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pyfMRIqc is a tool for checking the quality of raw functional magnetic resonance imaging (fMRI) data. 
pyfMRIqc produces a range of output files which can be used to identify fMRI data quality issues such as 
artefacts, motion, signal loss etc. This tool creates a number of 3D and 4D NIFTI files that can be used for in 
depth quality assurance. Additionally, 2D images are created for each NIFTI file for a quick overview. These 
images and other information (e.g. about signal-to-noise ratio, scan parameters, etc.) are combined in a user-
friendly HTML output file. pyfMRIqc is written entirely in Python and is available under a GNU GPL3 license 
on GitHub (https://drmichaellindner.github.io/pyfMRIqc/). pyfMRIqc can be used from the command line and 
therefore can be included as part of a processing pipeline or used to quality-check a series of datasets using 
batch scripting. The quality assurance of a single dataset can also be performed via dialog boxes.
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(1) Overview
Introduction 
Functional magnetic resonance imaging (fMRI) is a 
widely used research technique in human neuroscience 
to investigate experimentally driven changes in blood 
oxygenation (BOLD contrast) as a proxy of neural activity. 
Because fMRI data has a low signal-to-noise ratio, many 
different types of data quality issues can occur during data 
acqusition and these issues are related to a wide range of 
sources [1].

Sources that affect data quality during fMRI data 
acquisition include:

•	 Participant related artefacts.
	 The behavior of the participant in the scanner has an 

influence on the data quality. For example, partici-
pant head motion is a primary source of motion arte-
facts during data acqusition as head motion interferes 
with the continuous measurement of the same tissue 
within a voxel. Participant head motion can also cause 
specific artefacts in fMRI data, such as spin-history 
artefacts [2] and motion-by-susceptibility interactions 
[3]. Another source of participant related artefacts 
are speaking and swallowing which can cause motion 
artefacts and localized changes in the homogeneity of 
the magnetic field creating further data quality issues 
[4]. Additional sources of participant related artefacts 

include physiological processes such as respiration, 
pulse and metabolism [5].

•	 Technique-related artefacts.
	 A number of technique related artefacts can occur 

during data acqusition such as Gibbs artefacts, alias-
ing, zipper artefacts, nyquist, ghosting and many 
more (see a detailed overview: http://mriquestions.
com/technique-related-artifacts.html).

•	 Tissue specific artefacts.
	 Different molecules and tissues have different mag-

netic susceptibilities (diamagnetic, paramagnetic, 
superparamagnetic or ferromagnetic) and different 
combinations of these types of molecules and tissues 
could lead to various susceptibility artefacts such as 
distortions or local signal changes due to localized 
magnetic field in-homogeneities [6].

•	 Sequence specific artefacts.
	 Many different types of imaging sequences are avail-

able for fMRI data acquisition, including echoplanar, 
multiband/multislice, and multi echo sequences. 
Each sequence type has its own specific advantages in 
terms of spatial or temporal resolution, but each also 
has its own sources and types of artefacts and other 
data quality issues, such as GRAPPA (GeneRalized 
Autocalibrating Partial Parallel Acquisition) artefacts 
in parallel imaging, or slice leakage artefacts in multi-
band acquisition [7, 8]. 

https://doi.org/10.5334/jors.280
mailto:mlindner.mail@gmx.de
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All these issues described above have different influences 
on fMRI data quality including: distorted images due to 
sequence specific artefacts; local incorrect values due to 
motion or changes in field homogeneity; change or loss of 
local or global signal. Some of these issues, such as motion, 
can be corrected if they are identified. Other issues, such 
as signal loss, cannot be corrected, and the data should be 
excluded from a research study to prevent spurious results 
from data analysis.

Human neuroimaging studies using fMRI involve the 
collection of large-scale datasets of BOLD contrast over 
time for each participant in the experiment. These datasets 
are then modelled to identify task relevant activity in the 
dataset. However, as previously mentioned, there are many 
potential sources of artefacts in fMRI data. These artefacts 
need to be identified to prevent the misidentification of 
artefacts as task-relevant activity during analysis. But, the 
manual screening of fMRI datasets for artefacts produced 
by the sources described above is a time-consuming 
process and can be error prone. 

