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Abstract This study takes the first step to bridge the gap between the pressure drag of a shallow cloud
ensemble and that of an individual cloud composed of rising thermals. It is found that the pressure drag for
a cloud ensemble is primarily controlled by the dynamical component. The dominance of dynamical
pressure drag and its increased magnitude with height are independent of cloud lifetime and are common
features of individual clouds except that the total drag of a single cloud over life cycle presents vertical
oscillations. These oscillations are associated with successive rising thermals but are further complicated
by the evaporation-driven downdrafts outside the cloud. The horizontal vorticity associated with the
vortical structure is amplified as the thermals rise to higher altitudes due to continuous baroclinic vorticity
generation. This leads to the increased magnitude of local minima of dynamical pressure perturbation
with height and consequently to increased dynamical pressure drag.

Plain Language Summary Shallow cumulus clouds play a crucial role in the Earth's energy
budget by vertically redistributing momentum, heat, and moisture from the surface to the free atmosphere,
but they cannot be explicitly resolved in current numerical models. Therefore, a reasonable parameteriza-
tion of vertical velocity of shallow cumulus clouds is critical for improving weather forecast and climate
projections. Recent studies suggest that these clouds are composed of sticky rising thermals whose vertical
velocity is mainly controlled by the buoyancy source and the drag due to the pressure perturbation. How-
ever, little is known about how the pressure drag of thermals can be related to that of a large ensemble of
clouds, which is the focus of convection parameterization in climate models. This study finds that the pres-
sure drag of a cloud ensemble increases with height and is dominated by the dynamical component. The
pressure drag of individual clouds shares similar features except that there are frequent oscillations in the
vertical related with successive rising thermals. The increased pressure drag with height is due to the con-
tinuous baroclinic generation of horizontal vorticity along with the rising thermals. These findings could
provide useful insights for a reasonable representation of pressure drag in a parameterization.

1. Introduction
Reasonable estimation of the vertical velocity within parameterized shallow cumulus clouds in climate mod-
els is critical for representing the atmospheric convective mixing that is responsible for half of the spread
in model climate sensitivity (Sherwood et al., 2014). A steady-state vertical momentum equation (Simpson
& Wiggert, 1969) is vertically integrated to diagnose the in-cloud vertical velocity and has been widely used
in many convection parameterizations (Bretherton et al., 2004; Cheinet, 2003; de Rooy & Siebesma, 2010;
Gregory, 2001; Kim & Kang, 2011; Neggers et al., 2009; Pergaud et al., 2009; Rio & Hourdin, 2008; Siebesma
& Teixeira, 2000; Siebesma et al., 2007; Soares et al., 2004; Sušelj et al., 2012). It is usually expressed in a
general form as

1
2
𝜕w2

c

𝜕z
= aBc − b𝜖w2

c , (1)

where wc and Bc are in-cloud vertical velocity and buoyancy, respectively, and 𝜖 is the fractional entrainment
rate. The basic assumption is that the buoyancy source is primarily offset by a sink associated with entrain-
ment processes. The effects of non-hydrostatic pressure perturbations and subplume fluctuations are taken
into account by the coefficients a and b. However, de Roode et al. (2012) found that it is the pressure gradient
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force, not entrainment, that dominates the balance with the buoyancy acceleration within an ensemble of
shallow clouds. Further supporting evidence was found in deep convection by tracking finer scale thermals
within clouds (Sherwood et al., 2013) or near cloud top (Romps & Charn, 2015; Romps & Oktem, 2015).

It is then natural to ask how the pressure drag can be represented in a parameterization. Theoretical studies
(Jeevanjee & Romps, 2016; Morrison, 2016a, 2016b; Paulius & Garner, 2006, 2016b; Weisman & Klemp, 1997)
indicate that pressure perturbation effects on vertical velocity depend upon the aspect ratio H/R, where R is
the updraft radius and H the updraft height. These effects can be incorporated into the vertical momentum
equation through a rescaling of the buoyancy term using a virtual mass coefficient as shown by Morrison
(2016b). However, their derivation only deals with the updraft center and neglects the effects from the
dynamical part of the pressure perturbation (see section 4.1). Meanwhile, for parameterization purposes, it
is the mean vertical velocity of a cloud that is often needed, rather than the velocity at updraft center. Fur-
thermore, a recent study (Gu et al., 2020) found that a partitioning into the mean velocities of the “core”
and “cloak,” namely, the strong and weak parts of the updrafts respectively, can significantly improve the
representation of vertical transport in a simple bulk transport equation. This indicates the importance of
predicting vertical velocities in different parts of clouds and thus the need for a better understanding of
pressure drag, not only in the cloud center but also off the central axis.

