
pyfMRIqc: a software package for raw
fMRI data quality assurance
Article

Published Version

Creative Commons: Attribution 4.0 (CC-BY)

Open Access

Williams, B. ORCID: https://orcid.org/0000-0003-3844-3117
and Lindner, M. (2020) pyfMRIqc: a software package for raw
fMRI data quality assurance. Journal of Open Research
Software, 8 (1). 23. ISSN 2049-9647 doi: 10.5334/jors.280
Available at https://centaur.reading.ac.uk/93457/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .
Published version at: http://dx.doi.org/10.5334/jors.280
To link to this article DOI: http://dx.doi.org/10.5334/jors.280

Publisher: Ubiquity Press

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Reading’s research outputs online

Williams, B and Lindner, M 2020 pyfMRIqc: A Software Package for Raw
fMRI Data Quality Assurance. Journal of Open Research Software, 8: 23.
DOI: https://doi.org/10.5334/jors.280

Journal of
open research software

SOFTWARE METAPAPER

pyfMRIqc: A Software Package for Raw fMRI Data
Quality Assurance
Brendan Williams and Michael Lindner
Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, GB
Corresponding author: Michael Lindner (mlindner.mail@gmx.de)

pyfMRIqc is a tool for checking the quality of raw functional magnetic resonance imaging (fMRI) data.
pyfMRIqc produces a range of output files which can be used to identify fMRI data quality issues such as
artefacts, motion, signal loss etc. This tool creates a number of 3D and 4D NIFTI files that can be used for in
depth quality assurance. Additionally, 2D images are created for each NIFTI file for a quick overview. These
images and other information (e.g. about signal-to-noise ratio, scan parameters, etc.) are combined in a user-
friendly HTML output file. pyfMRIqc is written entirely in Python and is available under a GNU GPL3 license
on GitHub (https://drmichaellindner.github.io/pyfMRIqc/). pyfMRIqc can be used from the command line and
therefore can be included as part of a processing pipeline or used to quality-check a series of datasets using
batch scripting. The quality assurance of a single dataset can also be performed via dialog boxes.

Keywords: neuroscience; neuroimaging; fMRI; Python; quality control; artefacts
Funding statement: Brendan Williams is funded by the Magdalen Vernon PhD Studentship of the School of
Psychology and Clinical Language Sciences, University of Reading. The project was funded by the Centre
for Integrative Neuroscience and Neurodynamics, and the University of Reading.

(1) Overview
Introduction
Functional magnetic resonance imaging (fMRI) is a
widely used research technique in human neuroscience
to investigate experimentally driven changes in blood
oxygenation (BOLD contrast) as a proxy of neural activity.
Because fMRI data has a low signal-to-noise ratio, many
different types of data quality issues can occur during data
acqusition and these issues are related to a wide range of
sources [1].

Sources that affect data quality during fMRI data
acquisition include:

•	 Participant related artefacts.
	 The behavior of the participant in the scanner has an

influence on the data quality. For example, partici-
pant head motion is a primary source of motion arte-
facts during data acqusition as head motion interferes
with the continuous measurement of the same tissue
within a voxel. Participant head motion can also cause
specific artefacts in fMRI data, such as spin-history
artefacts [2] and motion-by-susceptibility interactions
[3]. Another source of participant related artefacts
are speaking and swallowing which can cause motion
artefacts and localized changes in the homogeneity of
the magnetic field creating further data quality issues
[4]. Additional sources of participant related artefacts

include physiological processes such as respiration,
pulse and metabolism [5].

•	 Technique-related artefacts.
	 A number of technique related artefacts can occur

during data acqusition such as Gibbs artefacts, alias-
ing, zipper artefacts, nyquist, ghosting and many
more (see a detailed overview: http://mriquestions.
com/technique-related-artifacts.html).

•	 Tissue specific artefacts.
	 Different molecules and tissues have different mag-

netic susceptibilities (diamagnetic, paramagnetic,
superparamagnetic or ferromagnetic) and different
combinations of these types of molecules and tissues
could lead to various susceptibility artefacts such as
distortions or local signal changes due to localized
magnetic field in-homogeneities [6].

