model using MODIS data 226 
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(TG2, see Section 2.7), the EC fluxes were averaged across 8-day periods and then multiplied 227 

to give daily values, following Lees, Quaife, et al. (2019).  228 

2.6. Satellite data 229 

The Moderate Resolution Imaging Spectroradiometer (MODIS) on satellite Terra was used in 230 

this study as an example of a medium resolution broad band satellite, which is widely used in 231 

environmental studies. Pixels containing the EC towers were downloaded for this analysis. 232 

Two MODIS products were used in this study, the 250 m MOD13Q1 NDVI product (Didan, 233 

2015), and the 1 km MOD11A2 Daytime Land Surface Temperature (LST) product (Wan, 234 

Hook and Hulley, 2015). The NDVI product is given in 16-day periods, whilst the LST product 235 

is given in 8-day periods. The MODIS data products were downloaded using the MODIS 236 

ORNL web service through Matlab code (Santhana Vannan et al., 2009). Cloud filtering was 237 

applied to remove pixels extensively affected by cloud cover, whilst letting through data which 238 

was affected by clouds but still useable (Lees, Quaife, et al., 2019). Each of the MODIS 239 

products contains information about the quality of the data in each pixel, and this was used to 240 

select which 8-day or 16-day pixels were useable. MOD13Q1 pixel reliability index was used 241 

to remove snow/ice or cloud affected values, whilst allowing marginal data. MOD11A2 quality 242 

control data was used to remove periods when data was not produced due to cloud effects or 243 

other issues. 17-50% of the data at each site were excluded following this protocol. Gap-filling 244 

was then performed across each year using the techniques described by Wang et al. (2012), 245 

before combining the data into the TG model.  246 

2.7. The TG model 247 

The Temperature and Greenness (TG) model combines a measure of temperature with a 248 

vegetation index to give an estimate of GPP (Sims et al., 2008). The model is formulated 249 
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following Moore et al. (2013), but using NDVI following the results of Lees, Quaife, et al. 250 

(2019): 251 

GPP = NDVIs × LSTs × m                 (2) 252 

NDVIs = NDVI – 0.1                          (3) 253 

LSTs = min[(LST-minLST)/(optLST-minLST), (maxLST-LST)/(maxLST-optLST)]           (4) 254 

Where NDVIs is the scaled Normalised Difference Vegetation Index and LSTs is the scaled 255 

Land Surface Temperature (see Sims et al., 2008; Lees, Quaife, et al., 2019). The scaled NDVI 256 

removes low values of NDVI which show no GPP. minLST, optLST and maxLST (given in 257 

˚C) are the minimum, optimum and maximum Land Suface Temperature calculated for a 258 

specific ecosystem. We have used 40˚C, 25˚C and -2.5˚C for maxLST, optLST and minLST 259 

respectively, following Lees, Quaife, et al.'s (2019) work on the same study sites. Furthermore, 260 

‘m’ is a site-optimisation parameter, and the GRG Nonlinear Solver in Microsoft Office Excel 261 

2013 was used to optimise this parameter at both small and large scales (see Section 4 for 262 

discussion of calibration).  263 

Three different formulations of the TG model are used in this study to assess the effect of scale 264 

versus methodological bias. These versions are: 265 

TG1 - Small-scale TG model using spectrometer data  266 

The ‘m’ parameter for the TG model using spectrometer data was optimised to the chamber 267 

data across all months and sites and was given the value 0.4397. This small-scale version of 268 

the TG model gives an estimate of GPP per hour.  269 

TG2 - Large-scale TG model using MODIS data 270 
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The ‘m’ parameter for the TG model using MODIS data was optimised to the EC data across 271 

the whole of 2017 (where EC data was available) and across all three sites. It was given the 272 

value 8.046. This large-scale version of the TG model gives an estimate of GPP per day.  273 

