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Abstract 
 

The objective of this research is to compare and identify effective methods for the identification of gene loci associated 

with a disease outcome in the analysis of genome-wide data.  We evaluate three methods, namely single SNP analysis, Sequence 

Kernel Association Test (SKAT) and the recently proposed Generalized Higher Criticism (GHC). The simulated data used in this 

research were constructed from a control data set in a study of Crohn's disease. True positive (TP) and false positive rate (FP) were 

evaluated under different genetic models for disease with significant thresholds adjusted for multiple hypothesis testing based on 

the permutation method.  The findings are mixed with all three methods giving similar TP rates under some disease models and 

different rates for other models.  Overall, GHC is shown to be preferable in terms of error rates but it is disadvantageous in terms 

of computational efficiency.   

 

Keywords: single SNP analysis, Sequence Kernel Association Test, Generalized Higher Criticism, permutation test 

 

 

1. Introduction 
 

Advances in medical science and the promise of 

innovative treatments such as gene therapy depend on accurate 

and effective statistical analysis methods for identifying target 

genetic region(s) for treatment. Single SNP analysis is a 

traditional method used to analyze the association between 

SNPs and disease by analyzing each SNP loci while logistic 

regression and chi-square test (Clarke et al., 2011; Lewis, 2002) 

are simple and effective ways to conduct the single SNP tests 

for association. Although the single SNP analysis has proven 

useful in many studies, this method faces the problem of type I 

error rate inflation and methods for correcting this, such as 

Bonferroni, are often overly conservative. An alternative to 

single SNP analysis, which groups variants into SNP-sets and 

 
jointly tests for an effect with disease outcome, is motivated by 

the possibility that there could be many variants, each with 

small individual effects and in LD with causal variant(s) (Wu 

et al., 2010). This approach is claimed to be more effective 

(Kirdwichai & Baksh, 2019; Schaid, Rowland, Tines, 

Jacobson, & Poland, 2001; Zhao et al., 2012) in identifying 

disease loci.  

Wu et al. (2010) proposed a logistic kernel machine 

model to analyze the association between SNP-set (grouping by 

gene, gen networks, pathways or haplotype block) with disease 

outcome and claimed that grouping into SNP-sets can lead to 

improving the power of the test. Wu et al. (2011) utilize this 

concept and proposed SKAT to analyze rare variant association 

with complex traits. SKAT is a supervised, flexible, compu-

tationally efficient regression method to test for association 

between common or rare variants and disease (Iuliana-Laza, 

Lee, Makarov, Buxbaum, & Lin, 2013; Lee et al., 2012). A 

crucial feature in implementing SKAT is assigning appropriate 

weights as this can have an impact on the power of the test 

procedure (Lee, Miripolsky, & Wu, 2017).  
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More recently the Generalized Higher Criticism 

(GHC) was proposed for testing multiple SNPs simultaneously 

in genome-wide association studies (Barnett, Mukherjee, & 

Lin, 2017). This approach extends a technique called higher 

criticism (HC) and compares the observed significant findings 

in the single SNP analysis with the expected number under the 

null while accounting for the correlation between the hypo-

thesis test statistics. It should be noted that HC has been applied 

in high-dimensional, low correlation signal detection settings 

whereas SNP-sets frequently have a low number of true 

positive associations which can be highly correlated. The GHC 

method is flexible to the correlation structure and is com-

putationally efficient, producing a p-value without the need for 

simulation of the null distribution. SKAT and GHC are 

implemented in the R packages SKAT (Lee, 2017) and GHC 

(Barnett, 2015) 

Crohn’s disease is an autoimmune disease that is 

suspected to be genetically linked with several genes being 

identified across the genome as being associated with 

chromosome 16. It's not clear which genes are responsible for 

this disease. Therefore, the simulation study in this paper uses 

genotype data on Chromosome 16 from 1,504 individuals in the 

1958 British Birth Cohort (Wellcome Trust Case and Control 

Consortium, 2007).  False positive (FP) and true positive (TP) 

rates were evaluated for the different methods with significant 

thresholds adjusted for multiple hypothesis testing using a 

permutation method. Computational efficiency is also 

evaluated. Additionally, the methods are applied to real data 

from a study (Wellcome Trust Case and Control Consortium, 

2007) on Crohn’s disease and the findings are compared. 

