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A sense of agency (SoA) is the experience of subjective awareness regarding the control

of one’s actions. Humans have a natural tendency to generate prediction models of the

environment and adapt their models according to changes in the environment. The SoA

is associated with the degree of the adaptation of the prediction models, e.g., insufficient

adaptation causes low predictability and lowers the SoA over the environment. Thus,

identifying the mechanisms behind the adaptation process of a prediction model related

to the SoA is essential for understanding the generative process of the SoA. In the first half

of the current study, we constructed a mathematical model in which the SoA represents

a likelihood value for a given observation (sensory feedback) in a prediction model of the

environment and in which the prediction model is updated according to the likelihood

value. From our mathematical model, we theoretically derived a testable hypothesis that

the prediction model is updated according to a Bayesian rule or a stochastic gradient.

In the second half of our study, we focused on the experimental examination of this

hypothesis. In our experiment, human subjects were repeatedly asked to observe a

moving square on a computer screen and press a button after a beep sound. The button

press resulted in an abrupt jump of the moving square on the screen. Experiencing the

various stochastic time intervals between the action execution (button-press) and the

consequent event (square jumping) caused gradual changes in the subjects’ degree of

their SoA. By comparing the above theoretical hypothesis with the experimental results,

we concluded that the update (adaptation) rule of the prediction model based on the

SoA is better described by a Bayesian update than by a stochastic gradient descent.

Keywords: sense of agency, statistical learning, online learning, Bayes’ rule, stochastic gradient descent

1. INTRODUCTION

The sense of agency(SoA) is the subjective awareness about “the experience of controlling one’s
own motor acts and, through them, the course of external events” (Haggard, 2017). The SoA is
regarded as a fundamental role in maintaining continuous self-consciousness (Gallagher, 2000).
Normally, we are unaware of the existence of the SoA because it exists behind our daily actions. An
explicit awareness of the decreased SoA arises as a result of a striking conflict of expectations, i.e., a
mismatch between the intended and the actual result of an action (Haggard, 2017).
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The SoA has been studied in various disciplines, ranging
from psychiatry (Maeda et al., 2012, 2013) to human computer
interaction (HCI) domains and brain computer interface
(BCI) domains (Coyle et al., 2012; Minohara et al., 2016;
Cornelio Martinez et al., 2017). Measuring and understanding
the SoA plays an important role in these domains. Disruptions
in the SoA in movement disorders have major implications for
quality of life (Haggard, 2017). The SoA can be the indicator
for identifying the user’s experience for an appropriate sense of
operation in HCI and BCI domains, as the SoA is associated with
the awareness of the response of one’s own action.

Previous researchers have assumed that there should exist at
least two different generative processes of the SoA: prospective
and retrospective processes (Wolpe and Rowe, 2014; Haggard,
2017). The comparator model, which is our focus in this research,
corresponds to the former, while the apparent mental causation
model corresponds to the latter (Wegner and Wheatley, 1999).
Figure 1 shows a schematic picture of the comparator model.
The comparator model was originally proposed to describe the
process of executing motor controls (Figure 1) (Wolpert et al.,
1995; Blakemore et al., 2001). For this process, motor command
causes actual bodily dynamics and changes in the external
environment. In Figure 1, these changes are represented by the
environment block. On the other hand, it is assumed that the
motor command also drives the forward model which simulates
the dynamics of the body. The actual sensory feedback caused by
environmental change and the predicted outcomes are compared
following action execution. In the comparator model, the SoA
is assumed to be generated only if the sensory feedback and the
predicted outcomesmatch. Anymismatch, i.e., a prediction error,
is believed to reduce the SoA (Synofzik et al., 2008; Haggard and
Chambon, 2012; Haggard, 2017). Some research assumes that
the forward model would be updated to minimize the prediction
error (Synofzik et al., 2008; Haggard, 2017). The upward left
arrow in Figure 1 represents this update.

Various types of mathematical modeling approaches have
been applied in the cognitive science field (Sun, 2008). One of
the advantages of the mathematical modeling approach is that
it enables the study of implications of the attractive hypotheses

FIGURE 1 | Comparator model (Wolpe and Rowe, 2014). The motor

command is fed into the forward model and environment simultaneously. The

upper left arrow represents the update of the forward model based on the

prediction error to minimize the prediction error (Synofzik et al., 2008).

with deep insight (McClelland, 2009).While this approach would
definitely help the SoA studies, to the best of our knowledge,
very few studies have proposed amathematical formulation of the
generative process of the SoA except for the work by Moore and
Fletcher (2012) and Legaspi and Toyoizumi (2019). Legaspi and
Toyoizumi (2019) proposed a concrete and analyzable formula
for the “Bayesian cue integration model” proposed by Moore
and Fletcher (2012), which had been described only in the
abstract formula. In their model, cue integration corresponds
to multi-modal sensory integration, e.g., audiovisual integration.
As noted by the authors, their hypothesis is that Bayesian cue
integration is the “general principle” behind the SoA generation.
One of the important contributions by Legaspi and Toyoizumi
(2019) was a proposal of a quantitative definition for the SoA.
According to our understanding of their work, at least three
important issues exist regarding their model to be discussed.

1. No evidence was shown for their assumption that humans
solve the cue integration problem by Bayesian inference.
Other well-known solution methods exist for the cue
integration problem such as stochastic gradient descent
(Morency and Baltrušaitis, 2017).

2. The comparator model does not consider multimodality as
the essential assumption. The comparator model tells us that
we can sense the SoA even from a single-modal sensory
signal alone.

3. They proposed the maximum value of the posterior
distribution as a possible candidate for the SoA. This proposal
does not fit the comparator model, as the candidate value does
not correspond to coincidence between the prediction and the
actual outcome.