The pressure drag has been investigated from the microscopic perspective of a single updraft or thermal
(Morrison, 2016a; Romps & Charn, 2015; Sherwood et al., 2013) and from the macroscopic perspective of a
cloud ensemble (de Roode et al., 2012). But little is known about how the pressure drag of a cloud ensem-
ble, which is the focus of most convection schemes, can be related to that of a single cloud or successive
rising thermals. This study aims to take the first step toward bridging the gap by relating the behaviors of
the cloud ensemble with those of individual thermals within clouds. We use a large eddy simulation of shal-
low cumulus clouds and a cloud tracking algorithm to distinguish the behavior of individual clouds within
the ensemble (section 2). We construct budget equations for the vertical velocity of each cloud and for the
ensemble (section 3) in an attempt to (1) quantify the contributions from dynamical and thermodynamic
components to the pressure drag (section 4.1), (2) demonstrate the relationships between the pressure drag
for the cloud ensemble and that for individual clouds with rising thermals embedded (sections 4.2 and 4.3),
and (3) understand the physical mechanism for the vertical distribution of pressure drag (section 5).

2. Methodology
2.1. Large Eddy Simulations

This study focuses on a large eddy simulation of shallow cumulus clouds using the Met Office-Natural Envi-
ronment Research Council (NERC) Cloud model (MONC; Brown et al., 2015; Brown et al., 2018), based on
the Barbados Oceanographic and Meteorological Experiment (BOMEX). The grid spacing is 25 m in all direc-
tions, and the domain size is 15 km2 × 3 km. The Smagorinsky-Lilly scheme (Lilly, 1962; Smagorinsky, 1963)
is used for the parameterization of subgrid turbulence. Further details of the model configuration can be
found in Gu et al. (2020). Our analyses cover a period of equilibrium from Hour 5 to Hour 6 of the simulation,
with 1 min output frequency.

2.2. Cloud Tracking Algorithm

To understand the pressure effect experienced by an individual cloud over its life cycle, we need to be able
to track each cloud object. The first step is to label cloudy points for which we use the criteria that cloud
liquid water ql > 10−5 kg kg−1. Contiguous labeled points are combined to form an individual cloud object by
checking the neighboring grid points in six directions, corresponding to the six faces of the grid cell around
the cloudy points, until no more cloudy points are found (Gu et al., 2020).

After the cloud objects at all output times have been identified, a matching up of cloud objects at adjacent
output times is conducted. The algorithm is an extension of Muetzelfeldt (2020), which itself combines
methods from Stein et al. (2014) and Plant (2009), allowing it to track 3-D cloud objects instead of 2-D
cloud objects. We calculate a translation vector between one output time and the next, which produces the
maximum correlation of the cloud fields. The translation vector is obtained using the convolution of Fourier
transformed 2-D fields at the two adjacent output times, the fields themselves being the vertical projection
of all 3-D cloud objects onto the horizontal plane. A particular cloud object is then considered to be the same
cloud object from one output time to the next if, when projected forwards to the next output time, it overlaps
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with or is touching a cloud object at the next output time. There are some complications when building up
the life history, depending on how the projected cloud objects overlap with those at next output time, which
can result in merging and splitting of cloud objects (see Muetzelfeldt, 2020; Plant, 2009 for details). For
convenience of budget analysis over the life cycle of each cloud object, here we retain only one cloud object if
there are multiple objects identified as overlapping or touching. If one cloud merges with another cloud, we
continue to track both clouds as one merged cloud until it dissipates. If a cloud splits into several clouds, we
only continue to track one cloud object. The retained cloud object has the closest cloud depth to the parent
cloud at previous output time. In this way, each cloud object can be appropriately tracked over its lifetime
without losing much information (supporting information Figure S1). In our study, a total of 4,448 cloud
objects have been tracked, and subsampling tests confirm that this is sufficient to provide robust statistical
results.

