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Abstract: A dipeptide-based synthetic amphiphile bearing a myristyl chain has been found to 

form hydrogels in a pH range 6.9-8.5 and organogels in various organic solvents including 

petroleum ether, diesel, kerosene, and petrol. These organogels and hydrogels have been 

thoroughly studied and characterised by different techniques including high resolution 

transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), Fourier-transform 
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infrared spectroscopy (FTIR) and rheology. It has been found that the xerogel obtained from the 

peptide gelator can trap various toxic organic dyes from waste water efficiently. Moreover, the 

hydrogel has been used to remove toxic heavy metal ions, Pb2+ and Cd2+ from waste water. Dye 

adsorption kinetics has been studied and it has been fitted by using   Freundlich   isotherm 

equation. Interestingly, the gelator amphiphilic peptide gels fuel oil, kerosene, diesel, petrol in a 

biphasic mixture of salt water and oil within a few seconds. This indicates that these gels may 

not only find application in oil spill recovery but also are able to be used to remove toxic organic 

dyes and hazardous toxic metal ions from waste water. Moreover, the gelator can be recycled 

several times without significance loss of activity suggesting the sustainability of this new 

gelator. This holds future promise for the environmental remediation by using peptide based 

gelators. 

Introduction: 

Supramolecular gels1-16 consisting of a variety of small organic molecules have attracted 

researchers’ attention in the last few decades due to their various applications in chemical, 

material and biological sciences.17-20 Among low molecular weight gelators, peptide 

amphiphilesbelong to a special category, because they provide a distinctive opportunity to design 

soft materials with controllable structural features and specific secondary structures. The 

predictable structure-function relationships of the naturally occurring amino acids can thus be 

utilized to obtain materials with desirable properties.21 Under suitable physical condition (solvent 

polarity, pH, temperature), they can self-assemble via non-covalent interactions to form a 

nanofibrous network structure, that can arrest a large amount of solvent molecules to form 

gels.22-25Peptide hydrogels offer a variety of applications in biology and medicine including drug 

delivery,26-30 tissue engineering,31 3D cell culture,32, 33 antibacterial agents16,34and wound 
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healing35-37. Apart from the above-mentioned applications, peptide hydrogels have been used for 

waste water treatment,38-42oil spill recovery43-48and  templates for the synthesis of nanoparticles49, 

50and nanoclusters,51 and catalysis.52, 53 

The toxicity of contaminated water is caused by heavy metals and organic dyes. They are 

most commonly found in the by-products from the metallurgic industries, textile, printing, and 

other manufacturing sites which uses the techniques of chemical precipitation, flocculation, bio-

treatment and so on.54-57Highly toxic organic dyes and heavy metal ions such as Pb2+, Cd2+, Hg2+, 

Cr6+ and uranium poses a great threat to the environment and human health, and many organic 

dyes are also toxic and carcinogenic in nature. Untreated dye effluent from industry pollutes 

water leading to serious hazards for aquatic life and mankind.58-63 The presence of toxic dyes in 

water can be harmful to human beings and other living species even at low concentrations 

because these are generally non-degradable in nature. Toxic metal pollutants, such as lead and 

cadmium exist widely in industrial waste water (from battery, electroplate and dye industries) 

and exposure to high amount of these pollutants can lead to accumulation in the human body and 

the environment for a long period of time.64Cadmium ions usually get accumulated in various 

human organs and therefore play a significant role in the food chain.65Lead ions, at very low 

concentration (< 0.5µg/dL)66, can damage nerve, immune, renal and cardiovascular systems. 

Lead deposition in the bones, brain, kidneys and muscles, leads to severe developmental 

disorders, injuries, diseases and even death.67 Therefore, the need for a prompt and efficient 

approach for the removal of dye and heavy metal ion from waste-water is becoming a hot topic 

for research. The traditional techniques for waste water management are membrane separation, 

flocculation, ion exchange, electrochemical treatment etc.68However, there are limitations in 

terms of cost, efficiency and complexity of these processes. The adsorption technique is the most 
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suitable in batch and continuous processes of industries. Some absorbents regularly used are 

carbon based materials, polymers, clay minerals and others.69-73There are some materials and 

methods which are very effective towards oil spill and metal ions adsorption.74-81In this context, 

it is notable that hydrogels, due to their interstitial void spaces, can absorb dyes and heavy metal 

ions. Hydrogels can also be very usefulmaterialsin many other fields apart from the above-

mentionedapplications.82-88On the other hand, xerogels (dried gels) can be used in various fields, 

such as energy-storage devices, metacomposites, electromagnetic wave absorbing/shielding 

devices, and others.89-92Xerogels having π-surfaces can perform similar water remediation and 

hence these materials can be used as an attractive candidate for waste water management.45 

Oil-spills at sea and in river water create a great threat to flora and fauna and, mankind. 

