
University of Reading

Department of Mathematics and Statistics

ITERATION OF INVERSE PROBLEMS

AND DATA ASSIMILATION

TECHNIQUES FOR NEURAL FIELD

EQUATIONS

Jehan Alswaihli

A thesis submitted for the degree of Doctor

of Philosophy

June 2020

Abstract

The need to understand the neural field activity for realistic living systems
is a current challenging task in neuroscience. For several decades, neural fields
have been studied and developed theoretically and numerically. However, to make
practical use of the equations, we need to determine their constituents in practical
systems. This includes the determination of parameters or the reconstruction of
the underlying connectivity in biological tissue.

The thesis is part of the fields of inverse problems and data assimilation applied
to neural field theory. Inverse problems deals with the reconstruction of structural
information or characteristics of some natural system and data assimilation deals
with the repeated estimation of the dynamical state of a system. Dealing with med-
ical systems, both tasks are strongly related due to the fact that often structural
information is missing or strongly incomplete, such that the state estimation needs
to reconstruct the structural information and the reconstruction needs estimation
of the states.

Our main achievement is building an iterative approach to determine both
the neural states for simulations and the underlying parameter functions. This
procedure takes in turn the state estimation or data assimilation problem and the
inverse neural field problem. The thesis is concerned with these two basic tasks in
the framework of a neural field model. In the three main chapters, we study the
reconstruction of the kernel for the delay neural field equation, first providing an
easy to follow proof for the existence and uniqueness of the solution of the direct
problem. Then, we work on reconstruction of the state for the non-delay case
using 3D-Var.

Subsequently, the iterative approach is introduced as a combination of three
operators depending on the model itself (Transport Operator T), data assimilation
(Estimation Operator E) and the inversion (Kernel Reconstruction Operator K.)
As an analytic contribution, a proof of convergence for the iterative approach of
data assimilation and inversion techniques is developed. Finally, we implement
our algorithm to show the feasibility of the steps individually and as an iterative
approach. The examples are built on standard types of medical measurement data
which are usually functions of the neural excitation fields.

i

Dedication

To my mum who is the inspiration of each success I have ever had.
To my family for their love, patience and support.

ii

Declaration

I declare that this thesis is my original authorial work. All sources, references
and literature used are properly cited and listed in complete reference.

iii

Acknowledgments

I would like to thank everyone who has supported me even with nice words
and wishes.

First and foremost I’d like to thank my supervisor, Professor Roland Potthast.
Thank you for accepting me as one of your students and for your guidance, patience
and all support and understanding of my circumstances even in my struggles time.
It has been an honor working with you and learning from you. Your enthusiasm
and love of science gave me the inspiration and the motivation to think differently.
Without you and your help, this work would not have been possible.

Secondly, many thanks to Professor Douglas Saddy for all of your encouraging
feedback and patience. I have learned so much from you. I am also grateful to
my monitoring committee Dr. Amos Lawless and Prof. Sarah Dance. You have
been great monitors, providing honest feedback and suggestions over the years,
and presenting so many opportunities to help me grow as a researcher.

Thanks to staff of the departments of mathematics and statistics, graduate
school, DARC and CINN for their support and advice. I have greatly enjoyed and
benefited from courses taught and seminars held at the university. Thanks to the
wonderful friends for the amazing discussion in science, philosophy and politics.

Special thanks to Peta-Ann King, the former administrator in our department
for her support, help and offering a friendly environment at our early start. Thanks
also to Kristine Aldridge (Kris) for her continuous care and support.

Thank you all for the great help you gave me and for the nice memories we
shared that enriched my life.

iv

Contents

1 Introduction 1
1.1 Overview . 2

1.1.1 The Biological Aspect . 4
1.1.2 The Mathematical Modeling 5
1.1.3 Delayed Neural Field Equations 8
1.1.4 Related Work . 10
1.1.5 The contribution of this work 12

1.2 Outline of This Thesis . 13

2 Basic Material and Method 15
2.1 Basic Functional Analysis . 15

2.1.1 Vector Spaces . 15
2.1.2 Normed Spaces . 16
2.1.3 Convergence, Compactness and Completeness 17
2.1.4 The Banach Fixed Point Theorem 18
2.1.5 The Fréchet Derivative . 19

2.2 Methods of Approximation . 20
2.2.1 Collocation Method . 20

2.3 Fundamental Knowledge of Regularization 21
2.3.1 Ill-Posedness Problems . 22
2.3.2 Regularization Schemes . 22
2.3.3 Tikhonov Regularization. 24

3 Inverse Delay Neural Field Equation 26
3.1 Introduction to Inverse Problems. 28
3.2 Solvability of Delay Neural Field Equation 29
3.3 The Direct and the Inverse Delay Neural Field Problems 34
3.4 The Inverse Problem of Kernel Reconstruction with delays 36

3.4.1 Kernel Reconstruction with Delays 36
3.4.2 Regularization for Kernel Reconstruction 39

3.5 Sensitivity Analysis . 41

v

3.6 Summary and Further Discussion 43

4 State Estimation for Neural Field Equations 45
4.1 Introduction to Data Assimilation. 47

4.1.1 Errors and Uncertainty in Data assimilation 49
4.1.2 Methods of Data Assimilation 49
4.1.3 Overview of 3D-Var . 50

4.2 Data Assimilation of Neural Fields 51
4.3 Summary . 55

5 Iteration of Data Assimilation and Inversion 56
5.1 On The Combination of State Estimation and Inversion 58
5.2 Analysis of the Algorithmic Components 61

5.2.1 The Transport Map: Dependence on the Kernel 61
5.2.2 Assimilation in finite and infinite dimensional Setup 65
5.2.3 Kernel Reconstruction: Dependence on the Analysis 70

5.3 The iterative kernel and state reconstruction approach 75
5.4 Convergence Proof . 76
5.5 Summary . 79

6 Numerical Examples 81
6.1 Feasibility of Kernel Reconstructions 81
6.2 Sensitivity with Respect to Functional Input 87
6.3 3D-Var for Neural Field Equations 91
6.4 Iteration with convergence Examples 91
6.5 Summary . 93

7 Conclusions and Outlook 96
7.1 Conclusions . 96
7.2 Future Investigation . 97

Bibliography 99

A Appendix 108
A.1 Firing function and control code 108
A.2 Example of Chapter 4 . 110
A.3 Examples of Chapter 6 . 110

A.3.1 Examples of Section 6.1 . 110
A.3.2 Figures of Section 6.2 . 117
A.3.3 Figures of Section 6.3 . 120
A.3.4 Figures of Section 6.4 . 123

vi

List of Figures

1.1 The biological structure of a neural cell indicating each of the struc-
tural components considering that they vary in shape and size de-
pending on their function. They demonstrate two kind of processes,
receiving chemical messages through dendrites and transmitting
electrochemical signals through axons 4

1.2 A simplification of the connection between two neurons, and show-
ing the average membrane potential u, the average connectivity
strength w and the activation rate f in presence of a delay D, the
time delay due to finite transmission speed. This graph is present-
ing a simplified structure of neurons which are usually part of a
complex network. 9

4.1 In this figure, the original state in red looks close to the updated
one in magenta where reconstructed kernel appears in blue 54

5.1 The main idea and components of iterative approach based on in-
version and data assimilation to simulate neural system dynamics.
First, applying data assimilation we obtain the neural field u. Then,
using the kernel reconstruction approach we approximate the kernel
w. 59

6.1 Time sequence of excitation of the one-dimensional delay neural
field. The original field is shown in black, in red the dynamics based
on the delay kernel reconstruction. One cycle of the oscillation is
shown at time steps 1, 3, 6, 10, 13, 16, 19, 22, 25, with a step size of
∆t = 0.2, in panels (a) to (i). 83

6.2 For the one-dimensional example the kernel can be visualized as a
two-dimensional scalar function w(r, r′). We display (a) the origi-
nal and (b) the reconstructed kernel of the one-dimensional delay
dynamics shown in Figure 6.1. 84

vii

6.3 Selection of time slices for the two-dimensional delay neural field.
We display time steps 3, 6, 9, 12, 15, 18, 21, 24, 27 with ∆t = 0.2 to
show one and a half cycles of the oscillation in panels (a) to (i).
Each panel shows the original on the left and simulation with the
reconstructed kernel on the right. 86

6.4 We display (a) the original and (b) the reconstructed kernel of the
two-dimensional neural delay dynamics shown in Figure 6.3. The
images (c) and (d) show a column of the original and reconstructed
kernel, visualizing the connection from the point indicated by the
black star to the rest of the neural patch. 88

6.5 In the upper image we display the input signal u(r, t) independence
of the point index of the discretized vector r and the temporal evo-
lution t ∈ [0, T]. The lower image shows the measurement error
which has been added to the signal before a reconstruction has been
carried out. 89

6.6 We show reconstruction kernels and the reconstruction error for 1%
noise shown in Figure 6.5 with regularization parameters α = 0.01
in (a), α = 0.1 in (b) and α = 1 in (c). A sufficient reconstruction
quality is achieved with α = 1. 90

6.7 A visualisation of the background error covariance matrix 91
6.8 An illustration of the components of data assimilation of neural field

at five different time steps. The figure consists of 4 images. They
are from top to bottom the background u(b), the observations y, the
3D-VAR estimation u(a) and an estimate without background. . . . 92

6.9 A comparison of the results of third iteration of different time steps
when applying the iterative method on the one-dimensional delayed
neural field. One cycle of the oscillation is shown at the third itera-
tion in sequence of different time steps 1, 4, 6, 9, 11, 14, 16, 19, 21, 24,
with a step size of ∆t = 0.2, in panels (a) to (j). The choice of this
iteration is due to when the convergence is obtained. 95

viii

Chapter 1

Introduction

The importance of studying neural field equations is rooted in their role for
understanding the dynamics of the neural system. Studying of its organization
and how that related to its behaviour is one of the core challenges in neurobiol-
ogy. Interest in developing both theory and applications of neural fields increased
along with advances in recording and imaging of brain activity. Starting with
the first recording of the human electroencephalogram (EEG) in 1924, increasing
success in experimental neuroimaging dataobtained from different methods such
as EEG, MEG, fMRI, has driven then for mathematical models to interpret this
data avalanche.

The rich history of mathematical modeling in neuroscience was the first motiva-
tion of the present work [102, 103, 78, 53, 54, 70, 58, 4]. In particular, recent neural
modeling research which address both the direct and inverse problems inspire us
to contribute in this field of study, see for example [26, 17, 43, 77, 85, 28, 96].

The focus of this thesis is on four different aspects:

• Significantly extending recent results on neural fields to the case of delay.

• Studying the theory of both the direct and the inverse problem of the delayed
neural field equations and its sensitive analysis.

• Introducing techniques of data assimilation to neural dynamics.

• Designing and investigating an iterative method based on inversion and
data assimilation and proving its convergence reconstructing neural dynam-
ics from given measurements.

In this introduction, we start with an overview section consisting of an intro-
duction to both the biological and mathematical aspects of neural equations with

1

time delay. It is followed by two subsections describing previous related studies,
the contributions of this thesis and a section with the outline of this thesis.

1.1 Overview

The development of applying mathematical theory and numerical techniques to
understand neural processes has come under the spotlight since the second half of
the last century, when important work in modeling neurodynamics started. That
work aims to bridge the gap between neuroimaging data and neural activity. The
different successful techniques of multi-sensor recordings and imaging methods
measure signals of millions of neurons. Modeling aims to study and reveal the
underlying features of the complex recorded activity itself and hopefully provide
other researchers new tools for understanding brain based behaviours like working
memory, epilepsy and hallucinations [33, 98, 90]. A core aim is explaining the
relation between the firing dynamics in populations of neurons and the activity of
an individual neuron.

Biologists, psychologists and clinicians have always been driven to understand
the biology, organization and activity of the brain. Today, it is further believed
that the improvements in neuroscience will take humanity a step further in the
study and improvement of diverse other fields such as artificial intelligence, medical
imaging and machine learning [100]. We now understand that neural networks are
a key feature of brain activity. Developing simulation techniques that allow us
to study and test hypotheses about the properties of individual networks and the
interaction of multiple networks has become essential to our understanding of their
in typical and atypical neurological behaviour [29].

Researchers from diverse fields within different disciplines, such as engineering,
physiology and psychology were motivated by the potential and applications of
this technology. Early interest started in 1940s. Then, during the following two
decades, it lost its sheen. Later, since 1980s, it grew rapidly over time because
of its successes in both theory and application. That scientific success has crucial
impact in computational neuroscience and mathematical biology. In fact, that
increased the possibility of applying computation to assimilate the human neural
processes [100].