3. Constructing the Vertical Velocity Budget Equation of the Cloud Ensemble
From That of Individual Clouds
To build a bridge between an individual cloud and the cloud ensemble, we construct the vertical velocity
equation for the cloud ensemble from that of individual clouds. At a given time, we assume that multiple
cloud objects are located within the domain, each having a vertically coherent structure. Each cloud object is
denoted with a subscript i> 0, and, for convenience, the environment is considered as an extra object denoted
by i = 0. An atmospheric quantity within the object i is denoted 𝜙i, the spatial average of this quantity over
the object is 𝜙i, and the perturbation from the average over the object is 𝜙′

i=𝜙i −𝜙i. The area fraction of each
object is denoted by ai. Note that ai should be height dependent as a 3-D cloud object changes area coverage
with height. Following Tan et al. (2018), conditionally averaging the continuity equation and the vertical
momentum equation over the volume occupied by cloud object i and combining the two equations lead to
a budget equation for the averaged vertical velocity of cloud object i

𝜕wi

𝜕t
= − 1

ai

𝜕
(

1
2

aiwi
2
)

𝜕z
− 1

ai

𝜕aiw
′2
i

𝜕z
+ 𝜖iwi(w0 − wi) + Bi −

1
𝜌

(
𝜕pnh

𝜕z

)
i
+ Si, (2)

where 𝜌 is air density, 𝜖i is the fractional entrainment rate, Bi represents the averaged buoyancy source
that is calculated using perturbations from the domain-averaged density, (𝜕pnh∕𝜕z)i represents the aver-
aged non-hydrostatic pressure gradient force, and Si represents other averaged source terms (e.g., subgrid
tendency, Coriolis force, or damping tendency near the top of domain).

The budget equation for the vertical velocity of the cloud ensemble can be obtained by first summing the con-
ditionally averaged continuity and vertical momentum equations over all cloud objects and then combining
together (see Text S1 for more details), to yield

𝜕wc

𝜕t
⏟⏟⏟
Tendency

= − 1
a

𝜕
(

1
2

awc
2
)

𝜕z
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
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− 1
a

𝜕

𝜕z
∑

i
ai(wi − wc)2 − 1

a
𝜕
∑

iaiw
′2
i

𝜕z
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Subplume transport

+ 1
a𝜌

∑
i

Ei(w0 − wc)
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+ 1
a
∑

i
aiSi

⏟⏞⏟⏞⏟
Other sources/sinks

,

(3)

where
∑

i
denotes a summation over all i> 0 and the total area fraction of the cloud ensemble is a =

∑
i

ai.

wc is the average vertical velocity over all cloud objects and is defined as wc =
∑

i
aiwi∕a. Ei and Di denote

rates of lateral entrainment and detrainment, respectively, and may be expressed in terms of fractional rates
𝜖i and 𝛿i, according to Ei = 𝜖i𝜌aiwi and Di = 𝛿i𝜌aiwi. The entrainment and detrainment terms in Equation 3
will be determined together as the residual from the budget equation since all of the other terms can be
explicitly calculated from the model output. For the purposes of this study, we will focus on the two major
balanced terms: the buoyancy source and the pressure effect term. We intend to provide further analysis of
entrainment/detrainment in a future study.
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Figure 1. Vertical momentum budget averaged over (a) all clouds and (b) only continuously tracked clouds from Hour
5 to Hour 6. “PGF,” “BUOY,” “VIS,” “ADV,” “SUB,” and “ENT” represent, respectively, the pressure gradient force
(blue), buoyancy source (red), subgrid tendency (green), advection (yellow), subplume transport (gray), and
entrainment terms (magenta) in equation (3). The damping tendency applied near the top of the domain to prevent
gravity waves reflecting is zero within the cloud layer and thus is not shown. In (c), the buoyancy source (red) and
pressure gradient force (blue solid) terms are again shown (as in panel b), and the latter is decomposed into its
components: the dynamical pressure gradient force (“PDGF,” blue dotted) and thermodynamic pressure gradient force
(“PBGF,” blue dash-dotted). (d) is the same as (c) but for the buoyancy source and pressure drag of the updraft cores
(defined as the cloudy points with top 0.5% upward motion). The thick black line in each plot denotes the zero
tendency. zb is the depth of the well-mixed subcloud layer (≈500 m).