TG3 – Small-scale TG model using MODIS data  274 

The small-scale ‘m’ parameter was applied to the large-scale TG model to give an hourly 275 

estimate of GPP using MODIS data.  276 

2.8. Statistical analysis 277 

An Exploratory Factor Analysis (EFA) was used to simplify the large range of variables 278 

measured which could affect GPP on a small scale. EFA is a variable reduction technique 279 

designed to draw out the underlying factors affecting the measured variables. In this case the 280 

EFA was used because we expected that the variables measured were related to each other by 281 

means of underlying constructs, for example, the presence of certain vegetation species was 282 

likely to be correlated due to underlying features of their microhabitats.  283 

The variables considered included those explained in Section 2.4 (selected vegetation species, 284 

PAR, surface temperature, soil temperature at 5 cm and 15 cm, soil moisture, and microforms), 285 

and also the NDVI, which is a measure of vegetation greenness and health, and the Normalised 286 

Difference Water Index (NDWI, using NIR and Short-Wave Infrared (SWIR)) which has been 287 

shown to have a relationship with moisture conditions in peatland vegetation (Lees et al., 288 

2019). Repeated measures were accounted for by including the time of year as a variable; in 289 

order to create a linear relationship, daylight period was used as a measure of season. These 290 

variables are referred to in the results by short names given in Table II. 291 

TableII –Variables used in the EFA, and what they refer to.  292 

Short name Description  

Feather_moss The proportion of P schreberi in the collar (%) 
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Reindeer_lichen The proportion of C portentosa in the collar (%) 

S_cap The proportion of S capillifolium in the collar (%) 

Deer_grass The proportion of T germanicum in the collar (%) 

Cotton_grass The proportion of E angustifolium in the collar (%) 

Heather The proportion of C vulgaris in the collar (%) 

NDWI The calculated NDWI of the collar from the hand-held spectrometer 

NDVI The calculated NDVI of the collar from the hand-held spectrometer 

PAR The average PAR across the clear chamber flux measurement period.  

Surface_temp The temperature amongst the vegetation at the soil surface (˚C) 

Soil_temp_5cm The soil temperature at 5 cm depth (˚C) 

Soil_temp_15cm The soil temperature at 15 cm depth (˚C) 

Light_period Daylight period of the day of measurement in Scotland 

microfeature Whether the collar was on a high area (hummock/ridge) or low area 

(hollow/ditch) 

 293 

The EFA was limited to five factors after initial statistical exploration of different numbers of 294 

factors suggested that this was the best option for all three sites; we found that using five factors 295 

explained the majority of the variance seen in variables at each site (see supplementary 296 

material). The resulting factor scores were correlated with the GPP in order to assess which 297 

factors and variables were most important in determining peatland GPP at small scales, and 298 

whether these could be assessed using remote sensing.  299 

All analysis was done in base R (R Core Team, 2017). All results collected specifically for this 300 

study are available online (Lees, Clark, et al., 2019). 301 

3    Results 302 

3.1. Factors affecting GPP at small scale 303 

The six vegetation species considered in this analysis show several significant differences 304 

between hummock and hollow percentage coverage (see Figure 2). At the near-natural Cross 305 

Lochs (Figure 2C) site there is significantly more heather (C vulgaris) and S capillifolium on 306 
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the hummocks, but significantly more deer grass (T germanicum) in the hollows. The Lonielist 307 

site (Figure 2A) also has significantly more heather on the hummocks, but significantly more 308 

red-stemmed feather moss (P schreberi) in the hollows. There were no significant differences 309 

between hummock and hollow vegetation at the Talaheel site in 2017 (Figure 2B).  310 

There are also differences between the three sites in terms of vegetation cover. Cross Lochs is 311 

richer in deer grass than the other two sites, whilst Talaheel has higher cover of common cotton 312 

grass (E angustifolium). The intact site Cross Lochs also has a greater variety of species, with 313 

some present that were not included in our collars at the other two sites such as bog myrtle 314 

(Myrica gale), bog asphodel (Narthecium ossifragum), and sundew (Drosera rotundifolia). 315 
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 316 

317 

A - Lonielist 

B - Talaheel 
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 318 

Figure 2 –Species differences between hummocks and hollows at the three sites (A: Lonielist, B: Talaheel, C: 319 
Cross Lochs). Stars show significant difference between hummock and hollow (n=8, p<0.05).  320 