Though there are different methods of oil spill recovery43, 44 gels are particularly successful in 

mopping up the spilled oil from the surface of water. 43-48 

Peptide amphiphile containing a long hydrophobic tail with an alkyl chain and a short 

peptide sequence with a hydrophilic head group can maintain a suitable balance between the 

hydrophobicity93, 94and hydrophilicity to form hydrogel under suitable conditions. Interestingly, 

this type of molecule with both lipophilic and hydrophilic part can also be self-assembled  in an 

organic medium under the suitable condition to form a organogel.43 So, this type of gelator 

molecule is termed as a ‘ambidextrous gelator’, as it is capable of forming gels in both aqueous 

medium and non-aqueous, organic solvents. The ambidextrous nature of such gelator molecules 

can be utilized for some useful purpose. A prime need for human society is to obtain clean and 

safe water for everyday use. So, it is of great interest to construct and develop a new gelator 

molecule that can form a hydrogel which can be utilized for removing toxic organic dyes and 
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hazardous metal ions from waste water and also can form organogels that find applications in oil 

spill recovery. 

Short peptide based gels from our group and others groups have been used for the 

removal of toxic organic dyes from waste water and these have also been applied for oil spill 

recovery.38, 44-46, 87These are the examples of bifunctional peptide based gels in environmental 

remediation. However, there are no examples of peptide based trifunctional gels in the 

environmental remediation to the best of our knowledge. This study vividly demonstrate a short 

peptide based trifunctional hydrogel that has been used in environmental remediation: (a) 

scavenging of toxic organic dyes from waste water, (b) removal of toxic metal ions including 

Pd2+ and Cd2+ from waste water and (c) oil spill recovery. Although, selective absorption of 

cationic /anionic dyes have never been reported previously for peptide based gelators (to the best 

of our knowledge), it is noticed that a few non-peptide based small molecular hydrogels can be 

used for selective adsorption of cationic or anionic dyes. Yu and co-workers reported an 

imidazole based surfactant gelator which can selectively remove anionic dyes over cationic dyes 

with very high selectivity.95Bhattacharjee and co-workers reported metallogels, which were 

found to be shown excellent selectivity of the adsorption of cationic dyes and their separation 

from anionic dyes.96 

The specialty of this result is that adsorption of cationic dyes by this hydrogel is 

relatively faster compared to the other peptide based and non-peptide based hydrogels reported 

from our research group and others. Within only two hours the adsorption of two different 

cationic dyes (MB and BB) is about 80% (79.2 for MB and 78.4% for BB respectively) and the 

adsorption of the mixture of dyes either methylene blue and methyl orange (Figure 7e) or 

methylene blue and bismark brown (Figure 7d) is even faster i.e. 87% approximately for each 
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case. There is a previous report of the behavior of higher adsorption rate for the anionic dyes 

from a mixture of dyes, however, these dyes are the mixture of both cationic and anionic dyes 

unlike this study.37, 38, 44, 97 The detailed analysis of the performance of the peptide based 

hydrogel compared with two previous results is presented in table 1. This indicates clearly the 

superiority of this peptide based gel compared to our previous results and other’s previous 

results. Moreover, this gel shows selectivity towards the adsorption of cationic dyes over anionic 

dyes in a mixture of dyes. So, it can be stated that this study exemplifies not only the faster 

kinetics of adsorption of toxic organic dyes but also exhibits selectivity of cationic dyes over 

anionic dyes. 

Table 1: Comparison of our peptide gelator with different kinds of peptide and non-peptide 

based gelators in environmental remediation. 

Dyes 
Peptide 
Gelator 

Non-
peptide 
gelator 

Absorption 
(Within 
2hours) 

Total 
Absorption 

Total 
time 

References 

Methylene blue 

(MB) 

P1  79.2% 98.9% ± 0.2 12h This report 

P2   98.4% 7 days 37 

 P5  98% 72h 81 

Congo red (CR) 

P1  64% 97.1% ± 0.2 12h This report 

P3  45% 92% 48h 38 

P4  42% 98% 48h 44 

Bismark Brown P1  78.4% 98.1% ± 0.1 12h This report 

Methylene blue + 

Methyl Orange 
P1  92.7% 98.6% ± 0.3 12h This report 

Methylene blue + 

Bismark brown 
P1  

MB:86.98% 

BB: 86.86% 
97.6%± 0.5 12h This report 
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(P2) (P3) (P4) (P5)
Graphene 
hydrogel

Acid black 1 

(AB1) 
P4  32% 82% 48h 44 

Rhodamine B (RB) 
P3  38% 78% 48h 38 

P4  32% 71% 48h 44 

Direct red 80 (DR-

80) 
P4  39% 93% 48h 44 

Malachite green 

(MG) 
P3  60% 90% 48h 38 

 

 

 

In this study, our tripeptide based gelator has been designed in such a way that it is able 

to attract cationic dyes in presence of anionic dyes selectively. This happens due to the interplay 

of electrostatic interactions involving two oppositely charged species, as for example anionic 

xerogel matrix and cationic dyes.  