Current tools for quality assurance of fMRI data include 
VisualQC [9], and MRIQC [10]. Both provide the user with 
global measures of mean, standard deviation, and rate 
of signal change for functional timeseries. MRIQC also 
reports additional global metrics relating to spatial and 
temporal information, and artefact detection. pyfMRIqc 
extends the functionality of current tools by providing 
further quality assurance measures. These include slice-
wise difference measures for consecutive functional 
volumes, nitfi files of quality assurance measures, and 
output viewable as a Html report. Like pyfMRIqc, both 
VisualQC and MRIQC are written in Python and can 
be initialized from the command line. However, the 
recommended method for using MRIQC involves running 
a containerized version in docker because the nipype 
workflow of MRIQC is dependent on the presence of 
additional analysis software. This is problematic since 
docker requires root access, raising potential security 
and confidentiality issues for neuroscience institutes 
who work with sensitive, personally identifiable data. 
pyfMRIqc, therefore, is more secure with respect to data 
protection as it operates independently from other fMRI 
analysis software packages, meaning it does not need to 
be containerized to work optimally. 

pyfMRIqc has been developed as a piece of user-friendly 
software that is easy to install and use, providing the user 
with measures and guidelines for checking the quality 
of fMRI data. pyfMRIqc is an open-source software tool 
designed for quick and easy quality assurance of raw fMRI 
data before pre-processing or analysis via input dialog 
boxes (ID) or the command line. The software aims to help 
the user make decisions on the usability of their data, and 
any necessary pre-processing treatment.

Implementation and architecture
pyfMRIqc  was written entirely in Python because it is 
free, widely used in neuroscience, and available for every 
major operating system (Linux, Windows and MacOS). 
pyfMRIqc  has been developed and tested with Python 
version 3.6.4.  pyfMRIqc can be executed using batch 

scripting if you wish to use the tool to check multiple 
datasets or include the tool as part of a pipeline. It can 
also be run using ID if you wish to check a single dataset, 
however not all input options are available if you chose 
to run pyfMRIqc via ID (more details below). pyfMRIqc 
is designed for the quality assurance of raw fMRI data, 
however pre-processed data can also be checked using the 
software.

Usage
pyfMRIqc can be used with ID (for beginners or for testing 
a single data set) or with command line parameters 
(recommended usage – for advanced users, multiple 
datasets, or adding to a pipeline). The ID version of 
pyfMRIqc needs to be started without any input parameters 
by typing the following into the terminal (note, the 
absolute path should be included if pyfMRIqc.py is not in 
your working directory):

python pyfMRIqc.py

For command line input the following parameter can be 
specified. (Some of these input parameters are exclusive 
for the command line parameter input and are not 
available via ID):

-n:	 functional MR nifti file (path).
-s:	 percentage of voxels with the lowest mean time 

course values (outside the mask) that are used for 
the SNR calculation (scalar value).

either 
	 -t:	� threshold of minimum mean voxel intensity 

that should be included in the quality assurance 
(scalar value).

or
	 -k:	� binary nifti mask file of voxels that should be 

included in the quality assurance (path).
optional
-o:	 output directory (path).
-m:	motion parameters file following motion correction 

with FSL (*.par), SPM (rp*.txt) or AFNI (*.1D) (path).
-x:	 if -x is set, the 3D and 4D nifti output files are not 

saved.
-h, --help: prints the pyfMRIqc input help to the com-

mand window.

For example:

python pyfMRIqc.py \
	 -n <your_functional_file.nii> \
	 -s 10 \
	 -k <your_mask_file.nii> \
	 -o <your_output_path> \
	 -m <your_motion_file> \
	 -x 

Would execute pyfMRIqc for your_functional_file.nii. 
The mask your_mask_file.nii would be applied to your_
functional_file.nii, 10% of voxels (with the lowest mean 
time course values) would be used for SNR calculation and 
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your_motion_file would be loaded. pyfMRIqc output data 
would be saved to your_output_path and additional nifti 
files would not be saved as part of your output.

Measures and output
Mean
The mean voxel intensity over time can be used to see if 
there is any general signal loss. pyfMRIqc provides 3D nifti 
and a 2D .png overview image as output for the mean 
voxel intensity.

Variance
The variance over time is calculated voxel-wise. Typically, 
grey matter, brain stem, eyes, and blood vessels have the 
highest variability of BOLD signal. Therefore, these tissue 
types have higher values and are brighter in this image 
(nifti and 2D). Sudden or unexpected signal changes due 
to artefacts, motion etc. in one or more volumes will 
increase the variance and therefore will be detectable in 
these images. For example, Figure 1 shows how local 
signal dropout in a few volumes will appear as a grey 
pattern in the image. pyfMRIqc provides 3D nifti and a 2D 
.png overview image as output for the variance.