4. Pressure Drag for the Cloud Ensemble and an Individual Cloud
In section 4.1, we evaluate the vertical velocity budget for the simulated cloud ensemble. We then inves-
tigate the relationship between the pressure drag of the ensemble and the dynamics of individual clouds.
We do not consider in detail the dynamics of individual thermals as this has been investigated in previous
studies (Hernandez-Deckers & Sherwood, 2016, 2018; Moser & Lasher-Trapp, 2017; Sherwood et al., 2013).
However, the role of thermals is reflected in the budget for individual clouds and is discussed in section 5.

4.1. The Cloud Ensemble

Figure 1b shows the vertical velocity budget for all tracked cloud objects. The overall picture of the role of
each term is consistent with the budget for the full cloudy region across the domain (Figure 1a). In most
of the cloud layer, buoyancy is the major source term and is offset mainly by the pressure drag. Within the
inversion layer (1,500–2,000 m), however, the buoyancy changes sign and the entrainment and subplume
terms also become important. The pressure drag and buoyancy terms in the budget of tracked clouds are
larger than those for the budget of the full cloudy region. This occurs because, during splits, the tracking
keeps the cloud object whose cloud depth is closest to the depth at previous time. The neglected objects
are typically less buoyant than those retained. Nonetheless, the vertical distributions of pressure drag and
buoyancy in the two budgets agree pretty well.

The buoyancy source increases from cloud base to a maximum slightly below 1 km above which the buoy-
ancy decreases slowly until the inversion layer, where it acts to decelerate the flow. The pressure drag
increases slowly from the cloud base upward to the inversion layer within which it decreases slightly.
Therefore, it may not be appropriate to absorb the pressure drag into a reduced buoyancy term (de Roode
et al., 2012; Morrison, 2016b), since these two terms do not change synchronously with height, especially in
the inversion layer.

To understand the change of pressure drag with height, the total pressure perturbation is decomposed into
dynamical (pD) and thermodynamic (pB) components as follows:

∇2p ≈ ∇2pD + ∇2pB ; ∇2pD = −∇ ⋅ (𝜌u ⋅ ∇u) ; ∇2pB = 𝜕(𝜌B)
𝜕z

, (4)

where u is the wind vector. Note that “≈" in the first equation of Equation 4 is because we neglect a small
Coriolis contribution. The pressure effect can then also be decomposed into its dynamical and thermo-
dynamic components as shown in Figure 1c. The dynamical part accounts for most of the pressure drag
and also dominates the vertical variations below the inversion layer. The thermodynamic part has a small
increase in magnitude from cloud base to 650 m and is relatively steady with height below the inversion layer
compared to the dynamical part. Within the inversion layer, the dynamical drag continues to increase with
height but is largely compensated by the increasing thermodynamic drag produced by the rapid decrease
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Figure 2. Pressure gradient force (PGF, blue solid), buoyancy source (BUOY, red solid), thermodynamic pressure
gradient force (PBGF, blue dash-dotted), and dynamical pressure gradient force (PDGF, blue dotted) for the tracked
clouds with different lengths of lifetime: (a) ≤5, (b) 5–15, (c) 15–25, and (d) >25 min. The number of tracked clouds in
each category is indicated in the header of each panel. zb is the depth of the well-mixed subcloud layer (≈500 m).

in cloud buoyancy. Therefore, it may be reasonable to rescale the thermodynamic part of the pressure drag
with the buoyancy source, but this does not work for the dynamical part.

