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ABSTRACT

What: Over 80 international participants, representing weather, climate, and energy systems re-

search, joined two 4-hour remote sessions to highlight and prioritize ongoing and future challenges

in energy-climate modelling. The workshop had two primary goals: to build a deeper engagement

across the “energy” and “climate” research communities, and to identify and begin to address the

scientific challenges associated with modelling climate risk in energy systems.

When: 22-23 June 2020

Where: Meeting was hosted by University of Reading, Reading, UK, but held remotely through

Zoom.
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1. Motivation

Energy systems across the globe are becoming increasingly sensitive to weather and climate

variability. This sensitivity arises due to a combination of growing installations of renewable gen-

eration, as well as the electrification of the sectors within the energy system (e.g., heating buildings,

resulting in increased temperature sensitivity). Not only does the increased weather sensitivity of

the energy system amplify its exposure to present day climate variability, but anthropogenic climate

change may result in changes to the distributions and spatio-temporal co-variability/evolution of

meteorological variables relevant for both supply and demand in the energy system.

Recently, power system operations and energy system planning have shown a growing apprecia-

tion of the risks posed by climate variability, change, and uncertainty. The traditional approach in

energy system modelling is to consider only a relatively small set (1−3 years) of “average” weather

data to characterise weather and climate risk. However, the use of long-term climate data sets in

energy system modelling is rapidly increasing. Power system dispatch and planning models can

now consider a few decades of climate data, derived from historical meteorological reanalyses or

global climate model (GCM) simulations. This practice is becoming more common in both the

scientific literature and in industry. For example, the European Mid-term Adequacy Forecasts now

use historical reanalysis data from 1982-2016; ENTSO-E (2019).

Despite this growing attention, many scientific and technical questions remain to quantify and

understand weather and climate risk in power systems. In particular, some sources of weather and

climate uncertainty and their impacts are poorly addressed by current techniques. These include:

• The impact of multi-decadal climate variations on energy systems,

• Reanalysis selection and calibration,
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• The use of global climate models simulations and the need for post-processing (e.g., bias

correction, downscaling),

• Error propagation in climate-energy-decision modelling chains, and

• Epistemic uncertainties of climate model and scenario choices.

Collectively, these issues are associated with a poor understanding of how weather and climate

data can be ingested into complex energy system models to better understand and manage climate

risk. The links between the “energy” and “weather and climate” research communities have

historically been relatively weak. (For example, despite the fact that the workshop was advertised

widely within the energy-meteorology community, results from the participant’s feedback survey

show that fewer than 10% see themselves as experts in both energy and climate.) As a consequence,

it is rare to find the scientific best practices of both communities fully embodied in any single study.

This workshop brought together an international group of leading researchers working at the

interface between weather and climate science and energy applications. The aim was to stimulate

discussion around the use of both historic and future climate datasets in energy system analysis

and to discuss pathways for future collaborations towards establishing best practices in considering

weather and climate risk in the study of energy systems.

2. Workshop Structure

While planning for the workshop had begun before COVID-19-related shutdowns, the plan for

an in-person workshop evolved radically in the few months before the workshop to be replaced by a

fully virtual format. We designed a two-day structure, limited to four hours per day to straddle time

zones for international participants. Over 140 applications were received to join the conference and

places were offered to 107 participants with a mix of climate and energy specialists (this limitation
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was employed to enable more productive small-group discussions). Of these, 81 attended over the

course of the two days. Participants were selected on the basis of their declared research interests

(with an emphasis on the inclusion of early career researchers), and included representation from

six different continents (see Figure 1).

The first day focused on the use of historical-period data in energy climate modelling, with the

aim to discuss the implications of using climate data to quantify current energy system risks. The

second day focused on tools and techniques to investigate the impacts of a changing climate on the

energy system.

Each day was organized with a set of three thought-provoking 8-minute invited talks to set the

stage for break-out group (BOG) discussions using Zoom’s break-out room feature. The talks gave

diverse perspectives on the topics to be discussed. Each day featured one climate scientist, one

energy systems researcher, and one scientist working at the interface of the two disciplines.

Each of the two BOGs per day were organized with a set of questions related to the topics of the

initial talks. Each BOG included at least one member of the conference leadership team and a mix

of weather/climate and energy/power systems specialists. The mix of people changed each time

participants were sent to break-out rooms to promote broader discussion and networking: in the

first session, the division was based on participant research interests (to promote the development

of a common language), while the second was purely random (to promote diversity of discussion

and cross-fertilization of ideas). After each of the 45-minute BOGs, participants rejoined a 30-

minute plenary session during which high-level conclusions from each group were presented.