Many researchers have assumed that Bayesian inference is
the fundamental and leading principle algorithm in cognitive
brain function (Wolpert and Ghahramani, 2000; Körding, 2008;
Sanborn et al., 2010; Pouget et al., 2013; Penny, 2015; Legaspi and
Toyoizumi, 2019), known as a “Bayesian coding hypothesis” or a
“Bayesian brain hypothesis” (Knill and Pouget, 2004). Gershman
(2019) summarizes the hypothesis as follows: (1) the brain is
equipped with an internal model, i.e., the likelihood function
and prior distribution, and (2) Bayes’ conditionalization or its
approximations work to update the prior distribution. As we
show below, Bayesian inference is only one of many solution
methods for some inference problems.

One of the important criticisms for the Bayesian hypothesis
in cognitive science is that the researchers blindly accept the
hypothesis as the standard principle, i.e., the superiority of
the Bayesian inference is rarely verified with respect to other
inference rules (Bowers and Davis, 2012; Colombo et al.,
2018)Pearl (1988, Chapter 2) (Halpern, 2017, Chapter 3). In
particular, there are various proofs that Bayesian inference can be
derived from general inference rules, i.e., that Bayesian inference
is simply a special case of these rules. While the product rule
of the probability is definitely the well-known mathematical
foundation of Bayes’ theorem (Griffiths et al., 2008), there are at
least three theoretical foundations known as Kullback’s principle
of minimum cross-entropy (MINXENT), i.e., the principle of
minimum discrimination information (Shore and Johnson, 1980;
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Shu-Cherng and Tsao, 2001; Rao, 2011; Halpern, 2017, Chapter
3), the information conservation principle (Zellner, 1988, 2002;
Soofi, 2000), and the mirror descent algorithm (Warmuth,
2006; Dai et al., 2016). As shown in Fang et al. (1997), the
Bayesian inference can be derived from the MINXENT. The
other important inference rules such as the maximum entropy
principle (MAXENT) can be derived from the MINXENT (Shu-
Cherng and Tsao, 2001). Zellner (2002) introduced a concept of
the information processing rule, i.e., the rule that transfers prior
information and current information into posterior information.
Zellner showed that Bayes’ theorem can be viewed as the optimal
information processing rule under some specific constraint
conditions (the information conservation principle). Despite the
fact that it is possible to create numerous mathematical models
that can potentially explain certain known phenomena, Bayesian
inference was not explored in comparison with other candidates.
Thus, in this study, we made a comparison of the Bayesian
inference with the stochastic gradient descent.

In the first half of this paper, we describe a systematic
derivation for the proposed mathematical model of the SoA
on the basis of the comparator model , which is related to
the prospective generative process of the SoA. We propose a
perspective that the SoA is equal to the likelihood value for
a given observation. Then, by focusing on the optimization
algorithm to maximize the likelihood function, we introduce
a perspective that stochastic gradient descent (SGD) (Bishop,
2006; Morency and Baltrušaitis, 2017, Chapter 5.2.4) is the
alternative algorithm to the Bayes rule. This is because both
algorithms are equally derived from themirror descent algorithm
(Warmuth, 2006; Dai et al., 2016). The difference between the
two algorithms exists only in the constraint to the mirror descent
algorithm. Bayes’ rule uses the Kullback-Leibler divergence
(KL divergence), while the SDG uses the Euclid distance as
a constraint to the mirror descent algorithm. The stochastic
gradient descent method can also be derived from the mirror
descent (Bubeck, 2017, Chapter 6.1). If we adopt the Euclid
distance as a constraint to themirror descent algorithm, it follows
the SGD. As both the KL divergence and the Euclid distance are
essential components in statistical learning, we propose that it is
reasonable to compare the SGD with the Bayes’ rule. One of the
most important ideas in this paper is that these two algorithms
predict different behaviors of learners in an online learning
problem setting. By focusing on the difference in the observed
behavior, we can confirm which algorithm is more suitable for
the explanation of the experimental data. In this paper, we do
not provide the details of the mirror descent algorithm but refer
to (Bubeck, 2017, Chapter 6.1) and (Warmuth, 2006) for further
information on this subject.

In the second half of this paper, we validate whether the
learning process of human subjects is based on the Bayes’ rule
or the stochastic gradient descent by performing participant
experiments. The experimental task assigned to the subjects was
a sense of agency task (Keio method) in which the subjects were
asked to report the perception of the SoA during the repeated
sequence of intentional action and the observation of resulting
target motion (Maeda et al., 2012, 2013). For each trial in the
sense of agency task, the presence or absence of the SoA was

reported in response to a question. Our objective in performing
the experiments was to measure the degree of the SoA that was
gradually changed during the task and to determine whether
this was caused by the Bayesian inference or the SGD algorithm.
Although it had been reported by previous studies that the SoA
adapts over several repeated experiences (Leotti et al., 2015),
there are only a few studies that clarify the mechanism behind
this adaptation (Legaspi and Toyoizumi, 2019; Plinio et al., 2020).
We propose an indicator that can be used to test the hypothesis
obtained from the proposedmathematical model, and we analyze
the gradual changes of the perception of the SoA during the task.

This paper consists of three topics: First, we propose a
novel mathematical model for the generative process of the
SoA based on the comparator model. Second, we derive a
scientifically testable hypothesis from the proposedmodel. Third,
we verify our hypothesis of the generative process of the SoA by
participant experiments.

The following is an explanation of the terms used in this
paper. The term “statistical learning” is a technical term in
cognitive science referring to the ability to extract general rules
from a series of observations over time (Santolin and Saffran,
2018), carrying out the implications of some automatic learning
processes (Schapiro and Turk-Browne, 2015). The term “forward
model” is replaced by the term “predictive distribution” (Wolpert
and Ghahramani, 2000) or “statistical model” conditioned by
one’s own action. As explained in Nguyen-Tuong and Peters
(2011, section 2.1.1), the term “forward model” often means
a deterministic prediction model. The terms "statistical model"
and “predictive distribution” are used to emphasize the aspect
of probabilistic models. The differences between these terms are
described in the next section.