The dominance of dynamical pressure drag in the vertical velocity budget of the clouds is not in contradiction
with the assumption of theoretical studies (Morrison, 2016a, 2016b) in which the thermodynamic pressure
perturbation is considered to be the more important component along the updraft central axis. A budget
analysis for the cloudy updraft cores (the top 0.5% of upward motions in the cloudy air) confirms that the
dynamical pressure drag is smaller than its thermodynamic counterpart in such cores below the inversion
layer (Figure 1d), indicating that their relative roles are largely reversed compared to the clouds as a whole.
This is because the rotational and deformation contributions to ∇2pD (section 5) are much smaller than the
contribution of buoyancy forcing to ∇2pB in an axisymmetric updraft core. The positive tendency from the
dynamical pressure gradient force near cloud base is due to convergence and therefore supports upward
acceleration. Only the thermodynamic pressure gradient force serves as a drag on clouds there.

4.2. Dependence on Cloud Lifetime

We wish to understand whether the increased pressure drag with height and its dominance by the dynamical
pressure component, described above for the cloud ensemble, is a common feature of most clouds within the
ensemble or whether it might arise from some smaller subset of clouds with particular sizes or lifetimes. In
this subsection we consider the vertical velocity budget for clouds with different lifetimes. The budgets were
also constructed for clouds with different maximum volumes during their life cycles, but such results are
not presented here. They lead to similar conclusions, in all likelihood because the cloud maximum volume
is closely related to cloud lifetime.

Figure 2 shows the pressure drag and buoyancy sources for all tracked clouds with lifetimes of≤5 (Figure 2a),
5–15 (Figure 2b), 15–25 (Figure 2c), and>25 min (Figure 2d). The pressure drag and buoyancy source for the
short-lived clouds are very small below the inversion layer (Figure 2a). The clouds with mid-length lifetimes
(5–25 min) contribute most (about 80%) of the pressure drag and buoyancy source in the budget for the full
cloud ensemble (Figures 2b and 2c). The contribution from the long-lived clouds (Figure 2d) is relatively
small (about 20%) due to their small population but nonetheless exceeds that from the many short-lived
clouds of less than 5 min. For each of the cloud categories with lifetimes longer than 5 min, the pressure drag
always increases with height in the cloud layer, and its magnitude and vertical distribution are dominated
by the dynamical component, as for the full ensemble.
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Figure 3. Pressure gradient force (PGF, blue solid), buoyancy source (BUOY, red solid), thermodynamic pressure
gradient force (PBGF, blue dash-dotted), and dynamical pressure gradient force (PDGF, blue dotted) for three
individual clouds: (a) Cloud 1, (b) Cloud 92, and (c) Cloud 222. The lifetime of each cloud is indicated in the header of
each panel. zb is the depth of the well-mixed subcloud layer (≈500 m).

One may question whether some of the tracked clouds may have been miscategorized, with only a part of
the life cycle having been captured due to the finite analysis period considered in this study. For example,
if a cloud enters its decaying stage at the start of our time window for tracking, its lifetime will have been
underestimated. Additional analyses (not shown) were performed with only those clouds whose entire life
cycles fell within the tracking period, and the conclusions above were unchanged.

4.3. Individual Cloud Over Its Life Cycle

Given that the main features in the vertical structure of pressure drag do not depend on the lifetime of clouds,
it is plausible to hypothesize that such features may hold at the level of an individual cloud. Figure 3 shows
the pressure gradient force and buoyancy source for three example clouds, averaged over their own life
cycles. The three clouds have different lifetimes and are chosen to be representative of various clouds exam-
ined. It is clear that the total pressure gradient force is dominated by its dynamical component within the
cloud layer (below 1,800 m) and that both the total and the dynamical component have an overall tendency
to increase with height in that layer. However, they also present some marked local oscillations in the ver-
tical, in contrast to the smoother profile of the buoyancy source term. For some clouds (e.g., Figure 3a), the
amplitude of oscillation is sufficiently large for the pressure gradient force to locally accelerate the upward
motion.