Each day finished with an open plenary session where other points of interest from within the day’s

discussions could be highlighted. Figure 2 summarizes the focus and discussion points of each day.

The full meeting schedule and the consequent outputs are available from the workshop’s website

which is accessible from https : //research.reading.ac.uk/met − energy/
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3. Key Outcomes and Perspectives

Over the two days, a number of issues emerged from the climate and energy-modelling com-

munities, which we discuss below. The overarching message from the workshop is that there is a

mismatch in the methods and dialogue between the two communities concerned with quantifying

climate risks. Increased collaboration would enhance the accuracy and usefulness of outputs to

end-users.

a. A plethora of climate data

BOG discussions emphasized how energy researchers could and should incorporate meteorolog-

ical risks. A common conclusion from the climate scientists was that the reliance on a “Typical

Meteorological Year” inadequately safeguards against the range of possible current and future

climate risks that could stress energy systems (Bloomfield et al. (2016)). The meteorological

community has a wealth of resources at their fingertips if asked to quantify the risk of a particular

event, or to understand the impacts of climate variability and change on a meteorological phe-

nomenon. Atmospheric scientists would commonly base such assessments on multiple years of

data which could range from 10 years (if using wind mast observations) to 40 years (the length

of most modern reanalysis products) to hundreds of years (when using centennial reanalysis or

ensembles of climate model simulations). These data, however, require multiple decisions to be

made, including the climate model itself, spatio-temporal resolution, and appropriate time periods

for study. The knowledge and technical skills to process these data are not always readily available

to the energy-modelling community.

Key note speaker Dr. Sofia Simões showed, as part of her talk, the provocative image of

the data truck (see Figure 3). This image emphasises the mismatch in communication between

the meteorological community’s data supply, and the energy community’s ability to ingest those
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datasets, especially when energy modellers must consider other uncertainties beyond weather

and climate, such as societal choices, policy choices, etc. Some proposed solutions from the

meteorological community included storyline techniques (e.g., Shepherd 2019) and subsampling

techniques (e.g., Hilbers et al. (2019), Hoffmann et al. (2020)). Improving the “data interface”

between energy and climate science is clearly a major scientific and technical challenge.

b. Is this the right tool for the job?

In addition to the apparent overabundance of climate data, energy systemmodellers lack guidance

for selecting which gridded atmospheric product is most appropriate for a given purpose, as well

as for adequately post-processing that data (e.g., downscaling, bias correction) before using it as

an input into an energy system model.

Consecutive 10-minute to hourly griddedmeteorological input data over a period of at least a year

is often sought for the weather-dependent components of most energy system models, though the

specific requirements depend on the application (e.g., Deane et al. (2014), Poncelet et al. (2016)).

These input data are not available in a coordinated way in many countries, despite a substantial

effort from the climate community to provide datasets. Discussion itemized the different datasets

currently available from which suitable energy variables could be derived including European

reanalysis-based proof-of-concept climate services products:

• CLIM4ENERGY - http://clim4energy.climate.copernicus.eu-,

• Clim2Power - https://clim2power.com/,

• ECEM - https://www.wemcouncil.org/wp/european-climatic-energy-mixes/,

• EMHIRES - https://ec.europa.eu/jrc/en/scientific-tool/emhires/,

• Renewables.ninja - https://www.renewables.ninja/,
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• S2S4E - https://s2s4e.eu/, https://researchdata.reading.ac.uk/227/,

and raw climate model output including:

• Regional Climate Model output from EURO-CORDEX, https://www.euro-cordex.net/,

• Global Climate Model output from CMIP6 - https://www.wcrp-climate.org/wgcm-

cmip/wgcm-cmip6- and PRIMAVERA - https://www.primavera-h2020.eu/.

The organization of a coordinated comparison of these climate-based demand and renewable

generation products was enthusiastically identified by users and developers as a highly valuable

outcome from the workshop, and is at the planning stages at the time of this report.

