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Focused attention meditation 
changes the boundary 
and configuration of functional 
networks in the brain
Shogo Kajimura1*, Naoki Masuda2, Johnny King L. Lau3 & Kou Murayama3

Research has shown that focused attention meditation not only improves our cognitive and 
motivational functioning (e.g., attention, mental health), it influences the way our brain networks 
[e.g., default mode network (DMN), fronto-parietal network (FPN), and sensory-motor network 
(SMN)] function and operate. However, surprisingly little attention has been paid to the possibility 
that meditation alters the architecture (composition) of these functional brain networks. Here, using a 
single-case experimental design with intensive longitudinal data, we examined the effect of mediation 
practice on intra-individual changes in the composition of whole-brain networks. The results showed 
that meditation (1) changed the community size (with a number of regions in the FPN being merged 
into the DMN after meditation) and (2) led to instability in the community allegiance of the regions in 
the FPN. These results suggest that, in addition to altering specific functional connectivity, meditation 
leads to reconfiguration of whole-brain network architecture. The reconfiguration of community 
architecture in the brain provides fruitful information about the neural mechanisms of meditation.

Meditation is a practice aimed to enhance one’s core psychological capacities, such as attentional and emotional 
self-regulation1. In several styles of practice, focused attention meditation involves sustaining attention to pre-
sent-moment experiences without emotional reaction and judgment and has been found to produce significant 
beneficial outcomes, such as stress  reduction2 and improvements in attention  processing3.

Past research indicates that the meditation is primarily related to three brain networks: the fronto-parietal 
network (FPN), sensory-motor network (SMN), and default mode network (DMN)1. The FPN mainly consists 
of the rostro- and dorso-lateral prefrontal cortex (PFC), anterior insula, dorsal anterior cingulate cortex (ACC), 
and anterior inferior parietal lobule; all of these brain areas are critical for cognitive control functions, such 
as regulation of attention and  emotion4–7. Especially in the early stages of long-term practice, this meditation 
increases activation of FPN  regions8–11, which is consistent with the general observation that focusing on the 
present moment requires effortful attentional control.

Focused attention meditation also alters sensory experiences through the  SMN12,13, consisting of motor corti-
ces, primary somatosensory cortex, and insula. In a previous study, these brain areas showed reduced activation 
in a four-day meditation when beginners meditated in the presence of noxious stimulation causing  pain14. This 
change in brain activity may be associated with enhanced body awareness, as the meditation requires individuals 
to focus on a body part or internal experiences, such as  breathing15.

The DMN, mainly consisting of the anterior medial PFC, posterior cingulate cortex (PCC), and poste-
rior inferior parietal lobule, is a network implicated in supporting spontaneous thoughts and self-referential 
 processing16–18. Because sustained attention on an anchoring object (e.g., one’s breath) needs to detect distraction 
such as task-irrelevant thoughts, disengage attention from the distraction, and redirect attention on the object, 
the DMN is expected to be suppressed during meditation. In fact, the medial PFC and PCC showed less activ-
ity during meditation, and functional connectivity between the PCC, dorsal ACC, and dorso-lateral PFC was 
stronger in meditators compared to meditation-naive  controls19. These results indicate that the meditation may 
increase cognitive control over the DMN  functioning19.
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Although previous work has provided various insights into how meditation influences the functional network 
of the brain, there are two critical limitations in the current literature. First, the brain networks were defined a 
priori in previous studies, precluding the possibility that meditation practice can alter the architecture of the 
primary brain networks themselves (i.e. FPN, SMN, and DMN). Because recent studies have shown that medi-
tation can change functional connectivity across brain  regions10,19–21, the whole-brain composition of the FPN, 
SMN, and DMN may be altered as a consequence of meditation.

Second, most of the previous research has employed a one-shot pre-post or nonmeditator-meditator compari-
son  design22,23, and compared the conditions after aggregating the data across heterogeneous participants. This 
inter-individual aggregation approach is useful to examine the effects of meditation averaged across participants. 
However, given the large individual differences in the whole-brain functional connectivity  patterns24,25, there is 
danger that the approach potentially masks important intra-individual changes in the composition of the brain 
networks (e.g., some participant-specific network architectures may be canceled out by inter-individual aggre-
gation). Therefore, adopting a design that allows us to focus on the intra-individual change may provide novel 
insights into how meditation alters the architecture of the brain networks.

The current research aims to expand our understanding of meditation by addressing these two critical issues. 
For that purpose, we will examine the effects of meditation using a single-case experimental design with inten-
sive longitudinal data. Single-case experimental designs have a long tradition in psychology (Fechner et al.26; 
 Watson27), and in later years, they have been applied to intensive longitudinal data (for a systematic review, see 
 Smith28). Single-case experimental designs are effective in reliably detecting intra-individual changes in outcome 
variables in response to  intervention28. However, this design has rarely been implemented in neuroimaging stud-
ies (for an exception without experimental manipulation, see Poldrack et al.29). Based on this design, we scanned 
a single participant repeatedly over a long period of time (65 days), employing the meditation intermittently, 
and examined whether and how the whole-brain composition of the FPN, SMN, and DMN were altered over 
this period of meditation practice.

Methods
The study was conducted in accordance with the principles of the Helsinki declaration.

Participant. The participant (author S.K.) is a right-handed Asian male, aged 28 years and had no experi-
ence of meditation practice at the onset of the study. The participant was healthy with no history of neuropsy-
chiatric disorders. The study was approved by the research ethics committees of the University of Reading, UK 
(UREC 16/28).