2. MATHEMATICAL MODELS AND
HYPOTHESIS

2.1. The Sense of Agency and the Learning
Process
2.1.1. Likelihood Value as the Sense of Agency
In the following section, we explain our perspective regarding
the mathematical formulation. We consider the situation where
a human subject selects a specific action ak ∈ A and then
observes some realized i.i.d.-values Xk ∈ X . The parameter k
indicates the number of trials (k = 1, . . . ,K). The value Xk

corresponds to the actual sensory outcome at the k-th trial. We
assume that the human subject possesses the probability density
function p(x|θ , a) to predict the sensory outcomes in the future,
which is also called the statistical model. The statistical model is
parameterized by the parameter θ ∈ R

n.
We focus on two major representations of the parameter:

the deterministic manner θ = θk and the probabilistic
manner pk(θ). The subject predicts the results of the action
using the predictive distribution pk(x|a). The distribution
with deterministic parameter representation is defined as
Equation (1):

pk(x|a) := p(x|a, θk), (1)
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and that with probabilistic parameter representation is
Equation (2):

pk(x|a) :=

∫

p(x|a, θ)pk(θ)dθ . (2)

The SoA is based on the degree of coincidence between the
actual sensory outcome and its prediction. Thus, we propose the
perspective of the SoA being the likelihood value for a given
observation. The likelihood value at the k step is

Lk := pk(x = Xk|a = ak). (3)

Note that Lk is the scalar-valued stochastic variable because
of the stochastically generated observations Xk. The likelihood
value Lk indicates how likely the observed data occur from the
viewpoint of the human subject’s current predictive distribution
for a given action. This means that the likelihood reflects the
degree of the discrepancy between the actual observation and the
prediction: a higher likelihood represents a lower discrepancy.
The comparator model hypothesizes that the SoA is generated
based on the discrepancies between the prediction and actual
outcomes (Figure 1). Thus, we consider the likelihood value as
the SoA.

2.1.2. Online Learning Algorithms: Bayes’ Rule and

Stochastic Gradient Descent
Data become available in sequential order in real life. Online
learning algorithms are the class of algorithms used to update the
predictive distribution every time new sensory data are observed
(Hazan, 2016). The predictive distribution is updated by the
improvement of θk or pk(θ) toward a more precise one in an
online manner. As in the standard problem setting, in this study
we assume that the distribution is updated to minimize the
negative log-likelihood function L(θ):

Lk(θ) = − log p(Xk|θ , ak). (4)

Note that Lk in Equation (3) and Lk(θ) in Equation (4) are
different objects. Lk(θ) is a function of θ .

This section is structured as follows. First, we will introduce
a brief review on a derivation of the Bayes’ rule (Equations 5–9).
Next, we will introduce the stochastic gradient descent algorithm
(Equations 10–11).

We will begin by introducing the derivation that states that
the Bayes’ rule is an algorithm for the minimization of problems.
The fact that the Bayes’ rule can be derived as a minimization
algorithm is useful to understand that this rule is only one of the
options for an optimization algorithm. There are two prominent
representations of θ that can be used to minimize (Equation 4).
One is to search for the optimal θ directly. The other is to search
the optimal probability density function p(θ) which minimizes
the expected loss

∫

p(θ)Lk(θ)dθ . The former corresponds to the
stochastic gradient descent and the latter corresponds to the
Bayes’ rule. Equation (5) belongs to the latter, representing an
iterative algorithm for the expected loss minimization problem
(Beck and Teboulle, 2003):

pk+1(θ) = argmin
p∈P

{

∫

p(θ)Lk(θ)dθ + βkKL[p(θ)|pk(θ)]},(5)

where βk > 0. P is the set of probability density functions.
KL[p(θ)|pk(θ)] is called the KL divergence, which is a measure
of the similarity of two probability distributions. The posterior
distribution pk+1(θ) becomes the balanced solution between
the prior pk(θ) and the most optimal solution because the
KL divergence works as a penalty function. It is notable that
Equation (5) is equivalent to Equation (6), which is also known as
the normalized exponentiated gradient algorithm, multiplicative
weight algorithm, entropic mirror descent algorithm, and so on
(Beck and Teboulle, 2003; Shalev-Shwartz, 2011).

pk+1(θ) =
1

Z
exp

(

−β−1
k

Lk(θ)
)

pk(θ), (6)

where Z is the normalization factor Z =
∫

exp
(

−β−1
k

Lk(θ)
)

pk(θ)dθ . The equivalence is shown by solving

the right-hand side of Equation (5) (Beck and Teboulle, 2003). In
Equation (6), prior distribution pk(θ) is weighted in responding
to the value of objective function Lk(θ). Figure 2 shows the
process of minimizing some quadratic objective function with
Equation (5). As that equation shows, the algorithm finds the
posterior distribution near the prior distribution at each step.
The probability distribution pk(θ) finally converges to the
Dirac’s delta function which surrounds the smallest value of the
objective function.

Bayes’ rule can be obtained by substituting the negative log-
likelihood function into Equation (6) (Warmuth, 2006).

pk+1(θ |X ) ∝ p(Xk|θ)
1
βk pk(θ). (7)

It is important to note that a similar equation is obtained in an
iterative manner:

pk+1(θ |Xk) ∝ p(Xk|θ)
1
βk pk(θ |Xk−1) ∝ · · · ∝

k
∏

l=1

p(Xl|θ)
1
βl p(θ) (8)

FIGURE 2 | Schematic view of the exponentiated gradient method. This

method repeatedly updates the distribution of the parameter to find the

minimum value of the objective function.
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where Xk = {X1, ...,Xk}. In this procedure, the prior distribution
is updated with each observation Xk. This is the online learning
algorithm (Shalev-Shwartz, 2011). In the Bayesian framework,
the predictive distribution at each step is defined as

pk(x|Xk−1) =

∫

p(x|θ)pk(θ |Xk−1)dθ , (9)

so the likelihood of the observation Xk is pk(Xk|Xk−1).
Next, we introduce the stochastic gradient descent (SGD).

