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Abstract. We have studied the evolution of the Greenland
ice sheet under a range of constant climates typical of those
projected for the end of the present century using a dynam-
ical ice sheet model (Glimmer) coupled to an atmosphere
general circulation model (FAMOUS–ice AGCM). The ice
sheet surface mass balance (SMB) is simulated within the
AGCM by a multilayer snow scheme from snowfall and sur-
face energy �uxes, including refreezing and dependence on
altitude within AGCM grid boxes. Over millennia under any
warmer climate, the ice sheet reaches a new steady state,
whose mass is correlated with the magnitude of global cli-
mate change imposed. If a climate that gives the recently
observed SMB were maintained, global-mean sea level rise
(GMSLR) would reach 0.5–2.5 m. For any global warming
exceeding 3 K, the contribution to GMSLR exceeds 5 m. For
the largest global warming considered (aboutC5 K), the rate
of GMSLR is initially 2.7 mm yr� 1, and eventually only a
small ice cap endures, resulting in over 7 m of GMSLR. Our
analysis gives a qualitatively different impression from pre-
vious work in that we do not �nd a sharp threshold warm-
ing that divides scenarios in which the ice sheet suffers lit-
tle reduction from those in which it is mostly lost. The �nal
steady state is achieved by withdrawal from the coast in some
places and a tendency for increasing SMB due to enhance-
ment of cloudiness and snowfall over the remaining ice sheet
by the effects of topographic change on atmospheric circula-
tion, outweighing the tendency for decreasing SMB from the
reduction in surface altitude. If late 20th-century climate is
restored after the ice sheet mass has fallen below a threshold
of about 4 m of sea level equivalent, it will not regrow to its
present extent because the snowfall in the northern part of
the island is reduced once the ice sheet retreats from there. In
that case, about 2 m of GMSLR would become irreversible.

In order to avoid this outcome, anthropogenic climate change
must be reversed before the ice sheet has declined to the
threshold mass, which would be reached in about 600 years
at the highest rate of mass loss within the likely range of the
Fifth Assessment Report of the Intergovernmental Panel on
Climate Change.

1 Introduction

1.1 Mass loss from the Greenland ice sheet in recent
decades

During 1961–1990 the Greenland ice sheet had a roughly
constant mass, in which snowfall was balanced by the sum
of surface ablation (meaning all processes of mass loss,
predominantly liquid run-off due to melting) and solid dis-
charge of ice into the sea (forming icebergs). Over the last
30 years both ablation and discharge have increased signi�-
cantly, while snowfall has not (Shepherd et al., 2012; van den
Broeke et al., 2016; Bamber et al., 2018; Mouginot et al.,
2019). In recent years, the mass loss from the Greenland ice
sheet of 239� 20 Gt yr� 1 (in 2012–2017; Shepherd et al.,
2020), or about 0.7 mm yr� 1 sea level equivalent (SLE), ac-
counts for about 20 % of global-mean sea level rise (GM-
SLR), most of which is due to thermal expansion of seawater
(i.e. thermosteric) or mass loss from glaciers.

The increase in discharge is probably the ice-dynamical
response of outlet glaciers to reduced buttressing by their
ice tongues, which have thinned due to basal melting by
warmer seawater (Holland et al., 2008). The increase in ab-
lation causes 60 % of the mass loss (van den Broeke et al.,
2016; Fettweis et al., 2017). It has been partly due to anthro-
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pogenic climatic warming, which is ampli�ed at high north-
ern latitudes, and partly to recent unusual atmospheric cir-
culation (Tedesco et al., 2013; Fettweis et al., 2017; Pattyn
et al., 2018; Trusel et al., 2018). In recent years, the surface
mass balanceS D P� R, whereP is snowfall andR ablation,
has fallen lower than during the warm period in Greenland
in the early 20th century (Fettweis et al., 2017), and summer
temperatures have risen higher (Hanna et al., 2012). Some re-
cent summers have seen surface melting over practically the
entire ice sheet because of high air temperature, decreased
cloudiness and reduction in albedo, the latter due to the in-
crease in snow grain size and the exposure of bare ice, both
caused by surface snow melting (Tedesco et al., 2013, 2016;
Hofer et al., 2017; Trusel et al., 2018).

1.2 Projections of future mass loss

The future of the Greenland ice sheet is one of the large un-
certainties in projections of GMSLR (Church et al., 2013;
Clark et al., 2016). Ice discharge is projected to increase in
coming decades with rising water temperature, but it will de-
cline on longer timescales as the ice sheet thins at the coast,
and its outlet glacier termini retreat inland (Nick et al., 2013;
Fürst et al., 2015; Aschwanden et al., 2019). On multicen-
tennial timescales, surface mass balance (SMB) is dominant
and the source of greater uncertainty (Fürst et al., 2015).

Projections indicate that ablation will increase non-
linearly with temperature and more rapidly than snowfall,
meaning that SMB will continue to decline, and the rate
of mass loss will grow, especially under scenarios of high
CO2 emissions (Gregory and Huybrechts, 2006; Fettweis
et al., 2013; Vizcaíno et al., 2014; Pattyn et al., 2018; Rück-
amp et al., 2018; Golledge et al., 2019; Aschwanden et al.,
2019). Recent projections of the contribution of the Green-
land ice sheet to GMSLR mostly lie within the likely ranges
of the Fifth Assessment Report (AR5) of the Intergovern-
mental Panel on Climate Change (Church et al., 2013),
viz. 0.04–0.12 and 0.09–0.28 m by 2100 relative to 1986–
2005 under scenarios RCP2.6 and RCP8.5, respectively. The
range of uncertainty arises from the spread in global warming
simulated by atmosphere–ocean general circulation models
(AOGCMs) and in their ampli�cation of warming in Green-
land relative to global warming as well as the sensitivity of
Greenland SMB to regional climate change (Gregory and
Huybrechts, 2006; Fettweis et al., 2013).

Although substantial, the contribution from the Greenland
ice sheet is only 10 %–30 % of projected GMSLR by 2100.
Its importance is greater on multicentury timescales because
its size (massM D 7:4 m SLE) implies a large commitment
to GMSLR. Thinning of the ice sheet due to increasing abla-
tion is affected by a positive feedback loop between SMB and
elevation: as the surface elevation falls, the surface air tem-
perature rises, and surface melting increases, magnifying the
ablation increase. We refer to this as the local lapse-rate feed-
back. Another positive feedback on ablation is caused by the

decrease in surface albedo due to melting, as in recent years
(Tedesco et al., 2016). Despite these feedbacks, a steady state
could be regained with an ice sheet of smaller mass but little
loss of area if the reduction in SMB were compensated by
the reduction in discharge resulting from thinning of outlet
glaciers (Rückamp et al., 2018) (see Sect. 1.3). The reduc-
tion in mass would be mitigated if snowfall increases, which
is projected by AOGCMs.

On the other hand, previous work indicates there may be a
thresholdTc of global-mean surface air temperature change
1 SAT (relative to pre-industrial) beyond which the ice sheet
will be greatly reduced or vanish entirely (Huybrechts et al.,
1991; Gregory et al., 2004; Gregory and Huybrechts, 2006;
Robinson et al., 2012) (see Sect. 1.3). Levermann et al.
(2013) estimatedTc D 0:8–2.2 K using the model of Robin-
son et al. (2012), constrained by information from the last
interglacial (Robinson et al., 2011). If this range is correct,
limiting 1 SAT to 2.0 K in accordance with the Paris Agree-
ment or to its aspiration of 1.5 K could make a critical differ-
ence to whetherTc is exceeded (Pattyn et al., 2018). Loss of
the Greenland ice sheet would cause much greater GMSLR
than from glacier mass loss or thermosteric sea level rise for
similar degrees of warming (Church et al., 2013; Levermann
et al., 2013), although, even in the most extreme scenarios,
the complete removal of the ice sheet would take a least 1000
years (e.g. Ridley et al., 2005; Aschwanden et al., 2019).

1.3 Discussion of the threshold warming

The rate of change of the mass of the ice sheet is dM=dt D
S� D, whereD is discharge. In the unperturbed steady state
dM=dt D 0 ) S D D; i.e. SMB is balanced by discharge. In
a warmer climate, ablationR and snowfallP both increase,
but 1R > 1P ) 1S D 1P � 1R < 0 (see references in
Sect. 1.2), where1 denotes the difference from the initial
state. A new steady state can be achieved if1D D 1S , i.e. if
discharge reduces by as much as SMB so thatD C 1D D
SC 1S .

Let us suppose that raising the global-mean SAT byT ini-
tially perturbs the SMB by an amount1ST .T / < 0. Further
suppose that a new steady state can be achieved with lit-
tle change in ice sheet area, in which discharge is reduced
by marginal thinning such that1D D 1S D 1ST .T / . The
largerT is, the greater the reduction in discharge needs to be
to balance1ST .T / . The thresholdT D Tc is reached when
there is just suf�cient marginal thinning to cause all outlet
glaciers to retreat from the coast, reducing dischargeD C1D
to zero. To attain a balance, SMB must also fall to zero, with
1S D � S. Hence1ST .Tc/ D � S de�nesTc.

Any T exceedingTc will give negative SMB, but discharge
cannot be further reduced (i.e. below zero) to compensate.
The unbalanced negative SMB will reduce the thickness of
the ice sheet and the altitude of the surface, making the SMB
even more negative by the local lapse-rate feedback. If no
other process is involved, the ice sheet will be completely
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eliminated for anyT > Tc by this feedback loop, which is
called the “small ice cap instability”. The threshold has been
estimated asTc D 1:9–4.5 K relative to pre-industrial (Gre-
gory and Huybrechts, 2006; Meehl et al., 2007) by evalu-
ating the warming required to reduce SMB to zero with the
present-day surface topography. The same method gaveTc D
2:1–4.1 K in the AR5 (Church et al., 2013, Sect. 13.4.3.3).