The participant underwent 65 scanning sessions, each on a different day between June 15th 2016 and Novem-
ber 11th 2016. The scanning time (between 9am and 5 pm) varied unsystematically across days. Data acquisition 
was not completed on 6 out of the 65 days due to technical issues and data from an additional day was excluded 
due to excessive head movement (> 3.0 mm between adjacent scan slices). As a result, only data from 58 days were 
used in the following analyses. On each day, the participant underwent a resting-state fMRI scan with eyes open 
for 10 min and completed two sets of questionnaires carried out for a separate study. On 18 out of the 58 days 
(Fig. 1), the participant underwent a 15-min session of the meditation practice within half an hour before the 
scanning session. Note that we started the intervention 64 days after the first scanning session and the assignment 
of the intervention condition was randomized since then. During the meditation, the participant was instructed 
to focus on his breathing, specifically on sensations of the breath through the nostrils, and to redirect attention 
from spontaneously occurring thoughts to breathing when he realized his mind was  wandered10. Before the 
data collection, the participant studied the meditation several times from an auditory instruction developed by 
a professional trainer (Fujino et al.30, in revision) so that he did not need the instruction for each practice. In the 
following text, the “meditation condition” refers to the days on which scanning followed the meditation practice. 
The “no-meditation condition” refers to the days on which there was no meditation practice prior to scanning. 
The mean of recording days (i.e. days elapsed from the first scanning session) of the meditation condition and 
no-meditation condition were 23.7 and 42.3, respectively.

Data acquisition. MR images were acquired using a Siemens 3.0-T Trio scanner equipped with a 32-chan-
nel head coil at the Centre for Integrative Neuroscience and Neurodynamics of the University of Reading. The 
resting-state fMRI data were obtained using a single-shot, gradient-echo echo-planar imaging (EPI) sequence. 
Sequence parameters were as follows: repetition time/echo time (TR/TE) = 2500/30 ms, slice thickness = 3.5 mm, 
field of view (FoV) = 256 mm, flip angle (FA) = 90°, data matrix = 64 × 64, in-plane resolution = 3.5 × 3.5 mm, 46 
slices, 10 min scan length. Four dummy scans were discarded to remove the impact of magnetization instabil-
ity. A high-resolution (spatial resolution: 1 mm3) structural image was also acquired on the first day using a 
T1-weighted magnetization prepared rapid-acquisition gradient echo (MP-RAGE) pulse sequence.

Data preprocessing. All preprocessing steps were performed using the Data Processing Assistant for 
Resting-State fMRI Advanced Edition (DPARSFA)31, which runs on Statistical Parametric Mapping 8 (SPM8) 
and the Resting-State fMRI Data Analysis Toolkit (REST)32. Data preprocessing included the following steps: 
realignment of all functional images using a six-parameter rigid body transformation  (Tx = 0.04 ± 0.03  mm, 
 Ty = 0.30 ± 0.14  mm,  Tz = 0.21 ± 0.13  mm,  Rx = 0.27 ± 0.13°,  Ry = 0.06 ± 0.05°,  Rz = 0.10 ± 0.05°); slice-timing cor-
rection to the middle slice of each volume; co-registration of the structural image (T1-weighted MPRAGE) 
to the mean functional image using a rigid-body transformation; segmentation of the transformed structural 
image into the gray matter, white matter, and cerebrospinal fluid (CSF); nuisance covariate regression of six 
head motion parameters, average white matter signals, CSF signals, and the global signal in native space; spa-



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18426  | https://doi.org/10.1038/s41598-020-75396-9

www.nature.com/scientificreports/

tial normalization of the functional images to the Montreal Neurological Institute (MNI) stereotactic standard 
space; spatial smoothing of the functional images with a 6-mm full-width at half-maximum (FWHM) Gauss-
ian kernel using the Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL) 
 toolbox33; band-pass filtering (0.01–0.10 Hz) to reduce low-frequency drift and high-frequency physiological 
noise. The relationship between the framewise  displacement34 and the following indices are summarized in the 
Supplementary material.

Computation of functional connectivity. To calculate a functional connectivity matrix for each day, we 
defined the regions of interest (ROI) based on the Human Connectome Project (HCP)’s multi-modal parcella-
tion version 1.035 and the automated anatomical labeling (AAL)  atlas36. Of the 360 cerebral cortical ROIs defined 
by the HCP, one ROI (rh.R_8BL) was excluded because the obtained mask contained only 2 voxels. In addition to 
the remaining 359 cerebral cortical ROIs, we included 40 limbic and cerebellar ROIs defined by the atlas, result-
ing in a total of 399 ROIs. For each ROI, we computed the average time course of the signal at voxels in the mask. 
For each day, we quantified functional connectivity between each pair of the 399 ROIs by the absolute value of 
the Pearson correlation coefficient between the two fMRI time-course  signals37,38.

Similarity of the functional connectivity across time. To calculate correlation of functional connec-
tivity between days. Specifically, we first vectorized the functional connectivity between all pairs of 399 ROIs for 
each day into a 399 × 398/2 = 79,401 dimensional vector. Then, we computed the Pearson’s correlation coefficient 
between the two vectors for the corresponding days.