SGD is also known as an online algorithm that directly updates
θ ∈ R

n such that

θk+1 = θk − ηk
−1g(θk), (10)

g(θ) = −∇θ log p(Xk|θ), (11)

where ηk > 0,
∑∞

k=1 η−1
k

= ∞, and
∑∞

k=1 η−2
k

< ∞

(Bishop, 2006, Chapter 5.2.4). The parameter is updated by
each additional observation. In this model, the parameter θk
holds the prior knowledge. Since the predictive distribution
is p(x|θk), the likelihood is represented as p(Xk|θk). Both the
entropic mirror descent Equation (5) and the stochastic gradient
descent Equation (10) are equally derived from the mirror
descent algorithm (Beck and Teboulle, 2003), and the Bayes’ rule
can be derived from the entropic mirror descent as described
by Equation (7). This indicates that it is natural to compare
the Bayes’ rule Equation (7) and stochastic gradient descent as
expressed in Equations (10) and (11).

Our major argument in this section is that we should test
the Bayesian hypothesis against another method such as the
stochastic gradient descent. In our view, Bayes’ rule is not an
oracular theorem but just one of the optimization algorithms for
the likelihood maximization problem. We tested the Bayesian
hypothesis against the stochastic gradient descent, which is
reported below.

2.2. Scientifically Testable Hypothesis for
the SoA Attribution Task
The type of learning algorithm, for instance Bayes’ rule or
stochastic gradient descent, has strong effects on the learning
curve. As we will see in this section, these methods show
the different learning curves of each. Thus, the analysis of
the learning curve enables us to test whether the actual
learning process is based on the Bayes’ rule or the stochastic
gradient descent.

We consider the situation in which humans are exposed to an
environment in which the consequences of their actual actions
are not free from a probabilistic temporal bias. The following
description assumes the experimental protocol described in the
experimental setup section in the second half of this paper (cf.
section 2.3). There exists a temporal bias x ∈ R [ms] between the
timing of “press button (action)” and “the occurrence of the event
(the actual outcome of an action).” We used a one-dimensional
Gaussian distribution as a model of human subjects’ internal
representation regarding the distribution of the temporal bias x
for the mathematical simplicity of the data analysis. Specifically,

the subject infers the mean value of the Gaussian distribution
and does not infer its standard deviation. Note that this simple
assumption requires future validation.

Each subject possesses the statistical model p(x|µ), which is
a one-dimensional Gaussian as expressed in Equations (12) and
(13).

p(x|µ) ∝ exp(L(x,µ)) (12)

L(x,µ) = −
(x− µ)2

2σ 2
, (13)

where µ ∈ R and σ ∈ R
+. The symbol θ used in the previous

section corresponds to the symbol µ in this section.
The statistical model is used for predicting the temporal

bias x between the button press and actual outcome. There are
various types of human subjects, some trying to make exact
predictions and some trying to make approximate predictions.
The individual difference is reflected by the parameter σ .

The statistical model p(x|µ) is updated by the improvement
of µ or p(µ) toward a more precise one. By applying Equations
(10) and (11), we derive the learning dynamics of the SGD-type
subject in section 2.2.1. By applying Equation (7), we derive the
learning dynamics of the Bayesian-type subject in section 2.2.2.
Finally, we compare these dynamics and provide the scientifically
testable hypothesis in section 2.2.3.

2.2.1. Learning Dynamics of the SGD-type Subject
Assume that the human subject observes the i.i.d. temporal
biases Xk [ms] at each trial k.

By applying the SGD algorithm (Equations 10, 11) to the
statistical model in Equations (12) and (13), the learning
dynamics of the SGD-type subject are derived as Equation (14).

µk+1 = µk +
η−1
k

(Xk − µk)

σ 2
. (14)

It is important to note that the parameter σ determines the
learning speed in Equation (14). More precisely, it predicts
that a subject with a larger σ shows a slower learning speed.
Figure 3A shows a snapshot of k-step of the numerical simulation
of Equation (14). The vertical axis shows the σ and the horizontal
axis shows the µ. As we previously mentioned, each subject is
represented by a different parameter σ . The red line indicates that
a subject with a larger σ shows the slower convergence. The blue
line is theµ =

∑m
i=1 Xi where Equation (14) converges regardless

of the parameter σ . Since the true distribution that generates Xi

was assumed to be uniform between –300 and 1,000 ms in this
simulation, the equation converges to a mean value 350 ms.

As discussed in section 2.1.1, the predictive distribution for the
SGD-type subject is modeled as p(x|a,µk) (see Equation 1). If the
SGD hypothesis is correct, the predictive distribution p(x|a,µk)
behaves slower when its standard deviation is larger. This means
that the distributions of the likelihood values, i.e., the histogram
of the SoA, also behaves in the same way.
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FIGURE 3 | Theoretical prediction for convergence to the mean value of the SoA from (A) Equation (10) and (B) Equation (17). The standard deviation (SD) of the

predictive distribution causes a difference in the learning speed. (A) Stochastic gradient descent: the smaller SD subject shows faster convergence (B) Bayesian

update: the larger SD subject shows faster convergence.

2.2.2. Learning Dynamics of the Bayesian-Type

Subject
Next, we introduce the learning dynamics of the Bayesian-type
subject. We assume that this subject holds the prior distribution
described by Equations (15) and (16).

p0(µ) ∝ exp
( 1

2σ 2
0

G0(µ)
)

(15)

G0(µ) = −µ2 (16)

In this model, the individual difference is reflected by both σ

and σ0.
By applying Equation (7) to the model expressed in Equations

(12), (13), (15), and (16), the learning dynamics of the Bayesian-
type subject are derived as Equation (17).

pk+1(µ) := p(µ|Xk+1) ∝ exp
(

k
∑

i=1

1

βi
L(Xi,µ)+

1

2σ 2
0

G(µ)
)

(17)

The posterior distribution gradually converges to
limt→∞ p(µ|Xt+1) ∝ exp(limt→∞

∑t
i=1

1
βi
L(Xi,µ)) as the

subject obtains observations. The parameters σ and σ0
determine the learning speed in Equation (17). The way σ

works is the same as in the SGD case: a larger σ results in a
slower learning speed. On the other hand, a larger σ0 results
in a faster learning speed. The smaller σ0 becomes, the greater
the importance of G(µ); this makes the posterior distribution
difficult to shift from the prior distribution. This is a major
property of Bayesian inference that we would like to highlight
in this study. Due to this property, the learning dynamics of
the Bayesian-type subject can behave as shown in Figure 3B.
A subject who has a larger standard deviation of the predictive
distribution shows faster convergence to the convergence

line. Specifically, the larger standard deviation of the prior
distribution σ0 is the key factor causing this behavior. Figure 3B
shows a snapshot of the numerical simulation of Equation (17).
The vertical axis shows the standard deviation of the predictive
distribution. It is important to note that the SGD hypothesis
cannot explain the phenomenon that the curve is rising to the
right shoulder as shown in Figure 3B.