  

2. Methods 

 

2.1 Single SNP analysis 

 

Logistic regression (Bush & Moore, 2012) is an 

extension of linear regression where the outcome of a linear 

model is transformed using a logistic function that predicts the 

probability of having case status given a genotype class. 

Suppose that the possible genotypes at a particular locus are 

CC, CT, and TT and suppose that C is the rarer of the two alleles 

C and T. The additive genetic model then corresponds to TT = 

0, CT = 1, and CC = 2, respectively. 

Let P
ij
 be the probability of disease for this indi-

vidual. The logistic regression model is 

 

                                   (1) 

 

where a
0
 is an intercept term, 𝛼′ is a vector of regression 

coefficients for the q  covariates,  is the 

covariate matrix,  is a vector of regression coefficients for 

p  observed variants, and T
ij

 in a genotype for the j th  SNP             

on the ith  individual.    

Here,  corresponds to the null hypothesis of lack of 

association between the j th  SNP and disease. In this research, 

the additive model is used in the simulations and assumed in the 

analysis of the WTCCC data, but the single SNP analysis is done 

using a logistic regression model. Logistic regression is a more 

efficient, but asymptotically equivalent, alternative to the 

Pearson's c 2
 test for analyzing this type of study data.  

 

2.2 Sequence Kernel Association Test (SKAT) 

 

A key feature of SKAT is that it tests for the joint 

effects of multiple variants in a region of the genome on disease. 

Regions can be defined by genes, haplotype block, principal 

component analysis, or sliding window etc. For each region, 

SKAT analytically calculates a p-value for association (Lettre, 

Lange, & Hirschhorn, 2007; Lewis, 2002; Wu et al., 2010).  The 

theory underlying the test procedure can be viewed within the 

kernel machine regression framework. Consider the 

semiparametric logistic regression model for the i- th subject 

in a study (i=1,…, n) 

 

𝑙𝑜𝑔𝑖𝑡𝑃(𝑦𝑖 = 1) = 𝛼0 + 𝛼′𝑪𝑖 + ℎ(𝑻𝑖),                   (2) 

 

where y
i
 is a binary disease outcome taking values 0 (disease-

free) or 1 (disease), a
0
 is an intercept term, 𝛼′ is the vector of 

regression coefficients for the covariates  and T
i
 are the 

observed variants and is related to disease through a 

nonparametric function      which is assumed to lie in a 
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functional space generated by a positive semidefinite kernel 

function           Under this model, the null hypothesis of no 

association between disease and gene region H
0
: h(T )= 0can 

be tested by assuming the             vector  

for the genetic effects of the n  subjects follow a distribution 

with mean  0  and covariancetK , where t  is a variance 

component that indexes the effect of the variants.  

The semiparametric logistic regression model in 

equation (1) is equivalent (Wu et al., 2011) to 

 

𝑙𝑜𝑔𝑖𝑡𝑃(𝑦𝑖 = 1) = 𝛼0 + 𝛼′𝑪𝑖 + 𝛽′𝑻𝑖 ,                                   (3) 

 

where 𝜷′ = (𝛽1, 𝛽2, … , 𝛽𝑝) is a vector of regression coefficients 

for the p observed variants in the gene region with each  𝛽𝑗  

following an arbitrary distribution with mean of zero and a 

variance of w
j
t,  for  variance component t  and where w j  is 

a pre-specified weight for variant j. The null hypothesis 

 is equivalent to the hypothesis H0
:t = 0, which 

may be tested with a variance-component score test statistic 

 

𝑆 = (𝒀 − �̂�)′𝑲(𝒀 − �̂�)                                                        (4) 