Figure 1.  Properties of the ROIs that changes across days. (A) Similarity (correlation) between the functional 
networks for each pair of days. The correlation value ranged from 0.429 to 0.780, suggesting that the functional 
connectivity of a single person varies on a daily basis. The color code represents the value of the correlation 
coefficient. MC refers to the meditation condition. There were 18 out of 58 days in the MC. (B) Time-dependent 
community architecture. The rows and columns correspond to the days and ROIs, respectively. While the 
majority of the ROIs were classified to the same community, the ROIs in fronto-parietal network were often 
categorized as part of the default mode network. The four communities were labeled the visual network (colored 
in purple), sensory-motor network (SMN; green), fronto-parietal network (FPN; blue), and default mode 
network (DMN; red). A white stripe describes a day in which a ROI belonged to more than one community and 
could not be assigned a community label.
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Generalized Louvain method. The original Louvain method approximately maximizes the objective 
function (modularity) to partition the nodes in the given static network into communities. Communities are 
determined such that there are many edges or connections within each community and relatively few edges 
between  communities39. The generalized Louvain method considers the edges across multiple inter-dependent 
days and optimizes the generalized modularity instead of separately optimizing the modularity for each day. In 
the present study, a day represents the static functional connectivity on one day. The strength of the connections 
between days and the spatial resolution parameter were set as default (i.e., ω = 1) and the resolution parameter 
(i.e., γ = 1). We ran the algorithm 100 times and selected the community architecture yielding the largest gen-
eralized modularity value. As shown in the Results section, this procedure found four communities that are 
comparable with the communities in previous  research40–42.

Community labeling. First, we represented each community i (i = 1, 2, 3, 4) by its core members. The core 
members of the ith community were defined by the ROIs whose dominant community, that is the community to 
which the ROI belonged for the largest number of days under the given condition, was the ith community under 
both conditions. The relative overlap between the ith community and a community in the template communi-
ties defined by Yeo et al.43, Nj (j = 1, 2, …, 7), was defined as V(Ci∩Nj)/

∑7
l=1V(Ci∩Nj) , where Ci is the set of voxels 

belonging to a core member of the ith community, Nj is interpreted as the set of voxels belonging to mask Nj , 
and V(Ci∩Nj) represents the number of voxels that belong to both Ci and Nj . We then labeled each community i 
according to the community in the template that exhibited the largest overlap with the ith community.

Calculation and statistical significance test of community size. We defined the community size for 
a day t as the number of regions included in the time-dependent community on day t, and tested the difference 
of average community size across the conditions. We also explored potential changes in the community size over 
time by including days as an additional independent variable. More specifically, we performed a general linear 
model in which practice condition (meditation condition vs. no-meditation condition; a categorical variable), 
community (visual network, SMN, FPN, and DMN; a categorical variable), and day (t: 1,2, …, 58; a continuous 
variable) were included as independent variables. We also included the interactions of these independent vari-
ables.

Calculation and statistical significance test of community coherence. We defined the similarity 
of each community i (i = 1, 2, 3, 4) between day t1 and day t2 by the Jaccard index, i.e. J(X ,Y) = |X ∩ Y |/|X ∪ Y | , 
where X is the set of nodes in community i on day t1 and Y is the set of nodes in community i on day t2 . Jac-
card index J(X ,Y) ranges between 0 and 1. One obtains = J(X ,Y) 1 if and only if X and Y are exactly the same, 
and = J(X ,Y) 0 if X and Y do not share any ROIs. For each of the four communities, we calculated the similarity 
between all pairs of 58 days, obtaining a 58 × 58 similarity matrix.

Given the similarity matrix for a community, we compared the coherence of the community within and 
across the practice conditions. Specifically, we used a permutation test, which is commonly used for testing the 
significance of single-subject  research44. The permutation test consists of the following three steps. In the first 
step, we classified the pairs of days into two groups. The congruent group contained the pairs of days which both 
belonged to the meditation condition or the pair of days which both belonged to the no-meditation condition. 
In contrast, the incongruent group contained the pairs of days from the different conditions (i.e. one from the 
meditation condition and the other from the no-meditation condition). Because there were 18 meditation days 
and 40 no-meditation days, congruent and incongruent groups contained 933 and 720 pairs of days, respectively. 
In the second step, we computed the coherence of the community, which is a Welch’s t-value, by comparing the 
averaged similarity value between the congruent and incongruent groups. We then randomized the days by 
reassigning 18 uniformly randomly selected days to the fictive meditation condition and the remaining 40 days 
to the fictive no-meditation condition, and calculated the coherence for the randomized data. We repeated this 
procedure 10,000 times to obtain the null distribution of the coherence for the randomized labeling. In the third 
step, we assessed the probability of obtaining the coherence calculated on the basis of the true labeling of the 
days (i.e., meditation condition or no-meditation condition) or more extreme coherence under the null model 
in which the meditation condition was randomly assigned to individual days.

Calculation and statistical significance test of flexibility. We defined the flexibility of a ROI under 
each condition using the inverse participation ratio (IPR)45. The IPR of a ROI under a condition is defined as

where I represents the number of days (no-meditation condition, 40; meditation condition, 18), and Ii represents 
the number of days in which the ROI belonged to community i (i = 1, 2, 3, 4). The IPR is equal to 0.75, which 
is the largest possible value, when a ROI belongs to all the communities with the same probability. In this case, 
the ROI is the most flexible in terms of the community membership. The IPR is equal to 0, which is the smallest 
possible value, when the ROI belongs to the same single community in all the days. In this case, the ROI is the 
least flexible. To investigate whether the meditation affects the community-wide flexibility of ROIs, for each com-
munity, we applied a paired sample t-test to test the mean difference in the flexibility between the two conditions. 
In this analysis, we defined each community i by its core members, i.e., the ROIs that belonged to community i 
as the dominant community under both conditions.

IPR = 1−

4
∑

i=1

(

Ii

I

)2

,
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Consent for publication. An earlier version of this article is present on bioRvix repository website and 
can be accessed on https ://www.biorx iv.org/conte nt/10.1101/66457 3v2. This article is not published nor is under 
publication elsewhere.

Results
Similarity of the functional connectivity across time. To examine variability of the functional con-
nectivity over time, we calculated the correlation of functional connectivity between days (Fig. 1A). The correla-
tion value ranged from 0.429 to 0.780, suggesting that the functional connectivity of a single person varies on a 
daily basis. This result is consistent with previous longitudinal scanning data from a single  participant29.