 321 

These selected vegetation species were also used in the EFA, where they are linked to 322 

underlying factors which also affect microtopography (all sites), the NDWI (Talaheel and 323 

Cross Lochs), and soil moisture (Cross Lochs). These factors also correlate with GPP.   324 

The EFA results are shown in Figure 3, along with the factor Pearson’s correlations with GPP. 325 

At Lonielist (Figure 3A) the second factor has the highest correlation with GPP (0.68) and is 326 

linked with the NDVI and the three temperature variables. The third and fourth factors also 327 

show some correlation with GPP (0.21, 0.28) and are connected with the microforms variable 328 

and the vegetation species variables.  329 

At Talaheel (Figure 3B) the first and third factors show correlations with GPP (0.45, 0.25). The 330 

first factor is connected to the NDVI, NDWI, and temperature variables, whilst the third is 331 

linked with the NDWI and NDVI, and percentage cover of S. capillifolium, reindeer lichen, 332 

and feather moss.  333 

C - Cross Lochs 
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At Cross Lochs the first factor is correlated with GPP (0.49) and links with light period, 334 

temperature, NDWI and PAR. The second factor also correlates with GPP (-0.22) and is 335 

connected to the microform variable, several plant species, soil moisture and the NDWI. The 336 

negative correlation here suggests that the collars classed as hollows have a higher GPP than 337 

those classed as hummocks; this is opposite of the result at Lonielist. The third factor correlates 338 

positively with GPP (0.38) and is connected to the two soil temperature variables, NDWI and 339 

NDVI.  340 

 341 

A - Lonielist 
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 342 

 343 

Figure 3 – Lonielist, Talaheel and Cross Lochs factors. Each of the five factors is indicated by a different 344 
pattern fill. The variables are given on the y axis, and the factors which underly and are connected with each 345 
variable have a loading strength shown by the stacked bar lengths. Legends show correlation of the scores for 346 
each factor with GPP values.  For example, the first factor at Cross Lochs is shown by the white bars, and has 347 

B - Talaheel 

C - Cross Lochs 
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high loading strengths associated with PAR, the three temperature variables, and the light period. It also has a 348 
correlation of 0.49 with GPP. See supplementary material for more information. 349 

 350 

3.2. Comparison of modelled and measured GPP at small scale  351 

Figure 4 shows the TG model using the spectrometer NDVI and the surface temperature 352 

applied to each of the sites across the measurement period, with the ‘m’ parameter calibrated 353 

to the chamber data (TG1). The agreement between the model and the chamber data is very 354 

good temporally, with the boxplots well within error bars across the year. The chamber fluxes 355 

have larger ranges than the TG model results at each site throughout the growing season. The 356 

TG model tends to underestimate the highest chamber GPP values, as can be seen from the 357 

scatter plots in Figure 4.  358 
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  359 

Figure 4 - Boxplots and scatterplots (by month) comparing the chamber-measured GPP and GPP calculated 360 
from the TG model using hand-held spectrometer data and the surface temperature measurements for each site 361 

(TG1). There is no TG model result in June at Lonielist due to the poor weather causing lack of spectral 362 
measurement. 1:1 lines are plotted on the scatter graphs. 363 

 364 

3.3. Comparison of small-scale modelled and measured GPP with EC and satellite data  365 

A - Lonielist 
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C - Cross Lochs 
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Figure 5 shows the average GPP across the experiment period from the chamber data and EC 366 

data, and modelled from the spectrometer (TG1) and MODIS (TG2 and TG3) data. The 367 

Pearson’s correlations between the chamber fluxes and the spectrometer TG1 fluxes across all 368 

months are 0.57 (p<0.01, n=98) at Talaheel, 0.71 (p<0.01, n=89) at Lonielist, and 0.70 (p<0.01,  369 

n=101) at Cross Lochs. TG2 using MODIS data is calibrated on a daily rather than hourly time   370 

frame, and the Pearson’s correlations between the EC data and the MODIS TG2 model (DoY 371 