Over decades, studying the activity of neural tissue and development of math-
ematical and numerical techniques to understand neural processes has led to im-
proved neural field models. Neural field models have not only become an effective
tool in neuroscience, but also helped the community of modeling the activity of
neural tissue to grow strongly in different aspects [17, 101, 36, 98, 15, 26, 95, 43, 81].

2

The most famous formulations of mathematical models of neural fields have
been introduced in the 1970s by Wilson and Cowan, Amari and Nunez [102, 103, 78,
53, 54]. Neural fields models are considered as neural mass models that describe the
activity of neural population at spatio-temporally coarse-grained scales [78, 103],
in activity based [103] and voltage based [78, 54] models. A variety of solutions
is studied such as periodic patterns, bumps and waves as well as their existence
and uniqueness with smooth sigmoidal firing rates or smoothed Heaviside firing
rate functions [38, 23, 85, 24, 28, 81]. Other studies have considered different
perspectives such as stability [6], inverse problems [12, 82], data assimilation [77],
dendritic processing [17], synaptic depression [18] and the presence of delay [78,
99, 40, 96, 47, 97].

Neural problems belong to the class of complex systems due to the sophisticated
interconnections between the large number of neurons where each of these neurons
is a complex biological system itself [17, 26, 14]. For that, simplifying the analysis
of neural activity is a challenging task of various research. We note that neural
tissue has a large variety of properties in space and time, and whatever level of
approximation and complexity is employed, the task to determine the structural
information and the initial states are indispensable.

Neural networks occurring in nature are typically complex systems sporting a
large variety of properties in space and time as we mentioned earlier. Simplifying
their analysis is generally difficult – in particular when one considers the many
billions of neurons of the entire human nervous system, where each of these neu-
rons can be considered as a complex biological system by and in itself, cf.[17, 14].
However, neural field models describe these complicated system mathematically
in a few equations, essentially by using the large number of neurons to achieve
simplification in terms of mass action. Thus, these models consider averages of
neural activity as a dynamical variable, and averages of neural properties as pa-
rameters. The derivation of neural models from properties of single neurons and
their networks, and the analysis of the resulting activity, remains a major focus of
current research [17, 77, 47, 26, 98, 40, 6].

The essential motivation of the neural modeling task is a results of the progress
of different imagining techniques such as EEG and MEG. Further new and impor-
tant imaging technologies have been MRI and DTI. Here, the response of the
brain with respect to particular stimulation or tasks of human probands is stud-
ied. However, in the absence of any stimulation or tasks, the experimental results
often show some kind of fluctuations. The question of the cause of these is not fully
settled. Scientists argue that this could be an evidence of the role of time delays
and study these data with respect to different aspects, e.g. the role of neural delay
for the resting state of the brain, see for example [32, 46, 45, 75].

3

This section is split into five subsections. We provide a brief introduction to
the biological motivation in the first Section 1.1.1, followed by a discussion of the
development of the mathematical modeling in Section 1.1.2. In the third part
of this section, we introduce the delayed neural field equation which is the main
interest in this work. Then, we provide a review of some more related studies that
elucidate my work further in Section 1.1.4. The main ideas of the contributions of
this thesis are introduced in the Section 1.1.5.

1.1.1 The Biological Aspect

The challenge of modeling and simulating neural system activity is described
in recent studies of mathematical biology and computational neuroscience. There
is a huge body of literature studying both the simple neuron modeling and neural
networks theory [70, 4, 58, 60, 36]. The neural system consists of the brain as
the main component, the spinal cord and branching neural tissues to connect this
organ with the whole body.

Figure 1.1: The biological structure of a neural cell indicating each of the struc-
tural components considering that they vary in shape and size depending on their
function. They demonstrate two kind of processes, receiving chemical messages
through dendrites and transmitting electrochemical signals through axons

Neural tissue presents various properties in space and time. Although we are
interested in the average of the activity of a neural population, we need to con-
sider their complicated interconnection and we know that each neuron has its own

4

properties and nearby units will respond differently. That makes the simplifica-
tion of the analysis of neural activity very challenging considering the large number
of neurons, as many as 100 billion neurons, their variety of shape and size, and
their complicated interconnections in human nerve system. The common neuron
structure has some characteristics of the other body cells, consisting of soma (a
cell body), dendrites (branched process) that connect the neurons to each other,
synapses (connection points) which conduct the input to the cell body, and an
axon, with a special ability of interacting with other neurons by electrochemical
signals, see Figure 1.1 for a general structure of a neural unit. The neurons can
receive, process, and transmit signals through the transmission paths.

In neural dynamics, neurons have connections that allow them to exchange
information with each other at synapses, compare Figure 1.1. There are two core
processes. Receiving messages from other neurons through the synapses, or from
sensing cells by dendrites. The second is sending electrical spikes to other neurons,
muscles or gland cells through axons. The inputs either excite or inhibit the
targeted neuron. In the case of excitation, the neuron fires when the excitation level
reaches a threshold. Although neural networks present a diversity in structures,
modeling their activity mostly follows the following similar approaches.

A set of input values is established to represent the initial state of neurons
about to send a signal to a set of sets of downstream neurons to which they
are connected. the input values are multiplied by different weights representing
the differing excitatory and inhibitory synaptic strengths in the network. The
summation of these weighted inputs models the neural activity. In reality, the
fundamental neural reaction is quite sophisticated, for more details see for example
[14, 4, 58, 70]. It is currently not possible to stimulate the neural behaviour in
its full complexity. Simplifying assumptions and structures to reconstruct and
investigate neural dynamics are imployed to keep the model as simple as possible
while capturing the essential features [17, 100].

1.1.2 The Mathematical Modeling

The development of multi-sensor recording and imaging techniques of neural
activity provides an opportunity to further develop neural modeling. Researchers,
from different disciplines such as neuroscientists, biologists, physicists and mathe-
maticians, show an interest in modeling the brain behaviour each from their own
prospective. Although the process is described biologically to start as information
reaches the soma through the dendrites, where it is integrated and sent through
axon to other neuron, models consider the process to start from an axon of the

5

post-synaptic neuron to the the dendrite of the presynaptic one. In general, most
of the models are designed to be simple while they retain some important prop-
erties such as firing rates, membrane potential and synaptic connection. However
they mostly ignore other features such as dendritic processing and delay. Usually,
two different models are distinguished, following basic assumptions.

First, there is the voltage-dependent (current-based) model. In this case the
membrane properties governs the decay and the membrane time constant is dom-
inant in comparison to the decay time of the synapses. To build the model, the
post-synaptic potential is assumed to be a linear convolution of pre-synaptic spik-
ing input. In this case it can be formulated as a linear differential operator with
constant coefficient.

Second, there is the activity-based (conductance-based) model. The time con-
stant then is dependent on the synaptic decay due to the longer synaptic time
than the small membrane time. Although the latter is widely used, the former is
more popular because of their simplicity, analytical and numerical advantages, For
more details see [38, 21, 25].

There have been significant developments in theory, application and time esti-
mation of neural fields since the main work of Wilson, Cowan, Nunez and Amari
in the 1970s. Amari and Nunez analysed neural fields, and suggested that cor-
tical neural tissues can be mathematically modelled as neural fields. Then, they
formulated a continuous neural field equation propagating both excitation and
inhibition. Their mathematical concept leads to a nonlinear integro-differential
equations (1.4), that describes the large- scale dynamics of spatially structured
networks of neurons. It is an important milestone for theoretical and practical
reasons, e.g. because it is consistent with the measurements EEG. For more de-
tails we refer to [54, 78, 76, 68].

Stating that neurons send their electrical spikes to each other through axons
terminating in synapses. Let u(rj, t) denote the average membrane potential of
the j-th neuron or population of neurons located at position rj at time t in a
network of N units. Let W (rj, ri) be the average connectivity strength between
the neurons at position ri and those neurons at position rj. The function f is
the activation rate or firing rate function, which describes the conversion of the
membrane potential u(rj, t) into a spike train S(ri, t) = f(u(ri, t)). It is then
leading to an excitation of neurons at location rj with strength W (rj, ri)S(ri, t).
The dynamics of the excitation is now described by the ODEs

τ
du

dt
(rj, t) = −u(rj, t) +

N∑
i=1

W (rj, ri)f(u(ri, t)), (1.1)

6

which, with their exponential decay term and sum of excitation terms, is also
called a leaky integrator model. Here, τ is a time constant. The sum represents
the net-input to unit j, i.e. the weighted sum of activity delivered by all units i
that are connected to unit j with a connection strength

wij := W (rj, ri),

which is sometimes referred to as the synaptic footprint or the connectivity func-
tion, see [64, 15, 28, 96, 88]. Here, W gives three different pieces of information:
existence of connectivity between two neurons i and j if wij 6= 0, the effect if the
neuron is either excitatory (wij > 0) or inhibitory (wij < 0) and the strength of
the synapse |wij|, compare [85, 25, 76].

The activation function f is considered frequently in different choices of func-
tions. One of them is a Heaviside step function

f(s) :=

{
0, s < η,
1, s ≥ η,

(1.2)

with s ∈ R and an activation threshold η. The second choice is to use a continuous
activation functions f(s) = Prob(s ≥ η). This function describes the probability
of the neuron to fire when its membrane potential reaches the threshold η. This
probability is approximated by the sigmoid function:

f(s) =
1

1 + e−
(
s− η)

, s ∈ R. (1.3)

Written as a field equation, the Amari and Nunes ansatz receives the form

τ
∂u

∂t
(r, t) = −u(r, t) +

∫
Ω

w(r, r′)f(u(r′, t)) dr′ (1.4)

with initial condition
u(r, 0) = u0(r), r ∈ Ω. (1.5)

Here u(r, t) is the membrane potential of the population of neurons at position
r ∈ Ω on the cortex and at time t. The nonlinear function f interprets the neural
firing rate, while the kernel or the connectivity function w(r, r′) represents how
the neurons separated by a distance |r − r′| interact with each other. The kernel
is often assumed to be homogeneous for simplicity, i.e. only depending on |r− r′|.
compare [54, 78, 12, 88, 28].

7

1.1.3 Delayed Neural Field Equations

Although, the neural field equation (1.4) represents several biological mecha-
nism, this form still neglects any delay between spatial locations. It was Nunez
[78, 79] who adds transmission delay to Amari equation to be more realistic. This
delay is due to the finite propagation speed of action potential and dendritic in-
tegration. Delays in neural models have been studied widely. For activity-based
models Coombes [27] show how the delays contribute to the generation of network
rhythms. More studies will be mentioned later in section 1.1.4. In reality, there
are different sources of delays could occur during the neural activity. Some delays
could happen inside the neural cell itself and some could occur due to internal
features [19]. We can summarize the biological mechanisms which cause delays
briefly in the following points:

• The propagation of action potentials along the axon with finite transmission
speed.

• The variety of conduction velocities.

• The action potential at the end of the axon.

• The distance between the cell body and the synapses.

• The transmission of the electrical signal across the synapses.

The finite transmission speed in axons, synapses and dendrites cause a function-
ally significant delay in neural system. Introducing a delay term to the equation
(1.4), the neural field equation involving delayed interactions becomes

τ
∂u

∂t
(r, t) = −u(r, t) +

∫
Ω

w(r, r′)f(u(r′, t−D(r, r′))) dr′, (1.6)

with initial condition

u(r, t) = u0(r, t), (r, t) ∈ Ω× [−|Ω|, 0], (1.7)

as the delay is bounded by |Ω|. The delay is typically assumed to be D(r, r′) '
D̃(r, r′)/v, i.e., the total length of the neural fibers D̃ connecting locations r and
r′, divided by v, the finite transmission speed of neural signals (action / post-
synaptic potentials) along those fibers. In Figure 1.2 we show the connection
between neurons in a simple way.

If we look at the Figure 1.2, we can understand that the time delay will have
occurred when the action potential from neuron at the position r reaches the

8

w(|r − r′|)

f(u(r, t− |D|))

r r′

u(r, t)

Figure 1.2: A simplification of the connection between two neurons, and showing
the average membrane potential u, the average connectivity strength w and the
activation rate f in presence of a delay D, the time delay due to finite transmission
speed. This graph is presenting a simplified structure of neurons which are usually
part of a complex network.

synapse, and there is some time before the neuron in r′ initiates an action potential
itself. The finite transmission speeds in axons, synapses, and dendrites cause a
functionally significant delay in neural system which is represented in equation
(1.6). We note that most of the previous important work and results in this topic
studied the non- delayed neural field in a general case ignoring any delay endowed
with the firing rate and employing the transmission velocity v = ∞. The effect
of introducing a delay has been studied in several resources. Many of the studies
are following the introductory book [34]. In their book, Diekmann and et al.
introduce a sun-star calculus for delay differential equations, which opened the
door for further development. In our work, we follow their treatment of the initial
condition and the equation (1.6) for t ≥ 0. In addition to the general study of
delay equations, there are some recent studies considering the delay precisely for
neural field equations.