Masks
pyfMRIqc creates two output .nii files containing binary 
masks:

1)	 Mask: depending on the user input (-t or -k):
a.	 containing voxels with higher intensity values 

than given threshold (t) (Figure 2, blue)
	 or
b.	 same mask as the input mask (k)

2)	 Mask for Signal to Noise Ratio (SNR): contains the 
voxels used in the SNR calculation depending on 
input -s (Figure 2, green)

Mean voxel time course of bins 
To produce this output, voxels are sorted depending 
on their mean voxel time course intensity and then 
divided into 50 bins with an equal number of voxels in 
each bin. Then the voxels are averaged per volume for 
each bin. Each horizontal line represents the averaged 
voxel time course of one bin. The bins are sorted 
ascending (top-down) depending on the mean voxel 
intensity, so that the upper part of the plot represents 
voxels outside the brain, lower middle parts represent 

Figure 1: Example of cubic local signal dropout in the variance image. The grey squares show the position of local signal 
loss in the example file pyfMRIqc_example_local_signal_loss.nii.gz.
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grey matter, and lower parts represent voxels in white  
matter. 

This image is meant to detect unexpected or unwanted 
changes in the signal variance as described by Power [11]. 
Prominent vertical patterns in this image could be related 
to different types of issues such as signal loss, noise 
and artefacts, which in turn may be caused by motion, 
respiratory interference, field heterogeneity issues, etc 
(see Figure 3A). It can also help to identify if an issue is 
global (from top to bottom, Figure 3B) or only related 
to some of the tissue types (vertical pattern in subparts). 
Additionally, the user can check if any known effect 
(such as motion – e.g. as identified from the motion plot, 
Figure 4A) influences the signal change or not. pyfMRIqc 
provides a 2D .png image as output for the mean voxel 
time course of bins.

Scaled squared difference 
For the scaled squared difference (SSD), the first derivative 
of the time course q = dx/dt, dt = 1 is calculated. 
This yields the difference of two consecutive time points 
t – (t-1) for each voxel (V). These differences are then 
squared to handle negative values and to improve scaling 
for the identification of outliers. To take the differences 
in absolute signal intensity into account the squared 

differences are divided by the mean of squared differences 
of all voxels (M): 

2
t t-1

t

(V - V )
SSD =

M

Four quality assurance images are created using SSD 
values. The first image shows the mean SSD over all 
voxels to get an overview of any global signal changes. 
The second image shows the mean SSD for each slice 
separately. Each colored plot in the image represents 
one slice. In contrast to the first image, signal changes 
in the second image can be detected slice-wise, giving an 
overview of non-global sudden signal changes. The third 
image shows the normalized average of the demeaned 
voxel intensity, the normalized SSD variance, and the 
normalized sum of relative movement for each volume. 
This plot can be used to directly compare the quality 
assurance report of multiple datasets since the values 
are normalized. The fourth image displays the minimum, 
mean and maximum slice-wise SSD averaged over  
volumes.

SSD can be used to detect sudden changes in signal 
intensity which can occur because of different problems, 
for example: 

Figure 2: Mask image for file pyfMRIqc_example_local_signal_loss.nii.gz. The blue color shows voxels above the given 
intensity threshold that are included in the quality assurance. Green voxels are the nth percentage of voxels with the 
lowest mean time course values used for SNR calculation.
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•	 head motion (Figure 4A) – at the time point the 
motion occurs the voxel time course of a spatially 
defined brain tissue is interrupted. In this case the SSD 
will show either a peak or step (positive or negative).

•	 signal loss or artefact (Figure 4B) – the “continuous” 
voxel time course signal is interrupted by sudden 
extreme low or high values. In these instances, the 
image would show a large positive or negative peak.

pyfMRIqc provides 3D nifti and a 2D .png overview image 
as output for the SSD.