 

where ,  is the predicted mean of Y= (y1,…yn)’ 

under H0  that is �̂� = 𝑙𝑜𝑔𝑖𝑡−1(�̂�0 + 𝐶�̂�),â
0

 and  are 

estimated under the null model by regressing  on the 

covariate  and 𝑻 = [𝑇1, . . . , 𝑇𝑛] is an             matrix with 

elements variant j  of individual i , and  = diag w
1
, ..., w

p( ) 

contains the weights of the p  variants. SKAT uses the 

variance-component score test statistic to test the null of no 

genetic effect but exploits the semiparametric regression 

approach in computing K . The form for K  used by SKAT is 

an                 symmetric matrix with elements                   that 

measures genetic similarity between the i- th and  

subjects     in    the    study.    The    weighted    linear     kernel  
 

                                       is used in this study.  

 

Choosing an appropriate weight is very important in 

SKAT because a good choice of weights can improve the power 

of the test. Weight functions can be specified in the SKAT 

package in R. In this paper we select four weights based on the 

Beta density function Beta( x j : a,b )  

 

w
j
=
x
j

a-1(1- x
j
)b-1

B( a,b )
,0 < x

j
<1; a,b>0,                            (5) 

 

where B denotes the beta function, a  and b are prespecified 

scale and shape parameters and x
j
 is the estimated minor allele 

frequency (MAF) for SNP j  using all cases and controls.  First 

selected is the default weight in the SKAT package

Beta( x
j
:1,25 ) which, by choosing a  small and b large, 

substantially up-regulates rare variants and down-regulates 

common variants (Wu et al., 2011). Second is the Madsen and 

Browning weight, defined as Beta( x
j
:0.5,0.5 ), which 

corresponds to w
j
= 1 / MAF

j
(1- MAF

j
) ; that is w

j
 the 

inverse of the variance of the genotype marker j. The Madsen 

and Browning weight can pick up signals from both common 

and rare variants but is thought to suffer from low power. The 

third option w
j
= 1 / q

j
, which we call inverse mean, is 

equivalent to Beta( x j :0.5,1). The final option considered in 

this paper is Beta( x j :10,10 ) , which gives the appearance of a 

symmetrical distribution similar to the normal distribution. 

These weight functions are illustrated in Figure 1. (Sookkhee, 

Baksh, & Kirdwichai, 2018). 
 

 
 

Figure 1. Weight functions use in SKAT analysis 
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2.3 Generalized Higher Criticism (GHC) 

 

While SKAT uses the observed variants in a gene 

region to construct a joint score test statistic for association with 

disease outcome, GHC (Barnett, 2018) tests gene regions for 

association by using single variant statistics and their 

correlation matrix to construct a new test statistic and its 

distribution. Consider the parametrization of 𝑃(𝑦𝑖 = 1) for the 

j-th variant in a set of p variants, 

 

𝑙𝑜𝑔𝑖𝑡𝑃(𝑦𝑖 = 1) = 𝛼0 + 𝛼′𝑪𝑖 + 𝛽𝑗𝑇𝑖,𝑗 ,                                             (6) 

 

where 𝛽𝑗  is the effect of the j-th variant and 𝑇𝑖,𝑗 is the observed 

j-th variant on the i-th subject, and the other terms are as in the 

previous section. The GHC approach exploits the fact that 

while p  might be large in the test of the global null 𝐻0: 𝛽 =

𝟎,  in a genetic construct variants are likely to be correlated and 

generally only a small subset of variants are signals for 

association.  In other words, a sparse set of the 𝛽′ =

(𝛽1 , 𝛽2 , … , 𝛽𝑝) are not zero. GHC aims to account for both 

sparse signals and correlation among SNPs when combining 

individual marker test statistics. 