Since 2000, the study of delay neural field equations has grown rapidly. Hutt et
al. [51] studied the stability analysis of a neuronal field model. In 2005, Atay and
Hutt [6, 50] discussed the stationary and non-stationary bifurcation in presence of
delay, in addition to their instabilities. Later, Faugeras and Faye [40] investigated
existence and stability properties of the stationary solutions and numerical approx-
imation. They also mentioned some MATLAB solvers which solve this equations

9

in case of constant delays. On the other hand, Bojak and Liley [15] introduced
propagation PDEs to approximate the neural model and provided a discussion of
the relation between estimated velocities and their distribution. Then, Faugeras
and Veltz provided new conditions for the stability of their stationary solutions de-
pending on the delay [97]. Meanwhile, Van Gils et al. [47] computed normal form
coefficients for bifurcation using the functional analytic sun-star framework. Then,
Dijkstra et al. [35] provided an expansion to their analysis in the Pitchfork-Hopf
bifurcation and Nogaret et al. [77], under consideration of delay, built a model
construction method using an optimization technique to assimilate neural data.
for more details see [67, 92]

1.1.4 Related Work

In the 21st century, there are many papers on the neural field equation with and
without delays. Some of the studies provide a framework for the existence, unique-
ness and stability of the solutions of the neural field equation such as [98, 85, 40, 47,
6, 99, 96, 97], while others consider building effective methods to investigate and
assimilate the neural field activities, see for example [12, 44, 82, 84, 76, 26] with
techniques of data assimilation and inverse problems applied to the case without
delays. In addition, recent introductory books into inverse and data assimilation
methods [26, 76] provide chapters on neural fields with techniques of data assimi-
lation and inverse problems applied to the case without delays, where [76] contains
sample codes for the inversion.

The interest in using inverse problem and data assimilation techniques in neu-
roscience is increasing rapidly. Inverse problem methods are effective in various
applications such as medical imaging. Hence, the concept of studying the clinical
and experimental data to understand the physiology of neural system is an inverse
problem, because it is looking for the cause by studying the effects. Inverse prob-
lems techniques provide powerful tools to determine the unknown parameters of
EEG/MEG modeling. EEG technology is valuable especially in clinical diagnosis.
It has an advantage of capturing the time course of brain activity despite the lack
of localizing the signals, and it is improving due to the advancement of digitization
see [72, 104, 9]. Further, the ability of data assimilation techniques to initialize
predictions brings a lot of potential to neural systems. Further, data assimilation
techniques are used to estimate unobserved variables and unknown parameters of
neural models see for details [74, 73].

An important and significant investigation on the solvability and inversion of
the neural field equation has been carried out by Potthast and beim Graben.

10

They firstly studied the neural field equation (1.4) under general assumptions on
the kernel and the activation function. that using the Banach fixed point theorem
existence of global solutions can be carried out in an elementary way [85]. They
also described how the regularity of the integral kernel w leads to the ill-posedness
of the inverse problem, in the sense that for continuous or weakly singular kernels
the equations for w are ill- posed.

The ill-posedness of the problem means either its solution does not exist, the
solution is not unique, or it is not a continuous function of the data, i.e. if small
error of the data can cause a large error of the results. However, they remark that
their assumptions are not applicable with a Heaviside-activation function. They
provide some reasoning of how to obtain results in this case using regularity on the
kernel function w, see [85, 12] for more details. In addition, Coombes and Schmidt
[28] dealt with approximating stationary and traveling wave solutions of neural
field model. They studied some specific smoothed Heaviside functions, as a firing
rate approximation. They highlighted the success of the method by comparing
the results with direct numerical simulation of the field. They also suggested that
applying an appropriate fixed point theorem could help prove the convergence of
such a scheme. Later, Oleynik et al. [81] introduced two iterative schemes for
localized stationary solutions of Wilson-Cowan model with a smooth firing rate
function. The first one is formulated as a fixed point approach while the second
is built on the excitation width of a bump. In addition to the work of [28], they
studied convergence of their approaches.

In [82] Potthast stated that applying inverse problems techniques on neural field
equations aims to determine either the connectivity kernel w or both the kernel
and parameters of the activity function f . Furthermore, it can aim to determine
the parameter η. The inverse problem to find f is a nonlinear inverse problem,
but it can be reformulated as a problem to find an unknown steepness parameter
a constant in the parametrization of the function f .

Recently, Nogaret et al. [77] built a model construction method using an opti-
mization technique to assimilate neural data to determine parameters in a detailed
neural model including delay.

The existence of solutions to the delayed neural field equation (1.6) has been
investigated in several papers already, see [2, 85, 40]. The aim of this thesis is
following the previous results of the neural field equation without delay, inspired
by the current interest and promising results in the delayed case.

11

1.1.5 The contribution of this work

As we can see from the previous research results in Section 1.1.4, a challenge
often encountered in the study of living systems is to estimate a spatial connectivity
kernel w. In a neural system, this connectivity kernel usually corresponds to the
synaptic footprint, i.e., the connections from a neuron to others by synapses form-
ing between its branching axon and their dendritic trees. Typically, measurements
are available for the activity function u at particular spatial locations, e.g.,

• where neurons are patch-clamped or

• electrodes are placed in the extracellular medium.

The task then becomes to derive the spatial connectivity from these experimental
data. This approach limits the estimation of connectivity to the set of spatial
locations of measurements.

In our Chapter 3, we propose to improve this conventional approach by studying
the inverse problem where the full activity function u is given at each location in
a given spatial domain and the underlying spatial connectivity is derived. In this
step, we focus on the problem to reconstruct the kernel w when u is known.

The problem of having limited measurements is part of subsequent work in
Chapter 4 combining inverse techniques with state estimation techniques. This
second key task is to determine initial states for simulations from measurements,
such as EEG measurements carried out on the human scalp or during surgery.
Clearly, the measurements do not determine fully the underlying excitation fields,
even if these are already smoothed out by a neural field model approach. The
task to determine states of a dynamical problem is known as the data assimilation
problem, see for example [76]. Based on a dynamical model and its structural
information (e.g. the neural kernel under consideration), we obtain forecasts of
the system dynamics starting from the estimated initial value and carrying out a
numerical simulation of the dynamical system.

Usually, data assimilation algorithms are based on some initial guess for the
state under consideration which is calculated from an earlier state estimate using
the dynamical model.

• Here, the data assimilation problem is based on the solution to the inverse
problem to reconstruct structural information about the dynamical system.

• On the other hand, the inverse problem as formulated in the above literature
uses the dynamical behavior of the states, i.e. it relies on the state estimate.

12

Altogether, we obtain a coupled inverse data assimilation problem.

We work out the above approach to the reconstruction of neural connectivity
based on measurement data and the forecasting of neural activity based on re-
constructed kernels and states estimated from measured data. Measurement data
usually are functions of the neural excitation fields. For example, an electrode
measures the integrated activity of a large number of neurons. In general, we are
aiming to build a complete iterative procedure of applying inverse problem and
data assimilation technique for delay neural network activity. We structure our
work into separate steps. Firstly, inspired by promising results studying delayed
neural field equations as provided in [96, 40, 99], and secondly, taking into account
and building on the previous studies of inversion theory and algorithm introduced
by Potthast et al. [85, 12, 82], we develop results for delay neural field equations.
Here, we are taking advantage of applying regularization approaches to deal with
the ill-posedness of inverse problem.

Our second step is to apply data assimilation techniques to estimate the state.
In this procedure, we will employ a 3D-VAR type algorithm for data assimilation,
based on a (potentially rough) approximation to the dynamical system, which is
then used to calculate better structural information by solving the inverse problem.
3D-VAR or 3-dimensional variational assimilation is well-known as an effective
tool in numerical weather prediction. As a variational approach, 3D-VAR used to
assimilate and analyse observed quantities from different sources and to impose a
dynamic balance explicitly through the use of balance equations. We will discuss
it in details in Chapter 4.

Later,we built an iterative process by applying the approach of Potthast and
beim Graben (2009) for the inverse problem and 3D-Var to estimate the state.
This process can be repeated and, under suitable conditions, converges to the full
solution of the coupled problem. In addition, numerical results are carried out for
the delay neural field equations, developing a complete iterative technique which
will use both inversion and data assimilation theory to reconstruct the delay neural
field.

1.2 Outline of This Thesis

The thesis is structured into seven chapters, with research contributions fo-
cussed within Chapter 3, 4 and 5 and numerical examples in Chapter 6.

We first study the reconstruction of the kernel (or connectivity) w from the full
excitation field, i.e. the full neural field u. Then, we go to a more realistic problem

13

where we do not have the full field u, but we still need to construct the kernel w.
Assuming we are given a function Hu of u, we first reconstruct u from Hu using
data assimilation techniques, where the observation operator H is linear. Then,
we develop the idea to iterate this estimation and reconstruction We investigate
the convergence of this iterative approach.

1. Chapter 1 is the introduction into the applications and techniques of this
thesis, including an overview of the history of development of neural model-
ing, its biological and mathematical aspects, followed by the related previous
research of neural field studies.

2. Chapter 2 collects fundamental theories, basic methods and results for fur-
ther use in the subsequent chapters.

3. In Chapter 3, we study the reconstruction of the kernel (or connectivity) w
from the full excitation field, i.e. the full neural field u. First, we provide
the existence proof of the delayed neural field equation. Then, we provide
the formulation of the integral equations, the regularization method and the
sensitivity analysis.

4. In Chapter 4 we go to a more realistic problem. We actually do not have the
full field u but we still need it to construct the kernel w. Assuming we are
given some measurements as a function Hu of u with some linear so-called
observation operator H, we first reconstruct u from Hu using data assimi-
lation. We describe a variational approach to data assimilation in a neural
field setup, which is basically a three-dimensional variational assimilation
3D-VAR equipped with a Gaussian covariance matrix.

5. Chapter 5 is the study of the convergence of our iterative approach of inver-
sion and data assimilation.

6. Chapter 6 shows our results in numerical examples which is developed for
the delayed neural field equation, its state estimation and the kernel recon-
struction problem. Those examples were built on the theoretical discussions
from the main Chapters 3, 4 and 5.

7. In Chapter 7, we provide our conclusion and further possible studies building
on our work and results. We summarize our thesis and provide the conclusion
and further possible studies building on our work and results.

14

Chapter 2

Basic Material and Method

Our goal of building an iterative procedure based on studying of the kernel
reconstruction and the state estimation for the delayed neural field equation re-
quires a knowledge of mathematical and functional analysis. That is fundamental
to clarify the problems, capture their properties and analyze their solutions. This
chapter is a presentation of essential material and tools from mathematical and
functional analysis which is needed as a basis for the discussion of inverse problems
and the study of data assimilation in the following chapters. The material of this
chapter can be found in most of introductory books in functional and numerical
analysis. To support our discussion, this material has been reviewed from different
resources, see [22, 61, 83, 76].

2.1 Basic Functional Analysis

The purpose of this section is laying ground to the theory and methods of
subsequent chapters. We start with the definitions of vector and normed spaces,
compactness and completeness, alongside with the definitions of fixed points and
the Fréchet derivative. These tools are required to understand the discussion in
Chapter 3.

2.1.1 Vector Spaces

The vector space is one of the essential concepts that is required for further basic
tools in next subsections and later for our discussion. We note that in particular
the data assimilation community usually works with a focus on Rn, such that here
we provide some basic material to make our research more widely accessible.

15

Definition 2.1.1. Let X be a set that is closed under finite vector addition and
scalar multiplication. In order for X to be a vector space, the following axioms
must be satisfied for all vectors x, y, z ∈ X and scalars r, s ∈ R,C:

• Commutativity
x+ y = y + x

• Associativity of Vector Addition

(x+ y) + z = x+ (y + z)

• Additive Identity
0 + x = x+ 0 = x

• Existence of additive inverse

there exists a −x ∈ X such that

x+ (−x) = 0

• Associativity of Scalar Multiplication

r(sx) = (rs)x

• Distributivity of Scalar Sums

(r + s)x = rx+ sx

• Distributivity of Vector Sums

r(x+ y) = rx+ ry

• Scalar Multiplication Identity
1x = x

Based on the concept of vector spaces, we next need to introduce the concept
of normed spaces to carry our discussion on the Banach fixed point theorem.

2.1.2 Normed Spaces

To review the concept of normed spaces, we need to have a knowledge of norms.
Since norms are an effective tool to measure the distance between functions, they
are essential to study the difference between the exact and approximation solutions.