As discussed in section 2.1.1, the predictive distribution for
the Bayesian-type subject is modeled as

∫

p(x|a,µ)pk(µ)dµ (see
Equation 2). The discussion in this section indicates that the
distribution of the likelihood values, i.e., the histogram of the
SoA, responds faster when its standard deviation is large.

2.2.3. Proposed Hypothesis for the SoA Attribution

Task
To summarize sections 2.2.1 and 2.2.2, our theory suggests
the following:

1. An experimentally measured histogram of the SoA would
show the learning behavior in response to the time interval
between motor execution and the actual sensory outcome.

2. If the experimentally measured histogram of the SoA with a
larger standard deviation were to show faster convergence in
the learning processes, it would be supportive evidence for
Bayesian learning.

In the second half of this paper, we demonstrate two points
through experimentation: (1) that the histogram of the SoA
shows the learning behavior, and (2) that the learning behavior
is due to Bayesian inference.

2.3. Experimental Protocol to Quantify the
Sense of Agency
In previous SoA research, there are two types of tasks for
measuring the SoA. One is an explicit measure of the SoA in
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which subjects verbally report how much they feel a sense of
control over external events (an agency attribution task). The
other is an implicit measure of the SoA, in which the SoA is
evaluated by the “intentional binding effect” (Haggard, 2017),
which refers to the subjective binding in time of voluntary actions
to their sensory consequences.

In this study, to investigate the adaptation process of a
prediction model on the SoA, we used our original agency
attribution task (Keio method). A task was established in which
human subjects were asked to report their SoA based on their
perception of the causal relationship between an intentional
action and the visual outcome (Maeda et al., 2012, 2013). The
experimental protocol in this study is based exactly on the
protocol described in the studies by Maeda et al. (2012, 2013).

The experimental stimuli were presented on a 14-inch
computer monitor. A 5-mm square shape appeared from the
bottom of the screen and moved straight upwards at a uniform
speed (22 [mm/s]). The human subjects were instructed to push
a button as quickly as possible when they heard a beep. After
they pushed the button, the square jumped 35 mm upwards
after a random temporal bias, i.e., at [0, 100, 200, 300, 400,
500, 600, 700, 800, 900, 1,000] [ms]. (Figure 4A) Then, they
were instructed to respond orally whether they felt that they
had caused the square to jump upward as intended by giving
a “Yes” or “No” response. A “Yes” response meant that they
attributed the jump of the square to their button press, i.e., they
felt an SoA during the action. Each condition was conducted 10
times (i.e., 11 conditions × 10 times = 110 trials). In addition
to these trials, “event prior to action” (EPA) trials were included
in which the square jumped when the beep occurred instead of
when the button was pressed. The three EPA conditions were
as follows: the square jumped at 100 ms before the beep, at the

time of the beep, or at 100 ms after the beep. They were also
instructed to respond whether they felt an SoA during these
trials. Each EPA condition was also conducted 10 times (i.e., 3
conditions × 10 times = 30 trials). Figure 4B shows the timing
at which the temporally biased event occurred. Therefore, we
obtained 140 yes/no responses per subject, as represented in
Figure 5A.

2.4. Participants
Twenty-one healthy volunteers were enrolled in this study (8
males and 13 females). Their mean age was 22.0 ± 1.4SD. years
old. They were confirmed to have no psychiatric or neurological
disorders. This study was approved by the Ethics Committee at
Komagino Hospital and the Tokyo University of Agriculture and
Technology. All subjects gave written informed consent prior
to participation.

2.5. Statistical Analysis
As shown in Figure 5A, we obtained 140 responses per subject.
Our purpose of the analysis was to verify the two hypotheses
shown in section 2.2.3:

1. The experimentally measured histogram of the SoA would
show the learning behavior in response to the temporal bias.

2. If the experimentally measured histogram of the SoA with a
larger standard deviation were to show faster convergence in
the learning processes, it would be supportive evidence for the
Bayesian learning.

2.5.1. Dividing Data by Time-Window
We focused on analyzing the histogram consisting of Yes
answers. It is reasonable to assume that the histogram consisting
of Yes answers reflects the histogram of likelihood, i.e., the

FIGURE 4 | (A) Each trial started with a dark computer screen. A square shape appeared at the bottom of the screen and moved straight upwards at a uniform speed

(22 [mm/s]). (B) The human subjects were instructed to press a button when they heard a beep. When the button was pressed, the square jumped 35 [mm] upward,

with various temporal biases. The jump of the square had action-linked conditions and event-prior-to-action (EPA) conditions. In the action-linked conditions, temporal

biases were introduced from 0 to 1,000 [ms] in 100-ms increments. In the EPA conditions, the movement of the square was based on the beep and not on the button

press, where the movement of the square was programmed to precede the subjects’ intentional actions. There were three EPA conditions in which the square jumped

100 [ms] before the beep, at the time of the beep, or at 100 [ms] after the beep. The subjects answered “Yes” or “No” about whether they felt that the square jumped

as they intended.

FIGURE 5 | (A) The table shows the example result of the Yes/No questions per subject. (B) We segmented the table into the window t = 1, 2, ...95. Then we

calculated the mean value for each histogram.
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histogram of the SoA. In the following, the term “histogram”
refers to the histogram consisting of Yes answers.