•	 Sequence specific artefacts.
	 Many different types of imaging sequences are avail-

able for fMRI data acquisition, including echoplanar,
multiband/multislice, and multi echo sequences.
Each sequence type has its own specific advantages in
terms of spatial or temporal resolution, but each also
has its own sources and types of artefacts and other
data quality issues, such as GRAPPA (GeneRalized
Autocalibrating Partial Parallel Acquisition) artefacts
in parallel imaging, or slice leakage artefacts in multi-
band acquisition [7, 8].

https://doi.org/10.5334/jors.280
mailto:mlindner.mail@gmx.de
https://drmichaellindner.github.io/pyfMRIqc/
http://mriquestions.com/technique-related-artifacts.html
http://mriquestions.com/technique-related-artifacts.html

Williams and Lindner: pyfMRIqcArt. 23, page 2 of 7

All these issues described above have different influences
on fMRI data quality including: distorted images due to
sequence specific artefacts; local incorrect values due to
motion or changes in field homogeneity; change or loss of
local or global signal. Some of these issues, such as motion,
can be corrected if they are identified. Other issues, such
as signal loss, cannot be corrected, and the data should be
excluded from a research study to prevent spurious results
from data analysis.

Human neuroimaging studies using fMRI involve the
collection of large-scale datasets of BOLD contrast over
time for each participant in the experiment. These datasets
are then modelled to identify task relevant activity in the
dataset. However, as previously mentioned, there are many
potential sources of artefacts in fMRI data. These artefacts
need to be identified to prevent the misidentification of
artefacts as task-relevant activity during analysis. But, the
manual screening of fMRI datasets for artefacts produced
by the sources described above is a time-consuming
process and can be error prone.

Current tools for quality assurance of fMRI data include
VisualQC [9], and MRIQC [10]. Both provide the user with
global measures of mean, standard deviation, and rate
of signal change for functional timeseries. MRIQC also
reports additional global metrics relating to spatial and
temporal information, and artefact detection. pyfMRIqc
extends the functionality of current tools by providing
further quality assurance measures. These include slice-
wise difference measures for consecutive functional
volumes, nitfi files of quality assurance measures, and
output viewable as a Html report. Like pyfMRIqc, both
VisualQC and MRIQC are written in Python and can
be initialized from the command line. However, the
recommended method for using MRIQC involves running
a containerized version in docker because the nipype
workflow of MRIQC is dependent on the presence of
additional analysis software. This is problematic since
docker requires root access, raising potential security
and confidentiality issues for neuroscience institutes
who work with sensitive, personally identifiable data.
pyfMRIqc, therefore, is more secure with respect to data
protection as it operates independently from other fMRI
analysis software packages, meaning it does not need to
be containerized to work optimally.

pyfMRIqc has been developed as a piece of user-friendly
software that is easy to install and use, providing the user
with measures and guidelines for checking the quality
of fMRI data. pyfMRIqc is an open-source software tool
designed for quick and easy quality assurance of raw fMRI
data before pre-processing or analysis via input dialog
boxes (ID) or the command line. The software aims to help
the user make decisions on the usability of their data, and
any necessary pre-processing treatment.

Implementation and architecture
pyfMRIqc was written entirely in Python because it is
free, widely used in neuroscience, and available for every
major operating system (Linux, Windows and MacOS).
pyfMRIqc has been developed and tested with Python
version 3.6.4. pyfMRIqc can be executed using batch

scripting if you wish to use the tool to check multiple
datasets or include the tool as part of a pipeline. It can
also be run using ID if you wish to check a single dataset,
however not all input options are available if you chose
to run pyfMRIqc via ID (more details below). pyfMRIqc
is designed for the quality assurance of raw fMRI data,
however pre-processed data can also be checked using the
software.

Usage
pyfMRIqc can be used with ID (for beginners or for testing
a single data set) or with command line parameters
(recommended usage – for advanced users, multiple
datasets, or adding to a pipeline). The ID version of
pyfMRIqc needs to be started without any input parameters
by typing the following into the terminal (note, the
absolute path should be included if pyfMRIqc.py is not in
your working directory):

python pyfMRIqc.py

For command line input the following parameter can be
specified. (Some of these input parameters are exclusive
for the command line parameter input and are not
available via ID):

-n:	 functional MR nifti file (path).
-s:	 percentage of voxels with the lowest mean time

course values (outside the mask) that are used for
the SNR calculation (scalar value).

either
	 -t:	� threshold of minimum mean voxel intensity

that should be included in the quality assurance
(scalar value).

or
	 -k:	� binary nifti mask file of voxels that should be

included in the quality assurance (path).
optional
-o:	 output directory (path).
-m:	motion parameters file following motion correction

with FSL (*.par), SPM (rp*.txt) or AFNI (*.1D) (path).
-x:	 if -x is set, the 3D and 4D nifti output files are not

saved.
-h, --help: prints the pyfMRIqc input help to the com-

mand window.