16

Definition 2.1.2. Let X be a vector space. A norm on X is a real-valued function,
denoted by ||.||, which satisfies the following properties for vectors x, y ∈ X and
scalars r ∈ R,C:

• Positivity
||x|| > 0

• Definiteness
||x|| = 0 if and only if x = 0

• Homogeneity
||rx|| = |r|||x||

• Triangle Inequality
||x+ y|| ≤ ||x||+ ||y||

A vector space combined with a norm is called a normed space.

2.1.3 Convergence, Compactness and Completeness

In this part we come to the definition of convergence, compactness and com-
pleteness. We need these concepts in our further basic knowledge in next section
as well as for our study in Chapters 3 and 5.

Definition 2.1.3. A sequence [xn] in a normed space is called to converge to a
point x if

limn→∞ ||xn − x|| = 0,
n ∈ N.

Definition 2.1.4. A subset U in a normed space X is called compact if each
sequence in U has a subsequence that converges to a point in U .

Definition 2.1.5. A Cauchy sequence is a sequence [xn] in a normed space X
satisfying

limn→∞ supi≥n,j≥n||xi − xj|| = 0,
.

17

Definition 2.1.6. If every Cauchy sequence in the space X is convergent, then
the space X is called complete.

A complete normed space is called a Banach space, which is one of the most
important structures for our theoretical analysis in Chapter 3.

2.1.4 The Banach Fixed Point Theorem

The Banach fixed point theorem is an affective tool to study the existence
and uniqueness of solutions to dynamical systems and also to find fixed points of
certain self-maps of normed spaces. We are using it to prove the existence and
uniqueness of the solution to the neural field equation in Section 3.2.

Definition 2.1.7. Let U be a subset of a normed space X. An operator A : U → X
is called a contraction operator if there exists a constant q ∈ [0, 1) such that:

||Ax− Ay|| ≤ q||x− y||,
for all x, y ∈ U .

Each constant q satisfying this inequality is called a contraction number of the
operator A.

Definition 2.1.8. An element x of a normed space X is called a fixed point of
an operator A : U ⊂ X → X if

Ax = x.

Theorem 2.1.9 (Banach Fixed Point Theorem.). Let U be a complete subset of
a normed space X and let A : U → U be a contraction operator. Then A has a
unique fixed point.

Proof. This proof is from [61], p.44. We recommend this book for more details.
Starting from an arbitrary element x0 ∈ U we define a sequence (xn)n∈N in U by
the recursion

xn+1 := Axn, n = 1, 2, ...

Then, we have

||xn+1 − xn|| = ||Axn − Axn−1|| ≤ q||xn − xn−1||,

18

and from this we deduce by induction that

||xn+1 − xn|| ≤ qn||x1 − x0||, n = 1, 2, ...

Hence, for m ≥ n, by the triangle inequality and the geometric series it follows
that

||xn − xm|| ≤ ||xn − xn+1||+ ||xn+1 − xn+2||+ ...+ ||xm−1 − xm||
≤ (qn + qn−1 + ...+ qm−1)||x1 − x0||

≤ qn − qm

1− q
||x1 − x0||

≤ qn

1− q
||x1 − x0||. (2.1)

Since qn → 0, n → ∞, this implies that (xn) is a Cauchy sequence, and therefore
because U is complete there exists an element x ∈ U such that xn → x, n → ∞.
Finally, the continuity of the contraction operator A yields

x = lim
n→∞

xn+1

= lim
n→∞

Axn

= Ax, (2.2)

i.e. x is a fixed point of A.

This theorem is important for different iterative approaches. In our work, this
theorem is an essential tool in our proof of the solvability of our direct delayed
neural field problem in Section 3.2.

2.1.5 The Fréchet Derivative

In this part we introduce the Fréchet differentials as an example of derivatives
for mappings between Banach spaces which we used for our later discussion in
Section 3.5. Fréchet differentials are more general than partial derivatives because
they are an extension of the derivative from real-valued functions to a general
normed space. We start with the definition of the bounded linear operator.

19

Definition 2.1.10. Let X and Y be normed linear spaces, and let A be a map
from X to Y . A is linear if:

(a) A(x1 + x2) = Ax1 + Ax2,
(b) A(αx) = αAx
for all x1, x2, x ∈ X.

A is bounded if there exists C > 0 such that
||Ax|| ≤ C||x||

for all x ∈ X.

Definition 2.1.11. Let f : U → Y be a mapping from an open set U in a normed
space X into a normed space Y . Let x ∈ U , if there is a bounded linear map
A : X → Y such that

lim
||h||→0

||f(x+ h)− f(x)− Ah||
||h||

= 0,

uniformly for all directions, then f is called Fréchet differentiable at x, A is called
the Fréchet derivative of f at x. If f is differentiable at all x ∈ U , we say that f
is Fréchet differentiable in U .

The concepts introduced in this section are available in any introductory book
on functional analysis. For more details we refer to [22, 61, 83, 76].

2.2 Methods of Approximation

2.2.1 Collocation Method

Since fifty years ago, the collocation method has been developed to be an
effective tool to solve ordinary and partial differential equations, integral equations
and integro-differential equations. This method is a weighted residual method
approximating the solution of an equation at a finite number of points called the
collocation points using a linear combination of trial functions which are usually
chosen to be polynomials or cubic splines. The advantages of this method are :

• its simple concept,

• its broad applications,

• its ease to implement.

20

Let us look at the collocation method for approximately solving a linear oper-
ator equation

Au = g (2.3)

with an operator A between Banach spaces X and Y , u ∈ X and g ∈ Y . To
approximate the value of the solution u by a finite series approximation ũ, we
assume that

u ∼= ũ =
n∑
i=1

liVi, (2.4)

where li, i = 1, 2, ..., N are unknown coefficients. The set of functions Vi, i =
1, 2, ..., N are the selected trial functions which satisfy any conditions associated
with the equation (2.3), for example boundary conditions. By substituting the
approximate solution ũ into the equation (2.3), we obtain the residual in the form:

R = Aũ− g =
n∑
i=1

liAVi − g. (2.5)

If R = 0, then ũ is the exact solution. Otherwise, the li’s need to be chosen to make
|R| as small as possible. If the modulus |R| of R is minimal, then the equation
(2.4) is the best approximation. To achieve this goal, we could try to minimize
the integral of |R| ∫

t

∫
V

|R| dV dt = min. (2.6)

To satisfy (2.3) approximately and determine the n unknown coefficients li, i =
1, ..., n, we take the scalar product of (2.3) with functions wj, which in the case of
linearly independent functions {wj, j = 1, ..., N} is leading to N equations

n∑
i=1

li

∫
t

∫
V

wjAVi dV dt =

∫
t

∫
V

wjg dV dt, j = 1, 2, ..., N. (2.7)

This equation is describing the weighted residual methods. For the collocation
method, the weighting functions wi’s are chosen to be the Dirac delta function.
This choice makes the integration vanish and guarantees N equations to evaluate
the N unknown coefficients li’s by only calculating the residual at the selected
points in the domain. For more details see [61, 65, 22, 76].

2.3 Fundamental Knowledge of Regularization

In this section, we start with introducing the meaning of ill-posedness. Then,
we provide the main concept of regularization techniques as a method to deal

21

with the instability of ill-posed equations. In particular, we pay attention to the
Tikhonov regularization scheme, as we are using it in Section 3.4.2.

2.3.1 Ill-Posedness Problems

There is an essential difference between direct and inverse problems. Inverse
problems are often ill-posed problems. This term is related to three properties
defining well-posed problems as postulated by Hadamard in 1923. These properties
are formulated mathematically in our subsequent definition.

Definition 2.3.1. Let X and Y be normed spaces, A : X → Y an operator. The
equation

Aφ = f, (2.8)

is called well-posed if it satisfies:

1. Existence of a solution. For every f ∈ Y there is a solution φ ∈ X for (2.8).

2. Uniqueness of the solution. For every f ∈ Y there is at most one solution
φ ∈ X for (2.8).

3. Stability or continuous dependence of the solution on the data. The solution
φ depends continuously on f ; that is, for every sequence

(φn) ⊂ X with Aφn → Aφ for n→∞,

it follows that
φn → φ for n→∞.

Any problem does not satisfy at least one of these properties is called ill-posed.
For more details we refer to the books [76, 59].

2.3.2 Regularization Schemes

Solving ill-posed problems needs to apply a regularization method to approxi-
mate its solution. In this section we introduce the concept of reqularization.

In the equation (2.8), the right-hand side f is usually given by some measure-
ments. Let it be a function f (ξ) ∈ Y with

||f − f (ξ)|| ≤ ξ, (2.9)

where ξ is the measurement error.

22

Assume that the inverse of the operator A is unbounded. This assumption
means that the solution of (2.8) is unstable with respect to variations of the right-
hand side, which is an ill-posed case described in Definition 2.3.1. For unbounded
A−1 there is a sequence ψn ∈ Y with ||ψn|| = 1 such that

φn := A−1ψn

satisfies
||φn|| → ∞, for n→∞,

the solution φ(ξ) in the equation

Aφ(ξ) = f (ξ), (2.10)

can have an arbitrary distance to the true solution φ, depending on the choice of
f (ξ).

Let us define
f (ξ)
n := f + ψn, φ

(ξ)
n := φ+ φn, (2.11)

for arbitrary fixed ξ > 0, and obtain solutions of (2.10), (2.11) with

||φ(ξ)
n || → ∞, n→∞. (2.12)

The idea of solving the ill-posed equations is trying to find a bounded approxi-
mation Rα to the unbounded operator A−1 depending on some parameter α which,
when the observation error ξ tends to zero or is zero, guarantees the convergence
of the corresponding approximate solution φα to the true solution of the ill-posed
equation.

Definition 2.3.2. Let A : X → Y be an injective bounded operator between
normed spaces X, Y . A regularization scheme is a family of bounded linear opera-
tors Rα : Y → X,α > 0, such that

RαAφ→ φ, α→ 0, (2.13)

for all φ ∈ X.

The limit (2.13) means that Rα tends to A−1 pointwise, but the convergence
does not hold in norm, compare [76]. The construction of the function φ has an
error. This error is estimated from:

φ(ξ)
α = Rαf

(ξ) with ||f (ξ) − f || ≤ ξ, (2.14)

23

by

||φ(ξ)
α − φ|| = ||Rαf

(ξ) −Rαf +Rαf − φ|| (2.15)

≤ ||Rαf
(ξ) −Rαf ||+ ||Rαf − φ||

≤ ||Rα||ξ + ||RαAφ− φ||.

For the second term, the estimation does not depend on the measurement error,
but only on the approximation of A−1 by Rα. This is called the regularization error,
which is arising from the approximation of the operator A−1.

The first term involves the data error terms of size ξ and is called the data error.
It is magnified by the application of Rα. However, because of the boundedness of
the operator for every fixed α > 0, its influence can be controlled.

These errors have a characteristic behaviour. The regularization error tends
to zero for α → 0, which means the approximation tends to the true solution
if no observation error is present. On the other hand, the data error tends to
infinity for α → 0, depending on a particular measurement f (ξ). For further
investigation of the convergence, we need to consider ξ → 0. In this case, the
appropriate regularization parameter α = α(ξ) needs to be chosen to ensure that
the approximate solution φ(ξ) tends to φ by keeping the data error controlable and
tend to zero as well when ξ → 0.

Definition 2.3.3. The function α = α(ξ) is called a strategy for a regularization
scheme Rα if α→ 0 for ξ → 0. Such a strategy is called regular, if

Rα(ξ)f
(ξ) → A−1f, ξ → 0, (2.16)

for each f (ξ) with ||f (ξ) − f || ≤ ξ

We refer to the literature, in particular ch.3 p107 of [76].

2.3.3 Tikhonov Regularization.

In our work, we apply the Tikhonov reqularization method to approximately
solve our ill-posed kernel reconstruction problem. In the next theorem, we provide
an introduction of the method as a preparation for Chapter 3.

24

Theorem 2.3.4. Let A : X → Y be an injective compact operator between Hilbert
spaces X, Y . Then for each α > 0 the operator αI + A∗A is boundedly invertible
and the operator

Rα := (αI + A∗A)−1A∗, (2.17)

where A∗ is the adjoint operator of A. This defines a regularization scheme for A
with

||Rα|| ≤
1

2
√
α
, (2.18)

known as Tikhonov regularization.

Instead of solving the equation (2.8), the Tikhonov regularization solves the
approximation equation:

αφα + A∗Aφα = A∗f, (2.19)

which is the equation (2.8) after multiplying by A∗, then adding αφ.