To verify these two hypotheses, we first divided the sequence
of YES/NO answers using the moving window which consisted
of 45 trials (Figure 5B). By dividing the data in this way, it was
possible to analyze how the histogram changes over time. We
decided on a value of 45 as a criterion to obtain the shape of each
of the histograms because a majority of the responses with No
would not allow us to analyze the histogram.

2.5.2. Gaussian Curve Fit
By dividing the data into the windows, we obtained 95 histograms
per subject (Figure 5B). As noted in section 2.2, we assumed that
the subjects employ a one-dimensional Gaussian distribution
as a statistical model. This means that the histograms were
also assumed to have the shape of a one-dimensional Gaussian
distribution, corresponding to the histogram of the likelihood.

We performed the following procedure to estimate the mean
values and standard deviations of the histograms:

First, we quantitatively defined the center of each of the
bins of the histogram. Regarding the timing of visual stimuli
presentation, while no individual differences occurred for the
positive temporal biases (0 to 1,000 [ms]), we needed to consider
the individual differences due to the reaction time for the negative
temporal biases (cf. Figure 1). We calculated the averaged
reaction time during the 140 trials for each subject. Then we
defined the center of each bin as

Bi := (−ri − 100,−ri,−ri + 100, 0, 100, . . . , 1000) (18)

per subject. Here, ri > 0 represents the i-th subject’s averaged
reaction time during the 140 trials.

Second, we performed the Gaussian curve fitting to the
histograms according to the following procedure: We introduce
the notation (Bi,H

t
i ) to represent the i-th subject’s t-th window

histogram. Bi is the 14-dimensional vector that we defined in
Equation (18). Ht

i ∈ N
14 is another 14-dimensional vector that

consists of the number of the YES answers corresponding to
the temporal biases Bi. We introduce bi(j) to represent the j-
th element of the vector Bi (j = 1, . . . , 14). We also introduce
hti(j) to represent the j-th element of the vector H

t
i . Although

the standard procedure to estimate the Gaussian distribution is
to solve the maximum likelihood problem, we cannot apply this
approach in this case. This is because the histogram (Bi,H

t
i )

lacks the data corresponding to the three temporal bias domains
(−∞,−ri − 100], [−ri + 100, 0], and [1000,+∞). Instead, we
solved a non-linear least square problem such that

Zi(t),µi(t), σi(t) = arg min
Z,µ,σ

14
∑

j=1

(f (bj;Z,µ, σ )− hti(j))
2, (19)

where f (·;Z,µ, σ ) is the Gaussian function:

f (x;Z,µ, σ ) = Z exp(−
(x− µ)2

2σ 2
). (20)

We applied the Levenberg-Marquardt algorithm1 to problem
(19) and obtained (µ(t), σ (t),Z(t)) which are the estimations
of the mean value, the standard deviation, and the scaling
factor, respectively.

2.5.3. Learning Curve Analysis
By analyzing (µi(t), σi(t))t=1,...,95 obtained from the Gaussian
curve fitting, we can clarify how the predictive distribution
behaved. The aim of this analysis was to determine whether
the learning behavior is occurring for the temporal bias
and whether the learning algorithm is the Bayesian or the
SGD algorithm. The main idea was to confirm whether the
indicators (µi(t), σi(t))t=1,...,95 show a similar movement to either
Figure 3A or Figure 3B.

We focused on two features of Figure 3. The first feature is
convergence toward the “theoretical convergence line.” The red
lines gradually converge to the “theoretical convergence line”
which is also shown in the figure. The theoretical convergence
line is settled as the solution to the KL divergence minimization
problem of the true distribution and the statistical model. As we
assumed that the statistical model is the Gaussian distribution
described by Equations (12) and (13), the line becomes the
expectation of the observed values Eq(x)[x] ≃ 1

K

∑K
k=1 Xk

where q(x) is the true distribution of the observed values Xk ∼

q(x) (Wolpert et al., 2013, section 5.1.1). As noted in the
previous section 2.5.2, the set of the temporal biases Bi is affected
by the individually different reaction times ri(i = 1, ..., 21).
This individual difference makes it difficult to calculate the
convergence line 1

K

∑K
k=1 Xk. To approximately estimate the line,

we assumed the special case that all subjects equally showed the
same reaction time ri = 200 [ms]. Under this assumption, we
calculated 1

K

∑K
k Xk ≃ 350 [ms]. Note that we adopted the

assumption only for the approximate estimation of the line. We
did not adopt the assumption for the other types of statistical
analysis in this paper. All of the other statistical analyses
were achieved using the estimation of the individually different
reaction times (cf. section 2.5.2). The approximate estimated line
was used only as a guide to confirm whether the data converged
to the line. The convergence indicates that the subjects learned
the temporal bias.

The second significant difference between the two subfigures
Figures 3A,B appears in the slope of the red line. The red
line shows a negative slope in Figure 3A. This reflects the
implication of Equation (14) that, under the SGD hypothesis,
a subject who has a larger standard deviation of the predictive
distribution shows the slower convergence to the convergence
line (cf. section 2.2.1). In contrast, the red line shows a positive
slope in Figure 3B. This reflects the implication of Equation (17)
that, under the Bayesian hypothesis, a subject who has a larger
standard deviation of the predictive distribution shows faster
convergence (cf. section 2.2.2).

We addressed two questions: (1) whether the learning of the
temporal bias occurred and (2) whether the learning algorithm is
the Bayesian or the SGD algorithm. To answer the first question,

1Our Python code for this analysis is available to all at https://github.com/yshlo/

gf_curvefit.
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we analyzed how the center of the scatter plot (µi(t), σi(t))
changed as the number of trials increased. To answer the second
question, we investigated whether the slope of the scatter plot was
negative or positive, and how the slope changed as the number
of trials increased. These analyses were applied to the scatter
plots of (µi(t), σi(t)) at the group level. To perform a quantitative
analysis, we applied a linear regression on each scatter plot using
Equation (21).