Robinson et al. (2012) showed that this method of calcu-
lation overestimates the actualTc for onset of the small ice
cap instability. One possible contribution to the difference
is the reduction in SMB, neglected above, due to the local
lapse-rate effect of the marginal thinningbeforethe thresh-
old is reached. Let us write this contribution to1S as1SL .
For steady state at the threshold, we now require1ST .Tc/ C
1SL D � S ) 1ST .Tc/ D � .S C 1SL / . Since1SL < 0, the
right-hand side is less negative than before, soTc is smaller.

An ice sheet model is required to allow for1SL in quan-
tifying Tc because the change in ice sheet topography is de-
termined simultaneously by SMB change and ice-dynamical
change. With their model, Robinson et al. (2012) demon-
strated that SMB may initially be positive but decline to zero
as the topography changes, whereupon the instability is trig-
gered, leading to the eventual loss of the ice sheet. They
determined their lowerTc by �nding the �nal steady state
for variousT and versions of their coupled climate–ice sheet
model, and our approach is similar. The coupled system sim-
ulated by their and our models is considerably more com-
plicated than this simpli�ed conceptual treatment, which is
intended to illustrate the idea. The actual outcome is affected
by further feedbacks, both positive and negative, which we
discuss later.

1.4 Possibility of irreversible mass loss

If the ice sheet were removed then, even after CO2 fell, and
global climate returned to pre-industrial, because of greater
ablation or reduced snowfall due to lower elevation and
albedo in deglaciated regions it might not be possible to re-
generate it (Toniazzo et al., 2004). If the ice sheet did not
regrow, it would imply that its pre-industrial steady state is
a relict of a colder climate (Solgaard et al., 2013). Previous
work shows there may be more than two steady states for pre-
industrial climate (Charbit et al., 2008; Ridley et al., 2010;
Solgaard and Langen, 2012; Robinson et al., 2012). Stable
states of intermediate size (between zero and present-day)
are possible because of the interaction of the ice sheet with
its own climate through atmospheric dynamics, whereby its
surface topography affects regional precipitation and temper-
ature, like mountains do. The existence of intermediate states
means that partial loss of the ice sheet could be irreversible.

It is the possibility of threshold behaviour (i.e. “tipping
points”) and irreversibility which makes the future of the
Greenland ice sheet of particular concern (Pattyn et al.,
2018). Precautionary action to mitigate the threat of irre-
versible damage is a principle of the Framework Conven-

tion of Climate Change (Article 3.3), even when there is not
full scienti�c certainty. The serious implications of the uncer-
tainty are the motivation for the work presented in this paper,
in which we re-examine the future decline and possible re-
covery of the ice sheet. Our conclusions differ in some criti-
cal ways from those of previous work because of the greater
complexity of the model, which we describe next.

2 Model

Previous work on the subject has used simpli�ed climate
models or a small set of climate states, or it has been limited
to a few centuries into the future. In the present work we use
a dynamic ice sheet model coupled to an atmosphere general
circulation model (AGCM) to study the transient and steady
states of the ice sheet over tens of millennia. Typical AGCMs
are not suitable for modelling ice sheet SMB because they
have neither adequate treatments of albedo and hydrology
nor �ne enough spatial resolution for the large gradients in
topography and climate parameters across the margins of the
ice sheets, where much of the snowfall and snowmelt oc-
curs (Vizcaíno, 2014). Specially developed regional climate
models (RCMs) have proven very useful for high-resolution
projections and process studies (e.g. MAR RCM; Fettweis
et al., 2013; RACMO RCM, Noël et al., 2018), but they re-
quire lateral boundary conditions (BCs) from global AGCMs
and cannot feed back on climate change outside their do-
main. Moreover, computational expense prevents the use of
these RCMs in studying ice sheet evolution over millennia.
The �rst such experiment, with MAR coupled to an ice sheet
model, was only 150 years long (Le clec'h et al., 2019). In
multimillennial studies, empirical parametrizations for SMB
as a function of surface air temperature (e.g. Reeh, 1989),
precipitation etc. have often been applied. Being calibrated
for observed climate, such schemes may be less reliable for
simulations of very different climates of the future or past,
and when used in coupling to an AGCM, they imply surface
energy and water �uxes which are unrelated to those within
the AGCM, thus violating conservation.

2.1 FAMOUS–ice AGCM

For suf�cient speed, we use the FAMOUS AGCM, which is
the atmosphere component of the FAMOUS AOGCM (Smith
et al., 2008; Smith, 2012), itself a low-resolution version,
at 7.5� longitude by 5� latitude, of the HadCM3 AOGCM
(Gordon et al., 2000). For physical consistency, we calcu-
late the SMB in the AGCM, but Greenland spans only seven
grid boxes in longitude and �ve in latitude in the free atmo-
sphere of the model, which is far from adequate for sim-
ulating the important effects of topographic gradients and
snow hydrology for ice sheets. Therefore in this work we use
“FAMOUS–ice”, a new version of FAMOUS (version xotzb;
Smith et al., 2020) incorporating a multilayer surface snow
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scheme, which calculates melting, refreezing of meltwater,
run-off and SMB on “tiles” at a set of elevations within each
AGCM grid box (each tile covering a fraction of the grid
box area). This is similar to the method implemented for the
Greenland ice sheet in the Community Earth System Model
(CESM) (Vizcaíno et al., 2013; Lipscomb et al., 2013; Munt-
jewerf et al., 2020), and we use the same 10 elevations. Smith
et al. (2020) show the improvement in the cumulative distri-
bution of area as a function of altitude (the hypsometry) that
results from the sub-grid-scale treatment. Below we summa-
rize the FAMOUS–ice SMB and coupling schemes, of which
further details are given by Smith et al. (2020).

For vertical interpolation of atmospheric variables from
the AGCM grid box elevation to the tile elevations, we pre-
scribe a lapse rate of 6 K km� 1 for air temperature. This we
obtained from the climate of 1980–1999 simulated by Fet-
tweis et al. (2013) with the MAR RCM using sea surface
BCs (sea surface temperature and sea ice) from MIROC5,
the AOGCM which Fettweis et al. (2013) found to give the
most satisfactory SMB simulation. Downwelling longwave
radiation and speci�c humidity are vertically interpolated in
FAMOUS–ice using gradients consistent with the prescribed
lapse rate, but precipitation is neither redistributed vertically
nor modi�ed in phase. The same uniform air temperature
lapse rate for Greenland is used, e.g. by Aschwanden et al.
(2019), and found by Sellevold et al. (2019) to give the most
similar SMB gradient to RACMO in their CESM ice sheet
coupling, which, like our scheme, does not downscale pre-
cipitation.

We have paid particular attention to the treatment of the
surface albedo of the Greenland ice sheet, to which SMB
is very sensitive. Bare ice has lower albedo than snow in
FAMOUS–ice, and snow albedo has different values for visi-
ble and near-infrared, both dependent on the snow grain size,
which is a prognostic that depends on the “ageing” of the sur-
face snow by melting and refreezing following new snowfall.
There is an uncertain parameter in the relationship between
snow grain size and albedo. In our experiments, we use three
alternative parameter values that are consistent with obser-
vations of albedo. For convenience we refer to these as low,
medium and high albedo, but the reader should keep in mind
that the albedo is variable in each case. More details are given
by Smith et al. (2020).

Instead of simulating sea surface conditions by using the
FAMOUS AOGCM, we use the AGCM alone for both re-
cent and future climate, with sea surface BCs derived from
AOGCM experiments of the Coupled Model Intercompar-
ison Project Phase 5 (CMIP5) and atmospheric CO2 con-
centration to give the corresponding radiative forcing (see
Table 2 and the start of Sect. 3). We use the AGCM for
two reasons. First, the FAMOUS AOGCM has larger bi-
ases in its simulation of recent climate than MIROC5 and
the three other AOGCMs we use (CanESM2, HadGEM2-ES
and NorESM1-M), which have all previously been selected
as satisfactory for Greenland regional climate simulation (see

Fettweis et al., 2013, and van Angelen et al., 2013, for eval-
uation of their regional climate simulations). Second, this
method allows us to investigate the uncertainty in Greenland
ice sheet projections that arises from the spread of climate
projections given by AOGCMs for any given scenario. The
AGCM sea surface BCs are 20-year climatological monthly
means, which lack interannual variability; we have checked
that statistically indistinguishable results for the ice sheet are
obtained with the AGCM, cycling through a 20-year series
of monthly mean BCs for the same climate (Fig. A1a).

By prescribing sea surface conditions, we exclude any cli-
mate interaction between the ice sheet and the ocean, in par-
ticular possible cooling of regional climate due to weakening
of the Atlantic meridional overturning circulation (AMOC)
caused by meltwater from the ice sheet (e.g. Vizcaíno et al.,
2010). There is wide uncertainty in this aspect of ocean cli-
mate change, whose implications for the ice sheet could pos-
sibly be explored in further work by modifying the sea sur-
face temperatures in a range of ways to represent the effects
of AMOC changes projected by AOGCMs (Stouffer et al.,
2006; Gregory et al., 2016).