This method keeps the residual ||Aφα − f ||22 small and stable by keeping φα
small using the term α||φα||22, see [76, 61].

To summarize, this chapter introduced general analytical knowledge and im-
portant tools that lays the ground for our further discussion and the solution of
the inverse neural field problem.

25

Chapter 3

Inverse Delay Neural Field
Equation

Understanding the dynamics and architecture of the brain is the way to un-
derstand its functions and behaviour which is the role of neural modeling. Since
the early work of Wilson, Cowan, Nunez and Amari [102, 103, 78, 54] in the 1970s
neural field models have become an effective tool in computational neuroscience
and mathematical biology. Neural models describe essential properties and relate
them to the experimental results of different recordings such as EEG, MEG and
fMRI.

Neural networks belong to the class of complex systems. Each neural tissue
has a large variety of properties in space and time. That makes simplifying of its
analysis very challenging due to the large number of 100 billion neurons and their
connectivity in the human nerve system, where each of these neurons is a complex
biological structure itself. Many researchers have discussed the neural field and its
structure and properties, see [17, 14, 26].

This chapter considers neural field models that involve delayed spatial interac-
tions and where the delay may depend on the distance between spatial locations
[6, 96, 49]. We will assume that the delay function D(r, r′) between spatial loca-
tions r, r′ is known. For instance, this is the case when the delay is linked to the
geometry of the problem, e.g., when D(r, r′) ∼ ||r − r′||, the distance between the
points r and r′ in some domain Ω. This assumption is common in practice, since
for direct neural connections the delay is essentially the distance divided by the
signal propagation speed, which as a basic approximation can be assumed to be a
universal constant. Clearly, it would be desirable to use more biologically realistic
propagation fields, but this task would be beyond the scope of this work and here
we work with the constant speed approximation.

26

Neural field models consider spatially non-local interactions, which may be
expressed equivalently either by partial differential, integro-differential or integral
equations [49, 30]. In this century, there are many papers on the neural field
equation with and without delays. Some of the studies provide a framework for the
existence, uniqueness and stability of the solutions of the neural field equation such
as [98, 85, 40, 47, 6, 99, 96, 97], while others consider building effective methods
to investigate and assimilate the neural field activities, see for example [12, 44,
82, 84, 76] with techniques of data assimilation and inverse problems applied to
the case without delays. Recently, Nogaret et al. [77] built a model construction
method using an optimization technique to assimilate neural data to determine
parameters in a detailed neural model including delay.

We start the chapter with introducing the idea behind applying inverse problem
techniques to the delayed neural field equation. In the second section, we will show
how the methods used in [85] can be extended to study existence and stability of
solutions in a neural field model with delay. Potthast and Graben study the solv-
ability of Amari equation 1.4. For smooth firing rate functions f , they show the
existence of global solutions using the Banach fixed point theorem [85]. We follow
their procedure to prove the solvability of the delayed Amari equation. The basic
idea is to split the integral operators under consideration into parts with positive
and negative temporal arguments to deal with delay. Using this step, we have
two operators. The positive operator where t > 0 is the same in [85] approach.
The negative one presents the delay where we apply the initial condition. As a
result we obtain a direct and flexible basic existence proof for a delay neural field
equation, which includes a constructive method based on integral equations only.
These results have been derived by other authors with more sophisticated tech-
nique. Studying the solutions of delayed neural field equations, Faye and Faugeras
investigated the existance and uniqueness of the solution using the theory of delay
differential equations and for stability, they use Lyapunov analysis. More authors
contribute to bifurcation theory. For example, Van Gils et al. [47] investigate the
stability and the bifurcation of steady state using the theory of sun-star calculus
framework. Atay and Hutt in [6] analyze the stability of the solutions giving suffi-
cient conditions, while Dikstre et al. show how symmetry arguments and residue
calculus can be used to simplify the computations. It is non-trivial that the ar-
guments used for neural fields without delay are applicable to the delay case, and
the approach in Section 3.2 to show the existence and uniqueness of the solution
based on several relatively simple functional analytic arguments, is of interest by
itself.

In Section 3.3, we define both the direct and inverse problem for delayed neural
field. Then, we will show in Section 3.4 that the kernel reconstruction problem

27

for the delayed neural field equation can be reformulated into a family of integral
equations of the first kind. When several trajectories of neural activity are given,
the family of integral equations is vector valued. This turns out to be an ill-posed
problem, for smooth neural activity it is even exponentially ill-posed. To formulate
stable numerical methods for its solution, we need to employ regularization. Here,
we use a spectral approach to classical Tikhonov regularization, see [37, 48, 62],
we later provide an analysis of ill-posedness of the kernel reconstruction approach.

Finally, considering the importance of the sensitivity, we add a sensitivity anal-
ysis. We study the sensitivity of the mapping u 7→ w of the excitation function u
to the reconstructed kernel w in Section 3.5 showing that the regularized version
of the kernel w is Fréchet differentiable with respect to the excitation function u.
Further, we explicitly derive the derivative by means of integral equations.

3.1 Introduction to Inverse Problems.

Since the last century, inverse problems started to be very popular in mod-
ern science because of their important applications in different areas of physics
and industrial mathematics. Although the first appearance of the term ’inverse
problems’ was in 1960s. The inversion idea is dated in the history to different
examples.

• The reconstruction of the orbit of a comet from earlier data using the method
of least squares by Gauss in 1800

• The discovery of the planet Neptune in 1846 by Le Verrier using computa-
tions of the movement of Uranus was a solving of inverse problem.

• The transformation that was studied by Radon in 1917 which is the basic of
the Xray tomography.

In their use of measured data from the surface to understand the internal
behaviour of the Earth, geophysicists contributed significantly to the development
of the inversion theory. The pioneering work of Backus and Gilbert [7, 8] provided
a start of the fame of inverse problems. In 1980s, Tarantola [94] contributed to the
theory studying geophysical data by means of probabilistic models, see the new
version of his book Inverse Problem Theory [93].

In fact, the topic of inverse problems is a connection between the general math-
ematical theory and special applications. In some dynamical systems, the knowl-
edge about parameters and properties is insufficient to apply forward problem

28

techniques in real-world settings. In this case, using the inversion is necessary to
estimate the missing state or parameters of the system based on a set of measure-
ments.

Inverse problems aim to reconstruct the model or parts of it from a set of
measurements. These could be any known measurements that have been taken
previously or at different time steps. Solving the inverse problem means to find
the causes from their effects. One can also say that inverse methods are estimating
constituents of models for which direct measurements are not available. The broad
utilization of inverse problems in practical applications led to new approaches
to inversion and to innovative regularization tools. Furthermore, as part of the
need to reconstruct parts of dynamical systems and estimate system states, the
importance of data assimilation techniques arises.

Inverse problems have universal techniques which can be used in general. How-
ever, some are specific and applicable to particular applications. That makes the
knowledge of the application and the properties, settings and environment of so-
lutions is very important. Nowadays, there are numerous applications of inverse
problems such as in geophysics, meteorology, biomedical engineering, imaging, civil
engineering and mechanical engineering. In mathematical neuroscience, instead of
studying the dynamics of neural activity as described by equation (1.4) itself, neu-
ral field inverse problems are studying the reconstruction of either the connectivity
kernels w or both the kernel w and parameters of the activation function f . Also,
the inversion can determine the parameter distribution of the temporal parameter
τ . For more details we refer to [44, 76, 93, 5, 91, 55].

3.2 Solvability of Delay Neural Field Equation

Here, we study the neural field equation (1.6) on some bounded domain Ω ⊂ Rm

in a space with dimension m = 2 or m = 3. We assume that the transmission
delay D(r, r′) of neural excitation or inhibition between r′ and r is bounded on
Ω× Ω, i.e. there is a constant cT such that

|D(r, r′)| ≤ cT , r, r′ ∈ Ω. (3.1)

At time t ∈ R, the neural fields u(r, t) at a point r ∈ Ω might receive excitations
from the past propagation with a maximal delay of cT . Working on the interval
[0, ρ] the fields need to be given on [−cT , 0] to start some simulation. It is suggested

29

that this will be the same value of the initial condition. For more details about
delays see [34].

The initial condition for the delay neural field equation is given by

u(r, t) = u0(r, t), (r, t) ∈ Ω× [−cT , 0]. (3.2)

In this section, we first need to lay the ground for our further inverse and
sensitivity analysis by providing a basic discussion to show the solvability and the
uniqueness of the solution of equation (1.6) using tools from functional analysis
and integral equations.

Our investigation is under smoothness assumptions upon the activity function
f and the connectivity kernel w. We consider a continuous activation function f(s)
for s ∈ R and an activation threshold η which is introduced in equation (1.2). This
function, which can be interpreted as the mass action probability of neuron firing
if its membrane potential is over the threshold, comes from a stochastic neuron
model, see [17, 52]. Often, see for example [26], f in this case is approximated
by the sigmoidal function as in equation 1.3. Here, we will work with general
Lipschitz continuous functions f . We assume that the kernel w satisfies

(H1) w(r, ·) ∈ L1(Ω), ∀ r ∈ Ω ⊂ Rm

such that we obtain a well defined integral of the form

g(r, s) :=

∫
Ω

w(r, r′)f(u(r′, s−D(r, r′)))dr′, r ∈ Ω, s ∈ R,

The condition

(H2) supr∈Ω ‖w(r, ·)‖L1(Ω) ≤ C1

with some constant C1 leads to g being bounded on Ω× R. We need g(r, s) to be
continuous in dependence of r and s, which for continous functions u and D is
achieved by the additional condition

(H3) ‖w(r, ·)− w(r∗, ·)‖L1(Ω) → 0 for |r − r∗| → 0.

Now, existence is given by the following result.

Theorem 3.2.1 (Existence). If the kernel w satisfies (H1)-(H3), and if the delay
term D is bounded continuous, i.e., if we have D ∈ BC(Ω× Ω,R+), then for any
T > 0 and for any initial field u0 as given by the initial condition (3.2) there exists
a unique solution u ∈ C1(Ω× [0, T]) to the delay neural field (1.6) on [0, T].

30

Proof. We first need some preparations. We will need to split the function u(r, s−
D(r, r′)) into the part where the time variable t = s − D(r, r′) is in (0, T] and
where t = s−D(r, r′) is in [−cT , 0]. This is carried out by defining

χ+(r, t) :=

{
1, t > 0,
0, t ≤ 0,

(3.3)

and χ−(r, t) := 1 − χ+(r, t). The function χ− is equal to 1 for negative time
arguments and we have 1 = χ+ + χ−. For studying the existence of solutions of
the delay neural field equation (1.6) we define the operators

(A1u)(r, t) :=

∫ t

0

−u(x, s)

τ
ds, r ∈ Ω, t ≤ 0, (3.4)

and

(A±2 u)(r, t) := (3.5)

1

τ

∫ t

0

∫
Ω

w(r, r′)χ± (r, s−D(r, r′)) f [u (r′, s−D(r, r′))] dr′ ds,

for r ∈ Ω, t ∈ [0, T].

By integration with respect to time, the solution of equation (1.6) can be
reformulated as

u(r, t)− u(r, 0) =

1

τ

∫ t

0

{
−u(r, s) +

∫
Ω

w(r, r′)f [u (r′, s−D(r, r′))] dr′
}
ds (3.6)

for r ∈ Ω and t ∈ [0, ρ] for some interval [0, ρ] with an auxiliary parameter ρ.
We can now split the operators as follows:

1

τ

∫ t

0

∫
Ω

w(r, r′)f [u (r′, s−D(r, r′))] dr′ ds

= (A+
2 u)(r, s) + (A−2 u)(r, s)

= (A+
2 u)(r, s) + (A−2 u0)(r, s), (3.7)

where the last equality is obtained from

31

τ(A−2 u)(r, t) =

∫ t

0

∫
Ω

w(r, r′)χ−(r, s−D(r, r′))f [u (r′, s−D(r, r′))] dr′ ds

=

∫
Ω

∫ t

0

w(r, r′)χ−(r, s−D(r, r′))f [u (r′, s−D(r, r′))] ds dr′

=

∫
Ω

∫ D(r,r′)

0

w(r, r′)f [u (r′, s−D(r, r′))] ds dr′

=

∫
Ω

∫ D(r,r′)

0

w(r, r′)f [u0 (r′, s−D(r, r′))] ds dr′

=

∫
Ω

∫ t

0

w(r, r′)χ−(r, s−D(r, r′))f [u0 (r′, s−D(r, r′))] ds dr′

=

∫ t

0

∫
Ω

w(r, r′)χ−(r, s−D(r, r′))f [u0 (r′, s−D(r, r′))] dr′ ds

= τ(A−2 u0)(r, t)

using that u(r, t) = u0(r, t) for t ≤ 0. With A := A1 + A+
2 the delay neural field

equation is equivalent to the fixed point equation

u(r, t) = u(r, 0) + (A−2 u0)(r, t) + (Au)(r, t), r ∈ Ω and t ∈ [0, ρ]. (3.8)

Here, the function u(r, t) needs to be considered on Ω× [0, ρ] only and we can
study the fixed point equation in BC(Ω × [0, ρ]). Any solution to equation (3.8)
will be continuously differentiable with respect to time and satisfy the delay neural
field equation (1.6).