Let 𝑻𝒋
′ = (𝑇1,𝑗 . . . 𝑇𝑛,𝑗) be the vector of observed 

variants at the j-th marker, Y= (y1,…yn)’x be the observed 

disease status and �̂� = (𝜇1̂, . . . , 𝜇�̂�)′ be the predicted mean 

for Y under the assumption of no genetic effect. The score test 

statistic for 𝛽𝑗  under the global null is 

 

𝑍𝑗 =
𝑻𝒋

′ (𝒀 − �̂�)

√𝑻𝒋
′ 𝑷𝑻𝒋

, 

 

where 𝑃 = 𝑊 − 𝑊𝐶(𝐶 ′𝑊𝐶)−1𝐶 ′𝑤 and 𝑊 = 𝑑𝑖𝑎𝑔{𝜇1̂(1 −

𝜇1̂) … , 𝜇�̂�  (1 − 𝜇�̂�)}. These individual variant test   statistics    

are    asymptotically    jointly    distributed    as  

, where the ( i,k )th  component of  is 

estimated by  

 

�̂�𝑗𝑘 =
𝑻𝒋

′ 𝑷𝑻𝒌

√𝑻𝒋
′ 𝑷𝑻𝒋√𝑻𝒌

′ 𝑷𝑻𝒌

.   

Define S( t ) by 

                                                        (9) 

 

The generalized higher criticism test statistic is 

defined as 

 

𝑇𝐺𝐻𝐶 = 𝑠𝑢𝑝
𝑡≥𝑡0

{
𝑆(𝑡) − 2𝑝(1 − 𝜙(𝑡))

√𝑣𝑎�̂�(𝑆(𝑡)
}, 

               

where𝜙(𝑡) is the standard normal distribution function and 

𝑣𝑎�̂�(𝑆(𝑡)) is calculated accounting for the correlation between 

the 𝑍′𝑗𝑆. The p-value  

 

 

𝑃(𝐺𝐻𝐶) ≥ 𝑇𝐺𝐻𝐶 

              

is also calculated accounting for this correlation. The algorithm 

behind this approach is implemented in the R package GHC. 

 

2.3 Multiple hypothesis testing 

 

For m independent tests and the rejection level α for 

each test, the probability of falsely rejecting at least one true 

null hypothesis, otherwise known at the family-wise error rate 

(FWER), increases in such a way that for even a moderate 

number of tests we will almost surely incorrectly reject at least 

one true null hypothesis. In fact, the probability at least one type 

I error in p tests is 1 − (1 − 𝛼)𝑚. As shown in Figure 2, the 

probability at least one type I error gets close to 1 even for a 

small number of tests.  
 

 
 

Figure 2. Probability of at least one false positive finding for different 

number of hypotheses m and significance level 0.01. 0.05 

and 0.10. 

(7) 

(10) 

(11) 

(8) 
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  The simplest method for controlling the FWER is 

Bonferroni correction. An alternative way to find the appro-

priate threshold is the permutation method. This method is an 

empirical method that calculates the p-value by using the 

observed test statistic value in the permuted distributed of test 

statistics under the null model. In this research, 10,000 

replicates were used for computing the multivariate sampling 

distribution under the null hypothesis with no gene effect and 

to establish significance thresholds giving a type I error close 

to 0.05.  

Simulation results of single SNP analysis, SKAT-

normal weight and GHC test under the null model of no gene 

effect in Table 1 confirms that that Bonferroni adjustment leads 

to a type I error that is much lower than the desired level and 

therefore Bonferroni correction is conservative and con-

stringent. Considering the Type I error rates based on the new 

thresholds, shown in Table 1, it’s clear that in all cases the 

nominal type I error of 0.05 is achieved using the Permutation 

threshold. Therefore, the permutation thresholds are selected 

for comparing the efficiency of the single SNP analysis, SKAT, 

and GHC. 

 

2.4 The data and disease model simulation 

 

The genotype data used in this simulation are 13,479 

SNPs on Chromosome 16 from 1,504 unaffected individuals in 

the WTCCC study of Crohn's disease. Using 3,008 haplotypes 

constructed from the 1,504 genomes, new genotype data were 

generated and assigned disease status based on 2 disease SNPs 

both of which have very high MAF's and are highly correlated 

with other SNPs on their respective genes. The first SNP 

rs3789038 is located at position 50711672bp in gene HMOX2 

and has MAF equal to 0.31. The second,  SNP  rs3785142  has  

 

Table 1. Achieved type I error of single SNP, SKAT analysis and 

GHC test under the null model in tests with a = 0.05 

Method 
Bonferroni 

threshold 

Permutation 

threshold 

   