2.2 FiG coupling and spin-up

We use the Glimmer community ice sheet model (CISM)
(Rutt et al., 2009) with the shallow-ice approximation at
20 km grid spacing and no basal sliding. Consequently the
model does not simulate ice streams or rapid ice sheet dy-
namics, and it will inevitably underestimate the rate of ice
sheet mass loss, especially in coming decades. This is accept-
able because our aim is not to make realistic time-dependent
projections but to study the steady state obtained under con-
stant climates.

Because the ice sheet model lacks suf�cient resolution and
physical processes to simulate calving into fjords, we in-
stantly remove ice which �ows beyond the present margin of
the ice sheet. This BC prevents a tendency for the ice sheet to
expand slightly, and thus it makes the modelled ice edge co-
incide with the observed one. It becomes irrelevant in most of
our experiments, when the ice sheet contracts. For simplicity
in the model we omit isostatic uplift, which in reality gives
a negative feedback on ice sheet mass loss through the local
lapse-rate feedback because it is not a large effect (e.g. 2 %
over 1000 years; Aschwanden et al., 2019) and does not seem
necessary given that our scenarios are idealized in other ways
as well.

The AGCM and the ice sheet model are coupled to make
FAMOUS–ice–Glimmer (FiG; Gregory et al., 2012; Roberts
et al., 2014; Smith et al., 2020). After each AGCM year, the
SMB simulated by the AGCM is interpolated horizontally
and vertically (with the AGCM tile elevation as the verti-
cal coordinate) to the ice sheet surface topography, and the
AGCM topography and land-surface properties are updated
according to the ice sheet model. When the ice sheet retreats,
the newly exposed land is assigned the properties of bare soil,
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Figure 1. (a, b) Greenland surface elevation above sea level in(a) FAMOUS–ice (medium albedo) and(b) observations (Bamber et al.,
2001a, b). The white contour is the observed ice margin and is the same in both maps.(c) Difference between(a) and(b); positive means
FAMOUS–ice surface is higher.(d, e) Speci�c surface mass balance (expressed as liquid water equivalent) for the climate of MIROC5
1980–1999 in(d) FAMOUS–ice (medium albedo) and(e) MAR. The black contour is the equilibrium line (where speci�c SMB is zero).
(f) Difference between(d) and(e); positive means FAMOUS–ice SMB is more positive.

including a low snow-free albedo; its properties do not sub-
sequently change because vegetation dynamics are not in-
cluded in the model.

FiG runs at about 220 simulated AGCM years per wall
clock day on six cores, with the AGCM consuming the great
majority of the CPU time. Although this is fast for an AGCM,
it is not fast enough for multimillennial experiments. There-
fore, after each AGCM year, the ice sheet model runs for
10 years with the resulting SMB �eld, depending on the as-
sumption that the local lapse-rate feedback will be negligible
for changes in topography that occur within that decade, be-
fore the AGCM runs again. We have veri�ed that this 10V1
acceleration makes no signi�cant difference to our results
(Fig. A1a). Hereafter by “year” in FiG experiments we mean
an ice sheet year except where otherwise stated.

Because our aim is to simulate ice sheet response to cli-
mate change over millennia, we have to start from a coupled
steady state, with little long-term tendency in the ice sheet
topography. We initiate the ice sheet model with observed
topography (Bamber et al., 2001a, b) and run FiG under the
MIROC5 AOGCM climate of 1980–1999, during which pe-
riod the ice sheet was near a steady state in reality (van den
Broeke et al., 2016). In the �rst millennium the ice sheet mass
M increases by 0.1–0.2 m SLE. With medium and low albedo
it subsequently decreases again more slowly, while with high
albedo it continues to grow slowly and stabilizes after 4 kyr
at 0.3 m SLE above present day (Fig. A1b). The states ob-
tained after about 4 kyr of spin-up are used to initiate the ex-
periments described in Sect. 3. In these statesM is close to
reality, and the topography similar to observed (Fig. 1a, b,
c), with the summit and southern dome altitudes being a few
hundred metres too low (see also Appendix B concerning the

constraint implied on albedo by the requirement of realistic
M ).

2.3 Simulated surface mass balance for recent climate

Comparing the three choices of albedo in FAMOUS–ice with
BCs for the MIROC5 1980–1999 climate, we �nd that lower
albedo produces lower SMB (the �rst group of cases in Ta-
ble 1 differ signi�cantly at the 10 % level) because ablation
is greater due to greater snowmelt, but snowfall is about the
same (slightly larger with higher albedo because of greater
ice sheet area). For the same albedo (medium), the SMB is
signi�cantly lower with the CanESM2 and NorESM1-M his-
torical climates than with MIROC5 because the ablation is
larger, whereas the SMB is about the same with HadGEM2-
ES as with MIROC5 (the second group in the table). This
shows the in�uence of the different climate simulations of
the AOGCMs.

A similarly large spread in SMB arises from the choice of
Greenland model (FAMOUS–ice, MAR or RACMO), both
because they simulate somewhat different regional climate
in the free atmosphere and over land when given climate
BCs from the same AOGCM and because they have different
SMB schemes. MAR has much larger SMB than FAMOUS–
ice with the MIROC5 climate because of smaller ablation,
while RACMO has larger ablation than FAMOUS–ice with
the HadGEM2-ES climate (the third group in the table).
Comparison with MAR and RACMO for ERA-Interim BCs
(i.e. observationally derived, the fourth group in the table)
suggests that FAMOUS–ice with high albedo is similar to
both of them.
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Table 1. Greenland area-integral surface mass balance (SMB), snowfall and ablation (all in Gt yr� 1) for FAMOUS–ice with MIROC5
AOGCM historical climate (with the three choices of FAMOUS–ice albedo), FAMOUS–ice with historical climates of other AOGCMs
(FAMOUS–ice medium albedo only), the MAR and RACMO RCMs with the same AOGCM climates and with ERA-Interim climate (from
Table 2 of Fettweis et al., 2013), FAMOUS–ice with MIROC5 AOGCM climate (medium albedo only) under RCP scenarios, and the
FAMOUS–ice (medium albedo) mean over available AOGCMs for each climate (no HadGEM2-ES for RCP8.5, all four AOGCMs in other
cases). The �rst column identi�es the “groups” of results into which the table is divided; we refer to these group numbers in the text. Ablation
is SMB� snowfall, mainly run-off from snowmelt and including evaporation, sublimation, condensation and rainfall freezing in the snowpack
(in the RCMs; all rainfall runs off in FAMOUS–ice). The� uncertainty shown for SMB is the standard error in the time mean, estimated by
assuming annual values to be independent. The SMB from FAMOUS–ice has smaller standard errors than from the RCMs for two reasons.
First, the FAMOUS–ice simulations exclude interannual variability due to SST and sea ice by using climatological mean BCs. Second, the
RCM time means use 20 years of data, while we use 100 years for the FAMOUS–ice MIROC5 1980–1999 simulations, which supply our
initial steady states, and 30 for other FAMOUS–ice simulations, which are transient states.

Climate Greenland model (albedo) SMB Snowfall Ablation

1980–1999 climates

1 MIROC5 FAMOUS–ice (low) 310� 10 693 383
MIROC5 FAMOUS–ice (medium) 332� 11 697 364
MIROC5 FAMOUS–ice (high) 414� 9 715 300

2 CanESM2 FAMOUS–ice (medium) 272� 21 681 409
HadGEM2-ES FAMOUS–ice (medium) 312� 20 705 393
NorESM1-M FAMOUS–ice (medium) 287� 16 721 434

3 MIROC5 MAR 437� 24 681 244
CanESM2 MAR 410� 23 635 225
HadGEM2-ES RACMO 244� 25 660 416
NorESM1-M MAR 483� 16 691 208

4 ERA-Interim MAR 388� 23 637 249
ERA-Interim RACMO 406� 22 683 277

MIROC5 2080–2099 climates

5 RCP2.6 FAMOUS–ice (medium) 325� 14 704 379
RCP4.5 FAMOUS–ice (medium) 150� 25 735 585
RCP8.5 FAMOUS–ice (medium) � 207� 35 805 1013

Mean over AOGCM climates

6 1980–1999 FAMOUS–ice (medium) 307 703 395
2080–2099 RCP2.6 FAMOUS–ice (medium) 212 746 533
2080–2099 RCP4.5 FAMOUS–ice (medium) 60 777 716
2080–2099 RCP8.5 FAMOUS–ice (medium) � 273 825 1098

Regarding its geographical distribution, FAMOUS–
ice SMB interpolated to the Glimmer grid compares
favourably with the MAR simulation for the MIROC5 cli-
mate (Fig. 1d, e, f). It shows positive and negative values of
realistic magnitude and reproduces the important geograph-
ical features, including the con�nement of negative SMB
to the margins, especially on the west coast; the decrease
in positive SMB towards the north-east; and the occurrence
of greatest positive SMB in the strip of maximum snowfall
along the south-east coast. We presume that the latter is not
suf�ciently intense in FAMOUS–ice because of the low reso-
lution of the AGCM. The equilibrium line (black contour) is
generally a little higher and further inland in FAMOUS–ice
(see Smith et al., 2020, for details).