σ = bt(µ − at)+ ct . (21)

For the linear regression, we applied the Levenberg-Marquardt
algorithm to the least square problem. We obtained a time
sequence of the estimated parameters (at , bt , ct)t=1,...,95, as we
have the time sequence of the scatter plots. If the time evolution of
the estimated parameter at shows convergence to the neighbor of
350 [ms], which is the approximate estimation of the convergence
line (see section 2.5.2), it is supportive evidence that the subjects
showed learning behavior to the temporal bias. If the estimated
slopes bt are positive at almost all the time steps, it implies that
the standard deviation increases as the mean value increases
(Figure 3B: Bayes’ rule). Then, we rejected the SGD algorithm
hypothesis (Figure 3A). We applied the binomial test for the set
of the estimated slopes: the null hypothesis was that the observed
proportion of the positive slopes bt > 0 vs the negative slopes
bt < 0 is not different from 0.5. If the hypothesis is rejected, it
indicates that positivity or negativity of the slope exists. We set
the significance level as α = 0.05.

3. RESULTS

Figure 6A shows a distribution of YES answers obtained from
a subject (the i-th subject) during the t-th time-window (cf.
Figure 5B). We have a total of 95×21 histograms, as there are 95
time-windows and 21 subjects. Figure 6A is simply an example of
these histograms. Using a Gaussian curve fit (cf. section 2.5.3), we
obtained the mean value and the standard deviation (µi(t), σi(t))
of each histogram.

Figure 6B shows the scatter plot consisting of 21 points
(µi(t), σi(t))i=1,...,21 for one of the 95 time-windows. Each point
corresponds to subject. The horizontal axis represents the mean
value, and the vertical axis represents the standard deviation.
Since we have 95 time-windows, we obtained a time sequence
of 95 scatter plots. Figure 6B is simply a snapshot of the time
sequence. The red line in Figure 6B shows the result of the
linear regression Equation (21). We obtained a time sequence of
the estimated parameters (at , bt , ct)t=1,...,95 by applying the linear
regression to each of the 95 scatter-plots of (µi(t), σi(t)).

Figure 6C shows the time evolution of the parameter at ,
i.e., (a1, . . . , a95) (blue line). The red curve in the figure is the
exponential regression curve to the time evolution. It mostly
converges to approximately 291 [ms] which is close to the average
value of the uniform distribution of the temporal bias, which
is approximately 350 [ms]. This result is supportive evidence
for the existence of the learning process of subjects during the
experiment. For the exponential curve regression, the Levenberg-
Marquardt algorithm was applied to the least square problem.

Figure 6D shows the time evolution of the parameter bt , i.e.,
(b1, . . . , b95). As it shows, the parameter bt was positive and
gradually increased across the 95 time-windows. As we explained
in section 2.2.3, the positivity of the parameter bt supports the
hypothesis that the updating rule of the subjects is the Bayesian
update. As all 95 parameters (b1, . . . , b95) were positive, we
applied a binomial test to confirm the statistical significance
of the positivity of bt as explained in section 2.5.3. The null
hypothesis was that the observed proportion of the positive slopes
bt > 0 vs. the negative slopes bt < 0 was not different from 0.5.
The null hypothesis was rejected (p-value < 2.2e−16 < 0.05).
The 95 percent confidence interval of the ratio regarding the
number of negative slopes and positive slopes was (0.00, 0.04).
These results indicate that the updating rule of the subjects
should be the Bayesian update. For the linear regression shown
in Figure 6B, the Leveberg-Marquardt algorithm was applied to
the least square problem.

To conclude, our results in Figure 6 suggest that the learning
process of the SoA for temporal bias should be described by the
update of the predictive distribution in Bayes’ rule rather than the
SGD algorithm.

4. DISCUSSION

The sense of agency is the experience of subjective awareness
regarding the initiation and control of one’s own actions. The
comparator model indicates the process required to generate the
SoA, i.e., a mismatch between the prediction and the consequent
event simply causes the loss of the SoA. Therefore, discrepancies
in timing between the prediction and event hinder the flow
of information integration and thus the induction of the SoA
(Wegner and Sparrow, 2004; Wegner et al., 2004). This means
that the individual lack ownership of the motor actions if the
visual stimuli occur after a short time delay (Saposnik et al., 2010).
However, through interactions with the environment, humans
have a natural tendency to adapt our control ability and to
adapt our internal model to predict the environment. Along
this line, the adaptive aspects of the SoA toward changes in
the surrounding environment have been debated (Leotti et al.,
2015; Haggard, 2017; Legaspi and Toyoizumi, 2019; Plinio et al.,
2020). As pointed out by Plinio et al. (2020), understanding
the mechanisms behind the generation and adaptation of SoA
is an important emerging topic in this field. While Legaspi
and Toyoizumi (2019) proposed the mathematical model for
the generation of the SoA, their model includes some issues
such as (i) inconsistency with the comparator model and (ii)
blind acceptance of the hypothesis that humans solve inference
problems by the Bayes’ rule. We addressed these problems by
building a mathematical model to provide the experimentally
testable hypothesis and by verifying the hypothesis through
participant experiments in this study.

In summary, our contribution is divided into two parts:
(1) a contribution related to the construction of mathematical
models and (2) a contribution related to experimental validation.
The contributions related to the construction of mathematical
models are (i) pointing out that statistical models and learning
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FIGURE 6 | (A) The histogram visualizes the distribution of YES answers obtained from a human subject (the i-th subject) during a time-window (the t-th

time-window). The figure shows the result of i = 4 and t = 1 as an example. We have a total of 95× 21 histograms as there are 95 time-windows for each subject. To

analyze these histograms, we summarized each histogram through the mean value µi (t) and standard deviation σi (t) using Gaussian curve fitting. Note that the figure

shown here is just one example of these histograms, which indicates that the subject feels most confident around approximately 350 [ms] of temporal bias. (B) We

summarized the 95× 21 histograms to the time sequence of the scatter plots. Each scatter plot contains 21 points (µi (t), σi (t))i=1,...,21, as the figure shows. The figure

shows a snapshot of the time sequence as an example (t = 50). Each blue point represents the mean and the standard deviation of a subject’s histogram. The red line

shows the result of the linear regression (Equation 21). We focused on the time evolution of the parameters at and bt for our further analysis. (C) Time evolution of the

parameter at showing the gradual convergence of the parameter at, which indicates that learning occurred during the experiment. (D) Time evolution of the

parameter bt. This parameter was positive at any given point in time and gradually increased over time.