Another specialty of this result is that, this is probably the first example of a peptide 

based hydrogel that can selectively absorb cationic dyes from a mixture of cationic and anionic 

dyes. Most probably this is the first report of a small molecule based trifunctional 

supramolecular gel that has been successfully utilized for environmental remediation. Our 

previous results show the demonstration of  bifunctionality of peptide based gel in environmental 

remediation. The functionality of peptide based gel needs to be improved to get a clean and safe 

environment. To achieve this goal this study vividly shows the formation of a trifunctional gel to 

remove different organic (toxic dyes) and inorganic (Pb2+ and Cd2+) pollutants as well as spilled 

oil from the environment. 
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This report describes the discovery of a peptide based ambidextrous tri-functional new gelator 

that has been used to remove toxic organic dyes (cationic and zwitterionic dyes) from waste 

water and toxic heavy metal ions (lead, cadmium) also from waste water using xerogels and 

hydrogels respectively. The organogels formed by this gelator, have further been used in oil spill 

recovery. Another interesting feature is that this gelator is economically viable and reusable 

several times without significant loss of its activity. 

 

Experimental details: 

The peptide amphiphile myristicacid-L-tryptophan-L-phenylalanine-COOH (P1) was synthesized 

using a conventional solution phase DCC/HOBt-mediated coupling method by racemization-free 

fragment condensation strategy. The C-terminus was protected as a methyl ester. All compounds 

were purified by column chromatography using silica gel (100-200 mesh size) as stationary 

phase by using chloroform-ethyl acetate or chloroform-methanol as eluents. Finally, purified 

compounds were characterized using 1H NMR, 13C NMR and mass spectrometry. Detailed 

information about synthesis and characterisation are  given in the Supporting Information. 

Dye Adsorption Studies: 

For each dye adsorption study, 5mg of gelator molecule was taken into a 5mL screw cap vial. 

Then it was heated on a hot plate by adding 1mL of phosphate buffer solution (PBS) having pH 

7.46. After dissolving all the gelator molecules into the PBS, the vial was cooled for few minute 

(10 min) to room temperature to make the hydrogel P1. Then, the gel was frozen  in liquid 

nitrogen and lyophilized. After that a pellet of dried gel (xerogel) had been made by using 

pelletizer instrument. The pellet was taken into a 5mL screw cap vial and 1mL of aqueous dye 
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solutions were carefully added to the vial. During dye adsorption study the concentrations of 

methylene blue, bismark brown and congo red were 3.0mg/L, 2.0mg/L and 2.0mg/L 

respectively.After that at a definite time interval 15 min, 30 min, 60 min, 120 min, 180 min, 360 

min and 720 min dye adsorption data were collected by using UV-vis spectroscopy.  

 

Metal Ion Removal Studies: 

Atomic absorption spectroscopy (AAS) was performed to determine the efficiency of the 

hydrogel for Cd2+ ion absorption. An amount of 100 µL 50mM cadmium chloride monohydrate 

(CdCl2.H2O) solution was added to 5mL of ultrapure water to prepare a stock solution. From this 

stock solution 1mL CdCl2.H2O was taken and added to 1mL of hydrogel in the phosphate buffer 

(pH 7.5). The concentration of the Cd2+ ions in the initial solution was determined through AAS 

using a standard calibration curve. After 8h, a 30µL aliquot was taken from the solution which is 

in contact with gel  and this solution was diluted to 10mL by mixing with mili-Q water (pH 6.7) 

in order to examine the amount of Cd2+ ions retained after the absorption by the  hydrogel. An 

aliquot of 10 µL 50 mM solution of lead nitrate Pb(NO3)2 was added to a 1 mL of mili-Q water. 

Then this diluted led nitrate solution was added on the top of 1mL of hydrogel. After 8h, a 10µL 

aliquot was taken out and it was diluted with 10mL of mili-Q water. The Pb2+ ions adsorption 

capacity was measured by inductively coupled plasma atomic emission spectroscopy (ICP-AES) 

as it is a good technique for the determination of concentration of metal ions in different 

solutions.  
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Oil Spill Recovery: 

Gelator amphiphile (P1) was first dissolved in a minimum volume of ethyl acetate (5 % v/v) and 

was injected (100 µL of the stock solution was used for injection in each set) into 2 ml of a 1: 1 

salt water (water containing NaCl, Na2SO4)–oil mixture. 