3 Mass loss of the ice sheet in warmer climates

We run a set of 47 FiG experiments to study the SMB
change (1 SMB), rate of mass loss and eventual steady state
of the Greenland ice sheet using the three different choices
of FAMOUS–ice snow-albedo parameters, with 20-year cli-
matological monthly mean sea surface BCs taken from the
four selected CMIP5 AOGCMs for �ve climate scenarios
(Table 2). These �ve are the late 20th century (1980–1999,
called “historical”), the end of the 21st century under three
representative concentration pathway (RCP) scenarios (as
in the AR5; van Vuuren et al., 2011) and quadrupled pre-
industrial CO2 (abrupt4xCO2, warmer than any RCP). The
experiments have steady-state climates. This is unrealistic,
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Table 2. AOGCM climates used to supply sea surface boundary conditions for the �rst set of FiG experiments. The BCs mostly determine
the climate, with only a relatively small in�uence from the CO2 concentration (in ppm). This is “equivalent CO2”, chosen for RCP4.5 and
RCP8.5 to give approximately the nominal effective radiative forcing (ERF) in RCPs in 2100 (W m� 2), with all other forcing agents kept
as pre-industrial. For simplicity, regarding 1980–1999 as “present day”, we decided to use the same concentration for historical and RCP2.6
simulations. We consider this acceptable because the AR5 median assessment of the net anthropogenic ERF in 2011 is 2.3 W m� 2, with
a likely range of 1.1–3.3 W m� 2, and the difference between this and the nominal forcing of 2.6 W m� 2 under RCP2.6 in 2100 is small
compared with the large systematic uncertainty. Similarly for simplicity we used the same CO2 concentration for RCP8.5 and abrupt4xCO2.

CMIP5 scenario Years CO2 ERF Notes

historical 1980–1999 402 2.1
RCP2.6 2080–2099 402 2.1
RCP4.5 2080–2099 650 4.7
RCP8.5 2080–2099 1200 8.0 Not with HadGEM2-ES
abrupt4xCO2 121–140 1200 8.0 CanESM2 and low albedo only
abrupt4xCO2 101–120 1200 8.0 HadGEM2-ES and low albedo only

but it simpli�es the comparison and is reasonable since no-
one can tell how climate will change over millennia into the
future. Our simulations should be regarded only as indicative
rather than as projections. Each experiment begins from the
FiG spun-up state for MIROC5 historical climate with the
appropriate albedo parameter. Although in most cases there
is a substantial instantaneous change in BCs when the exper-
iment begins, the land and atmosphere require only a couple
of years to adjust.

3.1 Evolution of surface mass balance

Our set of BCs produces a wide range of global mean sur-
face air temperature change1 SAT of � 1 to C5 K, relative
to the MIROC5 historical climate. Some are negative be-
cause the historical climate is warmer in MIROC5 than in
the other three AOGCMs. In warmer climates, snowfall and
ablation are both increased (Table 1; �fth group shows re-
sults with MIROC5 RCP climates, and the last group shows
the mean over results for each of the available AOGCMs
for each climate). In general, the greater the global warming
is, the more negative the1 SMB initially produced will be
relative to the time mean MIROC5 historical state with the
same albedo (Fig. 2a). For a given scenario, the AOGCMs
give a range of1 SAT, as is very well known (e.g. Collins
et al., 2013). In our set of AOGCMs, NorESM1-M warms
the least, and HadGEM2-ES warms the most (Fig. B1a).
1 SAT in FAMOUS–ice and that in the BCs are very highly
correlated (Fig. B1b). The spread of FAMOUS–ice results
with BCs from different AOGCMs for a given warming is
due to their different relationships between global1 SAT and
Greenland regional climate change (shown by the grey lines
in Fig. B1c).

Global warming under RCP2.6 is fairly small, leading to
small 1 SMB, especially for MIROC5 (squares near 1.0 K
in Fig. 2a), although MIROC5 is in the middle of the range
for RCP8.5 (squares near 3.5 K). For mean over AOGCM
climates under RCP2.6, RCP4.5 and RCP8.5, FAMOUS–ice

with medium albedo gives SMB change of� 95, � 247 and
� 580 Gt yr� 1, respectively, with respect to the mean over
AOGCM historical climates.

The greatest global warming is given by HadGEM2-ES
abrupt4xCO2. With low albedo, this climate produces the
most negative SMB, of� 756 Gt yr� 1, in the time mean of
the �rst 300 years, during which the topography change from
the initial state is still quite small (Fig. 3a1, b1). It is also
the most negative1 SMB, of � 1066 Gt yr� 1, relative to the
MIROC5 historical climate with low albedo. Although this is
a large1 SMB, that of Aschwanden et al. (2019) for RCP8.5
is larger still, perhaps because they use a degree-day scheme
and assume geographically uniform warming.

In our experiment, the speci�c SMB is strongly nega-
tive all around the margin and especially in the southern
dome, where it has a local maximum in the historical climate
(Fig. 3a2, b2). The snowfall on the ice sheet is� 10 % larger
in the abrupt4xCO2 climate (Fig. 3a4, b4). We note that the
precipitation is� 50 % larger, consistent with the warming
in Greenland of 11 K and the increase of� 5 % K� 1 found
by previous studies, e.g. Gregory and Huybrechts (2006),
but the snow fraction declines from� 90 % to� 70 %. The
downwelling surface shortwave radiation in summer (June–
August) is smaller because cloudiness is greater (Fig. 3a3,
b3). Both the increased snowfall and the reduced insolation
tend to make1 SMB positive, but1 SMB is actually large
and negative because of the overwhelming effect of increased
downwelling surface longwave radiation, which is mainly
due to the air above the ice sheet being warmer and partly
to the increase in cloud cover.

We �nd that the relationship between1 SAT and1 SMB in
the set of FiG experiments roughly follows the cubic for-
mula (shown as the solid curve in Fig. 2a) derived by Fet-
tweis et al. (2013) for MAR projections and used in the AR5
for the Greenland contribution to GMSLR. There is a small
spread due to the choice of albedo parameter and a larger
spread due to choice of AOGCM. The FiG1 SMB mostly
lies within the AR5 likely range (dashed curves). In the ma-
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Figure 2. Relationships between various quantities in the �rst set of experiments, with FiG under constant climates listed in Table 2 and
run to a steady state, as shown in Fig. 4b. All panels use the key of(a) for colours;(b)–(e) use the key of(a) for symbols.(a) Time mean
1 SMB vs.1 SAT, both for the �rst 300 years relative to the initial steady state under the historical MIROC5 climate with the same albedo
parameter. The solid curve is the cubic relationship �tted by Fettweis et al. (2013) to MAR projections, and the dashed curves delimit the
likely range of the AR5.(b) Trajectories of ice sheet SMB (not1 SMB) vs. massM , shown as 200-year means for the �rst millennium
and 1000-year means thereafter. The trajectories begin at the symbols, withM close to the observed for the present day and a wide range
of SMB. They end with a wide range ofM but all have positive SMB.(c) Final steady-stateM vs. time mean1 SAT in FAMOUS–ice for
the �rst 300 years.(d) Final steady-stateM of the ice sheet vs. time mean1 SMB of the �rst 300 years. The vertical dashed lines mark the
observational estimates of1 SMB for the recent periods and studies shown in the key (van den Broeke et al., 2016; Mouginot et al., 2019;
Shepherd et al., 2020); for van den Broeke et al. (2016) we used the steady-state SMB for 1961–1990 and the SMB trend for 1991–2015.
The oblique solid and dashed lines are linear regressions ofM vs. 1 SMB and vice versa, respectively, for1 SMB > � 700 Gt yr� 1. The
solid horizontal lines indicate the threshold of irreversibility for medium and low albedo, and the solid vertical lines translate them into
1 SMB thresholds, with uncertainty (� 2 standard deviations) shown by the grey band.(e)Trajectories of ice sheet thickness (volume divided
by area) vs. speci�c SMB for 1000-year means, beginning at the symbols.(f) Trajectories ofM vs. ice sheet area as grey lines, with the �nal
con�gurations indicated by the symbols and the �tted power-law relationship shown by the black line.

The Cryosphere, 14, 4299–4322, 2020 https://doi.org/10.5194/tc-14-4299-2020



J. M. Gregory et al.: Large and irreversible future decline in the Greenland ice sheet 4307

jority of cases SMB remains positive (Fig. 2b), but because
the ice sheet was initially in balance, negative1 SMB leads
to loss of mass (Fig. 4a). In the most extreme case, rapid re-
treat of the ice sheet margin reduces the discharge by a third
in the �rst century alone; this slightly offsets1 SMB, giving
ice sheet mass loss of 2.5 mm yr� 1 SLE.

Because of the effect of lowering topography, the SMB
becomes more negative in most cases during the early cen-
turies (Fig. 2b). For the 21st century, this effect is omit-
ted in our experiments since we instantaneously impose the
climates from the end of the century on the initial state.
This is an acceptable approximation because the effect is
small on that timescale; e.g. Edwards et al. (2014) give a
best estimate of 4.3 % for the consequent increment in the
GMSLR contribution by 2100, but this increases with time,
e.g. to 9.3 % by 2150 (Le clec'h et al., 2019) and 9.6 % by
2200 (Edwards et al., 2014). In the 28 cases with1 SMB <
� 100 Gt yr� 1 in the time mean of the �rst century of our
experiments,1 SMB becomes about 20 % more negative on
average during the second and third centuries due to the lo-
cal lapse-rate feedback, about twice the size of the effect es-
timated by Edwards et al. (2014). Thereafter the SMB be-
comes gradually more positive again (Fig. 2b) because the
area contracts, with the areas most prone to ablation being
removed most quickly, as happens with a retreating moun-
tain glacier.