We now show that for sufficiently small parameter ρ > 0 the operator A is a
contraction on the space BC(Ω× [0, ρ]) equipped with its canonical norm

||v||ρ := sup
r∈Ω, t∈[0,ρ]

|v(r, t)|. (3.9)

We will carry out these arguments in four steps I to IV.

I. For the linear operator A1 given by equation (3.4), and by the definition
(2.1.7), we estimate

||(A1u)||ρ = sup
r∈Ω, t∈[0,ρ]

|(A1u)(r, t)| ≤ ρ

τ
sup

r∈Ω, t∈[0,ρ]

|u(r, t)| = ρ

τ
||u||ρ, (3.10)

i.e. the operator A1 maps the space BC(Ω × [0, ρ]) boundedly into itself and by
equation (3.10) the operator norm is bounded by ρ/τ .

32

II. We define

Ju(r, t) :=
1

τ

∫
Ω

w(r, r′)χ+(r, t−D(r, r′))f
(
u(r′, t−D(r, r′))

)
dr′, (3.11)

for x ∈ Ω and t ≥ 0, and follow [85], Lemma 2.5, to estimate

|Ju1(r, t)− Ju2(r, t)| ≤ 1

τ

∫
Ω

|w(r, r′)| χ+(r, t−D(r, r′)) · (3.12)∣∣∣f[u1(r′, t−D(r, r′))
]
− f

(
u2(r′, t−D(r, r′))

)∣∣∣ dr′,
for x ∈ Ω and t ∈ [0, ρ]. First, using the Lipschitz continuity of the function f with
Lipschitz constant L > 0, using C1 given in (H2) we obtain

|Ju1(r, t)− Ju2(r, t)|

≤ L

τ

∫
Ω

|w(r, r′)| χ+(r, t−D(r, r′)) ·
∣∣∣u1(r′, t−D(r, r′))− u2(r′, t−D(r, r′))

∣∣∣ dr′
≤ LC1

τ
sup
r′∈Ω

{
χ+(r, t−D(r, r′))

∣∣∣u1(r′, t−D(r, r′))− u2(r′, t−D(r, r′))
∣∣∣}

≤ LC1

τ
‖u1 − u2‖Ω×[0,ρ], (3.13)

for r ∈ Ω and t ∈ [0, ρ].

III. Integration of equation (3.13) with respect to t ∈ [0, ρ] leads to

||A+
2 (u1)− A+

2 (u2)||ρ ≤
ρLC1

τ
‖u1 − u2‖ρ. (3.14)

where || · ||ρ as defined in equation (3.9). Now, for the operator A we obtain the
estimate

‖A(u1)− A(u2)‖ρ = ‖A1(u1 − u2) + A+
2 (u1)− A+

2 (u2)‖ρ
≤ ρ

τ
‖u1 − u2‖ρ + ρLC1

τ
‖u1 − u2‖ρ

≤ q‖u1 − u2‖ρ , (3.15)

with
q :=

ρ

τ
(1 + LC1) . (3.16)

in the case where ρ is small enough to guarantee that q < 1 by equation (3.15),
we have shown that A is a contraction on BC(Ω× [0, ρ], || · ||ρ).

IV. According to the Banach fixed point theorem, there is one and only one fixed
point u∗ for the fixed-point equation (3.8). We have shown the existence of a
unique solution u(x, t) for all t ∈ [0, ρ]. Now, the same argument applied to the
interval [ρ, 2ρ] and subsequent intervals [2ρ, 3ρ] etc. in the same way. This leads
to the existence and uniqueness result on the interval [0, T].

33

Remark. We note that the proof also works when some bounded continuous
forcing term I(r, t), r ∈ Ω, t ∈ [0, T], is added to the neural field equation (1.6).
It leads to an additional term in equation (3.8), for which all arguments remain
valid.

It is well-known [62, 76] that Banach’s theorem also provides a constructive
method to calculate the fixed point by successive iterations. Let u1 be a starting
function. Then, the sequence defined by

un+1 := u0 + A−2 (u0) + A(un), n = 1, 2, 3, ... (3.17)

converges to the unique fixed point u∗. An error estimate for this iteration process
is, based on equation (3.15), obtained from

‖un+1 − u∗‖ = ‖u0 + A−2 (u0) + A(un)− (u0 + A−2 (u0) + A(u∗))‖
= ‖A(un)− A(u∗)‖
≤ q‖un − u∗‖. (3.18)

Induction immediately leads to the full error estimate

‖un+1 − u∗‖ ≤ qn‖u1 − u∗‖, n ∈ N. (3.19)

For our numerical calculations we have, however, instead used Runge-Kutta or
Euler methods applied to the differential form of the delay neural field equation.

3.3 The Direct and the Inverse Delay Neural

Field Problems

The dynamics of the delay neural field u(r, t) with r ∈ Ω and t ∈ [0, T] satisfies
(1.6) and its initial condition. Meanwhile, for our neural kernels w we assume that
they are in the class N of functions on Ω×Ω which are C1 in the first variable and
boundedly integrable in the second variable. The delay functions D on Ω×Ω given
by D(r, r′) ' D̃(r, r′)/v, where the case D = 0 corresponds to the field equation
(1.4). More general, we assume that we have some given delay function D on Ω×Ω
which is differentiable with respect to its first variable and bounded measurable
with respect to its second variable. We call this class of delays D. Since in this
work we do not want to carry out the reconstruction of the delay function, we will
assume that this is known throughout our further reconstruction and assimilation
steps.

34

Definition 3.3.1 (Direct Delay Neural Field Problem). Given an initial state
u0 ∈ C1(Ω), a delay function D in class D and a neural kernel w in the class
N , the direct neural field problem is to calculate u(r, t) for t ∈ [0, T] with some
constant T > 0 and x ∈ Ω as a solution to the integro-differential equation (1.6).

As shown in [2, 40] and explained in Section 3.2, the direct neural field problem
has a unique solution u(r, t) on r ∈ Ω and t ∈ [0, T].

Let us now come to the inverse problem. Of course, there are many possible
settings for the inversion process. Here we first follow the most basic problem as
formulated by beim Graben and Potthast [12, 86], where the kernel w for Amari
equation 1.4 is to be reconstructed from the knowledge of the full time-dependent
neural activity field u(r, t) for r ∈ Ω and t ∈ [0, T]. They show that the kernel
reconstruction problem is ill-posed and suggest a regularization scheme to deal
with ill-posedness.

Definition 3.3.2 (Full Field Delay Neural Inverse Problem). Given the time-
dependent neural field u(r, t) for x ∈ Ω and t ∈ [0, T] the full field neural inverse
problem is to determine the neural connectivity kernel w(r, r′) for r, r′ ∈ Ω given
the knowledge of u, such that u is a solution to the neural field equation (1.6) with
kernel w and delay D, where we assume that we know the delay D as a function
of r, r′.

The neural inverse problem without delay has been solved first in [12, 86], see
also [26, 82]. Further work on dimensional reduction carried out for example by
[84] and with a localization method presented in Chapter 7 of [76]. Here, we follow
[12] with a transformation of the inverse problem into a family of linear integral
equations based on

ϕ(r, r′, t) := f(u(r, t)−D(r, r′)), r, r′ ∈ Ω, t ∈ [0, T] (3.20)

and

ψ(r, t) := τ
∂u(r, t)

∂t
+ u(r, t), r ∈ Ω, t ∈ (0, T). (3.21)

Then, equation (1.6) is transformed into

ψ(r, t) =

∫
Ω

ϕ(r, r′, t)w(r, r′) dr′, t ∈ [0, T] (3.22)

for r ∈ Ω. If ϕ has smoothness properties, such as continuity or piecewise conti-
nuity, by standard arguments (c.f. [76]) the integral equation is ill-posed and its
solution inhibits sincere instabilities. The singular values of the equation (3.22) are

35

exponentially decreasing, which has been shown and demonstrated in [76], Chap-
ter 7. Using regularization algorithms, beim Graben et al. stabilize the inversion
process by a Tikhonov regularization approach.

We define the operator A by

(A[r]v)(t) :=

∫
Ω

ϕ(r, r′, t)v(r′) dr′, t ∈ [0, T] (3.23)

for some integrable function v on Ω. Then, for each r ∈ Ω equation (3.22) corre-
sponds to the operator equation

A[r]w(r, ·) = ψ(r, ·) on [0, T]. (3.24)

The regularized solution with regularization parameter α > 0 according to Tikhonov
regularization as discussed in Section 2.3.2 and (c.f. Chapter 3.1.4 of [76]) is given
by

wα(r, ·) :=
(
αI + A∗[r]A[r]

)−1

A∗[r]ψ(r, ·), (3.25)

for r ∈ Ω. The inversion based on (3.25) has been tested in [12, 84, 76] and in
the case of delay are published in or paper [2]. Here, these results are included in
Chapter 6.

3.4 The Inverse Problem of Kernel Reconstruc-

tion with delays

We now come to the kernel reconstruction from given dynamical neural patterns
with delay. We first formulate a regularized kernel reconstruction approach based
on integral equations in the following Sections 3.4.1 and Section3.4.2, then we carry
out a sensitivity analysis in Section 3.5.

3.4.1 Kernel Reconstruction with Delays

Usually, we will observe the dynamical evolution of some pattern for a system
under consideration. For neural system, the neural activation patterns are ”the
joint firing rate of a population of neurons measured during a brief time window”,
according to [80]. More generally, observations may start from different initial
patterns that lead to different dynamical trajectories in the phase space. If we

36

have N such trajectories, the task is to find the kernel which will predict these
trajectories when the N initial conditions are provided. In more details, this
section is investigating the inverse problem of kernel reconstruction for the delayed
neural field equation (1.6). We assume that

• the nonlinear activation function f : R→ R+ to be known and

• the delay function D : Ω× Ω→ [0, cT] to be given.

The task is to find a kernel w(r, r′) for (r, r′) ∈ Ω given the time-dependent
neural activation patterns u(ξ)(r, t) for (r, t) ∈ Ω × [0, T] corresponding to initial

conditions u
(ξ)
0 (r, t) for (r, t) ∈ Ω × [−cT , 0] according to equation (3.2), where

ξ = 1, ..., N .

Here, we reformulate the inverse problem into a family of integral equations of
the first kind and study their solution by regularization methods. As a first step,
we define

φ(ξ)(r, t) := f
[
u(ξ) (r, t)

]
, (r, t) ∈ Ω× [−cT , T] (3.26)

and

ψ(ξ)(r, t) := τ
∂u(ξ)

∂t
(r, t) + u(ξ)(r, t), (r, t) ∈ Ω× [0, T] (3.27)

for ξ = 1, 2, ..., N .

With the integral operator W defined by

(Wφ)(r, t) :=

∫
Ω

w(r, r′)φ(r′, t−D(r, r′)) dr′ , (r, t) ∈ Ω× [0, T], (3.28)

the inverse problem is reformulated into the equation

ψ(ξ)(r, t) = (Wφ(ξ))(r, t), (r, t) ∈ Ω× [0, T], (3.29)

with ξ = 1, 2, ..., N , where the kernel w(r, r′), r, r′ ∈ Ω of the linear operator W is
unknown.

The equation (3.29) can be written as

ψ = Wφ, (3.30)

37

with φ = (φ(1), φ(2), ..., φ(N))T and ψ = (ψ(1), ψ(2), ..., ψ(N))T , where we search for
the unknown operatorW . Here, for simplicity we will restrict the further derivation
to the case N = 1, where only one dynamical field is considered.

An alternative is to rewrite (3.29) as

ψr(t) =

∫
Ω

φ(r′, t−D(r, r′))wr(r
′) dr′, t ∈ [0, T] (3.31)

for every fixed r ∈ Ω with

ψr(t) := ψ(r, t), t ∈ [0, T] (3.32)

and
wr := w(r, r′), r, r′ ∈ Ω. (3.33)

Equation (3.31) is a family of integral equations for the unknown kernel w(r, r′).
For each function wr = w(r, ·) it formulates a different integral equation which has
both a different integral kernel and a different left-hand side. It can be rewritten
using the integral operator

(Vrg)(t) :=

∫
Ω

Kr(t, r
′)g(r′) dr′, t ∈ [0, T], (3.34)

with kernel

Kr(t, r
′) := φ(r′, t−D(r, r′)), (t, r′) ∈ [0, T]× Ω, (3.35)

for r ∈ Ω. For N > 1, this kernel is a vector of functions φ(ξ)(r,′ , t − D(r, r′)),
ξ = 1, ..., N .