Finding community architecture. To detect the community architecture in the time-varying functional 
connectivity across the 58 days, we applied a generalized Louvain  method46 (Fig. 1B). To label the four commu-
nities detected in the current study, we assessed how these communities overlapped with the template commu-
nities defined by Yeo et al.43. As the result, we labeled the four communities as visual network (80.8% overlap), 
SMN (50.3% overlap), FPN (45.3% overlap), and DMN (58.4% overlap) (diagonal in Fig. 2A).

Metrics that quantify the changes in community architecture. We examined the effect of medita-
tion practice on intra-individual changes in the composition of the whole-brain networks with three metrics: 
community size, community coherence, and flexibility.

Community size. The analysis showed a significant main effect of community (F(3, 216) = 147.7, p < 0.001) 
while we observed no significant main effect for the condition (F(1, 216) = 0.01, p = 0.907) nor for the day 
(F(1, 216) = 0.00, p = 0.999). These main effects were qualified by a significant interaction between the community 
and the condition (F(3, 216) = 3.03, p = 0.030), suggesting that meditation changed the community size differently 
across the communities. To explore which communities showed the differential effect, we took all the possible 
pairs of communities (e.g., FPN and SMN) and examined whether the effect of meditation on community size 
was different between the paired communities. The results showed that meditation condition only significantly 
interacted with the FPN and the DMN (F(1, 112) = 4.54, p = 0.035; others, F(1, 112) ≤ 2.64, p ≥ 0.107). The significant 
interaction indicates that meditation increased the community size of the DMN while it decreased the size of 
the FPN, although post-hoc analysis did not show statistically significant simple main effects of meditation 
condition either for the FPN (F(1, 56) = 2.317, p = 0.134) or the DMN (F(1, 56) = 2.515, p = 0.118). We also observed 
a significant interaction across the community, condition, and day (F(3, 216) = 9.89, p < 0.001). To unpack the 

Figure 2.  The change of dominant community affiliation between the no-meditation condition (NoMC) 
and the meditation condition (MC). (A) The shift of the dominant community allegiance of ROIs between 
the conditions. The schematic pictures of the brain on the diagonal show the ROIs that belonged to the same 
community with the highest probability across the two conditions. Those off the diagonal show the ROIs that 
belonged to different communities in the two conditions. (B) Quantitative description of dominant community 
shift across the conditions. While the ROIs were generally classified to the same community in both the MC and 
the NoMC, a large number of ROIs (i.e. 21 ROIs) that belonged to the FPN in the NoMC shifted to the DMN in 
the MC (row 3, column 4; other community pairs ≤ 11 ROIs).

https://www.biorxiv.org/content/10.1101/664573v2


6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:18426  | https://doi.org/10.1038/s41598-020-75396-9

www.nature.com/scientificreports/

three-way interaction, we examined the interaction between the meditation condition and day separately for 
each community. The interaction between the meditation condition and the day was significant for the FPN 
(F(1, 54) = 7.77, p = 0.007) and DMN (F(1, 54) = 9.46, p = 0.003) but not for the visual network (F(1, 54) = 3.52, p = 0.066) 
and SMN (F(1, 54) = 0.40, p = 0.527). In the FPN, the day effect was significantly positive in the meditation condi-
tion (F(1, 16) = 6.06, p = 0.026) and not in the no-meditation condition (F(1, 38) = 0.25, p = 0.617) indicating that the 
community size of the FPN increased as the meditation practice progressed. In the DMN, on the other hand, 
the day effect was significantly negative in the meditation condition (F(1, 16) = 6.98, p = 0.018) and not in the no-
meditation condition (F(1, 38) = 0.73, p = 0.400), indicating that the community size of the DMN decreased as the 
meditation practice progressed.

Figure 2A shows whether the ROIs stayed in the same community or changed to a different dominant com-
munity between the two conditions (i.e. represents the main community that a ROI belonged to under each 
condition). The on-diagonal brains show the ROIs that stayed in the same dominant community across the two 
conditions. The off-diagonal brains show the ROIs that belonged to different dominant communities between 
the two conditions. Consistent with the results, the figure shows that a large number of ROIs (i.e. 21 ROIs) that 
belonged to the FPN in the no-meditation condition shifted to the DMN in the meditation condition (row 3, 
column 4; other community pairs ≤ 11 ROIs). The shift in the dominant community affiliation between the 
conditions is quantitatively depicted in Fig. 2B.

Coherence of community composition. The community size is one way of examining the change in the 
composition of the brain network across the two conditions. In fact, even if the relative community size is the 
same between the two conditions, the constituent ROIs of each community may be substantially different in the 
two conditions. Therefore, for each community, we examined the extent to which the community as identified by 
the set of ROIs comprising it is stable within each of the two conditions (community coherence). The results of 
the permutation test are shown in Fig. 3. For the DMN, the coherence of the community architecture within the 
same condition was larger than the coherence between the no-meditation condition and meditation condition 
(DMN, p = 0.006), which remained significant after correction of the false discovery rate (FDR = 0.05). This result 
indicates that the meditation practice has changed the community composition (i.e., the set of ROIs composing 
the community) in the DMN, which is a direct consequence of our findings on the community size because a 
change in the community size implies a decrease in the coherence value. For the other communities, there was 
no difference in the coherence (visual, p = 0.137; SMN, p = 0.030; FPN, p = 0.028), which implies that the sets of 
ROIs composing these network communities were not influenced by the meditation at a significant level.