3.2 Final ice sheet mass and global-mean sea level
change

The experiments continue until the ice sheet reaches a
steady state (de�ned asjdM=dtj < 0:02 mm yr� 1 SLE over
2000 years). The longest experiments, which take 40 kyr
(Fig. 4b), are for large climate change (RCP8.5), which en-
tails a large loss of mass, with high albedo, which causes a
relatively slow rate of mass loss. The shortest are the exper-
iments in which a different historical climate from MIROC5
is applied because the effect on SMB of differences among
AOGCMs in their simulations of late 20th-century climate is
relatively minor.

There is a wide range ofM in the �nal steady state
(Figs. 2b and 4b), between slightly greater than present
day (in some historical experiments) and almost zero (in
abrupt4xCO2). With one exception, historical and RCP2.6
climates produce �nalM of 6 m SLE or more (implying GM-
SLR not exceeding 1.5 m), while RCP8.5 climates all pro-
duce �nal M of 3 m SLE or less (GMSLR exceeding 4 m).
In all cases the SMB is �nally positive (Fig. 2b) and must be
balanced by ice discharge, meaning that the ice sheet does
not retreat entirely inland.

There is a clear tendency for climates of greater1 SAT to
produce smaller ice sheets, but the �nalM has quite a
wide range for any given initial global-mean annual-mean
1 SAT within 1–4 K (Fig. 2c). For given BCs, we have found
in test experiments that the ice sheet evolution follows some-

what different trajectories from slightly different initial states
but that they converge on very similar �nal states (Fig. A1a).
Thus, the scatter in Fig. 2c is not random noise but arises
from the detailed interaction of the evolving ice sheet topog-
raphy with its regional climate, which depends on the choice
of BCs. The �nalM depends on which AOGCM is used be-
cause of their different patterns of SST and sea ice change;
this dependence is omitted if the warming is assumed to
be uniform (e.g Robinson et al., 2012; Aschwanden et al.,
2019).

The Pearson product-moment correlation coef�cient be-
tween �nal M and initial1 SAT is � 0:89, and the Spearman
rank correlation coef�cient is� 0:83. The correlation is sim-
ilar if for 1 SAT we use Greenland area-mean summer-mean
air temperature change, either at the surface or at 600 hPa
(the latter as Fettweis et al., 2013) (Fig. B1d, e, f). How-
ever, the relationship is better-de�ned using1 SMB instead
of 1 SAT (Fig. 2d), with both product-moment and rank cor-
relation coef�cients of 0.92. If the initial1 SMB is near
zero, the ice sheet changes little; the more negative the ini-
tial 1 SMB is, the smaller the �nalM will be. Excluding the
case with the most negative1 SMB, a linear relationship is a
fairly good �t.

With any choice of albedo, for anyT > 3 K, the �nal
steady-stateM . 2 m SLE, meaning GMSLR exceeds 5 m.
It is important to note, however, that the spread of �nalM
does not suggest a sharply de�ned threshold inT beyond
which a complete or nearly complete loss of the ice sheet
ensues (Fig. 2c). For low and medium albedo, there is a
fairly monotonic decline in size of the steady state from near
present-dayM ' 7 m at T D 0 K to M < 1 m for T > 3 K.
For high albedo, there might be a transition fromM ' 6 m
at T D 2:0 K to M ' 3 m at T D 2:5 K; to obtain a clearer
description of the behaviour, more experiments are needed
in this part of the diagram. In any case, the interval between
temperatures giving a “large” and a “small” �nal ice sheet
is wider in our results, or alternatively the mass interval be-
tween “large” and “small” is narrower than in the results of
Levermann et al. (2013) (their Fig. 1c). All of the versions
of their model have a sharp transition betweenM > 6 m and
M < 1 m over a temperature interval which appears to be less
than 0.1 K. Our model gives a qualitatively different impres-
sion of the transition.

If negative feedbacks were neglected, there would be no
�nal ice sheet for negative initial SMB, as described in
Sect. 1.3. Actually all �nal states have positive SMB and non-
zeroM , although some have initially negative SMB (Fig. 2b).
In our model, ifanyclimate warmer than historical is main-
tained inde�nitely the ice sheet will contract to a new non-
zero steady state, whose size depends on the magnitude of
the warming and the consequent SMB perturbation.

Observational analyses indicate that recent1 SMB (with
respect to a steady state before the 1990s) is between
� 200 and� 150 Gt yr� 1, with substantial interannual vari-
ation (e.g. van den Broeke et al., 2016; Mouginot et al.,
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Figure 3. Illustrative states of the ice sheet, all from coupled FAMOUS–ice–Glimmer experiments except for column(d), as follows:
(a) initial state with HadGEM2-ES historical climate and low albedo;(b) initial state with HadGEM2-ES abrupt4xCO2 climate and low
albedo;(c) transient state from the experiment of(b); (d) transient state of uncoupled Glimmer with the climate and 3D SMB of(b);
(e) �nal state with CanESM2 abrupt4xCO2 climate and low albedo;(f) �nal state with MIROC5 RCP4.5 climate and medium albedo;(g,
h) �nal states with MIROC5 historical climate and low albedo, regrown from transient states withM D 3:83 m SLE andM D 4:03 m SLE,
respectively, in the experiment of(b). The quantity shown in each row in colours and by contour lines in rows 3–4 is stated above its colour
bar. Row 1 is an instantaneous state; rows 2–4 are time means of 30 FAMOUS–ice years, equivalent to 300 FiG years. The ice sheet edge is
shown by a thick black line in rows 2–4. The numbers in the bottom-right corner are ice sheet mass in m SLE in row 1, ice sheet area-integral
SMB in Gt yr� 1 row 2 and ice sheet area-integral snowfall in Gt yr� 1 row 4. The symbols in row 1 indicate steady-state con�gurations by
the key of Fig. 2f.

The Cryosphere, 14, 4299–4322, 2020 https://doi.org/10.5194/tc-14-4299-2020



J. M. Gregory et al.: Large and irreversible future decline in the Greenland ice sheet 4309

2019; Shepherd et al., 2020; dotted lines in Fig. 2d). If a cli-
mate giving such a1 SMB were maintained, it would even-
tually lead to GMSLR of 0.5–2.5 m according to the linear
�t (Fig. 2d; allowing for the range of FiG initialM ). On
the basis of the MAR simulations of Fettweis et al. (2013),
the CMIP5-mean projection of1 SMB for 2080–2099 cli-
mate is� 242 Gt yr� 1 under RCP4.5 and� 710 Gt yr� 1 un-
der RCP8.5. According to the �t, the former implies eventual
GMSLR of about 3 m, the latter about 7 m.

3.3 Interaction of ice sheet and climate during decline

To demonstrate the important in�uence of the climate–ice
sheet interaction, we repeat the HadGEM2-ES abrupt4xCO2
low-albedo experiment (the case of most negative1 SMB)
using Glimmer alone, uncoupled from the AGCM, forced
by the AGCM SMB �eld (a function of geographical loca-
tion and tile elevation) from the start of the FiG experiment.
As the uncoupled experiment runs, the time-independent
three-dimensional AGCM SMB �eld is continually interpo-
lated onto the time-dependent ice topography using the same
methods as in the FiG coupling. Thus the local lapse-rate
feedback on SMB is included in the uncoupled experiment,
but the regional climate feedbacks of topography and albedo
change on the atmospheric state and circulation are excluded.

The uncoupled Glimmer and FiG experiments begin from
the same initial state and have the same initial rate of mass
loss but soon diverge (the dotted red line and the lowest solid
red line in Fig. 4a). While the rate of mass loss continu-
ously decreases in the FiG experiment, it remains almost con-
stant (2.1–2.6 mm yr� 1 SLE) in the uncoupled experiment
for about 2.5 kyr, and the ice sheet is completely eliminated
in 3.4 kyr (Fig. 4b).

To understand the different behaviour, as an example we
compare the state whenM D 2:38 m SLE, which is reached
after 3600 years in the coupled experiment and 2020 years
in the uncoupled experiment. The coupled ice sheet has a
high central region (Fig. 3c1), where speci�c SMB exceeds
0:25 m yr� 1 liquid water equivalent (LWE) over about the
same area as in the initial state (Fig. 3b2, c2), surrounded
closely by steep narrow margins with large negative spe-
ci�c SMB, giving negative area-integral SMB which is� 3
times smaller in magnitude than in the initial state. The re-
gions where negative speci�c SMB appears were near equi-
librium in the initial state, and the change is consistent with
the local lapse-rate feedback due to the lowered surface
in the contracted margins. The area-mean ratio of changes
in surface air temperature and surface elevation is 7.1 and
6.6 K km� 1 within the initial and contracted ice sheet ex-
tent, respectively, close to the value of 6 K km� 1 assumed in
the downscaling scheme. It is not uniform over the ice sheet
(Fig. D1), but it is within the range of 4–8 K km� 1 over more
than half of the ice sheet (considering either extent).

The uncoupled ice sheet is similarly located in the north of
Greenland but has a larger area and lower altitude (Fig. 3d1).

Its speci�c SMB is negativeeverywhere. Its area-integral
SMB (� 991 Gt yr� 1; Fig. 3d2) ismorenegative than in the
initial state (� 756 Gt yr� 1; Fig. 3b2) and� 4 times more
than for the coupled ice sheet of the sameM (� 262 Gt yr� 1;
Fig. 3c2). The much larger change exceeds the lapse-rate ef-
fect, and the area-mean speci�c SMB for any surface altitude
above 1000 m is more negative in the uncoupled case than the
coupled case. The main cause is greater downwelling short-
wave radiation at the surface in the uncoupled case (Fig. 3c3,
d3) due to lower cloud fraction. The region occupied by the
contracted ice sheet coincides geographically with the high
cold interior of the initial ice sheet, where cloudiness is com-
paratively low, but in the coupled case the cloudiness in-
creases there as the ice sheet becomes smaller and lower,
giving a powerful negative feedback on the mass loss.