70 to 265) are 0.76 (p<0.01, n=23) at Lonielist, 0.76 (p<0.01, n=24) at Cross Lochs, and 0.86 372 

(p<0.01, n=24) at Talaheel.  373 

The chamber GPP is lower than the time-period-matched EC GPP at all three sites (54.9% 374 

lower at Lonielist, 72% at Talaheel, 62% at CrossLochs). The TG3 model using MODIS data 375 

and the ‘m’ parameter calibrated from small-scale data matches better with hourly chamber 376 

fluxes than EC fluxes. 377 

The difference between chamber GPP from hummocks and hollows is greatest at Lonielist and 378 

shows higher GPP values from hummocks. The difference is less pronounced at Cross Lochs, 379 

but shows the opposite effect, with higher GPP from hollows. Talaheel shows less clear 380 

differences between the two types of microform. At all three sites the differences in 381 

microtopography shown by the spectrometer TG results are less pronounced than those from 382 

the chambers. As the differences between GPP from hummocks and hollows are small and 383 

inconsistent, area-weighting was not used in upscaling estimates for this study.  384 
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A – Lonielist  

B - Talaheel 
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 388 

 389 

Figure 5 – The different estimates of GPP for each site across the growing season. The results represented by 390 
coloured symbols and the left-hand axes show the measurements and model results that are calibrated to an 391 

hourly timestep and only calculated during manual field measurement periods. These include the flux chamber 392 
data from hummocks and hollows, the TG1 model results for hummocks and hollows, the EC data averaged 393 

across the half-hourly periods covering the chamber flux measurement period, and the TG3 model. The results 394 
represented by the black lines and the right-hand axes show the measurements and model results that are 395 

calibrated to a daily timestep and are continuous across the growing season of 2017 due to automated measuring 396 
systems. These include the EC data averaged over 8-day periods, and the TG2 model.  397 

 398 

399 

C – Cross Lochs 
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4   Discussion   400 

The EFA correlations with GPP showed that the NDVI and temperature were dominant in the 401 

factors affecting GPP at all sites. This endorses the use of the TG model, which makes use of both 402 

these variables. All three temperature variables, at surface, 5 cm and 15 cm, were included as 403 

variables, but they are strongly related and only one is necessary in the model. The surface 404 

temperature provides much more short-term variation compared to soil temperature, and has a 405 

relationship with the incoming radiation available for photosynthesis, as shown by the EFA. The 406 

variation which surface temperature adds to the model is therefore more than seasonal change, and 407 

can provide information on day-to-day changes in GPP due to weather and radiation, and even 408 

changes throughout the day. 409 

Lonielist GPP results at small scale showed the greatest difference between hummocks and 410 

hollows, particularly in July when we had clear skies and high temperatures during the 411 

measurement period. This difference may be more evident at Lonielist than the other sites due to 412 

the relic furrow and ridge system creating more extreme microtopographical features than would 413 

otherwise be found in a blanket bog. Wu et al. (2011) found that there was no difference in 414 

simulated GPP using the McGill Wetland Model between hummocks and hollows at the Mer Bleue 415 

bog in Canada, consistent with our results from Talaheel, but did find a significant difference in 416 

respiration with hummock ecosystem respiration higher than hollows. They showed that shrubs 417 

were the dominant influence on hummock carbon cycling, whilst mosses were the dominant factor 418 

in hollows. In contrast, Waddington and Roulet ( 1996) used flux chamber measurements to show 419 

that hummocks at their study site in a Swedish peatland had greater CO2 uptake than hollows 420 

during the growing season, similar to our results at Lonielist. It is somewhat surprising that Cross 421 