Flexibility of community allegiance. To assess experience-related changes in community allegiance of 
a ROI, we defined the flexibility of a ROI under each condition using the IPR (Derrida and  Flyvbjerg45). The 
change in flexibility between meditation condition and no-meditation condition for individual ROIs belong-
ing to each community (i.e. visual network, SMN, FPN, and DMN) is shown in Fig. 4A. Positive values mean 
that flexibility of the ROI increased as a consequence of the meditation. One-sample t-tests of the difference in 
flexibility between the two conditions for each community revealed that the meditation significantly enhanced 
flexibility of the ROIs in the FPN (Fig. 4B; mean = 0.17 ± 0.13, t = 7.334, p < 0.001). Other communities did not 
show a significant difference in flexibility of the ROIs (|mean| ≦ 0.02, SD ≧ 0.10, |t| ≦ 0.802). These results suggest 
that the meditation increases the flexibility of the FPN community, but not the visual network, SMN, or DMN. 
Table 1 summarizes the results.

Discussion
Previous studies have provided evidence that focused attention meditation changes activation and connectivity 
patterns between specific brain  regions10,19–23. Extending on this line of research, we employed a whole-brain 
graph theoretic analysis with a single-case experimental design using intensive longitudinal data to reveal that the 
meditation provokes the reconfiguration of the community architecture of the whole-brain functional network.

We found that the size of the FPN decreased and that of the DMN increased as a consequence of the medita-
tion, although their size tended to return to the default size in the later period of experiment. The former result is 
consistent with the previous research in which experienced meditators showed increased functional connectivity 
of the PCC with the dorsal ACC and dorso-lateral PFC both during rest and  meditation19 compared with novice 
meditators. The research proposed that the composition of these brain networks might have changed over time 
and become a new “default mode” that can be observed during meditation as well as during the resting state. 
The current observation that some ROIs shift from the FPN to the DMN after the meditation partially supports 
their hypothesis. Considering such consistency, the return of the community size in the later period might reflect 
insufficient effect of the practice because of habituation-derived lack of concentration.

The FPN also showed enhanced flexibility under the meditation condition. A previous study suggested that 
enhanced flexibility in the FPN may reflect an (initial) learning process of a  task47. Accordingly, although the 
previous study used a different task with a different time scale, i.e., Bassett et al.48 observed the change in the 
flexibility within a few hours of motor-task training, the increased flexibility in the FPN in the current study may 
indicate that some form of learning process is operative in the meditation (e.g., how to control breathing, atten-
tion, bodily sensations etc.). Also, previous research proposed that the ROIs in the FPN integrate and modulate 
other networks in response to varying task  demands48–50. These findings are consistent with the observations 
from the current study; the FPN’s enhanced flexibility as well as its integration into the DMN under the medita-
tion condition (Figs. 2B and 4) may indicate that meditation practice would increase the FPN’s efficacy to inhibit 
the DMN during a situation on which individuals have to focus. Future research should directly examine the 



7

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18426  | https://doi.org/10.1038/s41598-020-75396-9

www.nature.com/scientificreports/

relationship between the reorganization and reconnection of the FPN and the DMN, and the positive effects of 
meditation such as improved concentration or emotion regulation.

The present study demonstrated the value of a single-case experimental design with intensive longitudinal 
data. It allows us to detect intra-individual changes in the whole-brain network composition without being 
influenced by the large heterogeneity of individuals’ brain functional  networks25. Previous studies on meditation 
heavily relied on the expert-beginner and/or pre-post comparison  design1. Future research should be encouraged 
to adopt the single-case research design more frequently to seek further insights into intra-individual changes 
in patterns of brain networks as a consequence of meditation. One obvious limitation of the current research 
design is that the data were collected from a single participant, which makes it impossible to examine potential 
individual differences in our findings. However, although research in cognitive neuroscience typically collects 
data from multiple participants, for the majority of studies, their main focus is on the aggregated pattern of the 
brain activation/connectivity (but see person-centered  research24), and individual differences have been typically 
treated as random noise (sampling error). Therefore, in our view, this limitation is superseded by the strength of 
the current design: sensitivity to the nuanced intra-individual changes in brain signals and functional connec-
tivity. Nevertheless, the potential of the current intensive longitudinal design would be considerably improved 
by data obtained from multiple participants in future studies. Another limitation of the present study is that 
the participant performed meditation practice only for three months, which is considerably shorter than the 

Figure 3.  Coherence of the community within and across conditions. Coherence is a Welch’s t-value that 
represents the difference in averaged similarity value of a community architecture between two groups, i.e., 
the congruent and incongruent group. The congruent group contained pairs of days that both belonged to the 
meditation condition (MC) or the no-meditation condition (NoMC). The incongruent group contained the 
pairs of days from the different conditions (i.e. one from the MC and the other from the NoMC). The figure 
shows null distributions of coherence (distributions of coherence for permutated data); vertical lines represent 
the t-values observed with the true labeling and their corresponding p-values representing the probability of 
obtaining such observed t-values (or more extreme t-values) in the null distribution. Significant effect was found 
only in the DMN after FDR correction, which would be a direct consequence of our findings on the community 
size because a change in the community size implies a decrease in the coherence value.
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Figure 4.  Changes in flexibility between two conditions. (A) Histograms for each community show the 
distribution of the values of ROIs that belonged to the corresponding community in both conditions. (B) 
Change in flexibility rendered on the cortical surface. Positive values mean the flexibility was higher in the 
meditation condition (MC) than the no meditation condition (NoMC). The ROIs that showed higher flexibility 
in the MC were in fronto-parietal network (FPN), whereas that showed higher flexibility in NoMC scattered in 
networks.
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previous studies with experts (e.g., more than one year of regular practice)10. In addition, due to the fact that the 
intervention was planned after the scanning session had started, meditation practice was embedded in the latter 
half of the period. This design issue makes it difficult to completely distinguish the exact effect of mindfulness 
from the general time course effect, although there is little evidence that repeated scans would change the nature 
of functional connectivity  networks29,51. Future research should collect data for a more prolonged period of time 
to examine how the progress of practice induces long-term changes in the community architecture.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.