Signal-to-noise ratio 
To calculate the signal-to-noise ratio, the mean voxel 
intensity for each voxel is divided by the standard 
deviation of the mean noise, averaged across the temporal 
domain. In pyfMRIqc the mean noise is defined as the 

Figure 3: Examples of the mean voxel time course of bins plot A) Example file pyfMRIqc_example_motion.nii.gz: Two 
major vertical patterns show the global effects of head motion on different tissue types (bins 32 and higher). The 
first vertical pattern after volume 65 is related to a strong movement and the second pattern after volume 175 is 
related to another small movement. The lower numbered bins (top of the plot) represent voxels covering empty space 
around the head that are not affected by motion. B) Example file pyfMRIqc_example_volume_intensity_loss.nii.gz: 
Two major vertical patterns between volumes 100 and 122 show global signal intensity loss. 

Figure 4: Example of the third scaled squared difference plot: A) In the red box the plot shows that the variance of 
the SSD (blue line) is related to the head motion of the participant (green line). This is plotted from example file 
pyfMRIqc_example_motion.nii.gz. B) The negative peaks in the mean voxel intensity are related to global signal 
intensity loss in two volumes in the example file pyfMRIqc_example_volume_intensity_loss.nii.gz.
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average of the s% of voxels having the lowest mean 
intensity, where s is dependent on the user input (-s). 
pyfMRIqc provides a 3D nifti image with voxel-wise 
SNR values and a summary of values as output for the  
SNR.

The Slice SNRs measures the time course SNR averaged 
across each slice, and Mean voxel SNR is the average over 
all the slices together. The higher the SNR, the smaller the 
relative fluctuations and more stable the signal is over 
repeated measurements. The SNR provides an estimate of 
the reliability (~ reproducibility) of fMRI data and serves as 
a general goodness measure.

Optional: Motion parameter summary
If a motion parameter file is provided as input, a short 
summary is provided at the end of the html file, namely the 
mean and max of each absolute and relative movement, 
where absolute movement is movement relative to the 
first volume, and relative movement is the movement 
relative to the previous volume. 

Sudden movements are worse for fMRI data (and 
motion correction algorithms) than slow drifts. Therefore, 
relative movement values are the more important values. 
As a rule-of-thumb relative movement that is bigger than 
the acquisition voxel size is unacceptable and therefore, 
if pyfMRIqc shows a number bigger than 0 for “relative 
movement > voxel size”, the data should not be used. 
Relative movement > 0.5mm is not good and thorough 
checks should ensure that the motion correction 
algorithm has worked properly. Relative movement 
> 0.1mm may be ok but in case of high numbers in this 
metric the data should be checked thoroughly and used 
with care. Additionally, ideally the max absolute motion 
should be less than 2mm or at least less than the voxel  
size.

HTML output file
pyfMRIqc provides an html file to combine quality 
assurance values and all the 2D images mentioned above 
for a quick overview of the data quality.

Output nifti files
nifti images (if -x is not set):

- mean_<yourfile>
	 mean voxel intensity over time (3D)
- variance_<yourfile>
	 variance of the voxel time courses(3D)
- mask_<yourfile>
	 binary – containing voxels above the threshold or the 

input mask (3D)
- mask4snr_<yourfile>
	 binary – lowest n percent of lowest values used for 

SNR calculation (3D)
- snr_<yourfile>
	 voxel-wise signal-to-noise ratio (3D)
- squared_scale_diff_<yourfile>
	 squared scaled signal variability: squared difference 

between two consecutive volumes divided by the 
global mean difference

Quality control 
pyfMRIqc is currently used by members of the 
neuroimaging community at the University of Reading 
for quality assurance of raw fMRI data. We have created 
example datasets with specific deliberate errors to test 
and validate the algorithms in pyfMRIqc. These deliberate 
errors are representative of the type of errors that could 
occur during fMRI data acquisition. These example datasets 
are also freely available via GitHub for users to download 
and trial pyfMRIqc. The example file pyfMRIqc_example_
motion.nii.gz is an example of participant motion. This 
data set contains 211 volumes of a standard EPI sequence. 
The participant moved twice during the scan, the first is a 
strong movement after volume 65 and the second is a small 
movement after volume 175. The example file pyfMRIqc_
example_local_signal_loss.nii.gz is an example of local signal 
loss (signal loss has been artificially created for this example 
by replacing signal with low gaussian random noise). Signal 
loss of a cube of voxels (10 × 10 × 10) is located in the middle 
of the frontal cortex for two volumes (50 and 120). The 
example file pyfMRIqc_fMRI_example_volume_intensity_
loss.nii.gz is an example of a global reduction in signal 
intensity for two volumes: Volume 101 shows an intensity 
loss of about 20% of the mean intensity and volume 122 an 
intensity loss of about 10% of the mean intensity.