 

Recovery and Reusability of the Gelator: 

The recovery of the gelator, from the hydrogel and xerogel mixed heavy metal ions and dye 

molecules, was simply done by extracting it in ethyl acetate, using a separating funnel. For the 

xerogels adsorbed dye molecules, simple extraction with ethyl acetate was sufficient, as the dyes 

preferred to remain in aqueous medium; whereas in the case of hydrogels containing adsorbed 

metal ions, 1mL of hydrogel was treated with 20 µL of 1(N) hydrochloric acid before extraction 

of the gelator peptide amphiphile in ethyl acetate.  

Recovery of Oil: 

The gelled oil part was taken out from the vial with the help of a spatula. Then the gelled oil was 

taken into a round bottom flask and distilled by using a low vacuum rotary evaporator to get the 

oil part in to the collector. The gelator compound remained in the round bottom flask and it was 

further used for the recovery of another set of oil spill. 

Results and Discussion: 

Gelation studies: A peptide amphiphile (Figure 1) consisting of  two aromatic amino acid 

residues (L-tryptophan and L-phenylalanine), a terminally placed polar head group (-COOH) and 

a long fatty acyl chain as a hydrophobic tail was designed. Specifically, aromatic amino acid 



11 
 

residues were selected to promote π-π interactions, amide functionalities for hydrogen bonding 

interactions, hydrophobic long chain for van der Waals interactions and the terminally located 

carboxylic acid (-COOH) head group was chosen to increase the polarity of the peptide 

molecule. Moreover, the amphiphile was designed in such a way that it can easily form a 

hydrogel as well as organogels by using polar aqueous and nonpolar organic media respectively. 

To investigate the gelation behavior, 5 mg of the gelator was placed in a 5 mL screw capped 

glass vial with the addition of 1 mL of different types of solvent including water (phosphate  

buffer solution of pH 7.46). The glass vial was heated on a hot plate until the solute  is dissolved 

into that particular solvent. After that, the glass vial was kept at room temperature (27°C) for a 

few minutes (depending upon the solvent) to form a stable gel (Figure 1). The compound was 

insoluble in n-hexane but soluble in ethyl acetate, an antisolvent-induced gelation study was 

performed to investigate the gelation behavior of peptide amphiphile. Only 5% ethyl acetate 

(v/v) was used with respect to n-hexane to have rapid (approx. 30 s) gelation (Table S1).  

 

 

 

Figure 1. Structure of the peptide amphiphile that forms hydrogel at phosphate buffer solution of pH 

7.46. 

Morphological studies: 

High resolution transmission electron microscopy (HR-TEM) imaging was performed in order to 

explore the morphological features of the peptide-based hydrogel. It is observed that the gelator 
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molecule assembles to form a cross-linked nanofiber network structure in the gel state. These 

fibers are several micrometer (µm) in length, with width varying from 31.7 nm to 64.0 nm 

(Figure 2a). Whereas the organogel formed by using 5% ethyl  acetate in n-hexane solution also 

shows a cross linked network structure in gel state. The width of the organogel was found 38.16 

nm to 54.21 nm(Figure 2b). To understand the morphological change in hydrogel, HR-TEM 

images were taken at different pHs of 6.9, 7.46 and 8.5 respectively. Interestingly, at all these 

three pHs, only nanofibrous microstructure was observed (Figure S4). 

 

 

 

 

 

Figure 2. High Resolution Transmission Electron Microscopic (HR-TEM) images of (a) hydrogel at pH 

7.46 and (b) organogel in n-hexane. 

Fourier Transform Infrared (FT-IR) Analysis: FTIR experiments were conducted to provide 

structural insight on the packing of gelator molecule P1 in dried gels (organogel or hydrogel) in 

their respective solvents. Figure S5 indicates that the dried gel obtained from the organogel and 

also from hydrogel show sharp signals at around 3320 cm-1, 1646 cm-1 and 1547 cm-1 

respectively.The strong signal at around 1646 cm-1 is due to the stretching of the amide C=O 

group of the aggregated gelator molecules. Two other peaks at 3320 cm-1 and 1547 cm-1 

correspond to hydrogen-bonded N-H stretching and N-H bending frequencies respectively. The 

peak at around 3415 cm-1 for hydrogel indicates the non-hydrogen bonded stretching frequency 

1 µm 500 nm

(a) (b)
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of the N‒ H bond which is found to be very weak in intensity for the organogel. This observation 

indicates that unlike the hydrogel, almost all the N-Hs form hydrogen bonds inside the organogel 

(Figure S5). 