Received: 27 January 2020; Accepted: 14 October 2020

References
 1. Tang, Y.-Y., Hölzel, B. K. & Posner, M. I. The neuroscience of mindfulness meditation. Nat. Rev. Neurosci. 16, 213–225. https ://

doi.org/10.1038/nrn39 16 (2015).
 2. Goldin, P. R. & Gross, J. J. Effects of mindfulness-based stress reduction (MBSR) on emotion regulation in social anxiety disorder. 

Emotion 10, 83–91. https ://doi.org/10.1037/a0018 441 (2010).
 3. van den Hurk, P. A. M., Giommi, F., Gielen, S. C., Speckens, A. E. M. & Barendregt, H. P. Greater efficiency in attentional processing 

related to mindfulness meditation. Q. J. Exp. Psychol. 63, 1168–1180. https ://doi.org/10.1080/17470 21090 32493 65 (2010).
 4. Dosenbach, N. U. F., Fair, D. A., Cohen, A. L., Schlaggar, B. L. & Petersen, S. E. A dual-networks architecture of top-down control. 

Trends Cogn. Sci. 12, 99–105. https ://doi.org/10.1016/j.tics.2008.01.001 (2008).
 5. Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W. & Schacter, D. L. Default network activity, coupled with the 

frontoparietal control network, supports goal-directed cognition. Neuroimage 53, 303–317. https ://doi.org/10.1016/j.neuro image 
.2010.06.016 (2010).

 6. Sridharan, D., Levitin, D. J. & Menon, V. A critical role for the right fronto-insular cortex in switching between central-executive 
and default-mode networks. Proc. Natl. Acad. Sci. U. S. A. 105, 12569–12574. https ://doi.org/10.1073/pnas.08000 05105  (2008).

 7. Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E. & Buckner, R. L. Evidence for a frontoparietal control system revealed by 
intrinsic functional connectivity. J. Neurophysiol. 100, 3328–3342. https ://doi.org/10.1152/jn.90355 .2008 (2008).

 8. Brefczynski-Lewis, J. A., Lutz, A., Schaefer, H. S., Levinson, D. B. & Davidson, R. J. Neural correlates of attentional expertise in 
long-term meditation practitioners. Proc. Natl. Acad. Sci. U. S. A. 104, 11483–11488. https ://doi.org/10.1073/pnas.06065 52104  
(2007).

 9. Chiesa, A. & Serretti, A. A systematic review of neurobiological and clinical features of mindfulness meditations. Psychol. Med. 
40, 1239–1252. https ://doi.org/10.1017/S0033 29170 99917 47 (2010).

 10. Hasenkamp, W., Wilson-Mendenhall, C. D., Duncan, E. & Barsalou, L. W. Mind wandering and attention during focused medita-
tion: a fine-grained temporal analysis of fluctuating cognitive states. Neuroimage 59, 750–760. https ://doi.org/10.1016/j.neuro 
image .2011.07.008 (2012).

 11. Malinowski, P. Neural mechanisms of attentional control in mindfulness meditation. Front. Neurosci. 7, 8. https ://doi.org/10.3389/
fnins .2013.00008  (2013).

 12. Berkovich-Ohana, A., Glicksohn, J. & Goldstein, A. Mindfulness-induced changes in gamma band activity–implications for the 
default mode network, self-reference and attention. Clin. Neurophysiol. 123, 700–710. https ://doi.org/10.1016/j.clinp h.2011.07.048 
(2012).

 13. Cahn, B. R., Delorme, A. & Polich, J. Occipital gamma activation during vipassana meditation. Cogn. Process. 11, 39–56. https ://
doi.org/10.1007/s1033 9-009-0352-1 (2010).

 14. Zeidan, F. et al. Brain mechanisms supporting the modulation of pain by mindfulness meditation. J. Neurosci. 31, 5540–5548. https 
://doi.org/10.1523/JNEUR OSCI.5791-10.2011 (2011).

 15. Kabat-Zinn, J. Wherever You Go, There You Are: Mindfulness Meditation in Everyday Life. (Hyperion, 1994).
 16. Christoff, K., Irving, Z. C., Fox, K. C. R., Spreng, R. N. & Andrews-Hanna, J. R. Mind-wandering as spontaneous thought: a dynamic 

framework. Nat. Rev. Neurosci. 17, 718–731. https ://doi.org/10.1038/nrn.2016.113 (2016).
 17. Kajimura, S., Kochiyama, T., Abe, N. & Nomura, M. Challenge to unity : Relationship between hemispheric asymmetry of the 

default mode network and mind wandering. Cereb. Cortex 29, 2061–2071. https ://doi.org/10.1093/cerco r/bhy08 6 (2018).
 18. Smallwood, J. & Schooler, J. W. The science of mind wandering: Empirically navigating the stream of consciousness. Annu. Rev. 

Psychol. 66, 487–518. https ://doi.org/10.1146/annur ev-psych -01081 4-01533 1 (2015).
 19. Brewer, J. A. et al. Meditation experience is associated with differences in default mode network activity and connectivity. Proc. 

Natl. Acad. Sci. U. S. A. 108, 20254–20259. https ://doi.org/10.1073/pnas.11120 29108  (2011).
 20. Kilpatrick, L. A. et al. Impact of mindfulness-based stress reduction training on intrinsic brain connectivity. Neuroimage 56, 

290–298. https ://doi.org/10.1016/j.neuro image .2011.02.034 (2011).
 21. Taylor, V. A. et al. Impact of meditation training on the default mode network during a restful state. Soc. Cogn. Affect. Neurosci. 8, 

4–14. https ://doi.org/10.1093/scan/nsr08 7 (2013).