Lochs, the near-natural site, showed a small but opposite difference in fluxes between microforms. 422 
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Lindsay et al. ( 1988) found that some areas of the Flow Country were dominated by pool and 423 

hollow type landforms due to the wet climate, and it may be the case that our classifications of 424 

landforms at Cross Lochs were based on the need to distinguish areas of different heights within 425 

close range, and did not always satisfy the descriptions of true hummocks and hollows. In general, 426 

the differences in GPP fluxes between microforms did not seem to be large or temporally 427 

consistent during our study period. The period during which measurements were taken was 428 

generally quite wet, with June, July and August all having higher rainfall totals than the 1981-2010 429 

average (Met Office, 2012, 2018). A stronger difference between fluxes from microforms might 430 

have been seen under dryer conditions. This is corroborated by previous studies that have found 431 

significant differences between carbon fluxes from different microforms linked to soil moisture 432 

(Heikkinen et al., 2002; Laine et al., 2006). Despite small differences in GPP among the chamber 433 

locations, we did observe significant differences in vegetation between the microtopographical 434 

features at Lonielist and Cross Lochs, and also in general between the sites. The significant 435 

differences in selected vegetation species are consistent with their preferred microhabitats. Both 436 

Lonielist and Cross Lochs show a greater proportion of heather (C vulgaris) on the higher areas of 437 

ground. Cross Lochs has higher percentages of S capillifolium, a Sphagnum species well known 438 

to be hummock forming (Laine, 2009) on the higher areas, and more deer grass (T germanicum) 439 

in the hollows, whilst Lonielist has significantly more red-stemmed feather moss (P Schreberi) in 440 

the furrows. It is worth noting that there is ecological succession in play as well as 441 

microtopographical features when we consider these three sites, as shown in Hancock et al. (2018). 442 

The presence of deer grass (T germanicum) seems to be associated more with the near-natural site 443 

at Cross Lochs, whilst Talaheel has higher relative proportions of common cotton grass (E 444 

angustifolium) which has been found to colonise disturbed areas of ground (Phillips, 1954).  445 
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Malhotra et al. (2016) similarly found that there was there was a clear relationship between 446 

microtopography and species distribution at the Mer Bleue bog in Canada, and that fine spatial 447 

structures explained up to 40% of species distribution.  448 

The selected vegetation species showed some influence on GPP, although this varied between the 449 

sites. The two wetter sites, Cross Lochs and Talaheel, showed greater connections between GPP 450 

and measures of moisture, both NDWI and soil moisture measured using the probe. Both Lonielist 451 

and Cross Lochs showed some correlations between factors linked with microtopography and 452 

GPP, although the relationship was stronger at Lonielist. Malhotra et al. ( 2016) found that water 453 

table depth was a significant factor in maintaining distinct vegetation communities on 454 

microtopographical features. Their work was done on the Mer Bleue bog in Canada, which can be 455 

described as near-natural, and therefore is most similar to our site at Cross Lochs which also had 456 

links between microtopography and soil moisture, as shown by the EFA. 457 

The underestimation of the model at high GPP values evident in Figure 4 is likely due to the 458 

temperature component of the TG model. Although the temperature component functions partly 459 

as a proxy for PAR (as shown by the EFA), the relationship between these two factors is not always 460 

linear, and this relationship may be even less strong in maritime temperate climates, where warm 461 

but cloudy days occur in summer, and cold but clear days in winter. It is worth noting that the 462 

presence of vegetation and water bodies can impact the LST (Solangi, Siyal and Siyal, 2019). The 463 

values used in the temperature scaling equation may also be affecting the relationship between the 464 

model and actual GPP values. These values were estimated visually by plotting EC values against 465 

MODIS LST (see Lees, Quaife, et al., 2019), and may not be completely accurate, particularly at 466 

the higher end of the temperature range where we had very little data available. 467 
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There was a clear difference between the GPP values from the chambers and the EC towers, with 468 

the EC data giving higher results at all three sites (Figure 5). There are many possible reasons for 469 

this, including errors from the chamber methodology. The collar insertion method, which involved 470 

cutting into the peat and root mass around the collar base, could have damaged the vegetation and 471 

so reduced chamber fluxes. Heinemeyer et al. (2011) found that collar insertion prior to using a 472 

flux chamber could reduce respiration at peatland sites by up to 30-50%, even several months after 473 