Single SNP analysis 0.033 0.059 

SKAT Default 0.040 0.057 
SKAT Madson & Browning 0.031 0.055 

SKAT Inverse mean 0.033 0.059 

SKAT Normal 0.040 0.055 

GHC method 0.039 0.057 
   

MAF equal 0.48 and is located at position 50753236bp in gene 

CYLD (Sookkhee, Baksh, & Kirdwichai, 2017). The model for 

one disease SNP used to generate disease status is 

   

P(diseased |T ) =
e

a
0
+b

1
T

1+ e
a

0
+b

1
T

,                                  (12) 

 

where T  is the number of copies of the rare allele of the disease 

SNP, a 0  is a pre-specified baseline relative risk of disease and 

b
1
 is the gene effect, which in this study was set equal to 0.2. 

The disease model for two disease SNP is 

  

P(diseased |T
1
,T

2
) =

e
a

0
+b

1
T

1
+b

2
T

2

1+ e
a

0
+b

1
T

1
+b

2
T

2

 .                                 (13) 

 

This model assumes the two disease SNPs act linearly 

on the logit scale and two situations are investigated. The first 

is for gene effect b
1
= 0.1 and b

2
= 0.2 while in the second case 

the gene effects are fixed at b
1
= 0.2 and b

2
= 0.1. 

The procedure in simulating the data is shown in 

Figure 3. The 1,504 genotypes are first separated to construct 

3,008 haplotypes as the initial data. The haplotypes are next 

coded to 0 (major allele) and 1 (minor allele) and used to 

construct pairs of parental genotypes using randomly selected 

haplotypes. Each pair of parental genotypes are then used to 

construct the genotype of an individual in the study. Disease 

status was then determined via the disease probability given by 

equation 12 in the case of one disease SNP and by equation 13 

in the case of two disease SNPs.  

 

3. Simulation Study  

 

In this research, simulation results are presented from 

single SNP analysis, SKAT, and GHC test for two cases. The 

simulation result in the first case is one disease SNP and the 

second is two disease SNPs. A total of 1,500 replicate studies, 

each consisting 3,000 cases and 3,000 controls are simulated 

and, for each study, a count is made of the number of SNPs 

incorrectly identified as significantly associated with disease 

(false positive rate) and whether the disease SNP is correctly 

identified (true positive rate) by the single SNP, SKAT and 

GHC test described above.  
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Figure 3.     The procedure in the generating simulated data 

 

3.1 The simulation results of one disease SNP 

 

The TP and FP rates of single SNP, SKAT normal, 

and GHC test of rs3789038 as disease SNP with gene effect 

size b
1
= 0.2 are provided in Table 2. The FP rate of the single 

SNP analysis is seen at 0.00105 to be roughly at least 14 and 11 

times lower than the SKAT normal and GHC test, respectively. 

But this comes at the lower TP rate of 0.71. When considering 

the FP rate, the result shows that the GHC test gives the lowest 

FP. 

The TP and FP rates of the single SNP and SKAT 

analyses with rs3785142 as disease SNP with gene effect size 

b
1
 = 0.2. The FP rate of the single SNP analysis is 0.00132 and 

TP rate is 0.89 showing high the TP and FP. When we 

considered SNP-set analysis, the efficient model of SKAT is 

SKAT normal showing the TP as 0.92 more than GHC at least  

Step 1: We have data initial haplotype. 
 

 

 

 

 

 

Step 2: Select random the haplotype for the father and mother and bring together to  

                construct the new individual 
 

Father 1 0 0 0 0 0 1 

                                                     + 
Mother 0 0 0 1 0 0 1 

     =        
Individual  1 0 0 1 0 0 2 

 

Step 4: Decision the individual is case or control  
 

 
 

 

 

 

Step 3: Define the disease SNP 

                                                         Disease SNP 

 

 SNP1 SNP2 SNP3 SNP4 SNP5 SNP6 SNP7 

        

Individual 1 0 0 0 1 0 0 2 

Individual 2 0 0 2 1 0 1 0 
Individual 3 1 0 0 0 0 0 0 

Individual 4 1 2 1 0 0 1 1 

        