Table 1.  Summary of the meditation effect. n.s. indicates not significant. MC meditation condition, NoMC 
no-meditation condition.

Network

Size Coherence Flexibility

The number of ROIs 
in the community

Change in the composition 
of ROIs in a community

Frequency with which ROIs change 
their community allegiance

Visual n.s n.s n.s

SMN n.s n.s n.s

FPN NoMC > MC n.s NoMC < MC

DMN NoMC < MC NoMC  = MC n.s

https://doi.org/10.1038/nrn3916
https://doi.org/10.1038/nrn3916
https://doi.org/10.1037/a0018441
https://doi.org/10.1080/17470210903249365
https://doi.org/10.1016/j.tics.2008.01.001
https://doi.org/10.1016/j.neuroimage.2010.06.016
https://doi.org/10.1016/j.neuroimage.2010.06.016
https://doi.org/10.1073/pnas.0800005105
https://doi.org/10.1152/jn.90355.2008
https://doi.org/10.1073/pnas.0606552104
https://doi.org/10.1017/S0033291709991747
https://doi.org/10.1016/j.neuroimage.2011.07.008
https://doi.org/10.1016/j.neuroimage.2011.07.008
https://doi.org/10.3389/fnins.2013.00008
https://doi.org/10.3389/fnins.2013.00008
https://doi.org/10.1016/j.clinph.2011.07.048
https://doi.org/10.1007/s10339-009-0352-1
https://doi.org/10.1007/s10339-009-0352-1
https://doi.org/10.1523/JNEUROSCI.5791-10.2011
https://doi.org/10.1523/JNEUROSCI.5791-10.2011
https://doi.org/10.1038/nrn.2016.113
https://doi.org/10.1093/cercor/bhy086
https://doi.org/10.1146/annurev-psych-010814-015331
https://doi.org/10.1073/pnas.1112029108
https://doi.org/10.1016/j.neuroimage.2011.02.034
https://doi.org/10.1093/scan/nsr087


10

Vol:.(1234567890)

Scientific Reports |        (2020) 10:18426  | https://doi.org/10.1038/s41598-020-75396-9

www.nature.com/scientificreports/

 22. Tang, Y.-Y. & Posner, M. I. Attention training and attention state training. Trends Cogn. Sci. 13, 222–227. https ://doi.org/10.1016/j.
tics.2009.01.009 (2009).

 23. Zeidan, F., Martucci, K. T., Kraft, R. A., McHaffie, J. G. & Coghill, R. C. Neural correlates of mindfulness meditation-related anxiety 
relief. Soc. Cogn. Affect. Neurosci. 9, 751–759. https ://doi.org/10.1093/scan/nst04 1 (2013).

 24. Bansal, K., Nakuci, J. & Muldoon, S. F. Personalized brain network models for assessing structure–function relationships. Curr. 
Opin. Neurobiol. 52, 42–47. https ://doi.org/10.1016/j.conb.2018.04.014 (2018).

 25. Mueller, S. et al. Individual variability in functional connectivity architecture of the human brain. Neuron 77, 586–595. https ://
doi.org/10.1016/j.neuro n.2012.12.028 (2013).

 26. Fechner, G. T. Elemente der psychophysik [Elements of psychophysics]. (Breitkopf & Hartel, 1889).
 27. Watson, J. B. Behaviorism. (Norton, 1925).
 28. Smith, J. D. Single-case experimental designs: a systematic review of published research and current standards. Pychol. Methods 

17, 1–70. https ://doi.org/10.1037/a0029 312.Singl e-Case (2013).
 29. Poldrack, R. A. et al. Long-term neural and physiological phenotyping of a single human. Nat. Commun. 6, 8885. https ://doi.

org/10.1038/ncomm s9885  (2015).
 30. Fujino, M. et al. Development of instructions of short-term focused attention, insight, and compassion meditationfor use in 

psychological experiments. Jpn. J. Mindfulness 4, 10–33 (2019).
 31. Chao-Gan, Y. & Yu-Feng, Z. DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front. Syst. Neurosci. 

4, 1–7. https ://doi.org/10.3389/fnsys .2010.00013  (2010).
 32. Song, X. W. et al. REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS ONE https ://doi.

org/10.1371/journ al.pone.00250 31 (2011).
 33. Ashburner, J. A fast diffeomorphic image registration algorithm. Neuroimage 38, 95–113. https ://doi.org/10.1016/j.neuro image 

.2007.07.007 (2007).
 34. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional con-

nectivity MRI networks arise from subject motion. Neuroimage 59(3), 2142–2154 (2012).
 35. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178. https ://doi.org/10.1038/natur e1893 

3 (2016).
 36. Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of 

the MNI MRI single-subject brain. Neuroimage 15, 273–289. https ://doi.org/10.1006/nimg.2001.0978 (2002).
 37. Achard, S. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical 

hubs. J. Neurosci. 26, 63–72. https ://doi.org/10.1523/JNEUR OSCI.3874-05.2006 (2006).
 38. Fallani, F. D. V., Richiardi, J., Chavez, M. & Achard, S. Graph analysis of functional brain networks: practical issues in translational 

neuroscience. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130521 (2014). https ://arxiv .org/abs/1406.7391
 39. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory 

Exp. 10008, 6. https ://doi.org/10.1088/1742-5468/2008/10/P1000 8 (2008).
 40. Meunier, D., Lambiotte, R. & Bullmore, E. T. Modular and hierarchically modular organization of brain networks. Front. Neurosci. 