Rheological studies: Rheological experiments were carried out at a constant gelator 

concentration 0.5 (w/v) (8.91mM) to examine the viscoelastic characteristics of the gels obtained 

from the self-assembling peptide P1 in aqueous medium (pH 7.46) as well as in organic solvent, 

n-hexane. All frequency sweep experiments were performed under a constant strain of 0.05% 

and it is observed that storage modulus (Gʹ) is almost independent of angular frequency within 

the tested frequency range and storage modulus (Gʹ) is always greater than loss modulus (Gʺ), 

which indicates the characteristic feature of a gel phase material (Figure 3). At an angular 

frequency 10.5 rad/s, the storage modulus of the hydrogel is 920 Pa, whereas at the same angular 

frequency loss modulus is 305 Pa, i.e. the high storage modulus (Gʹ) value signifies the gel state 

of our materials (Figure 3a). Interestingly, the stiffness of the organogel obtained from the same 

gelator is much more than the hydrogel. Making comparison at a fixed frequency 10.5 rad/s, Gʹ 

increases from 920 Pa for the hydrogel to 13494 Pa for the organogel in n-hexane (Figure 3b), a 

near 15-fold increase. These results show that the mechanical strength of the gel is enhanced 

significantly by the change of the solvent medium from water to an organic solvent (n-hexane). 

The change in solvent triggers a very significant increase of the gel storage modulus. The 

amplitude sweep experiments were done to determine the limits of linear viscoelastic  region 

(LVE) of both gels. The hydrogel shows tolerance limit between 0.01% and 1.18% of shear 

strain (Figure S6a). Moreover, it was found that it showed a cross-over of storage modulus (Gʹ) 

and loss modulus (Gʹʹ) when 6% shear strain was applied to the sample. Whereas, the tolerance 

limit of the organogel sample lies between 0.01% to 0.56% (Figure S6b) and the cross-over 
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between Gʹ and Gʹʹ took place, when 20% of shear strain was exerted on the sample. To confirm 

the thixotropic behavior of the hydrogel, time dependent step strain experiment was carried out 

with a time step 125s (Figure S6c, d). Initially strain was increased from 0.05% to 30% at which 

the rupture of gel phase takes place, i.e. gel to sol conversion occurs. After that, when strain was 

reduced to 0.05%, reformation of gels were observed and this process was continued for 5 times 

to show the reproducibility of both gels(Figure S6c, d). It was observed from the FT-IR studies 

that both non-hydrogen and hydrogen bonded N‒ H stretching frequencies are present in the case 

of hydrogel, while in case of organogel almost all N‒ Hs of the gelator molecule are hydrogen 

bonded. The presence of extra H-bonding in the organogel can be attributed to greater stiffness 

of this gel which is reflected into this rheology data. 

 

 

 

 

Figure 3. Frequency sweep analysis of (a) hydrogel and (b) organogel in n-hexane at a constant strain of 

0.05%. 

 

X-Ray Diffraction (XRD) analysis: 

The wide angle X-ray diffraction (XRD) data from xerogels obtained from the hydrogel, a peak 

at 2θ = 18.45° corresponds to a d-spacing value 4.68 Å indicating the inter-planar distance 

between two β-strand.  Peaks at 2θ = 22.80° and 2θ = 23.58° with d-spacing values 3.79 Å and 
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3.67 Å are due to π-π stacking, consistent with the presence of aromatic groups into the gelator 

molecule(Figure 4b).37 In the small-angle XRD profile, the peak at 2θ = 2.61° (d=33.57 Å) arises 

from the gelator molecule in the gel state (Figure 4a). In the case of xerogel obtained from the 

organogel (in n-hexane), the peaks (Figure 4d) at 2θ = 8.92° (d =9.64 Å) and 2θ = 18.61° (d = 

4.64 Å) are due respectively to the inter-sheet distance and the inter-planar distance between two 

β-strands of the aggregated peptide amphiphile P1.The peak at 2θ = 21.99° with d-spacing 3.90 

Å is due to aromatic stacking interactions between two gelator molecules (Figure 4d). In the 

small angle  region, a peak at 2θ = 3.14° with d-spacing 28.09 Å is also due to the intermolecular 

spacing in the gel (Figure 4c). 

 

 

 

 

 

 

 

 

Figure 4.(a) Small-angle and (b) wide-angle X-ray diffraction pattern of xerogel obtained from hydrogel, 

(c) small-angle and (d) wide-angle X-ray diffraction pattern of xerogel obtained from organogel in n-

hexane. 

Small angle X-ray scattering (SAXS) analysis: 
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To complement the small-angle XRD data obtained from xerogels, in situ SAXS measurements 

were performed on hydrogels. The intensity profile shown in Figure 5 for the P1 hydrogel 

contains a broad Bragg peak with a d-spacing of 40Å, which is longer than the length of a single 

molecule and also does not match with double the molecular length. Thus, this distance indicates 

end-to-end packing of peptide gelator molecules arranged in an interdigitated manner as shown 

in Figure 6. A tentative packing arrangement of the gelator molecules in the gel state is proposed 

based on Fourier-transform infrared spectroscopy (FTIR), small and wide angle powder X-ray 

diffraction (PXRD) and small angle X-ray scattering (SAXS) data (Figure 6).  