insertion. The chamber measurements were also subject to a reduction in PAR, which would have 474 

resulted in a small reduction measured relative to actual GPP. Background concentrations of CO2 475 

within the chambers were monitored to ensure they were close to atmospheric levels at the start of 476 

each measurement, and as the measurements were only five minutes long CO2 build-up is unlikely 477 

to have affected the results. Some of the chamber data showed noise, suggesting that there were 478 

minor leaks where the chamber was not perfectly sealed. The data from these measurements was 479 

still useable but may show slightly lower results than the actual flux. It is possible that there were 480 

some changes in chamber volume throughout the experimental period due to collar settling and 481 

vegetation growth which were not accounted for in the measurements and could have led to slight 482 

under or overestimation (Morton and Heinemeyer, 2018). 483 

Factors affecting the EC fluxes may also be responsible for the differences seen. Cross Lochs, 484 

which shows a large difference between EC and chamber GPP results, has an open path sensor 485 

compared to the other two sites which have closed paths, and this may have led to inaccuracies in 486 

the flux measurements as measurements were only taken during (heavy) rain-free periods and so 487 

the gap filling has a degree of bias. (Helbig et al., 2016). The ecosystem respiration results are 488 

similar from the chambers and the EC tower (not shown), suggesting that the difference is not 489 

caused by the partitioning equations used in EC data processing.  490 
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Laine et al. (2006) compared NEE from EC and chamber measurements at a blanket bog site in 491 

Glencar, Ireland, which is climatically and structurally similar to the Forsinard Flows reserve, and 492 

found a correlation of 0.82 between EC and interpolated chamber NEE, even when footprint size 493 

and direction variation was not accounted for. They did note, however, that agreement decreased 494 

towards the extremes of the temperature range, agreeing with the current work where differences 495 

were particularly noticeable in the hotter measurement period in July. Griffis, Rouse and 496 

Waddington (2000) also compared chamber and EC fluxes, at a subarctic fen in Manitoba. They 497 

found that chamber measurements of GPP were 32% lower than EC GPP results, similar to the 498 

current work. They also showed that hummocks dominated the CO2 fluxes, which corresponds 499 

with the Lonielist site showing greater agreement between hummock and EC GPP than between 500 

hollow and EC GPP. Similarly, Heikkinen et al. (2002) found that carbon fluxes from chamber 501 

measurements were somewhat lower than those from EC at a subarctic fen in Northern Finland.  502 

Application of the TG model with MODIS data and small-scale ‘m’ parameter (TG3) matched 503 

chamber data better than hourly EC data, suggesting that the difference between chamber and EC 504 

GPP is not only a result of spatial scale. The TG model is clearly very dependent on calibration to 505 

measured data, and therefore the uncertainty of measurements used in the model calibration will 506 

form a large part of the uncertainty estimates of the TG model.  507 

Generally, the agreement between the TG model and the measured fluxes is shown to be good at 508 

small scale (TG1), with correlations of 0.57 to 0.71. The Lonielist and Cross Lochs sites show 509 

slightly better agreement than the Talaheel site. Talaheel was also the only site to show almost no 510 

connection between microtopography and GPP. This may be due to the recent landscaping of the 511 

site to put peat dams in the remaining planting furrows, which has created large flat areas and deep 512 

pools, rather than the more natural small hummocks and hollows. It may be the case that the 513 
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vegetation species have not had time since the work done in 2015/16 to develop their ecological 514 

niches. It is also clear that the water levels at Talaheel have been increased by the recent plough 515 

furrow blocking, and areas which we would consider hollows are often flooded and so unsuitable 516 

for taking flux or spectral measurements. This may also be affecting the agreement with the model, 517 

as the Talaheel site might be responding to temperature and seasonal changes differently to sites 518 

which have had less recent disturbance.  519 

The GPP calculated with the TG model that used data from MODIS (TG2) was strongly correlated 520 

with the GPP derived from EC data (correlations of 0.76 to 0.86). This was in agreement with the 521 

work done on developing the model in Lees, Quaife, et al. (2019). The ‘m’ parameter calibrated 522 

for the TG model against EC data in this study, which uses data from 2017, is higher than that 523 

calculated in Lees, Quaife, et al. (2019) which used 2015/16 data. This may be because the growing 524 

season of 2017 was particularly wet; this supports the development of the annual Temperature, 525 