For example:

python pyfMRIqc.py \
	 -n <your_functional_file.nii> \
	 -s 10 \
	 -k <your_mask_file.nii> \
	 -o <your_output_path> \
	 -m <your_motion_file> \
	 -x

Would execute pyfMRIqc for your_functional_file.nii.
The mask your_mask_file.nii would be applied to your_
functional_file.nii, 10% of voxels (with the lowest mean
time course values) would be used for SNR calculation and

Williams and Lindner: pyfMRIqc Art. 23, page 3 of 7

your_motion_file would be loaded. pyfMRIqc output data
would be saved to your_output_path and additional nifti
files would not be saved as part of your output.

Measures and output
Mean
The mean voxel intensity over time can be used to see if
there is any general signal loss. pyfMRIqc provides 3D nifti
and a 2D .png overview image as output for the mean
voxel intensity.

Variance
The variance over time is calculated voxel-wise. Typically,
grey matter, brain stem, eyes, and blood vessels have the
highest variability of BOLD signal. Therefore, these tissue
types have higher values and are brighter in this image
(nifti and 2D). Sudden or unexpected signal changes due
to artefacts, motion etc. in one or more volumes will
increase the variance and therefore will be detectable in
these images. For example, Figure 1 shows how local
signal dropout in a few volumes will appear as a grey
pattern in the image. pyfMRIqc provides 3D nifti and a 2D
.png overview image as output for the variance.

Masks
pyfMRIqc creates two output .nii files containing binary
masks:

1)	 Mask: depending on the user input (-t or -k):
a.	 containing voxels with higher intensity values

than given threshold (t) (Figure 2, blue)
	 or
b.	 same mask as the input mask (k)

2)	 Mask for Signal to Noise Ratio (SNR): contains the
voxels used in the SNR calculation depending on
input -s (Figure 2, green)

Mean voxel time course of bins
To produce this output, voxels are sorted depending
on their mean voxel time course intensity and then
divided into 50 bins with an equal number of voxels in
each bin. Then the voxels are averaged per volume for
each bin. Each horizontal line represents the averaged
voxel time course of one bin. The bins are sorted
ascending (top-down) depending on the mean voxel
intensity, so that the upper part of the plot represents
voxels outside the brain, lower middle parts represent

Figure 1: Example of cubic local signal dropout in the variance image. The grey squares show the position of local signal
loss in the example file pyfMRIqc_example_local_signal_loss.nii.gz.

Williams and Lindner: pyfMRIqcArt. 23, page 4 of 7

grey matter, and lower parts represent voxels in white
matter.

This image is meant to detect unexpected or unwanted
changes in the signal variance as described by Power [11].
Prominent vertical patterns in this image could be related
to different types of issues such as signal loss, noise
and artefacts, which in turn may be caused by motion,
respiratory interference, field heterogeneity issues, etc
(see Figure 3A). It can also help to identify if an issue is
global (from top to bottom, Figure 3B) or only related
to some of the tissue types (vertical pattern in subparts).
Additionally, the user can check if any known effect
(such as motion – e.g. as identified from the motion plot,
Figure 4A) influences the signal change or not. pyfMRIqc
provides a 2D .png image as output for the mean voxel
time course of bins.

Scaled squared difference
For the scaled squared difference (SSD), the first derivative
of the time course q = dx/dt, dt = 1 is calculated.
This yields the difference of two consecutive time points
t – (t-1) for each voxel (V). These differences are then
squared to handle negative values and to improve scaling
for the identification of outliers. To take the differences
in absolute signal intensity into account the squared

differences are divided by the mean of squared differences
of all voxels (M):

2
t t-1

t

(V - V)
SSD =

M

Four quality assurance images are created using SSD
values. The first image shows the mean SSD over all
voxels to get an overview of any global signal changes.
The second image shows the mean SSD for each slice
separately. Each colored plot in the image represents
one slice. In contrast to the first image, signal changes
in the second image can be detected slice-wise, giving an
overview of non-global sudden signal changes. The third
image shows the normalized average of the demeaned
voxel intensity, the normalized SSD variance, and the
normalized sum of relative movement for each volume.
This plot can be used to directly compare the quality
assurance report of multiple datasets since the values
are normalized. The fourth image displays the minimum,
mean and maximum slice-wise SSD averaged over
volumes.