 

 

 

 

 

Figure 5.Small angle X-ray scattering (SAXS) data of hydrogel(P1). 
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Figure 6. A tentative model of inter-molecular arrangements in the hydrogel derived from small angle X-

ray scattering (SAXS), X-ray diffraction and FTIR data.  

 

Dye Adsorption Studies: 

Removal of toxic organic dyes from waste-water is a long-standing problem, as these dyes not 

only contaminate river and other water resources, but also endanger aquatic biota. So, it is 

important to explore new efficient methods for removal of  these environmentally hazardous 

substances from waste-water.  

Porous gels are potentially useful materials for removing toxic organic dyes from contaminated 

water. The hydrogel obtained from the peptide gelator P1 has been used for removing cationic 

and neutral dyes effectively. Dyes like methylene blue (MB), bismarck brown (BB) and congo 

red (CR) are regularly used in textile industry. The hydrogel of P1 is prepared in phosphate 

buffer solution of pH 7.46 and it was dried to get the xerogel. Adsorption studies were done by 

using the dried gel to nullify the effects of diffusion of dye from the solution to trapped water in 

the hydrogel network. Methylene blue and bismarck brown being cationic dyes, were adsorbed 

in the anionic xerogel network very fast. 90.3% of MB and 86.4% of BB of the dye solution 

were adsorbed in only three hours. It is found that the xerogel adsorb each of these dyes MB and 

BB separately more than 85% within only three hours and this result is better than the previous 

report38, 44. Whereas the neutral dye used in the experiment, congo red shows an adsorption of 

65% in three hours. Almost complete adsorption of MB (98.9%) and BB (98.1%) has been 

observed within 24 hours. On the other hand, 97.1% adsorption of congo red has been observed 

within 48h. Adsorption kinetics was studied with a mixture of dyes MB and BB. The dye 
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adsorption kinetics of each dye is similar as it is evident from the experimental studies (Figure 

7).  

Our result shows the reusability of dried gel for several times (three times) without any 

significance loss of efficiency (Figure S7a). Moreover, this peptide based dried gel (xerogel) has 

been used for adsorption of more than one dyes (methylene blue and bismark brown) from a 

mixture of dyes indicating its probable use in real life system for the waste water treatment, 

where more than one dyes are found in the contaminated water. It is found that the cationic dyes 

(methylene blue and basic brown) are strongly adsorbed compare to neutral dye (congo red), as it 

is evident from the Table 1 that per gm of gelator molecules is able to adsorb 629 mg of 

methylene blue and 406 mg of bismark brown, whereas same amount of gelator molecule is able 

to absorb 165 mg of congo red.Dye adsorption kinetics was done by taking MB and BB 

separately and also the kinetics was done by taking their mixture (Figure 7a, b and d).To 

understand the mechanism of the adsorption of dyes on the xerogel matrix, dye solutions of 

different concentrations were charged on the absorbent xerogel and equilibrate for 12 hours. 

Both congo red and methylene  blue showed good fitting in the Freundlich  isotherm  model 

which signifies the adsorption happened in multilayer mechanism (Figure 9a and 9b). Several 

anionic dyes have been used for adsorption by using self-assembled peptide based gels, none of 

these dyes were adsorbed by the xerogel indicating it selectiveness to adsorbing dyes towards 

basic (cationic) and neutral (non-ionic) dyes(Figure 7e). This can happen due to the fact that our 

peptide gelator is anionic at pH 7.46 at which it forms gel and all these adsorption studies were 

performed at this pH. Due to the electrostatic interaction between the gelator molecules and 

cationic dyes, the cationic dyes are adsorbed more and the non-ionic dyes are adsorbed to a 

lesser extent compared to the cationic dyes.However, the charge-charge repulsion between the 
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gelator molecule and anionic dyes prevents the peptide gel (in this study) to adsorb any kind of 

anionic dyes.Reusability experiments were carried out in order depict to its large scale utility. 

The dye absorbed xerogels were recovered by using ethyl acetate-water interface, where the dye 

remained in water and the gelator P1 was extracted from ethyl acetate. For the next cycle, 

hydrogels were reformed using those gelator P1 molecules and it was freeze-dried before next 

set of absorption experiment. Table S3 clearly demonstrates the detailed reusability study 

including the percentage of loss of compound as well as the loss of activity for the removal of 

toxic dyes, metal ions and oil spill recovery in waste water treatment. From the Table, it can be 

clearly noted that P1 can be recovered three times for reusing purpose without significant loss of 

its activity (Figure S7). This is because, after the third time, the amount of recovered gelator is 

not enough to form gel. However, the recycling can be done for another two times for the metal 

ion adsorption (Figure S7). After, the metal ion adsorption, no physical change is observed in the 

hydrogel. The recovery of gelators is done according to the previously mentioned procedure in 

the dye absorption section (Figure S7). In the case of reusability study for the oil spill recovery, 

oils were recovered from the organogel by vacuum distillation and gelator molecules were 

separated from the gel phase. During this study no physical change was observed in the 

organogel. The recovered gelator molecules were used for re-gelling of the spilled oil. Finally, it 

was observed that the gelatoramphiphile can be used three times (Figure S9) for the recovery of 

different sets of oil spill without any significant loss of the activity. 