Although pyfMRIqc has undergone extensive testing 
to ensure proper functionality, users are able to contact 
the developers with any issues or bugs they may discover 
when using pyfMRIqc using the projects dedicated email 
address: pyfMRIqc@gmail.com. Additionally, as pyfMRIqc 
is open-source (GPLv3) and freely available, we actively 
welcome contributors from the neuroscience community 
to contribute to the project if they wish. A detailed 
description of how to use pyfMRIqc can be found in the 
pyfMRIqc documentation on the GitHub page (https://
drmichaellindner.github.io/pyfMRIqc/).

(2) Availability 
Operating system
pyfMRIqc is written in Python and therefore is available on 
any operating system that supports Python frameworks. 
pyfMRIqc was tested on Ubuntu 18.04, Windows 7 and 10, 
and macOS Sierra. 

Programming language
Python 3.6 (tested on Python 3.6.4)

Additional system requirements
None

Dependencies
The following Python packages need to be available, version 
number used for development is provided in brackets. 
Newer versions of packages should also be compatible:

	 nibabel (2.2.1) 
	 numpy (1.14.3) 
	 matplotlib (2.1.0) 
	 scipy (0.19.1) 
	 easygui (0.98.1)

mailto:pyfMRIqc@gmail.com
https://drmichaellindner.github.io/pyfMRIqc/
https://drmichaellindner.github.io/pyfMRIqc/
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List of contributors
Michael Lindner is the  main  developer and maintainer 
of pyfMRIqc. Brendan Williams has contributed to some 
of the functions and documentation. Both authors 
were  involved  in  writing this article.  The code for this 
software was developed at the Centre for Integrative 
Neuroscience and Neurodynamics (CINN) at the University 
of Reading, UK.

Software location
Code repository

Name: GitHub
Identifier: �https://github.com/DrMichaelLindner/

pyfMRIqc
Version: 1.1
License: GNU GPL3
Date published: 15/05/19

Language
English

(3) Reuse potential 
pyfMRIqc is written in Python, a widely used and freely 
available programming language. Because the software 
is developed in Python it is nearly platform-independent 
and therefore can be used by the majority of individuals in 
the neuroimaging community. Because pyfMRIqc is a user-
friendly tool it is suitable for neuroscientists at all stages of 
their career and can be used for quality assurance for both 
individual datasets or can be implemented into automatic 
pipelines for data quality assurance immediately after 
scanning. Indeed, the latter usage is similar to how 
pyfMRIqc is currently being implemented within the CINN 
imaging community, where data quality assurance using 
pyfMRIqc is now standard procedure. Future releases 
of pyfMRIqc may also include additional features that 
will increase the reusability of the tool. Support can be 
provided by the authors via email (pyfMRIqc@gmail.com).

Competing Interests
The authors have no competing interests to declare.

References
1.	 Erasmus, L, Hurter, D, Naude, M, Kritzinger, H and 

Acho, S 2004 A short overview of MRI artefacts. South 
African Journal of Radiology, 8(2): 13. DOI: https://doi.
org/10.4102/sajr.v8i2.127

2.	 Friston, K, Williams, S, Howard, R, Frackowiak, 
R and Turner, R 1996 Movement-Related effects in 
fMRI time-series.  Magnetic Resonance in Medicine, 
35(3): 346–355. DOI: https://doi.org/10.1002/
mrm.1910350312

3.	 Wu, D, Lewin, J and Duerk, J 1997 Inadequacy of 
motion correction algorithms in functional MRI: Role 
of susceptibility-induced artifacts. Journal of Magnetic 
Resonance Imaging, 7(2): 365–370. DOI: https://doi.
org/10.1002/jmri.1880070219

4.	 Birn, R, Bandettini, P, Cox, R, Jesmanowicz, A 
and Shaker, R 1998 Magnetic field changes in the 
human brain due to swallowing or speaking. Magnetic 
Resonance in Medicine, 40(1): 55–60. DOI: https://doi.
org/10.1002/mrm.1910400108

5.	 Krüger, G and Glover, G 2001 Physiological noise 
in oxygenation‐sensitive magnetic resonance 
imaging. Magnetic Resonance in Medicine, 46(4): 631–
637. DOI: https://doi.org/10.1002/mrm.1240