SSD can be used to detect sudden changes in signal
intensity which can occur because of different problems,
for example:

Figure 2: Mask image for file pyfMRIqc_example_local_signal_loss.nii.gz. The blue color shows voxels above the given
intensity threshold that are included in the quality assurance. Green voxels are the nth percentage of voxels with the
lowest mean time course values used for SNR calculation.

Williams and Lindner: pyfMRIqc Art. 23, page 5 of 7

•	 head motion (Figure 4A) – at the time point the
motion occurs the voxel time course of a spatially
defined brain tissue is interrupted. In this case the SSD
will show either a peak or step (positive or negative).

•	 signal loss or artefact (Figure 4B) – the “continuous”
voxel time course signal is interrupted by sudden
extreme low or high values. In these instances, the
image would show a large positive or negative peak.

pyfMRIqc provides 3D nifti and a 2D .png overview image
as output for the SSD.

Signal-to-noise ratio
To calculate the signal-to-noise ratio, the mean voxel
intensity for each voxel is divided by the standard
deviation of the mean noise, averaged across the temporal
domain. In pyfMRIqc the mean noise is defined as the

Figure 3: Examples of the mean voxel time course of bins plot A) Example file pyfMRIqc_example_motion.nii.gz: Two
major vertical patterns show the global effects of head motion on different tissue types (bins 32 and higher). The
first vertical pattern after volume 65 is related to a strong movement and the second pattern after volume 175 is
related to another small movement. The lower numbered bins (top of the plot) represent voxels covering empty space
around the head that are not affected by motion. B) Example file pyfMRIqc_example_volume_intensity_loss.nii.gz:
Two major vertical patterns between volumes 100 and 122 show global signal intensity loss.

Figure 4: Example of the third scaled squared difference plot: A) In the red box the plot shows that the variance of
the SSD (blue line) is related to the head motion of the participant (green line). This is plotted from example file
pyfMRIqc_example_motion.nii.gz. B) The negative peaks in the mean voxel intensity are related to global signal
intensity loss in two volumes in the example file pyfMRIqc_example_volume_intensity_loss.nii.gz.

Williams and Lindner: pyfMRIqcArt. 23, page 6 of 7

average of the s% of voxels having the lowest mean
intensity, where s is dependent on the user input (-s).
pyfMRIqc provides a 3D nifti image with voxel-wise
SNR values and a summary of values as output for the
SNR.

The Slice SNRs measures the time course SNR averaged
across each slice, and Mean voxel SNR is the average over
all the slices together. The higher the SNR, the smaller the
relative fluctuations and more stable the signal is over
repeated measurements. The SNR provides an estimate of
the reliability (~ reproducibility) of fMRI data and serves as
a general goodness measure.

Optional: Motion parameter summary
If a motion parameter file is provided as input, a short
summary is provided at the end of the html file, namely the
mean and max of each absolute and relative movement,
where absolute movement is movement relative to the
first volume, and relative movement is the movement
relative to the previous volume.

Sudden movements are worse for fMRI data (and
motion correction algorithms) than slow drifts. Therefore,
relative movement values are the more important values.
As a rule-of-thumb relative movement that is bigger than
the acquisition voxel size is unacceptable and therefore,
if pyfMRIqc shows a number bigger than 0 for “relative
movement > voxel size”, the data should not be used.
Relative movement > 0.5mm is not good and thorough
checks should ensure that the motion correction
algorithm has worked properly. Relative movement
> 0.1mm may be ok but in case of high numbers in this
metric the data should be checked thoroughly and used
with care. Additionally, ideally the max absolute motion
should be less than 2mm or at least less than the voxel
size.

HTML output file
pyfMRIqc provides an html file to combine quality
assurance values and all the 2D images mentioned above
for a quick overview of the data quality.

Output nifti files
nifti images (if -x is not set):

- mean_<yourfile>
	 mean voxel intensity over time (3D)
- variance_<yourfile>
	 variance of the voxel time courses(3D)
- mask_<yourfile>
	 binary – containing voxels above the threshold or the

input mask (3D)
- mask4snr_<yourfile>
	 binary – lowest n percent of lowest values used for