As we know, Freundlich adsorption isotherm model is expressed as- 

     logqe = logKf + 
1

𝑛
logCe                 (a) 

where, qe is the equilibrium adsorption capacity of dye adsorbed on xerogel surface, Ce is the 
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equilibrium concentration of the adsorbate(mg/L), Kf is the Freundlich constant and n is the 

heterogeneity factor of Freundlich adsorption isotherm. From methylene blue and congo red dyes 

data it is observed that the slope(1/n) of Freundlich adsorption isotherm fitted plot Figure 9a and 

Figure 9b are 4.42 and 1.23 respectively. This data clearly matches with the rate of dye 

adsorption data showing in to the Figure 7a and Figure 7c. 

Adsorption kinetics experiments have been done systematically. Kinetic study for the adsorption 

of methylene blue dye was done at different time intervals at a constant room temperature 

(22°C)and these data werefitted against both pseudo-first order and pseudo-second order kinetics 

using the following equations98(Figure 10).  

log(qe– qt) = logqe –
𝑘1𝑡

2.303
                                  (b)                        

𝑡

𝑞𝑡
=

1

𝑘2𝑞𝑒2
+

𝑡

𝑞𝑒
                                                       (c) 

Where, qe and qt are the amount of adsorbed dye (mg of dye per gof the gelator) at equilibrium 

time and at the time t (min) respectively, k1 is the pseudo-first order rate constant (min−1) and 

k2(min−1) is the pseudo-second-order rate constant. The coefficient of determination (R2) for the 

pseudo-second-order kinetic model was much higher (R2 = 0.99986) than that of the pseudo-first-

order kinetic model (R2 = 0.72453), which indicates the adsorption of methylene blue dye 

follows pseudo-second-order kinetics.  The dye adsorption data for cationic dye methylene blue 

fits well with the pseudo-second order reaction kinetics than the pseudo first order kinetics. 
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Figure 7.UV-vis spectroscopic study of dye adsorption of (a) methylene blue, (b) bismark brown, (c) 

congo red, (d) mixture of methylene blue and  bismark brown and (e) mixture of methylene blue and 

methyl orange at 22°C indicating the specific adsorption of methylene blue (cataionic dye) from a mixture 

of both cataionic and anaionic dyes.  
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(d) Methylene blue and Bismark brown mixture 
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(e) Methylene blue and Methyl orange mixture 
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Figure8.Photography (a) corresponds to the xerogel in methylene blue solution, (b) pellet of  dried  

gelator molecule P1 made by pelletizer and (c) methylene blue adsorbed xerogel and fresh water after 24h 

at 22°C. 

 

 

 

 

 

Figure 9. (a) Freundlich adsorption isotherm fitted dye adsorption data of methylene blue and (b) 

Freundlich adsorption isotherm fitted dye adsorption data of congo red  with error bars at an average 

temperature 25°C. 
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Figure 10. (a) Fit of kinetic data to pseudo-first-order model and (b) Fit of kinetic data to the pseudo-

second-order model for methylene blue dye with error bars indicating the fact that it fits well with  

pseudo-second-order kinetics (First three data points are enlarged to show the error bars clearly). 

Table 2: Dye adsorption by xerogel, obtained from UV-vis measurements at 22°C. 

Dye Nature % removal  

Amount of dye 

absorbed by per 

gm of gelator 

(mg) 

Methylene blue Cationic 98.9% ± 0.2 629.3 ± 4.6 

Bismark brown Cationic 98.1% ± 0.1 406.0 ± 2.1 

Congo red Neutral 97.1% ± 0.2 165.7± 7.7 

 

 

Metal ions removal studies: 
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Toxic heavy metal pollutants, such as lead and cadmium are found in industrial waste-water and 

are hazardous towards the environment and have detrimental effects on human health causing 

cancer, bone damage, kidney damages and other fatal diseases.51Thus, it is important to remove 

both Pb2+ and Cd2+ ions from contaminated water.  

The initial concentrations of Cd2+ and Pb2+ ions were 2.54 ppm and 2.13 ppm for the freshly 

made metal ion solution respectively. After adsorption it was observed that the concentrations of 

Cd2+ metal ions were 0.054 ppm for hydrogel. As a result, it was found that the hydrogel 

removes 97.88% of Cd2+ ions (Table S2). Moreover, this gel is able to remove nearly all the 

toxic heavy metal ions from waste water. The maximum loading capacities of Cd2+ ions for the 

hydrogel was found to be 21.75 mg by per 1mL of gel (5mg gelator in 1mL buffer solution). 