6.	 Hood, M, Ho, V, Smirniotopoulos, J and Szumowski, 
J 1999 Chemical Shift: The Artifact and Clinical Tool 
Revisited. RadioGraphics, 19(2): 357–371. DOI: https://
doi.org/10.1148/radiographics.19.2.g99mr07357

7.	 Todd, N, Moeller, S, Auerbach, E, Yacoub, E, 
Flandin, G and Weiskopf, N 2016 Evaluation of 2D 
multiband EPI imaging for high-resolution, whole-
brain, task-based fMRI studies at 3T: Sensitivity and 
slice leakage artifacts. NeuroImage, 124: 32–42. DOI: 
https://doi.org/10.1016/j.neuroimage.2015.08. 
056

8.	 McNabb, CB, Lindner, M, Shen, S, Burgess, LG, 
Murayama, K and Johnstone, T 2020 Inter-slice 
leakage and intra-slice aliasing in simultaneous multi-
slice echo-planar images. Brain Struct Funct. DOI: 
https://doi.org/10.1007/s00429-020-02053-2

9.	 Raamana, P 2018 VisualQC: Assistive tools for easy 
and rigorous quality control of neuroimaging data. 
DOI: https://doi.org/10.5281/zenodo.1211365

10.	Esteban, O, Birman, D, Schaer, M, Koyejo, O, 
Poldrack, R and Gorgolewski, K. MRIQC: Advancing 
the automatic prediction of image quality in MRI from 
unseen sites. PLoS ONE, 12(9): e0184661. DOI: https://
doi.org/10.1371/journal.pone.0184661

11.	Power, J 2017 A simple but useful way to assess 
fMRI scan qualities. NeuroImage, 154: 150–158. DOI: 
https://doi.org/10.1016/j.neuroimage.2016.08. 
009

How to cite this article: Williams, B and Lindner, M 2020 pyfMRIqc: A Software Package for Raw fMRI Data Quality 
Assurance. Journal of Open Research Software, 8: 23. DOI: https://doi.org/10.5334/jors.280

Submitted: 05 June 2019       Accepted: 16 September 2020        Published: 07 October 2020

Copyright: © 2020 The Author(s). This is an open-access article distributed under the terms of the Creative Commons 
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESSJournal of Open Research Software is a peer-reviewed open access journal published by 
Ubiquity Press.

https://github.com/DrMichaelLindner/pyfMRIqc
https://github.com/DrMichaelLindner/pyfMRIqc
mailto:pyfMRIqc@gmail.com
https://doi.org/10.4102/sajr.v8i2.127
https://doi.org/10.4102/sajr.v8i2.127
https://doi.org/10.1002/mrm.1910350312
https://doi.org/10.1002/mrm.1910350312
https://doi.org/10.1002/jmri.1880070219
https://doi.org/10.1002/jmri.1880070219
https://doi.org/10.1002/mrm.1910400108
https://doi.org/10.1002/mrm.1910400108
https://doi.org/10.1002/mrm.1240
https://doi.org/10.1148/radiographics.19.2.g99mr07357
https://doi.org/10.1148/radiographics.19.2.g99mr07357
https://doi.org/10.1016/j.neuroimage.2015.08.056
https://doi.org/10.1016/j.neuroimage.2015.08.056
https://doi.org/10.1007/s00429-020-02053-2
https://doi.org/10.5281/zenodo.1211365
https://doi.org/10.1371/journal.pone.0184661
https://doi.org/10.1371/journal.pone.0184661
https://doi.org/10.1016/j.neuroimage.2016.08.009
https://doi.org/10.1016/j.neuroimage.2016.08.009
https://doi.org/10.5334/jors.280
http://creativecommons.org/licenses/by/4.0/

	(1) Overview 
	Introduction
	Implementation and architecture 
	Usage 
	Measures and output 
	Mean 
	Variance 
	Masks 
	Mean voxel time course of bins  
	Scaled squared difference  
	Signal-to-noise ratio 
	Optional: Motion parameter summary 
	HTML output file 
	Output nifti files 


	Quality control  

	(2) Availability  
	Programming language 
	Additional system requirements 
	Dependencies 
	List of contributors 
	Software location 
	Code repository  

	Language 

	(3) Reuse potential  
	Competing Interests 
	References 
	Figure 1
	Figure 2
	Figure 3
	Figure 4