SNR calculation (3D)
- snr_<yourfile>
	 voxel-wise signal-to-noise ratio (3D)
- squared_scale_diff_<yourfile>
	 squared scaled signal variability: squared difference

between two consecutive volumes divided by the
global mean difference

Quality control
pyfMRIqc is currently used by members of the
neuroimaging community at the University of Reading
for quality assurance of raw fMRI data. We have created
example datasets with specific deliberate errors to test
and validate the algorithms in pyfMRIqc. These deliberate
errors are representative of the type of errors that could
occur during fMRI data acquisition. These example datasets
are also freely available via GitHub for users to download
and trial pyfMRIqc. The example file pyfMRIqc_example_
motion.nii.gz is an example of participant motion. This
data set contains 211 volumes of a standard EPI sequence.
The participant moved twice during the scan, the first is a
strong movement after volume 65 and the second is a small
movement after volume 175. The example file pyfMRIqc_
example_local_signal_loss.nii.gz is an example of local signal
loss (signal loss has been artificially created for this example
by replacing signal with low gaussian random noise). Signal
loss of a cube of voxels (10 × 10 × 10) is located in the middle
of the frontal cortex for two volumes (50 and 120). The
example file pyfMRIqc_fMRI_example_volume_intensity_
loss.nii.gz is an example of a global reduction in signal
intensity for two volumes: Volume 101 shows an intensity
loss of about 20% of the mean intensity and volume 122 an
intensity loss of about 10% of the mean intensity.

Although pyfMRIqc has undergone extensive testing
to ensure proper functionality, users are able to contact
the developers with any issues or bugs they may discover
when using pyfMRIqc using the projects dedicated email
address: pyfMRIqc@gmail.com. Additionally, as pyfMRIqc
is open-source (GPLv3) and freely available, we actively
welcome contributors from the neuroscience community
to contribute to the project if they wish. A detailed
description of how to use pyfMRIqc can be found in the
pyfMRIqc documentation on the GitHub page (https://
drmichaellindner.github.io/pyfMRIqc/).

(2) Availability
Operating system
pyfMRIqc is written in Python and therefore is available on
any operating system that supports Python frameworks.
pyfMRIqc was tested on Ubuntu 18.04, Windows 7 and 10,
and macOS Sierra.

Programming language
Python 3.6 (tested on Python 3.6.4)

Additional system requirements
None

Dependencies
The following Python packages need to be available, version
number used for development is provided in brackets.
Newer versions of packages should also be compatible:

	 nibabel (2.2.1)
	 numpy (1.14.3)
	 matplotlib (2.1.0)
	 scipy (0.19.1)
	 easygui (0.98.1)

mailto:pyfMRIqc@gmail.com
https://drmichaellindner.github.io/pyfMRIqc/
https://drmichaellindner.github.io/pyfMRIqc/

Williams and Lindner: pyfMRIqc Art. 23, page 7 of 7

List of contributors
Michael Lindner is the main developer and maintainer
of pyfMRIqc. Brendan Williams has contributed to some
of the functions and documentation. Both authors
were involved in writing this article. The code for this
software was developed at the Centre for Integrative
Neuroscience and Neurodynamics (CINN) at the University
of Reading, UK.

Software location
Code repository

Name: GitHub
Identifier: �https://github.com/DrMichaelLindner/

pyfMRIqc
Version: 1.1
License: GNU GPL3
Date published: 15/05/19

Language
English

(3) Reuse potential
pyfMRIqc is written in Python, a widely used and freely
available programming language. Because the software
is developed in Python it is nearly platform-independent
and therefore can be used by the majority of individuals in
the neuroimaging community. Because pyfMRIqc is a user-
friendly tool it is suitable for neuroscientists at all stages of
their career and can be used for quality assurance for both
individual datasets or can be implemented into automatic
pipelines for data quality assurance immediately after
scanning. Indeed, the latter usage is similar to how
pyfMRIqc is currently being implemented within the CINN
imaging community, where data quality assurance using
pyfMRIqc is now standard procedure. Future releases
of pyfMRIqc may also include additional features that
will increase the reusability of the tool. Support can be
provided by the authors via email (pyfMRIqc@gmail.com).

Competing Interests
The authors have no competing interests to declare.

References
1.	 Erasmus, L, Hurter, D, Naude, M, Kritzinger, H and

Acho, S 2004 A short overview of MRI artefacts. South
African Journal of Radiology, 8(2): 13. DOI: https://doi.
org/10.4102/sajr.v8i2.127

2.	 Friston, K, Williams, S, Howard, R, Frackowiak,
R and Turner, R 1996 Movement-Related effects in
fMRI time-series. Magnetic Resonance in Medicine,
35(3): 346–355. DOI: https://doi.org/10.1002/
mrm.1910350312

3.	 Wu, D, Lewin, J and Duerk, J 1997 Inadequacy of
motion correction algorithms in functional MRI: Role
of susceptibility-induced artifacts. Journal of Magnetic
Resonance Imaging, 7(2): 365–370. DOI: https://doi.
org/10.1002/jmri.1880070219