algorithms should be considered separately, (ii) the actual
construction of a mathematical model using the SGD algorithm
as a comparison object for the mathematical model using the
Bayesian estimation algorithm, (iii) formulating the likelihood
as the SoA, and (iv) the experimental hypothesis that the
two proposed mathematical models behave differently in an
experimental task where iterative learning is required. Through
the participant experiments, we reported supportive evidence
that the human subjects updated their prediction models and
that the SoA transformed accordingly: the subjects adapted to the
visual stimuli representing the result of the action execution even
though with temporal biases (Figure 6C). Moreover, our results
suggested that the learning algorithm behind the temporal bias
adaptation should be described by the Bayes’ rule rather than the
SGD algorithm (Figure 6D).

We call attention to three limitations of the current study.
First, our experimental verification of the theoretical hypothesis
was done on only one experimental task (the sense of agency
task; Keiomethod).We need further verification using the variety
of the sense of agency tasks to indicate the generalizability of
our hypothesis. As our experimental task with beep-referenced
temporal biases causes individual differences in reaction time,
we needed to take individual differences into account (cf.
section 2.5.2). In addition, one could also address that the beep-
referenced temporal biases and the button-press temporal biases
are qualitatively different experiences for the subjects. Thus,
further verification using the other SoA tasks is important. It
would also be useful to note that the sense of agency task (Keio
method) was originally proposed for evaluating the degree of
the schizophrenia patient’s SoA (Maeda et al., 2012, 2013). If
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we could overcome the shortcomings related to the complicated
procedures as noted above, we expect our results to be helpful for
future schizophrenia research.

Second, we analyzed the experimental data under the
assumption that the statistical model for the temporal bias is the
Gaussian distribution. While the assumption seems reasonable,
note that this is an assumption that simplifies the analysis. We
do not exclude all other probability distribution possibilities. In
particular, in order to apply our theory to the other tasks (e.g.,
higher-dimensional prediction problems), the other probability
distribution would be suitable. We need to test our theory with
other tasks to show that the theory is not limited to the specific
probability distribution.

Third, we previously mentioned the limitation associated with
this research based on its use of a mathematical model. As Box
(1976) has pointed out, we should remember that "all models are
wrong" because a model is just an approximation of reality. A
traditional guideline for designing a useful model is to illustrate
reality as a simple but evocative representation (Box, 1976).
Although we followed this guideline to propose the Gaussian
model in this paper, a drawback of our approach is that the
model was not selected in any quantitative way. Specifically,
we did not quantitatively assess the adequacy of the Gaussian
assumption and several options for posterior inference, i.e.,
Markov chain Monte Carlo methods and variational inference
methods (Bishop, 2006). Future planned work in this area
includes an assessment of our model in comparison to other
models using different options according to model selection
methods such as information criteria, Bayesian model selection,
cross-validation, and norm regularization. (See Ding et al., 2018
for an extensive overview of the selection methods.)

It is useful to discuss the relationship between our model
and the model proposed by Legaspi and Toyoizumi (2019) who
proposed the Bayesian cue integration model and defined the
SoA on the basis of their model. Their definition of the SoA
is the maximum value of the posterior distribution. There are
at least two important differences between our model and their
model. First, our definition of the SoA is the likelihood value
that reflects the discrepancies between the prediction and the
actual outcome. Second, our model is not intended for the cue
integration problem. With respect to the first argument, namely
the definition of SoA, it is not that either of the definitions
are wrong, but both of them could be right. As Synofzik
et al. (2008) pointed out, the SoA is not a single sense but
a hierarchical and multilayered sense. Indeed, if we were to
adopt a Bayesian model, their definition, i.e., the maximum
value of the posterior distribution, could also be defined in our
mathematical model. With respect to the second argument, our
mathematical framework does not exclude the model for the
cue integration problem. Our framework is easy to extend for
modeling the cue integration problem if we replace the statistical
model appropriately. We hope that the theoretical foundation
will continue to be built in the future.

The way in which the probabilistic nature of the SoA can
play a key role in the learning process deserves discussion. In
its simplest form, the sense of agency originates from the time
domain (Gallagher, 2000). In other words, the perception of the

onset of the intentional action and the external event gives rise
to the perception of the time interval and the SoA is attributed
to the perceived time intervals. However, the perception of the
time interval is subject to the inevitable noise of sensing and
observation. Thus, observable variables should be treated as
stochastic variables rather than as deterministic ones. One of the
realistic strategies for predicting an event under the uncertainty
of sensory information is to infer its distribution from past
experiences and thus make a probabilistic prediction.

Perception of time plays a fundamental role in human
perception, cognition and action, which is essential for everyday
activities and survival. Rhodes (2018) systematically discussed a
variety of mathematical models that can predict that the brain
uses temporal expectations to bias perception in a way that
stimuli are “regularized,” i.e., stimuli look like what has been seen
previously. This indicates that the perception of time is subject
to various contextual distortions. For example, when observers
are presented with various intervals of different lengths and are
subsequently instructed to reproduce each interval, they tend to
overestimate the duration of short intervals and underestimate
that of long intervals (Jazayeri and Shadlen, 2010; Shi et al., 2013).
This was reported as a type of “central-tendency” effect, i.e.,
human subjects migrate their estimates of duration toward the
mean of exposed intervals (Rhodes, 2018).

Time is perceived over multiple scales from millisecond scales
to interval scales (seconds to minutes), and circadian scales, and
these scales should be simulated by different computational and
neural mechanisms (Rhodes, 2018). In contrast to the explicit
perception of time intervals at a scale of a few seconds, our
finding of Bayesian updates in the learning process focused on
time perception at a subconscious level (the millisecond scale),
which is directly associated with the generation of the SoA. It
would be interesting to study the effects of time perception on
the SoA at various time scales.
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