The prospect of pre-calibrated high-spatial (sub-50km) and temporal (hourly) resolution reanaly-

sis and climate model data was desirable to the energy modelling community. However, providing

this is non-trivial, with the most appropriate method to perform these calibrations a subject of much

scientific debate (Ho et al. (2012), Maraun (2016), Cannon et al. (2020)). Whichever technique is

applied, participants agreed that the co-variances of meteorological variables must be preserved

for the resulting climate data to be useful within energy modelling simulations, in agreement with

previous assessments (e.g., Jones et al. (2017). For example, a wintertime blocking ridge situation

over Europe brings both increased energy demand (due to low temperatures) and decreased power

supply (due to low wind power generation). Such co-variances between temperature and winds

should ideally be preserved, though the choices and implications of a given methodology are not

trivial (e.g., Dekens et al. (2017) François et al. (2020)).

Ever-increasing quantities of high-frequency and high-resolution climate data are likely to further

exacerbate the challenges associated with the data volume. Even with multi-decadal “off the shelf”

products that provide time series of demand and renewable generation, the task of simulating

multiple years of energy system operation can lead to large computational constraints, due to the
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complexity of the modelled systems. To be able to ingest more or higher-quality climate data,

energy modellers must compromise on the representation of the energy system, for instance by

reducing the resolution or constraining technological choices. Furthermore, such derived energy

time seriesmight not be sufficient for the experimental design required for some energy applications.

For example, national time series of demand and renewable generation are unsuitable if the user

wishes to model regional energy system characteristics in markets with international integration

like Europe.

Similarly, energy system models require expert knowledge about the proposed system to ensure

they are initialized and integrated reliably. Climate scientists would encounter a similarly large

volume of issues to those discussed above if they were to try to implement an energy system model

(for instance, when having to define technical parameters of the infrastructure involved, making

cost assumptions, or implementing how operational decisions are considered in these models).

This need for extra insight further highlights that prolonged thoughtful collaboration between these

two disciplines is essential.

c. What is the truth?

High-quality, open-access energy system observations (i.e., feed-inmeasurements, system design

data, etc.) for model validation are not widely available. These data must be of high spatial (e.g.

national or regional level), high temporal resolution (e.g. sub-daily). Quality-controlled energy

system observations are particularly needed in developing countries, where the available data

quality is poor or non-existent.

The use of reanalysis climate data as an input to create energy variables was the research topic

of many workshop participants. However, energy modellers were generally unaware that climate

reanalyses are subject to biases and limitations compared to local observations, and may therefore
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require calibration for many applications. At the same time, point-based observations are also

subject to errors, and when only low-quality observed data are available it might be preferable to

resort to reanalysis-based energy products, which have some desirable qualities such as physical

consistency between variables and spatial coherence.

Conversely, the climate science community was generally less aware of the range of conditions

that can impact the interpretation of energy data as well as weather and climate. For example, a

wind power time series would not just be impacted by local wind speeds, but also factors such as:

maintenance outages, plant degradation, price sensitivity, curtailments and other interventions by

energy network operators.

Climate models and reanalyses are evaluated based on a different set of variables compared

to those energy system models require as input. While temperature and precipitation fields are

useful to assess demand and hydropower potential, the energy models also require input fields of

hub-height wind speeds (approximately 100m, which can vary considerably from observed 10m

wind speeds) and incoming direct and diffuse solar radiation. While these fields are available from

both reanalyses and climate models, their quality has not been rigorously established.

d. Uncertainty is key, but not just climate uncertainty

Future energy modelling studies face a number of different sources of uncertainty, beyond

weather and climate. The sources of variability in energy systems are very broad: weather and

climate simply add to the unknowns driven by socio-economic choices, population growth, political

decisions, generation costs, market incentives, technological innovation, and other external factors

(e.g. mass migration and land use competition with agriculture and transport). As such, while

climate uncertainty is undoubtedly important to energy system planning, it should nevertheless be

recognized that the magnitude of it’s impact may be modest by comparison to these wider issues.
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In order to develop robust energy-climate modelling strategies it would therefore be advanta-

geous to compare the relative contributions of these different sources of uncertainty, and to better

understand how they propagate through the complex modelling chains involved. Such analysis

may help to identify where appropriate simplifications to the modelling process can be made (e.g.,

the substitution of "future" climate data for purely "historic" analysis), and the limitations they

produce.

e. Are we speaking a common language?

The interactive nature of the workshop allowed for learning opportunities for both communities

about the common jargon of energy and climate modelling. This need for translation arose in the

first BOG where participants were asked to name “climate risks relevant for the energy sector”.

Depending on whether the groups were predominantly climate scientists or energy modellers, the

type of responses were very different. However, all groups gave answers from the climate-energy

interface of the modelling (see Figure 4).