4.	 Birn, R, Bandettini, P, Cox, R, Jesmanowicz, A
and Shaker, R 1998 Magnetic field changes in the
human brain due to swallowing or speaking. Magnetic
Resonance in Medicine, 40(1): 55–60. DOI: https://doi.
org/10.1002/mrm.1910400108

5.	 Krüger, G and Glover, G 2001 Physiological noise
in oxygenation‐sensitive magnetic resonance
imaging. Magnetic Resonance in Medicine, 46(4): 631–
637. DOI: https://doi.org/10.1002/mrm.1240

6.	 Hood, M, Ho, V, Smirniotopoulos, J and Szumowski,
J 1999 Chemical Shift: The Artifact and Clinical Tool
Revisited. RadioGraphics, 19(2): 357–371. DOI: https://
doi.org/10.1148/radiographics.19.2.g99mr07357

7.	 Todd, N, Moeller, S, Auerbach, E, Yacoub, E,
Flandin, G and Weiskopf, N 2016 Evaluation of 2D
multiband EPI imaging for high-resolution, whole-
brain, task-based fMRI studies at 3T: Sensitivity and
slice leakage artifacts. NeuroImage, 124: 32–42. DOI:
https://doi.org/10.1016/j.neuroimage.2015.08.
056

8.	 McNabb, CB, Lindner, M, Shen, S, Burgess, LG,
Murayama, K and Johnstone, T 2020 Inter-slice
leakage and intra-slice aliasing in simultaneous multi-
slice echo-planar images. Brain Struct Funct. DOI:
https://doi.org/10.1007/s00429-020-02053-2

9.	 Raamana, P 2018 VisualQC: Assistive tools for easy
and rigorous quality control of neuroimaging data.
DOI: https://doi.org/10.5281/zenodo.1211365

10.	Esteban, O, Birman, D, Schaer, M, Koyejo, O,
Poldrack, R and Gorgolewski, K. MRIQC: Advancing
the automatic prediction of image quality in MRI from
unseen sites. PLoS ONE, 12(9): e0184661. DOI: https://
doi.org/10.1371/journal.pone.0184661

11.	Power, J 2017 A simple but useful way to assess
fMRI scan qualities. NeuroImage, 154: 150–158. DOI:
https://doi.org/10.1016/j.neuroimage.2016.08.
009

How to cite this article: Williams, B and Lindner, M 2020 pyfMRIqc: A Software Package for Raw fMRI Data Quality
Assurance. Journal of Open Research Software, 8: 23. DOI: https://doi.org/10.5334/jors.280

Submitted: 05 June 2019 Accepted: 16 September 2020 Published: 07 October 2020

Copyright: © 2020 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESSJournal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press.

https://github.com/DrMichaelLindner/pyfMRIqc
https://github.com/DrMichaelLindner/pyfMRIqc
mailto:pyfMRIqc@gmail.com
https://doi.org/10.4102/sajr.v8i2.127
https://doi.org/10.4102/sajr.v8i2.127
https://doi.org/10.1002/mrm.1910350312
https://doi.org/10.1002/mrm.1910350312
https://doi.org/10.1002/jmri.1880070219
https://doi.org/10.1002/jmri.1880070219
https://doi.org/10.1002/mrm.1910400108
https://doi.org/10.1002/mrm.1910400108
https://doi.org/10.1002/mrm.1240
https://doi.org/10.1148/radiographics.19.2.g99mr07357
https://doi.org/10.1148/radiographics.19.2.g99mr07357
https://doi.org/10.1016/j.neuroimage.2015.08.056
https://doi.org/10.1016/j.neuroimage.2015.08.056
https://doi.org/10.1007/s00429-020-02053-2
https://doi.org/10.5281/zenodo.1211365
https://doi.org/10.1371/journal.pone.0184661
https://doi.org/10.1371/journal.pone.0184661
https://doi.org/10.1016/j.neuroimage.2016.08.009
https://doi.org/10.1016/j.neuroimage.2016.08.009
https://doi.org/10.5334/jors.280
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	Usage
	Measures and output
	Mean
	Variance
	Masks
	Mean voxel time course of bins
	Scaled squared difference
	Signal-to-noise ratio
	Optional: Motion parameter summary
	HTML output file
	Output nifti files

	Quality control

	(2) Availability
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Code repository

	Language

	(3) Reuse potential
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4