In the coupled experiment, the precipitation from the
south-west advances inland, following the margin of the
contracting ice sheet (compare the grey contour line for
1 m yr� 1 in Fig. 3b4, c4). Consequently the precipitation on
the ice sheet is about 15 % greater in the coupled case. How-
ever, the snowfall is about 15 %less in the coupled case
(colours and numbers in Fig. 3c4, d4) because its surface
is lower than in the initial climate, making the surface cli-
mate warmer and reducing the snowfall fraction (to 64 %).
The uncoupled SMB has a larger snowfall fraction (84 %)
because the surface in the region it occupies was initially
much higher. The phase change in precipitation with eleva-
tion is omitted from the downscaling in the coupling scheme
(as mentioned earlier); including it in the uncoupled model
would reduce the snowfall and make its SMB even more neg-
ative.

In summary, the uncoupled ice sheet is eliminated rapidly
through the small ice cap instability (local lapse-rate feed-
backs from surface energy �uxes and temperature), whereas
in the coupled case the decline is decelerated, and the ice
sheet is not completely eliminated, owing to negative feed-
backs of topographic change on regional climate (changes in
cloudiness and precipitation). The comparison demonstrates
the critical role of ice sheet–climate interaction.

3.4 Final topography of the ice sheet

According to the topographic features present, the �nal states
can be put in �ve categories (indicated by symbols at the ends
of the trajectories in Fig. 4b). In cases with small change
in M , the �nal state is similar to the present day (con�gu-
ration labelled “EWNS”; e.g. Fig. 3a1). The northern por-
tion (denoted “N”) is absent in some �nal states and the
summit further south than in the present day, e.g. Fig. 3f1
(EWS). Ice in the south (“S”) may become a separate ice
cap (as in Fig. 3f1), or it may be absent, resembling Fig. 3h1
(EWN) and 3g1 (EW). In cases with the smallest �nalM , the
north-western lobe (“W”) vanishes, and ice remains only on
the eastern mountains (“E”). For example, in the experiment
ending in Fig. 3e1 (marked with “e” in Fig. 4b), the south-
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Figure 4. Time series of Greenland ice sheet mass with constant climates.(a, b) First set of experiments, beginning from steady states for
MIROC5 historical (1980–1999) climate and continuing until a new steady state is reached under the scenarios indicated by the colours of the
�nal symbols in(b) according to the �nal symbol colour key in that panel. The solid and dashed lines are FiG experiments; the dotted line is
the experiment with the uncoupled Glimmer ice sheet model. The circles indicate transient and �nal states which provide the initial states for
the second set of experiments.(c) Second set of FiG experiments, beginning from states of the same albedo and continuing until a new steady
state is reached under the MIROC5 historical climate. The single high-albedo experiment begins from the low-albedo initial state of smallest
mass. The experiments shown by dashed lines in(c) begin from the �nal states of the experiments shown by dashed lines in(b). In all panels,
the FAMOUS–ice albedo is indicated by the line colours. In(b) and(c), the �nal symbols denote the con�guration of the �nal steady states,
the �nal states marked “e”–“h” are those shown in the columns indicated in Fig. 3, and the two horizontal lines marked “Threshold” indicate
the mass that divides transient states which regrow to nearly the initial steady-state mass (EWNS or EWN con�gurations) from those which
regrow only partially (“no-north” con�gurations: EWS, EW and E).

ern and north-western domes detach and vanish within 3 kyr.
Subsequently contraction continues on all sides, but there is a
slow and small regrowth after the minimum mass is reached.

The transient and �nal states of all experiments lie close
to a common power-law relationship between ice sheet mass
M and areaA with M / A1:31 (Fig. 2f), similar to the expo-
nent of 1.36–1.38 derived for glaciers from observations and
theory (Bahr and Radić, 2012, and references therein). Final
states with the same con�guration have a characteristic de-
viation from the common relationship; e.g. EWN states have
greaterM .

Because of the local lapse-rate feedback, the mass loss
sometimes accelerates by a few tenths of a millimetre per
year SLE, while one of the outlying portions becomes sepa-
rate or is eliminated, in a few cases after some millennia of
relatively slow change. This is a similar phenomenon to the

saddle collapse during the separation of the Laurentide and
Cordilleran ice sheets during the last deglaciation (Gregoire
et al., 2012) but an order of magnitude smaller. For example,
in the experiment ending in Fig. 3f1 (the dotted green line,
marked “f”, in Fig. 4b), the rate of ice loss accelerates after
10 kyr, at the start of the retreat of the northern margin, which
is completed by 15 kyr.

3.5 Discussion of reduced steady states

In Sect. 1.3 we described why there might be a threshold
1 SAT beyond which the ice sheet would be eliminated by
the small ice cap instability, whereas with smaller1 SAT it
would have mass and area little reduced from its present-day
state. In Sect. 3, instead of such a well-de�ned threshold, we
found a range of steady-state ice sheet mass and area, gener-
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ally smaller for larger1 SAT. The ice sheet endures, albeit in
a much reduced state, even for1 SAT giving large negative
initial SMB.

For studying the evolution of the ice sheet as its areaA
contracts, it is helpful to consider the speci�c SMBs D S=A,
where obviouslyS ands have the same sign. We can write
1s D 1s TC1s L C1s C, where1s T and1s L are the changes
in speci�c SMB due to climate change and the local lapse-
rate feedback, as in Sect. 1.3. When the warmer climate is
initially imposed,1s T < 0, and the perturbation is ampli�ed
by 1s L < 0 due to thinning of the ice sheet.

The term1s C represents the effects of change in the cli-
mate experienced by the ice sheet, arising both because the
climate changes in all areas and because the ice sheet changes
the areas it occupies. An important example of the latter is the
retreat of the ice sheet margin (or a glacier tongue, in gen-
eral) to higher altitude in a warmer climate because this re-
duces the ablation while preserving the accumulation. In this
and other cases, the climate effects can give1s C > 0. Thus
they can counteract the local lapse-rate feedback1s L < 0,
prevent a runaway feedback loop and eventually reverse the
sign of 1s so that a steady state is reached with SMB and
discharge in balance again, even if with greatly reduced area.

In cases where speci�c SMB is initially positive, it be-
comes more positive (Fig. 2e) because the areas from which
the ice sheet retreats are predominantly those of relatively
larger ablation or smaller snowfall. Consequently the area-
integral SMB (the product of increasing speci�c SMB and
decreasing area) changes relatively little (fairly vertical tra-
jectories in Fig. 2b). For instance, under MIROC5 RCP4.5
climate with medium albedo, the initial SMB, snowfall and
ablation are 150, 735 and 585 Gt yr� 1 (Table 1). The �nal
SMB is the same as the initial because ablation and snow-
fall both decrease by 115 Gt yr� 1 (Fig. 2f2, f4), a larger frac-
tional decline in ablation (20 %) than in snowfall (15 %). The
steady state is achieved by the withdrawal of the margin from
the coast in some sectors, reducing discharge suf�ciently (by
209 Gt yr� 1 or 60 %) to balance the smaller SMB.

In cases where speci�c and area-integral SMB are initially
negative, they become positive (Fig. 2b, e). This happens
because snowfall decreases less than ablation. For instance,
under HadGEM2 abrupt4xCO2 climate with low albedo,
the initial SMB, snowfall and ablation are� 756, 797 and
1554 Gt yr� 1 (Fig. 2b2, b4). The �nal state is a small eastern
ice cap (like Fig. 2e1 but smaller) with SMB, snowfall and
ablation of 9, 31 and 21 Gt yr� 1; snowfall is 3.9 % and ab-
lation 1.4 % of the initial value. The ice cap receives greater
precipitation and snowfall than the same region did initially
(compare Fig. 2b4, e4) and has more cloud and less surface
downwelling shortwave radiation (Fig. 2b3, e3) because of
the effect of topography on atmospheric circulation and cli-
mate.

4 Threshold for irreversible mass loss

Greenland ice sheet mass loss in the �rst set of experi-
ments occurs on timescales which are comparable with or
even longer than those of surface climate change and natu-
ral CO2 removal. We therefore also consider whether the ice
sheet mass would increase again if the climate cooled down.
This will inform us about any irreversible commitment to
GMSLR that might be incurred in coming decades despite
subsequent CO2 removal.

To study this question, we carry out a second set of FiG ex-
periments using MIROC5 1980–1999 BCs and recent radia-
tive forcing, starting from various transient and �nal steady
states of the ice sheet with reduced size from the �rst set of
experiments. This is as if the climate instantaneously reverted
to its late 20th-century condition after many centuries in a
high-CO2 warm steady state, during which the ice sheet had
been losing mass. The second set includes experiments with
all three choices of albedo. All but one of the experiments
with medium albedo (solid green lines in Fig. 4c) begin from
states of various mass along the trajectory of the CanESM2
RCP8.5 medium-albedo experiment (green line with circles
in Fig. 4b), whose �nal steady-state ice sheet mass is 1.21 m
SLE. All but one of those with low albedo (solid red lines in
Fig. 4c) begin from states of the HadGEM2-ES abrupt4xCO2
low-albedo experiment (red line with circles in Fig. 4b),
whose �nal mass of 0.12 m SLE is the smallest of all in the
�rst set. The single high-albedo experiment in the second
set (solid blue line in Fig. 4c) also begins from this mini-
mal state. The exceptions for medium and low albedo are
the two experiments discussed in Sect. 4.2 and shown with
dashed lines in Fig. 4c, which begin from the �nal states of
the experiments shown with dashed lines in Fig. 4b.