Individual 6000 1 0 1 1 1 2 1 
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Table 2. The TP and FP rates of single SNP, SKAT, and GHC test 

with rs3789038 and rs3785142 as disease SNP and effect 

size b
1
 = 0.2 

Method 

Disease SNP rs3789038 Disease SNP rs3785142 

FP rate TP rate FP rate TP rate 

     

Single SNP 

analysis 

0.00105 0.71 0.00132 0.89 

SKAT default 0.00154 0.80 0.00209 0.00 

SKAT Madsen & 

Browning 

0.01073 0.86 0.03705 0.65 

SKAT inverse 

mean 

0.00981 0.86 0.02734 0.57 

SKAT normal 0.00939 0.85 0.04867 0.92 
GHC 0.00096 0.82 0.00075 0.86 
     

 

6 times while the FP rate of GHC is lower than all method. An 

appropriate weight in this case is the normal and this is 

confirmed by the simulation results. 

 

3.2 The simulation results of two disease SNPs 

 

The comparisons of TP and FP rates for single SNP, 

SKAT and GHC test based on the permutation threshold were 

provided in Table 2. It was computed from 1,500 replicates 

with a gene effect size for disease SNP rs3789038 of b
1
= 0.2 

and effect size for rs3785142 of b
2
= 0.1. Here the single SNP 

method is found to have the lowest TP rate (0.85) and FP rate 

(0.00220). The TP is consistent with the findings in Table 2. 

We found that when we defined two disease SNP the FP from 

SKAT and GHC test gave a high TP and FP. SKAT gave higher 

FP than GHC test while the rates were close to TP.  

When considering the gene effect size for disease 

SNP rs3789038 of b
2
 = 0.1 and effect size for rs3785142 of b

1
 

= 0.2, the FP rate of single SNP analysis is the lowest while the 

TP is quite high. SKAT and GHC test give a high TP and high 

FP.  Totally, the efficient model of SKAT is SKAT normal 

because this weight can pick up signals from both common and 

rare variants. The efficient SKAT normal was chosen as a 

representative of the SKAT method in applying to real data. 

 

4. Real Data Application  

 

  The three methods were evaluated in the previous 

section can be applied to real data to define the locate of SNP 

or region that cause the disease. The data set used has 13,479 

SNPs on Chromosome 16 comprise 2,005 cases and 1,500 

controls of Crohn’s disease studies. The result showed the 

SNPs which were declared as significant by Single SNP 

analysis, SKAT normal, and GHC in Table 3. The example of 

horizontal line of permutation threshold for declaring 

significant of Single SNP analysis and SNP-set method are 

presented in Figure 4. 

The genes that were declared as significant by three 

methods which single SNP analysis, SKAT and GHC are 

shown in Table 4. Single SNP analysis found eight significant 

regions. SKAT normal found four regions and the GHC method 

found four region.  

 

5. Discussion and Conclusion 

 

The findings confirm that the single SNP analysis is 

robust in producing an equal FP value when we change the 

disease SNP rs3789038 to rs3785142. On the other hand, the 

efficiency of the SKAT analysis for genome-wide association 

analysis is highly dependent on the disease-causing SNPs. 

Determining the disease SNP are affects TP and FP rate. We 

may have to consider the value of MAF, the correlation 

between SNP in the gene. The important thing in SKAT is the 

choice of weight and this must be carefully selected. It is 

necessary to find the appropriate weight for the data being 

studied by tuning the appropriate parameters to get a powerful 

test. Incorrect weight and data misalignment may  lead  to  low 

 

Table 3. The TP and FT rates of single SNP and SKAT analysis with 

rs3789038 and rs3785142 as disease SNPs and respective 

effect sizes of b
1
= 0.2 and b

2
 = 0.1. and effect sizes of b

1

= 0.1 and b
2
 = 0.2 

Method 

b
1
= 0.2  and b2 = 0.1 b

1
= 0.1 and b

2
 = 0.2 

FP rate TP rate FP rate TP rate 

     