To understand the oscillations of pressure effect, we pick a single cloud (Cloud 1, Figure 3a) to investigate the
detailed structures along a west-east vertical cross section passing through the cloud liquid water centroid
at 1,000 m. Figure 4 shows the distributions of buoyancy (Figure 4a), vertical velocity (Figure 4b), pressure
perturbation (Figure 4c), the pressure gradient force (Figure 4d), and the dynamical pressure perturbation
(Figure 4f) near the middle of its life cycle (7 min). The dynamical pressure gradient force has a similar
distribution to the total pressure gradient force and thus is not shown. There are multiple local maxima of
vertical velocity and buoyancy in the vertical (800, 1,600, and 1,800 m), showing that the cloud is composed
of multiple rising thermals (Figures 4a and 4b). Each thermal in B and w can usually be identified with two
flanking local minima in the pressure perturbation field (Figures 4c and 4f). There is weak westerly vertical
shear above 1 km height in the BOMEX simulation. The downdrafts associated with the cloud top over-
turning circulation occur preferentially on the downshear side of the cloud (Figure 4b) and are enhanced
through evaporative cooling along the cloud edge (Figure 4a). Due to the enhancement of downdrafts on the
downshear side, the local minima of pressure perturbations are found to be lower but stronger than their
counterparts on the upshear side (Figure 4c).

The result of these pressure perturbations is that the pressure gradient force presents couplets of negative
and positive tendencies off the central axis, with a region of negative tendency above each positive tendency
region (Figure 4d). Therefore, the dominant dynamical pressure drag arises due to the spatial distribution of
local extremes of pressure perturbation, which is, in turn, a response to the flow structures of the constituent
thermals. Multiple rising thermals stacked in the vertical lead to multiple local minima of pressure pertur-
bation in a cloud and hence to a vertical oscillation of the pressure drag which can be further complicated
by the lateral downdrafts.
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Figure 4. The distributions of (a) buoyancy (ms−2), (b) vertical velocity (ms−1), (c) total pressure perturbation (Pa), (d)
total pressure gradient force (PGF, ms−2), (e) the vorticity term −|𝛚|2/2 (s−2) from equation (5), and (f) the dynamical
pressure perturbation (Pa) for Cloud 1 in the middle of its life cycle (the seventh minute) along the west-east vertical
cross section through the centroid of cloud liquid water at 1,000 m height. In panels (a) and (d) the contours are at
intervals of 0.05 ranging from ±0.1 to ±0.3, with additional contours at ±0.01, ±0.02, and ±0.06. In panel (b) there are
contours at intervals of 0.5 with the zero contour suppressed. In panels (c) and (f) there are contours at intervals of 2
ranging from ±6 to ±18, at intervals of 1 ranging from ±1 to ±5, and additional contours at ±0.6. In panel (e) there are
contours at −0.2, −0.15, −0.1, −0.08, −0.06, −0.04, −0.02, −0.01, −0.005, −0.003, and −0.001. Blue solid lines represent
positive values, and dashed lines show negative values. The red shading marks the cloud object.

5. Increased Pressure Drag With Height
An explanation is still required as to why the pressure drag increases with height. Our physical interpreta-
tion focuses on the increasing magnitude of the local minima in dynamical pressure perturbation since this
is the direct reason for the increased pressure gradient force with height, as shown in Figures 1–3. We con-
sider an alternative form of the dynamical pressure specification from Equation 4. This can be rewritten as
(Markowski & Richardson, 2011)

1
𝜌
∇2pD = −e2

i𝑗 +
1
2
|𝝎|2, (5)

where eij is the deformation tensor and 𝝎 is the vorticity, such that

e2
i𝑗 =

1
4
∑

i𝑗

(
𝜕ui

𝜕x𝑗
+

𝜕u𝑗

𝜕xi

)2

, (6)

𝝎 = ∇ × u, (7)

where u1 = u, u2 = v, u3 =w, x1 = x, x2 = y, and x3 = z.

For a well-behaved field, the dynamical pressure perturbation is a spatially smoothed form of the source
terms on the right-hand side of equation (5) with pD ∝−∇2pD. Thus, a minimum in the dynamical pressure
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perturbation must be associated with rotation rather than deformation, since only rotation implies the neg-
ative dynamical pressure perturbation. For an understanding of the rotation itself, we turn to the vorticity
equation:

d𝝎
dt

= (𝝎 + 𝑓k) ⋅ ∇u
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

tilting∕stretching

+ ∇ × Bk
⏟⏟⏟

baroclinic generation

, (8)