Now, our inverse problem equation (3.31) is given by

ψr = Vrwr, (3.36)

for r ∈ Ω. For each r ∈ Ω, equation (3.36) is a Fredholm integral equation of the
first kind with continuous kernel φ. The operator Vr is a compact operator on the
spaces C(Ω), L1(Ω) or L2(Ω) into BC([0, T]). It is well-known (c.f. [37, 59, 62, 76])
that this equation is ill-posed, i.e. it does not need to have unique solutions and
if it has a solution in general this solution does not depend continuously on the
right-hand side.

Ill-posed equations need some regularization method (c.f. [48]) in order to obtain
a stable solution. A standard approach to regularization is built on the singular

38

system (c.f. [62]) of the operator under consideration. In summary, for a compact
linear operator A : X → Y between Hilbert spaces X,Y , and its adjoint A∗ the
singular values µn of the operator A are the non-negative square roots of the
eigenvalues of the self-adjoint compact operator A∗A : X → X. This leads to
representation of the operator as a multiplication operator of two orthonormal
systems gn : n ∈ N in X and yn : n ∈ N in Y . Hence, this correspond to a spectral
representation of the operator A in the form

Ag =
∞∑
n=1

µn〈g, gn〉yn, (3.37)

for g ∈ X.

For the orthonormal systems gn and yn we obtain:

Agn = µnyn, A∗yn = µngn. (3.38)

Here, in case A is injective, the inverse of A is given by

A−1y =
∞∑
n=1

1

µn
〈y, yn〉gn, (3.39)

or, if A is not injective, the inverse A−1 in equation (3.39) projects onto the
orthogonal space

N(A)⊥ = {g|〈g, g∗〉 = 0, ∀g∗ ∈ N(A)}.

Because of the compactness of the operators A, the singular values are a se-
quence mostly accumulating at zero. So, the behavior of

∣∣ 1
µn

∣∣ → ∞, n → ∞
enlarges small errors causing the instability of applying the inversion. The prac-
tical behaviour of the sequence of singular values µn provides important insight
into the nature of the instability of the application at hand the problem is strongly
ill-posed for strong smoothness of the function φ.

3.4.2 Regularization for Kernel Reconstruction

To deal with this instability, we apply the regularization techniques to minimize
the value of the factor 1

µn
for large n.

We replace it by another factor qn which is bounded for n ∈ N, and modify the
inverse operator by

39

Rαy =
∞∑
n=1

q(α)
n 〈y, yn〉gn, (3.40)

where α > 0 is known as regularization parameter and the specific choice of damp-
ing factors

q(α)
n :=

µn
α + µ2

n

, n ∈ N, (3.41)

leads to the famous Tikhonov regularization as discussed in Section 2.3.2 (see also
[48, 62, 37, 76]).

Theorem 3.4.1. Let u(r, t) for r ∈ Ω and t ∈ [0, T] be some neural activity
function, which obeys the neural field equation (1.6) with true kernel w∗ and some
initial conditions u(r, t) = u0(r, t), for (r, t) ∈ Ω× [−cT , 0]. Then, the application
of the Tikhonov regularization (3.40) to the integral equation (3.36) leads to the
reconstruction wα(r, r′) of Pw∗, where P is applied to the second argument of
w(r, r′) as the projection of w∗r onto N(Vr)

⊥, i.e., it is defined as

(Pw)(r, ·) = Prwr, r ∈ Ω. (3.42)

Proof. Here, we base our reconstruction on a well-known result (c.f. [76], Theorem
3.1.8) which states that Tikhonov regularization is a regularization scheme in the
sense of Definition 3.1.4 of [76], and the discussion in Section 2.3.2 i.e. that if

f = A(ϕ∗) ∈ R(A),

then Rαf → ϕ∗ for α→ 0.

If A is not injective, and by splitting the space into

N(A) and N(A)⊥ = A∗(X),

we see by wr = Pwr + (I − P)wr and the definition of A∗ that the convergence of
Rαf is towards the projection Pϕ∗ of ϕ∗ onto N(A)⊥. In our case, the reconstruc-
tion calculates an approximation to Pw∗r . This completes the proof.

Usually, Tikhonov regularization is carried out by applying an efficient solver1

to the equation
(αI + A∗A)g = A∗y, (3.43)

which is equivalent to the spectral version of Equation (3.40). Equation (3.43) is
used for our numerical examples of Section 6.1.

1For large-scale problems a conjugate-gradient method is used for solving the equation se-
quentially. For smaller problems matrix inversion by Gauss’ method is sufficient.

40

3.5 Sensitivity Analysis

An important basic question is the influence of noise on the reconstruction.
Here, we carry out a sensitivity analysis, i.e. we calculate the Fréchet derivative
of the reconstructed kernel with respect to the input function u. Differentiability
is obtained in a straightforward manner following Section 2.6 of [76], and the
discussion in Section 2.1.5.

We start with Equation (3.36), where the operator Vr and the right-hand side
ψr depend on the input function u. The reconstruction of w is carried out by the
regularized version of

wr = (Vr)
−1ψr, (3.44)

which in the case of Tikhonov regularization in Equation (3.43) is

wr,α = Rαψr

= (αI + V ∗r Vr)
−1V ∗r ψr. (3.45)

We differentiate with respect to u on both sides and employ the chain rule and
equation (2.6.21) of [76], to derive the unregularized form

∂wr
∂u

= −(Vr)
−1∂Vr
∂u

(Vr)
−1ψr + (Vr)

−1∂ψr
∂u

, (3.46)

and the derivative of the regularized reconstruction

∂wr,α
∂u

= −Q∂(V ∗r Vr)

∂u
QV ∗r ψr +Q

∂V ∗r
∂u

ψr +QV ∗r
∂ψr
∂u

(3.47)

= −Q∂V
∗
r

∂u
VrQV

∗
r ψr −QV ∗r

∂Vr
∂u

QV ∗r ψr +Q
∂V ∗r
∂u

ψr +QV ∗r
∂ψr
∂u

,

where we use the notation

Qr := (αI + V ∗r Vr)
−1. (3.48)

The derivatives of Vr and ψr with respect to u are calculated as follows, where
we restrict our presentation to the case where we are given one trajectory only.

The operator Vr in its dependence on u is given by

(Vr[u]g)(t) =

∫
Ω

f [u(r′, t−D(r, r′))]g(r′) dr′, t ∈ [0, T], (3.49)

41

leading to the Fréchet derivative

(
∂Vr[u]

∂u
(δu)g)(t) =∫

Ω

f ′[u(r′, t−D(r, r′))]δu(r′, t−D(r, r′))g(r′) dr′, t ∈ [0, T], (3.50)

where f ′ denotes the derivative of the function f(s) with respect to its real argu-
ment s ∈ R. We need to assume that f is differentiable and that the derivative is
continuous and bounded. The derivative of the adjoint V ∗r with respect to the L2

scalar products on Ω and [0, T], which is

(V ∗r [u]η)(r′) =

∫ T

0

f [u(r′, t−D(r, r′))]η(t) dt, r′ ∈ Ω, (3.51)

is given by

(
∂V ∗r [u]

∂u
(δu)η)(r′) =

∫ T

0

f ′[u(r′, t−D(r, r′))]δu(r′, t−D(r, r′))η(t) dt, (3.52)

for r′ ∈ Ω. We note that V ∗r is an operator into L1(Ω), which depends bounded
continuously on r ∈ Ω. The Fréchet derivative of the function ψr given by (3.27)
is readily seen to be given by

∂ψr
∂u

(δu) = τ
∂δu

∂t
(r, t) + δu(r, t), (3.53)

for (r, t) ∈ Ω× [0, T].

We summarize the results in the following Theorem.

Theorem 3.5.1. Assume that the activation function f is continuously differen-
tiable with derivative f ′ bounded on R. Then, for each fixed α > 0 the regularized
reconstruction of the kernel w from input signals u within the framework of the
delay neural field equation is continuously Fréchet differentiable with respect to u
considered as mapping from BC(Ω)×C1([0, T]) into BC(Ω)×L1(Ω). This implies
continuity of the mapping of u onto w. The total derivative of wr with respect to
u is obtained by the combination of (3.48) with (3.50), (3.52) and (3.53).

Proof. Differentiability follows from the differentiability of all the operators in
(3.46) following equations (3.48) to (3.53) of the above arguments.

42

3.6 Summary and Further Discussion

The purpose of this chapter is to develop an integral equation approach for
kernel reconstructions in delayed neural field equations and to study its practical
feasibility. We study the activity and evolution of a delayed neural field of Amari-
type to develop an effective approach of reconstructing the neural connectivity.
As a preparation for the inverse problem, this work includes an explicit study of
the solvability of the direct problem of the delayed neural field equation (1.6) and
achieve to prove the existence and stability of its solution. We provide an easily
accessible functional analytic approach based on an integral equation and Banach’s
fixed point theorem.

As our main result in this chapter, we apply inverse problems techniques to
reconstructing the neural kernel assuming that some measurements of the activity
u(r, t) are given. We start by formulating a family of integral equations of the first
kind. Since kernel reconstruction is ill-posed, we need regularization to obtain
stable solutions. As stabilization method we employ the Tikhonov regularization.
A sensitivity analysis is carried out, showing that the mapping of the input u to
the regularized kernel reconstruction is Fréchet differentiable. The derivative is
explicitly calculated based on the integral equation approach.

Furthermore, in this work, we assume that the delay function D to be given, as
it would be the case when the delay is approximately proportional to the distance
of the nodes under consideration. If D is unknown, w is known and u is measured,
we can solve in Equation (1.6) for u(r′, t − D(r, r′)) for all r, r′ and t. This is
still ill-posed, since it involves an integral equation of the first kind, but then the
determination of D is reduced to the reconstruction of D from the knowledge of
u(r′, t−D(r, r′)), which strongly depends on the form of the signal u and conditions
we impose on D. If neither the delay D nor w would be given, the kernel Kr of
operator Vr, in Equation (3.34), would be unknown and part of the reconstruction,
leading to many open questions of feasibility and observability. In general, the
reconstruction of both the kernel w and the delay D is an important non-linear,
far reaching and challenging problem of future research.

In summary, we have developed a stable and efficient approach for the recon-
struction of the connectivity in neural systems based on delay neural field equations.
We expect the approach to be extensible to a wide range of field models with de-
lay, and in particular to be highly useful for analysis of experimental data in the
domain of computational neuroscience. These methods allow the reconstruction
of the underlying “synaptic footprint” of connectivity from available neural ac-
tivity measurements, thus providing a basis for simulation and prediction of real
phenomena in the neuroscience.

43

It is of high interest to study the applicability of the approach of kernel recon-
struction in the framework of other dynamical systems. It is non-trivial that the
inversion approach to reconstruct the kernel is an effective tool which is applica-
ble not only to the neural field problem but also many other different dynamical
systems. It should be applicable if its dynamics is using a kernel to model connec-
tivity.

44

Chapter 4

State Estimation for Neural Field
Equations

As we mentioned before, it is well known that the community of modeling
the activity of neural tissue has grown strongly since the early work of Wilson,
Cowan and Amari in the 1970s [102, 103, 54]. This growth leads to improvement
to promising tools in theory and applications of mathematical neuroscience. For
details, we refer to different books that discuss the history of neural imaging, neural
modeling and their applications [70, 4, 58, 26]. More discussion of further studies
in applying different techniques for neural fields can be found in recent books such
as [76, 60]. The challenge in this field of study is related to the complex structure
of both neural networks and neurons themselves, where simplifying the system is
not easy at all. We note that the neural tissue presents different properties in space
and time, as well as, including a large number of neurons in human nerve system
counted as 100 billion all connected to each other in complicated way which makes
studying its full complexity a nearly impossible task, for more details of complexity
of neurons, neural fields see [70, 58, 4, 26, 17, 14].