Other points of divergence included some confusion from the energy community about whether

historical climate model simulations included observations from the historical period like a re-

analysis does (or even what the term “reanalysis” meant). The concept that “historical” climate

model output does not represent “real years” was not obvious to many of the attendees without a

meteorological background. Some particular words that disrupted the dialogue were “transient”

and “projections”. Confusion from the atmospheric science perspective included the differences

between “energy” and “power” system models (which is often used to refer to just electric energy

generation), and the differences between “demand-side” v.s. “supply-side” uncertainty.
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f. Extending collaboration beyond academia

The need for enhanced collaboration was a key theme throughout the workshop, but not just

within the present (predominantly academic) participant group. Regional and national utilities,

Transmission System Operators, energy traders, and policy makers should be involved in the

modelling chain to improve the quality and usefulness of the final output and suggest an emphasis

on themost relevant sources of uncertainty. Interactionwith policymakers could also be particularly

important for scenario definition, as this collaborative design could help rule out some near-future

scenario developments and simplify the modelling design.

Despite the fact that this collaborative and interactive approach, often referred to as co-production

or co-design, has become quite popular in recent years in the context of climate services, it is still

generally ambiguous (e.g., Goodess et al. (2019)). The idea of co-production of useful climate

information is often pursued quite loosely, without strict definitions, frameworks or strategies (e.g.,

Vincent et al. (2018)). Future collaborations in the climate-energy interface could benefit from

stronger and formal interactions with social scientists to maximize the usefulness of the outcomes.

4. Future Plans

Participant surveys revealed consistently positive feedback for the workshop, which has resulted

in the commitment to provide a follow-up meeting in approximately one year’s time. The virtual

conference experience allowed for very diverse participation (see Figure 1) and significantly higher

attendance than would have been possible at an in-person meeting. The organizing committee is

keen to repeat this format. The workshop was particularly well attended by early career researchers

helped by the low travel/funding barrier.

Engagement with other communities such as OPENMod (Open Energy Modelling Ini-

tiative, https://openmod-initiative.org/) and the Open Energy Ontology (https://openenergy-
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platform.org/ontology/) was discussed within the session plenaries to increase the climate science

involvement in dictionary-style products currently under development, with comments that an

energy-meteorology dictionary would be particularly useful.

The need for more cross-disciplinary training was discussed multiple times within the workshop.

A particularly useful outcome would be guidelines for best practices when using climate data,

and which datasets are optimal for specific purposes. An energy-climate summer school was

also suggested as a mechanism for capacity and resources building. The goal of such a summer

school could be not just to educate participants, but to amplify its impact by generating educational

resources. For example, one summer school project could funnel the energy, enthusiasm, and

expertise of participants into building a curriculum for developing multi-disciplinary practitioners,

who are fluent both in weather/climate science and energy systemmodeling. This curriculum could

include short educational videos, and a webinar series. All of the previously discussed activities

promote opportunities for networking and future project collaboration.

5. Summary

The challenges emerging from theworkshop highlight the need for increased interaction. Weather

and climate scientists must firstly begin to understand how climate information is used by energy

researchers in practice, ensuring that the data provided can interface with the tools and techniques

being used. This understanding requires atmospheric scientists to investigate how the processes

involved in energy modelling relate to the impacts of weather and climate, rather than focusing

on the climate itself. In parallel, energy scientists should seek to develop a better appreciation of

climate uncertainty, addressing its importance for both historical and future simulations. A key

step is therefore to develop the tools and understanding required to quantify the effects of climate
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uncertainty in highly complex energy systems, and to understand the importance of climate relative

to the contributions from other sources of uncertainty.
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Fig. 1. A breakdown of the invited workshop participants based on their institutional email address included

with their conference application.
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Fig. 2. Schematic that describes the topics and main discussion points of each meeting day
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Fig. 3. The climate data truck analogy of the mismatch in data delivery (from climate scientists) to data

requirements (from energy system modellers). Figure courtesy of Dr Sofia Simões and the Clim2Power project

(https : //clim2power .com/).

22
Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-20-0256.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/bam
s/article-pdf/doi/10.1175/BAM

S-D
-20-0256.1/5008998/bam

sd200256.pdf by guest on 04 N
ovem

ber 2020



Fig. 4. Samples of identified climate risks related to the energy sector depending on the participant’s research

interests
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