4.1 Regrown steady states

In the initial state of all the experiments of the second set,
the ice sheet has a smaller mass than present, and it grows to
reach a new steady state; there are none in which it continues
to lose mass (Fig. 4c). However, the mass of the regrown
steady state depends on the initial state and the albedo.

With high albedo, the ice sheet regrows, in about 50 kyr,
from the minimal state to a steady state with the extent of
the present day's (EWNS con�guration; Fig. 4c). Since this
starting state is a limiting case, we assume that the ice sheet
would reach the same �nal state from any initial state, im-
plying that this is only a steady state for historical climate
with high albedo. Therefore the loss of the ice sheet would
be reversible, albeit on a long timescale, if the high albedo is
realistic.

On the other hand, with the medium and low albedo, two
distinct sets of steady states can be reached in the second set
of experiments: one set with �nal mass of 7 m SLE or more,
the other with �nal mass of 5–6 m SLE. Initial states are di-
vided between these two sets of �nal states by a threshold of
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initial mass at 4.0 m SLE with the medium albedo and 3.9 m
SLE with the low albedo.

Starting above the threshold, the ice sheet regrows to
the EWNS con�guration with medium albedo as with high
albedo (Fig. 4c), but with low albedo there are two steady
states. The larger is the EWNS con�guration (7.3 m SLE;
Fig. 3a1), while the smaller lacks the southern dome (7.0 m
SLE, EWN con�guration; Fig. 3h1). The southern dome has
positive SMB in the historical climate (Fig. 3a2), but in the
warm climates it is readily lost due to increased ablation,
and in the historical climate without the dome there is neg-
ative SMB inhibiting readvance at the new southern margin
(Fig. 3h2). The snowfall is however little changed in that re-
gion (Fig. 3a4, h4). The southern dome is the last part of
the ice sheet to reappear with the high and medium albedos
(solid green and blue lines in Fig. 4c after 30 kyr).

Starting below the threshold, the ice sheet attains steady
states lacking the northern portion, which we refer to col-
lectively as no-north states. The steady state with medium
albedo has the EWS con�guration (5.7 m SLE; like Fig. 3f1
in extent but thicker). With the low albedo, there are two
steady states, having masses of 5.3 m SLE (EW con�gura-
tion; Fig. 3g1) and 5.0 m SLE (E con�guration; like Fig. 3e1
but much larger), which differ because the north-western
dome is missing in the latter case. This dome is the last part
to regrow with medium albedo.

Other authors have likewise found that the present state
of the Greenland ice sheet is not the only steady state un-
der historical climate (Ridley et al., 2010; Solgaard and Lan-
gen, 2012; Robinson et al., 2012). A minimal state with ice
solely or mostly in the east is a common feature of all these
studies and ours. In other respects the steady-state con�gu-
rations are dissimilar. The medium state of Robinson et al.
(2012) most resembles our no-north states. Our results are
more complex than others in showing �ve steady states. We
suppose that this is because greater detail in the interaction
of the ice sheet topography with atmospheric circulation and
SMB can be simulated by FAMOUS–ice than by the simpler
approaches of previous studies.

4.2 Vulnerability of the ice sheet to irreversible loss

To summarize our second set of experiments, transient states
which have passed below the threshold regrow to no-north
steady states, while those still above the threshold regrow to
EWNS or EWN steady states. Consistent with this, we note
that all �nal states lying below the threshold in the �rst set of
experiments are no-north states (Fig. 4b). States taken from
below the threshold on trajectories of rapid decline show no
tendency for the northern portion to regrow, even after tens
of millennia under historical climate. Thus about 2 m of GM-
SLR will become irreversible once the Greenland ice sheet
mass drops below the threshold if the medium or low albedo
is realistic.

Under the same BCs, initial states which differ only
slightly in topography (the minimum separation of our ini-
tial states inM is actually 0.2 m SLE) can lead to �nal states
which differ substantially (by more than 1 m SLE) because
ice sheet–climate feedbacks amplify the initially small dif-
ference in SMB. The probable reason is that ablation exceeds
accumulation in the northern region without the ice sheet
(shown by negative SMB at the northern margin in Fig. 3g2),
partly because snowfall is reduced (Fig. 3a4, g4).

The low- and medium-albedo no-north steady states fol-
lowing regrowth are 1–2 m SLE above the threshold and yet
grow no further, unlike states along trajectories of rapid de-
cline havingM in the same mass range, i.e. between the
threshold mass (4 m SLE) and the no-north mass (5–6 m
SLE). The implication is that, for states in this mass range,
the outcome depends on the history. To test this, we have
conducted further experiments (dashed lines in Fig. 4c) be-
ginning from the two steady states in this range (large circles
at the end of dashed lines in Fig. 4b), which were reached by
slowlydeclining trajectories. These two are no-north (EWS)
states. Initially the ice sheet mass grows, but, unlike when
starting from rapidly declining transient states in this range,
it soon becomes nearly constant at a slightly higherM than
is reached from states below the threshold. The difference in
M is due to a large southern dome, which was kept during
the slow decline (along the dashed lines leading to the large
circles in Fig. 4b) but had been lost already in states of the
same mass in the warmer climate that produces the fast de-
cline (the solid lines with red and green circles in Fig. 4b)
and is not rebuilt in the historical climate. This result sug-
gests that, for slow or quasi-static decline of the ice sheet,
the no-north mass itself is the threshold of irreversibility.

Using the linear relationship between the initial rate of
mass loss and the �nal steady-state mass in the �rst set
of experiments (solid line in Fig. 2d), we can translate the
threshold of irreversibility (M D 3:9–4.0 m; horizontal red
and green lines), which applies during trajectories of rapid
decline, into a threshold on therate of loss (vertical red and
green lines). Under a warm climate which initially gives a
more negative1 SMB than the threshold rate, the ice sheet
will eventually decline to a state which is smaller than the
threshold mass. Roughly estimating a range from the scat-
ter in the relationship, the results suggest that the threshold
1 SMB lies between� 500 and� 150 Gt yr� 1 (Fig. 2d). Since
recently observed1 SMB (e.g. van den Broeke et al., 2016)
is at the upper end of this range, i.e. a relatively small rate of
decline, we recall from the previous paragraph that the rele-
vant threshold may instead be the no-north steady-state mass
of about 5.5 m SLE. In that case the linear �t indicates that
the recently observed1 SMB is close to the threshold rate
which will eventually lead to partially irreversible loss of the
ice sheet.

If the recently observed rate of mass loss of about
0.7 mm yr� 1 SLE persisted, it would take 4900 years for the
ice sheet mass to reach the threshold of irreversibility and
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about 2700 years to reach the no-north steady-state mass. At
the highest rate of loss simulated in our experiments for the
end of this century, of about 2 mm yr� 1 SLE, it would take
1700 years to reach the threshold. Allowing for systematic
uncertainty, the AR5 predicted even larger rates of mass loss
due to SMB perturbation, of up to about 6 mm yr� 1 SLE by
the end of the century, at which rate the threshold would be
reached in 600 years.

In order to avoid eventual irreversible ice loss, the climate
must be returned to near pre-industrial before the threshold
mass is reached. Reversing climate change requires extract-
ing heat from the ocean as well as removing the radiative
forcing. If that can be done at all, it could not be done instan-
taneously, and mitigating climate change in the short term
will buy more time to save the ice sheet in the long term. Fur-
ther simulations would be required to evaluate whether par-
ticular trajectories of future climate would avoid irreversible
ice loss.

5 Conclusions

We have studied the multimillennial future evolution of the
Greenland ice sheet for various magnitudes of anthropogenic
climate change in experiments with constant climates us-
ing an AGCM interactively coupled to a dynamic ice sheet
model. For adequate resolution of gradients, especially at the
margins of the ice sheet, the surface mass balance is simu-
lated by the AGCM as a function of elevation within its grid
boxes. Our aim is not to produce time-dependent projections
for coming centuries but instead to investigate the long-term
consequences for global-mean sea level rise (GMSLR).

Under constant climates that are warmer than the late 20th
century, the ice sheet loses mass, its surface elevation de-
creases, and its surface climate becomes warmer. This gives
a positive feedback on mass loss, but it is outweighed by
the negative feedbacks due to declining ablation area and
increasing cloudiness over the interior as the ice sheet con-
tracts. In the ice sheet area integral, snowfall decreases less
than ablation because the precipitation on the margins is en-
hanced by the topographic gradient and moves inland as the
ice sheet retreats. Consequently, after many millennia un-
der a constant warm climate, the ice sheet reaches a reduced
steady state. Final GMSLR is less than 1.5 m in most late
21st-century RCP2.6 climates and more than 4 m in all late
21st-century RCP8.5 climates. For warming exceeding 3 K,
the ice sheet would be mostly lost, and its contribution to
GMSLR would exceed 5 m.

Contrary to expectation based on work using simpler
climate models (Huybrechts et al., 1991; Gregory et al.,
2004; Gregory and Huybrechts, 2006; Robinson et al., 2012;
van den Broeke et al., 2016; Pattyn et al., 2018), we do not
�nd a sharp threshold in regional Greenland or global warm-
ing that divides scenarios in which the ice sheet suffers little
reduction in its �nal steady state from those in which it is

mostly lost. Our results give a qualitatively different impres-
sion because the transition occurs over a larger temperature
interval or involves a smaller mass loss. We think that this
difference arises from our using an AGCM, whose dynam-
ics and physical detail are needed to simulate the response of
snowfall and cloudiness to the evolving topography. Support
for this hypothesis comes from comparison with an experi-
ment using the uncoupled ice sheet model, in which the sur-
face mass balance evolves only through the local lapse-rate
feedback, and regional climate feedbacks are omitted. In that
case an almost constant rate of mass loss is maintained for
3 kyr, during which the ice sheet vanishes completely.