4, 1–11. https ://doi.org/10.3389/fnins .2010.00200  (2010).
 41. Moussa, M. N., Steen, M. R., Laurienti, P. J. & Hayasaka, S. Consistency of network modules in resting-state fMRI connectome 

data. PLoS ONE https ://doi.org/10.1371/journ al.pone.00444 28 (2012).
 42. Sporns, O. Network attributes for segregation and integration in the human brain. Curr. Opin. Neurobiol. 23, 162–171. https ://doi.

org/10.1016/j.conb.2012.11.015 (2013).
 43. Yeo, B. T. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 

106, 1125–1165. https ://doi.org/10.1152/jn.00338 .2011 (2011).
 44. Edgington, E. S. Validity of randomization tests for one-subject experiments. J. Educ. Stat. 5, 235–251 (1980).
 45. Derrida, B. & Flyvbjerg, H. Statistical properties of randomly broken objects and of multivalley structures in disordered systems. 

J. Phys. A. Math. Gen. 20, 5273–5288. https ://doi.org/10.1088/0305-4470/20/15/039 (1987).
 46. Jeub, L. G. S., Bazzi, M., Jutla, I. S. & Mucha, P. J. A generalized Louvain method for community detection implemented in MAT-

LAB. (2017).
 47. Bassett, D. S. et al. Dynamic reconfiguration of human brain networks during learning. Proc. Natl. Acad. Sci. U. S. A. 108, 7641–

7646. https ://doi.org/10.1073/pnas.10189 85108  (2011).
 48. Bertolero, M. A., Yeo, B. T. T. & D’Esposito, M. The modular and integrative functional architecture of the human brain. Proc. Natl. 

Acad. Sci. U. S. A. 112, E6798–E6807. https ://doi.org/10.1073/pnas.15106 19112  (2015).
 49. Bertolero, M. A., Yeo, B. T. T. & D’Esposito, M. The diverse club. Nat. Commun. 8, 1–10. https ://doi.org/10.1038/s4146 7-017-01189 

-w (2017).
 50. Bertolero, M. A., Yeo, B. T. T., Bassett, D. S. & D’Esposito, M. A mechanistic model of connector hubs, modularity and cognition. 

Nat. Hum. Behav. 2, 765–777. https ://doi.org/10.1038/s4156 2-018-0420-6 (2018).
 51. Gratton, C. et al. Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation. 

Neuron https ://doi.org/10.1016/j.neuro n.2018.03.035 (2018).

Acknowledgements
This research was supported by the Marie Curie Career Integration Grant, Award Number CIG630680; JSPS 
KAKENHI (Grant Numbers 15H05401; 16H06406, 18H01102; 18K18696), F. J. McGuigan Early Career Investiga-
tor Prize from American Psychological Foundation; and the Leverhulme Trust (Grant Numbers RPG-2016-146 
and RL-2016-030).

Author contributions
Conceptualization: S.K. and K.M. Data acquisition: S.K. and J.K.L.L. Analysis: S.K., N.M. and K.M. Writing 
manuscript: All authors.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https ://doi.org/10.1038/s4159 8-020-75396 -9.

Correspondence and requests for materials should be addressed to S.K.

Reprints and permissions information is available at www.nature.com/reprints.

https://doi.org/10.1016/j.tics.2009.01.009
https://doi.org/10.1016/j.tics.2009.01.009
https://doi.org/10.1093/scan/nst041
https://doi.org/10.1016/j.conb.2018.04.014
https://doi.org/10.1016/j.neuron.2012.12.028
https://doi.org/10.1016/j.neuron.2012.12.028
https://doi.org/10.1037/a0029312.Single-Case
https://doi.org/10.1038/ncomms9885
https://doi.org/10.1038/ncomms9885
https://doi.org/10.3389/fnsys.2010.00013
https://doi.org/10.1371/journal.pone.0025031
https://doi.org/10.1371/journal.pone.0025031
https://doi.org/10.1016/j.neuroimage.2007.07.007
https://doi.org/10.1016/j.neuroimage.2007.07.007
https://doi.org/10.1038/nature18933
https://doi.org/10.1038/nature18933
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1523/JNEUROSCI.3874-05.2006
http://arxiv.org/abs/1406.7391
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.3389/fnins.2010.00200
https://doi.org/10.1371/journal.pone.0044428
https://doi.org/10.1016/j.conb.2012.11.015
https://doi.org/10.1016/j.conb.2012.11.015
https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.1088/0305-4470/20/15/039
https://doi.org/10.1073/pnas.1018985108
https://doi.org/10.1073/pnas.1510619112
https://doi.org/10.1038/s41467-017-01189-w
https://doi.org/10.1038/s41467-017-01189-w
https://doi.org/10.1038/s41562-018-0420-6
https://doi.org/10.1016/j.neuron.2018.03.035
https://doi.org/10.1038/s41598-020-75396-9
www.nature.com/reprints


11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18426  | https://doi.org/10.1038/s41598-020-75396-9

www.nature.com/scientificreports/

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2020

http://creativecommons.org/licenses/by/4.0/

	Focused attention meditation changes the boundary and configuration of functional networks in the brain
	Methods
	Participant. 
	Data acquisition. 
	Data preprocessing. 
	Computation of functional connectivity. 
	Similarity of the functional connectivity across time. 
	Generalized Louvain method. 
	Community labeling. 
	Calculation and statistical significance test of community size. 
	Calculation and statistical significance test of community coherence. 
	Calculation and statistical significance test of flexibility. 
	Consent for publication. 

	Results
	Similarity of the functional connectivity across time. 
	Finding community architecture. 
	Metrics that quantify the changes in community architecture. 
	Community size. 
	Coherence of community composition. 
	Flexibility of community allegiance. 

	Discussion
	References
	Acknowledgements