Single SNP 

analysis 

0.00220 0.85 0.00270 0.94 

SKAT default 0.00344 0.92 0.00482 0.38 
SKAT Madsen 

& Browning 

0.04139 0.93 0.06329 0.80 

SKAT inverse 
mean 

0.03321 0.94 0.05624 0.74 

SKAT normal 0.03329 0.94 0.04820 0.93 

GHC 0.01716 0.93 0.02308 0.96 
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Figure 4. The horizontal line of the permutation threshold for 
declaring significance of Single SNP analysis (a) and SNP-

set method (b) 

 

Table 4. Genes on Chromosome 16 declared as significant by Single 

SNP analysis, SKAT and GHC method using the permu-
tation method threshold  

 

Region 
Single SNP 

analysis 
SKAT GHC 

    

1 LMF1 - - 

2 RBFOX1 - - 
3 - LOC646828 - 

4 XPO6 - - 

5 SMG1P5 SMG1P5 SMG1P5 
6 Intron Gene 151 Intron Gene 

151 

Intron Gene 

151 

7 Intron Gene 173 - Intron Gene 
173 

8 Intron Gene 174, 

NOD2, CYLD 

Intron Gene 

174, NOD2, 
CYLD 

Intron Gene 

174, NOD2, 
CYLD 

9 C16ORF70 - - 
    

 

 

 test power. GHC results were more robust when the disease 

SNP were changed. In the case one disease SNP, GHC gave a 

small FP while TP was close to that of the other two methods. 

When considering the test power, GHC is better than the other 

two methods. But it is difficult to specify which method is 

better because the meaning of an effective model covers many 

issues including the power of the test and computational 

efficiency. We find that the GHC test is a statistical method for 

testing the SNP-set suitable for the SNP-set containing a finite 

set of the correlated marker. These SNP data have no variation 

so the covariance matrix cannot be calculated. It is necessary to 

remove the no variation SNP from the data set. In the process 

of checking and deleting no variation data, the analysis takes a 

lot of time when compared with the single SNP and SKAT test, 

so that while GHC is shown to be preferable in terms of error 

rates, it is disadvantageous in terms of computational 

efficiency. It is obvious that the testing power of the three 

methods are equal, but the time it takes to test the SKAT normal 

is minimal as shown in Table 5. 

In the section of real data analysis, all of the methods 

found that many regions are significant Especially, Region 4 

contributed the intron gene 174, NOD2 and CYLD gene, 

corresponding to many pieces of research that found NOD2 is 

identified as a highly significant variant in Crohn’s disease 

(Michail, Bultron, & DePaolo, 2013). Sidiq and Yoshihama 

(2016) said that NOD2 plays a key role in the regulation of 

microbiota in the small intestine and is the strongest risk factor 

in ileal Crohn's disease. It is confirmed that NOD2 is one of the 

most critical genetic factors causing the disease. In this 

research, NOD2 was found in all of the methods. In this 

situation, SKAT has the advantage when compared to the other 

methods in terms of providing the same results but taking less 

time. We expect this method will help to get accurate and fast 

answers in tests to find genes region that affect other diseases 

as well. 

 
Table 5. Processing time for testing in each method  

Method 
Average time per 

one replicate 
Total time (hours) 

   

Single SNP 

analysis  

6 minutes 150 H (6.25 days) 

SKAT normal  4 minutes 100 H (4.16 days) 

GHC  30 minutes 750 H (31.25 days) 
   

 

 

Currently, there are many genomic datasets that need 

to be analyzed to yield fast, accurate and efficient answers. For 

large datasets and high dimensional data, the SNP-set method 

such as SKAT and GHC test is an interesting tool in the 

repertoire of statistical analysis methods with the advantage 

that it is potentially powerful and provides the correct 

assumptions. For SKAT, this paper only considered the 

weighted linear kernel; planned further work will evaluate the 

use of different kernels within the genomic setting. Although 

the two methods for analysis the SNP-set offer more advantage 

than the single SNP analysis in terms of computation, the high 

false positive rate in the SKAT method remains a concern.  
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