where k is the unit vector in the vertical. The Boussinesq approximation has been made, and viscous effects
are neglected. Production of vorticity is due to tilting/stretching and to horizontal gradients of buoyancy.
Following a rising thermal, if it initially does not have vorticity, then the vorticity will only be produced
through the baroclinic generation term due to the horizontal gradient of buoyancy. Note that the buoyancy
always has a local maximum near the central axis from cloud base to cloud top, despite the negative buoyancy
values within the inversion layer (Figure 4a). This point is further supported by a composite analysis of the
normalized distribution of buoyancy within the clouds at different vertical levels (Figure S2). Due to this
distribution of buoyancy, horizontal vorticity will be continuously generated as the thermals rise through
the cloud as indicated by the second term in equation (8). The enhanced horizontal vorticity couplets along
with the rising thermals result in the enhanced magnitude of the dynamical pressure perturbations with
height on the flanks of the updraft center. The spatial distribution of− 1

2
|𝝎|2 (Figure 4e) successfully captures

the three couplets of local minima of dynamical pressure perturbation off the central axis (800, 1,600, and
1,800 m), the increased magnitude with height, and even a lower local minima on the downshear side of
each pair (Figure 4f). Note also that the dynamical pressure perturbation has a local positive maximum
between 1,100 and 1,300 m. This occurs because of the deformation due to the convergence near the bottom
the thermal (Figure 4f). As a result, the dynamical pressure gradient force, and hence the total pressure
drag, should generally increase with height for an individual cloud over its life cycle despite the oscillations
associated with rising thermals.

6. Discussion and Summary
Our study demonstrates that the thermodynamic component of pressure drag in the vertical momentum
budget of a cloud ensemble has a similar vertical distribution to the buoyancy source but with the opposite
tendency (Figure 1c). Thus, it can reasonably be parameterized through a virtual mass coefficient to reduce
the buoyancy source as in Morrison, (2016a, 2016b). However, the thermodynamic pressure drag is over-
whelmed by the dynamical pressure drag in the budget for the cloud ensemble. This is not in contradiction
with theoretical studies such as Morrison, (2016a, 2016b) that found the dynamical pressure perturbation
effect to be negligible along the central axis of an updraft because we are focusing here on the whole cloud
ensemble rather than the cloud center. Further analysis shows that the thermodynamic pressure drag does
dominate over its dynamic counterpart within the updraft core in most of the cloud layer (Figure 1d). This
demonstrates that the dynamical and thermodynamic components of pressure drag have different impacts
on different parts of shallow cumulus clouds. In the cloud cores with the strongest upward motion, the ther-
modynamic pressure perturbation is responsible for most of the drag while the dynamical pressure drag
dominates the region outside the core with weaker updrafts.

The fact that the dynamical pressure drag increases with height means that it can neither be absorbed as
a reduced buoyancy source nor scaled with the entrainment term (or the square of vertical velocity). It
must therefore be parameterized with a different approach. Our findings support a treatment for pressure
drag that should take as its starting point for multiple drafts with different strengths, as in the “core-cloak”
conceptual model of Gu et al. (2016a) for example. A recent theoretical study (Yano, 2020) also suggests that
the inhomogeneity of vertical velocity must be introduced in the plume model; otherwise, the buoyancy
and entrainment effect will perfectly cancel out with the counterbalancing force from the pressure, leaving
a pure drag force to prevent a steady state solution.

We have linked the behavior of pressure drag for a cloud ensemble to that of the individual thermals within
each cloud. The dominance of dynamical pressure drag and its increasing magnitude with height hold not
only for the cloud ensemble but also for most individual clouds over their life cycles, albeit with individual
clouds exhibiting noticeable vertical oscillations. Detailed investigation indicates that it is the successive ris-
ing thermals within the clouds that give rise to the oscillations. In addition to the thermals, the downdrafts
outside the cloud can also enhance or distort local minima of the dynamical pressure perturbation, further
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complicating the picture of dynamical pressure drag. Nonetheless, we are able to explain the increase in the
overall pressure drag with height. Enhancement of horizontal vorticity during ascent occurs through baro-
clinic generation that is aided by the internal distribution of buoyancy within the cloud, and this vorticity,
in turn, provides the dominant source term for the dynamical pressure and thus the pressure drag.

Data Availability Statement
The data set and scripts used for this study are publicly available from the University of Reading Research
Data Archive at DOI (https://doi.org/10.17864/1947.259).
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