However, the concentration of Pb2+ was 0.024 ppm for the hydrogel after the adsorption of Pb2+ 

ions, corresponding to 98.8% adsorption for the hydrogel (Table S2). The adsorption of toxic 

Pb2+ ions using this hydrogel is comparable to that reported previously for a tripeptide-based 

gelator.38 After the metal ion adsorption, no physical change is observed in the hydrogel. The 

recovery of gelators is done accordingly previously mentioned procedure in the dye adsorption 

section. While for metal ion adsorption, the recycling can be done twice. (Figure S7) 

Oil spill recovery: 

Peptide amphiphiles are potentially valuable in producing gels to recover oil spills from the 

ocean. In this regard, biphasic mixtures of salt water and oil were prepared with different types 

of oils including n-hexane, petroleum ether, diesel, petrol and kerosene. We investigated gelation 

using P1 in a salt water/oil mixture. As shown in Figure 11, gelation of the oil part was observed 

within 30 s after addition of the gelator solution. To the best of our knowledge, this is the first 
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example of a tryptophan-based ambidextrous gelator which is able to selectively gel fuel oils 

from a salt water–oil mixture. Previous example of biphasic gelation from oil water mixtures 

includes the example of an amino acid containing amphiphile with a long fatty acid chain 

showing phase selective gelation for oil spill recovery and other examples include urea-based 

gelators and other low molecular weight gel-formers which gel fuel oils in oil-water biphasic 

mixture.43-48There are several examples on TiO2 based mechanically robust hybrid 

coatings,78nanocellulose based aerogels,99 magnetic aerogels100and nano-dimensional 

hydrophobic materials101, 102for effective oil absorptions from biphasic oil-water mixtures, 

reported so far in literature. However, these methods have shortcomings, sometimes due to 

inherent toxicity, costly regeneration processing and sometimes due to difficulty in the recovery 

of oil from the separated substances. Gels are emerging materials for phase-selective oil spill 

recovery and these are very important materials to study as they are cost-effective systems with 

important application in waste remediation. The current gel material has high effectiveness with 

respect to oil spill. Our system can absorb or gelify fuel oil, kerosene, diesel, petrol in a biphasic 

mixture of salt water and oil within 30 seconds and the absorption capacity of this gelator to 

gelify different fuel oils from waste water varies from 194gm to 205gm of fuel oils per gm of the 

gelator.  

Therefore, it can be stated that regarding oil-spill recovery from waste water, our peptide 

based ambidextrous gel material is comparable with previously mentioned studies. It is neither 

superior nor inferior to the previously mentioned gel based materials for oil-spill recovery. 

However, the efficiency of this gel to selectively gelify fuel oils from a salt water–oil mixture is 

good and this gel is recyclable for further use. Moreover, this peptide based gelator shows three 

distinct activities for environmental remediation: oil-spill recovery, toxic organic dyes removal 
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and heavy metal-ions removal from contaminated water. The main goal of our work is to project 

a tri-functional gelator, which can be used in multiple ways for the remediation of water 

pollution.From oil spill recovery and reusability study, oils have been recovered from organogel 

by vacuum distillation and gelator molecules were separated from the gel phase. During this 

study no physical change was observed in the organogel. The recovered gelator molecules were 

used for regelling of spilled oil. Finally, it was observed that the gelator amphiphile can be used 

three times (Figure S9, Table S3) for the recovery of different set of oil spill (Figure S8). 

 

 

 

 

Figure 11.Images (a) biphasic oil-salt water, (b) liquid state of biphasic oil-salt water mixture, (c) self-

supporting organogel formed after the addition of peptide amphiphile dissolved in 5%(v/v)ethyl acetate in 

the oil phase (diesel).  

Conclusions: 

A new peptide-based gelator  is  developed and is shown to form hydrogel within the pH range 

6.9-8.5. It is able to effectively gel many organic solvents including petroleum ether, diesel, 

kerosene, petrol etc. from a biphasic mixture. The xerogels obtained from hydrogels have been 

successfully utilized to remove toxic organic dyes and hydrogels for hazardous heavy metal ions 

including lead and cadmium from waste water. Moreover, the peptide selectively gels fuel oil 

(forming an organogel phase) in a mixture with salt water-oil mixture including its probable use 

in oil spill recovery. The reusability of this peptide based gelator molecule without significant 
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loss of activity is another notable feature of the peptide amphiphile. Thus, this peptide gelator 

shows three distinct activities for environmental remediation. Our results show, there is great 

future promise for self-assembling peptide amphiphile as novel smart soft materials for the 

removal of various pollutants from the environment.  
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