Under a warm climate, the �nal ice sheet mass and the en-
tailed commitment to GMSLR are well correlated with the
initial perturbation to surface mass balance and hence with
the magnitude of climate change imposed. The �nal mass is
also affected by the geographical pattern of climate change.
According to a linear regression of our results, if a climate
giving an SMB similar to that recently observed were main-
tained inde�nitely, Greenland ice sheet mass loss would pro-
duce 0.5–2.5 m of GMSLR.

When transient and steady states of the ice sheet ob-
tained under warm climates are transplanted into the late
20th-century climate, as if subsequent anthropogenic climate
change had been reversed, the ice sheet regrows in all cases,
over tens of millennia, but not necessarily to its present-day
size (as also found by Charbit et al., 2008; Ridley et al., 2010;
Robinson et al., 2012). The resulting steady states can be
put in two groups according to whether ice is present in the
northern part of the island. If the ice sheet retreats from this
region, it may not regrow because the snowfall is reduced
there, meaning that about 2 m of GMSLR would become ir-
reversible. This threshold size might eventually be reached
with late 20th-century climate and would be reached in about
600 years with the greatest rates of mass loss projected for
2100 under RCP8.5 by Church et al. (2013). In order to avoid
irreversible GMSLR, it would be necessary to restore the late
20th-century climate, in which the ice sheet was near mass
balance, before the threshold is crossed.

The reliability of our conclusions depends on the realism
of our model. There are systematic uncertainties arising from
assumptions made in its formulation. The atmosphere GCM
has low resolution and comparatively simple parametrization
schemes. The ice sheet model does not simulate rapid ice
sheet dynamics; this certainly means that it underestimates
the rate of ice sheet mass loss in coming decades, but we do
not know what effect this has on the eventual steady states,
which are our focus. The SMB scheme uses a uniform air
temperature lapse rate and omits the phase change in pre-
cipitation in the downscaling from GCM to ice sheet model.
The snow albedo is a particularly important uncertainty; with
our highest choice of albedo, removal of the ice sheet is re-
versible.

Notwithstanding these limitations, our results demonstrate
the importance of climate–ice sheet interaction to projecting
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the future of the Greenland ice sheet. It would obviously be
useful if similar investigations were done using other mod-
els that couple an ice sheet to an atmosphere GCM (perhaps
as components of an AOGCM or Earth system model), es-
pecially with higher resolution in both the atmosphere and
ice sheet components. Even with our low-resolution GCM,
large ensembles of long experiments are computationally de-
manding, and our results give only an outline of possible be-
haviour. They could be supplemented by using an emulator
to explore a wider range of scenarios (Edwards et al., 2019).
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Appendix A: Technical sensitivity tests of
FAMOUS–ice–Glimmer

In order to test the sensitivity to certain technical changes, we
ran three modi�ed versions of the FAMOUS–ice–Glimmer
experiment with CanESM2 RCP8.5 climate and medium
albedo (from which the medium-albedo experiments of
Sect. 4.1 begin, shown by a green line with circles in Fig. 4b;
and the solid black line in Fig. A1a). The ice sheet mass in
each of the modi�ed experiments differs by less than 0.2 m
SLE from the standard experiment during the �rst 2000 years
(Fig. A1a).

The ice massM.t/ in the �rst modi�ed experiment
(dashed black line in Fig. A1a) remains within� 0:2 m of
the standard experiment throughout its length and is 0.1 m
less than the standard in the �nal steady state. It is identical
in forcing to the standard experiment but begins from a dif-
ferent atmosphere initial state of the same historical climate.
Therefore its deviation from the standard experiment is due
to chaotic unforced climate variability alone. The size of this
unforced deviation is small compared with the differences in
outcome due to climate and albedo among the experiments
discussed in the paper, showing that the forced differences
are statistically signi�cant.

Figure A1. (a) Time series of Greenland ice sheet mass for the �rst 2000 ice sheet years in experiments with CanESM2 RCP8.5 2081–2100
climate and FAMOUS–ice medium albedo as an example of sensitivity to technical modi�cations: different AGCM initial state, individual
monthly means for the sea surface BCs (“interannual variability”) rather than climatological monthly means and synchronous coupling (one
ice sheet year per climate year, “no acceleration”) rather than 10V1 acceleration. The numbers in parentheses give the �nal steady-state mass.
(b) Time series of Greenland ice sheet mass with constant climate for 1980–1999 simulated by MIROC5 during FiG spin-up integrations
beginning from the observed topography (Bamber et al., 2001a, b). The crosses indicate the states from which the experiments of Sect. 3
were initiated.

For its sea surface BCs, the second experiment cycles re-
peatedly through the 20-year series of individual monthly
means that were used to make the 20-year climatological
monthly means of the standard experiment. Thus it contains
interannual variability in the climate. ItsM.t/ (blue line in
Fig. A1a) is always within� 0:4 m of and in the end 0.1 m
less than the standard experiment's.

The third experiment has the same BCs as the second and
differs in addition from the standard experiment in that the
ice sheet model is run for only 1 year (not 10) after each
FAMOUS–ice year. Because this version is almost 10 times
slower, we ran it for only 1700 years. During that period, it
differed in M.t/ by less than 0.05 m from the standard ex-
periment (red line in Fig. A1a). The second and third experi-
ments both have different SMB in every FAMOUS–ice year,
but the acceleration (in the second experiment) makes these
persist for a decade in the ice sheet model. We think this ex-
plains the greater excursions of the second experiment from
the standard model.
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Appendix B: Relationship of albedo to steady-state
historical ice sheet mass

Continuing the spin-up experiments (which are among the
experiments of Sect. 3), ice sheet massM remains at
7.7 m SLE with low albedo, with medium albedo it de-
clines slightly to a steady state of 7.4 m SLE (very close
to observed) over about 10 kyr, and with low albedo it de-
clines to 7.1 m SLE over 15 kyr (Fig. A1b). These are small
changes compared with those simulated for 21st-century cli-
mate change (Sect. 3). Nonetheless, these small differences
in M for low and high albedo from observations show that
requiring a realistic steady state of the ice sheet in a coupled
model provides a strong constraint on the SMB simulation to
which regional climate models such as MAR and RACMO
are not subjected. A quadratic �t to the relationship between
SMB andM in FiG steady states with MIROC5 historical cli-
mate givesM D 7:9 m SLE for the SMB of 437 Gt yr� 1 sim-
ulated by MAR for this climate.

An even higher choice of albedo in FiG gave SMB of
610 Gt yr� 1 and a steady-stateM of 8.2 m SLE, and an even
lower choice, 195 Gt yr� 1, with M tending towards a steady
state substantially below 7.0 m. These values of SMB ap-
proximately bound the range of SMB variations in the 20th
century reconstructed with MAR (Fettweis et al., 2017, their
Fig. 8a), indicating that they could plausibly occur with his-
torical climate and the present-day ice sheet topography (as
in MAR), but we excluded those choices of albedo because
they would not be consistent with realisticM .
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Figure B1. Relationships among air temperature change and Greenland SMB change in CMIP5 AOGCM and FAMOUS–ice–Greenland
experiments. The dotted line in(b) is 1V1. The grey lines in(c) are regression lines for the subset of data from each of the four AOGCMs,
indicated by the symbols along the top edge. Panel(d) is the same as Fig. 2c and repeated here for comparison. Changes are computed from
the �rst 300 ice sheet years and expressed relative to the MIROC5 historical climate with the same albedo parameter.
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Appendix C: Alternative measures of air temperature
change

In Fig. 2 we obtain global-mean annual-mean surface air
temperature (SAT) change, denoted1 SAT, from FAMOUS–
ice. It may also be obtained from the AOGCMs that sup-
ply the sea surface BCs (Fig. B1a). Separating the values
by scenario reveals the AOGCM dependence of global-mean
SAT. NorESM1-M is cooler in general. HadGEM2-ES and
CanESM2 have higher climate sensitivity, meaning that they
warm more in response to forcing, while NorESM1-M has
lower climate sensitivity and warms less.

1 SAT in the CMIP5 AOGCMs is almost the same as in
FAMOUS–ice (Fig. B1b). They differ because SAT is not
prescribed over land from the BCs in FAMOUS–ice.

We have investigated two other measures of air tempera-
ture change, but neither is a better predictor than1 SAT for
the �nal ice sheet mass (Fig. B1e, f).

Appendix D: Lapse rate

In the downscaling of surface air temperature from FAMOUS
grid boxes to FAMOUS–ice elevation tiles, we assume a uni-
form lapse rate of 6 K km� 1. Consequently this lapse rate is
also used to predict the derivative of surface air temperature
with respect to elevation change when Glimmer is run un-
coupled from the AGCM. The derivative diagnosed from the
coupled experiment is shown in Fig. D1.

Figure D1. Change in surface air temperature divided by change
in surface altitude (K km� 1) in the difference between the initial
state of the experiment with HadGEM2-ES abrupt4xCO2 climate
and low albedo and the state after 3600 years (Fig. 3b1, c1). The
thick black line is the ice sheet edge in the latter state.
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