Greenness and Wetness (TGWa) model (Lees, Quaife, et al., 2019), which associates high summer 526 

wetness with increased annual GPP (this model was not used in this study as it is designed to give 527 

a single annual estimate of GPP, and is therefore not applicable on timescales of less than a year). 528 

The entirety of the available data were used for optimising the parameterisation in this model, but 529 

this does not cause a type 1 error for two reasons: firstly, the ‘m’ parameter does not affect 530 

correlation, but only estimate size. Secondly, the error size is only considered in relation to the 531 

difference between chamber and EC calibration, and therefore we are not testing the accuracy of 532 

the model, but whether the calibration method affects the results. 533 

Several previous studies suggest that vegetation indices using finer resolution remote sensing data 534 

match EC measurements of GPP better than coarser resolution data across a variety of ecosystems 535 

(Fu et al., 2014; Knox et al., 2017; Gonzalez del Castillo et al., 2018). Becker et al. (2008) found 536 
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that hummocks in an oligotrophic pine fen had higher GPP than lawns, and that the percentage 537 

cover of hummocks was overestimated when lower resolution imagery was used, resulting in an 538 

overestimate of CO2 uptake. Gatis et al. (2017), however, showed that chamber measurements of 539 

GPP had strong correlations with vegetation indices calculated from both small-scale camera data 540 

and large-scale MODIS data in an upland peatland environment. Similarly, we have found that 541 

both small-scale spectrometer data and large-scale MODIS data can be used to give good estimates 542 

of GPP in peatland landscapes, but the results are dependent on the calibration. The results of the 543 

large-scale TG model using MODIS data gave an average estimate of GPP for the site based on 544 

NDVI and LST, and which is not dependent on microfeature classifications. Finer resolution 545 

satellites such as Sentinel-2 were not used in this study due to their lack of temperature data 546 

meaning that they could not be used to calculate the TG model, but this may become possible in 547 

future. Future work should also consider aerial remote sensing as an intermediate scale between 548 

field spectrometry and satellite data; data from sensors mounted on both aeroplanes (Carless et al., 549 

2019; Räsänen et al., 2019) and Unmanned Aerial Vehicles (UAVs) (Beyer et al., 2019; 550 

Scholefield et al., 2019) have begun to be used to assess peatland condition and vegetation 551 

communities, and have the potential to be included in methods to estimate carbon fluxes. 552 

5   Conclusions 553 

In this study we have used a Temperature and Greenness (TG) model to estimate GPP from 554 

remotely sensed data at small-scale and large-scale, and compared this to chamber and EC 555 

measures of GPP.  556 

The TG model successfully incorporates the factors which have the greatest relationship with GPP 557 

at our study sites as shown by the exploratory factor analysis, and so produces an estimate of GPP 558 
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that correlates with measured GPP at both small and large scales. Our results suggest that the 559 

differences in GPP caused by peatland small-scale heterogeneity are temporally and spatially 560 

inconsistent at our study sites, and that the TG model provides an average estimate. Future 561 

iterations of the TG model should consider investigating the link between PAR and temperature 562 

in more detail, and its effects on the model output, as it is hypothesised that this aspect of the model 563 

may cause the underestimation of higher GPP values.  564 

The EC results for GPP are larger than those from the chambers, possibly due to several reasons 565 

including variation within the tower footprint, and the challenges of collar insertion and chamber 566 

methodology. The TG model, however, shows good agreement with the chamber data at small-567 

scale and the EC data at large scale, suggesting that the model design is robust at all scales, 568 

although dependent on the calibration data used. The authors can therefore recommend the use of 569 

the TG model as a powerful tool for estimating peatland GPP across large areas, but reliable local 570 

ground measurements should be used for calibration in order to give accurate values.  571 
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