Let us describe the challenges, which researchers face on several layers when
dealing with dynamical models in neuroscience, in more detail. We note that,
even though neural models have gained significantly in complexity and realism
(see e.g. recent work [1, 3, 77, 69, 36]), they do not fully reflect the complexity of
nature comparing to psychological, physiological and experimental results. Usu-
ally, models employ some level of abstraction, such as field models which replace
the micro-structure of neurons by their average activity patterns and connectivity
[26, 95]. We note that our choice of Amari equation has an advantage of being sim-
ple while capturing neural dynamics and meeting the results of the EEG. Although
it is relatively simple, there are some challenges facing researchers in dealing with
them. Here, we need to carry out two basic tasks:

45

• first, to move from basic pattern studies to realistic simulations we need
to determine the connectivity structure, which is called the inverse kernel
problem of neuroscience [85, 12, 82].

• second, to carry out simulations we need to determine initial states from
measurements. This is known as the data assimilation problem. Applying
data assimilation techniques in neuroscience is mentioned in some recent
work, see for example [77, 74, 73].

After studying the kernel reconstruction of the delayed neural field in Chapter
3, we are now ready to provide a study of the state estimation of the neural field.
This is a further step towards our plan described in Section 1.2 to develop an
iterative algorithm to solve the coupled problem of inversion and data assimilation
for neural field equation by iteratively carrying out a data assimilation first, based
on a (potentially rough) approximation to the dynamical system, which is then
used to calculate better structural information by solving the inverse problem.
This process can be repeated and, under suitable conditions, converges to the full
solution of the coupled problem, as will be shown in Chapter 5.

Firstly, despite the level of simplicity we employ for our current simulation,
the task to determine (1) the structural information and (2) the initial states are
indispensable. The arguments of this chapter apply to both the non-delay as well
as the delay case, i.e. it applies to the Amari and Cowan-Wilson neural field model
(1.4), which is obtained by considering neurons which are continuously distributed
over the space Ω in R2 or R3

τ
∂u

∂t
(r, t) = −u(r, t) +

∫
Ω

w(r, r′)f(u(r′, t)) dr′, r ∈ Ω. (4.1)

From Section 1.1.2 we recall that u(r, t) interprets a neural field representing the
activity of the population of neurons at position r and time t.

Taking into account a delay of the propagation from the source of some exci-
tation to its evaluation point, we studied the inverse problem for the more general
form of the neural field equation in Chapter 3, where the equation takes the form

τ
∂u

∂t
(r, t) = −u(r, t) +

∫
Ω

w(r, r′)f(u(r′, t−D(r, r′))) dr′. (4.2)

We assume that D(r, r′) ' D̃(r, r′)/v, where D̃(r, r′) is the length of the fiber
between r and r′, and v is the finite propagation speed of signals. For simplify, in
some of our examples we will work with D̃(r, r′) = ‖r− r′‖ and v = 1. In general,

46

the delay D is not constant and we assume that D is continuous. The existence
of solutions to the neural field equation (4.2) has been investigated in Chapter 3
and is published in [2, 85, 40].

In Chapter 3, for kernel reconstruction problem of 4.2 we have assumed that
a full state u is known to carry out an inversion process. The same assumption
has been made in the literature cited above. In reality, to gain knowledge of the
field u one needs the estimation of the neural state, given some measurements or
experimental results. The estimation techniques within a dynamical framework
are usually known under the name data assimilation.

In this chapter, we employ this technique for neural field theory for Amary
equation 4.1. We will first introduce the concept of state estimation by data
assimilation and its applications in Section 4.1. In Section 4.2, we describe a
variational approach to data assimilation in a neural field setup, which is basically
a three-dimensional variational assimilation 3D-VAR equipped with a Gaussian
covariance matrix B.

4.1 Introduction to Data Assimilation.

Data assimilation is a mathematical and statistical discipline combining theory
of modeling with observations. The goals of data assimilation might differ between
determining either (1) the best state estimate of a system, (2) initial conditions
for a model, (3) interpolate observation data or (4) train model parameters based
on observed data. These different goals lead to a variety of methods. However,
the approach is usually based on an evolution of the dynamic state from earlier
points in time to the time of some measurement, known as first guess. Now,
data assimilation is calculating a best estimate based on the observation and the
first guess, in this sense merging observations and the state propagated by the
dynamical model [16, 76].

Data Assimilation is distinguished from other forms of machine learnign, image
analysis and statistical methods in that it utilizes a dynamical model of the system
being analyzed. It has a long history in atmospheric and oceanic sciences and in
hydrology since 1950s when it gained attention due to developing of computers.
However, the first attempt was in 1922 by Richardson according to [13]. Many
books consider mathematical aspect of data assimilation problem such as [66, 42],
while others concern on shaping the knowledge of data assimilation as a unique dis-
cipline [31, 56]. There are also plenty of research to bridge between the mathemat-
ical knowledge and data assimilation theory such as [63, 89, 13, 69, 3, 20, 39]. More
researchers study data assimilation in neural dynamics framework [71, 77, 60].

47

Historically, data assimilation was strongly related to geoscience and meteo-
rology and its famous application in the framework of prediction [31, 56, 1, 42].

Then, since the 90’s, it proved to be applicable in a variety of applications of
different scientific, medical, technological and industrial fields. By using data as-
similation algorithms, simulations can be synchronized with reality and dynamical
forecasting becomes possible.

Aiming to estimate the state of a dynamical system, data assimilation uses
a combination of observations and a numerical model. This combination is an
efficient tool to deal with

• missing information and

• noisy observations.

Our goal is to employ data assimilation as an effective approach to achieve the
reconstruction of the activity fields u given particular measurements y of this field
modeled by some linear observation operator y = Hu. If we have any measurements
at any time, data assimilation can improve our knowledge of the connectivity, and
thus contribute to reconstructing the model and get information or improvement
for all times.

We assume that at different time steps t1, t2, ..., tN , there are given measure-
ments

y1, y2, ..., yN , (4.3)

in some measurement space Y with a measurement operator H.

The state can be written as

ut := M(t, 0)u0, t ≥ 0,

where M is the model operator. The goal is to estimate the state of the dynamical
system

u
(a)
1 , u

(a)
2 , ..., u

(a)
N , (4.4)

at times t1, t2, ..., tN , where the letter a indicates the analysis or the results of the
estimation procedure. Now to build the estimation cycle, we need a background
to carry out the state estimation. Here, we calculate the background at the times
t1, ..., tn by

u
(b)
0 = u0, u

(b)
1 = Mt1u0, ..., u

(b)
n = Mtnu0, (4.5)

where Mtn is the model propagation from time t = 0 to time t = tn and the letter
b indicates the background. More details will be provided later.

48

4.1.1 Errors and Uncertainty in Data assimilation

Assuming that the background field u(b) is known, we already have a back-
ground error which is the difference between the background and the true states:

ε(b) = u(b) − u(t)

, where t indicates the truth. It is really difficult to control this error after applying
the analysis many times. That leads to the need of calculate statistics of ε(b).

When applying data assimilation processes, we expect three different kinds of
errors:

• background error: this error has an average ε(b) and coveriances

B = (ε(b) − ε(b))(ε(b) − ε(b))T

, where T indecate the transpose,

• observation error: ε(o) = y −Hu(t), with average ε(o) and covariances

R = (ε(o) − ε(o))(ε(o) − ε(o))T

,

• analysis error: ε(a) = u(a) − u(t) with average ε(a).

4.1.2 Methods of Data Assimilation

There are different mathematical methods used to carry out data assimilation.
A first class are so-called variational methods, in particular

(1) 3D Variational Data Assimilation,

(2) 4D Variational Data Assimilation,

which originally came from control theory. These methods search a best fit to both
the observations and the first guess (background) states.

Three-dimensional variational assimilation (3D-VAR) carries out some mini-
mization at a given point in time tk, calculating the so-called analysis. Then, it
propagates this analysis to the next point in time where measurements are avail-
able. The state is called first guess or background and provides the basis for the
next minimization step.

49

Four-dimensional variational assimilation carries out minimization over a tem-
poral interval [tk, tk + T], taking into account all observations between points tk
and tk + T in time.

Secondly, there is ensemble data assimilation based on stochastic ideas, in
particular

(3) Ensemble Kalman Filters and Smoothers

(4) Particle Filters.

Their origin can be found in estimation theory. They are based on an ensemble
of states estimating the underlying uncertainty distribution, and they calculate
an ensemble of states to estimate the analysis uncertainty distribution. For more
details about data assimilation, its methods and applications, we refer to [31, 16,
56, 41, 66, 76, 13, 42, 10, 20].

Here, we will focus on three-dimensional variational data assimilation (3D-
VAR) applied to the neural field equations. Let we start with an overview of
3D-Var in next section.

4.1.3 Overview of 3D-Var

The analysis in 3D-Var is considering the approximation solution to a mini-
mization problem defined by a cost function J as several evaluations of it,

J(u) = (u− u(b))TB−1(u− u(b)) + (y −H[u])TR−1(y −H[u]), (4.6)

and of its gradient

∇J(u) = 2B−1(u− u(b))− 2HTR−1(y −H[u]). (4.7)

The minimization approach is an iteration to find the analysis state u that
minimizes J(u). This solution uses a priori data, represented as the background
u(b) and observations y, to produce a pasteriori maximum likelihood estimate of the
truth. The method includes the estimates of the background B and observation R
error covariance matrices to weigh the data in the analysis. To reach the goal of
optimization, this method uses a stopping procedure by limiting either the number
of iterations or the norm of the gradient ||∇J(u)||. For the latter procedure, a
specific level of decreasing of the gradient is required for the stopping point where
the analysis is expected to be closer to the optimum. We note that, in addition
to the simplicity of the method, efficient calculations of the gradient of the cost
function can be obtained by using adjoint operations. In fact, that gives the

50

method one of its advantages as only the operators and adjoints of their tangent
linear are needed despite how the observation operators are complex. There is
always one and only one analysis if J is strictly convex. For more details see
[16, 11]

4.2 Data Assimilation of Neural Fields

The goal of this section is to develop a data assimilation approach for the
estimation of states in neural field theory following three-dimensional variational
data assimilation as described in [76]. Data assimilation algorithms already have
a long history in geophysical applications and become a promising technique in
various of dynamic modeling, compare [42, 44, 56].

Here, for the sake of simplicity we will describe the data assimilation problem
in the discretized space, i.e. we assume that we employ a discretization of the
domain Ω, i.e. we define

vj := v(rj), j = 1, ..., n (4.8)

where vj’s are observational points, rj ∈ Ω are discretization or collocation points.
Our neural activity field u(·, t) in L2(Ω) is thus approximated by its values uj(t) :=
u(rj, t), such that u(t) ∈ Rn for t ∈ [0, T].

We assume that we have measurements of the neural field which are given by
electrodes. Usually electrodes collect the potential of the underlying tissue such
that the measurement process corresponds to an integration of the original fields.
This is given by the measurement or observation operator

(H`u(·, t)) :=

∫
Ω

v`(r
′)u(r′, t) dr′ (4.9)

for ` = 1, ...,m. Here, the functions v` for ` = 1, ...,m represent the electrode
geometry and functionality in the sense that it measures a weighted average of
the activity potential u over some area U ⊂ Ω and neglects the activity in the
complement U c of U in Ω. Choosing v` as a delta function v`(r

′) := δ(r′ − rj`) lo-
cated at some node rj` for ` = 1, ...,m, the measurements correspond to individual
activity measurements at a selection of m nodes of the discretized tissue areas. In
discretized form, equation (4.9) takes the form of a sum

H`u(·, t) = v` · u(·, t) = vT` u(·, t) (4.10)

to be read either as a scalar product of the vectors vξ ∈ Rn and u(·, t) ∈ Rn or as
a matrix-vector product of the row vector vT` with the column vector u(·, t). We

51

collect all components H` for ` = 1, ..., n into one matrix operation which we call
H.

Data assimilation searches for an optimal state u(a) with respect to both the
measurements

y = Hu(·, tk) + ε ∈ Rm (4.11)

at some given point tk in time with some vector of errors ε ∈ Rm, and some á-priori
state u(b)(·, tk), which is usually calculated from earlier estimates. If measurements
do not pick up the complete state, we need to exploit dependencies between dif-
ferent state variables. For example, if we only measure u1(tk) at time tk, we have
no further information about the values of u at other nodes rj, j = 2, ..., n. But if
we have statistical information about the correlation of u2 to u1, then information
about u1 will also tell us much about u2 and potentially the other variables.

Data assimilation usually employs the covariance matrix B ∈ Rn×n to incor-
porate the current stochastic relationship between different system variables. The
minimization of the cost function (4.6) leads to the estimate u(a) of the neural
state given measurements according to (4.9) given by

u(a) := u(b) +BHT (R +HBHT)−1(y −Hu(b)), (4.12)

where R ∈ Rm×m denotes the covariance matrix of the data error ε ∈ Rm and B is
the covariance of the errors of the model state u, compare also equation (5.2.14) of
Chapter 5 of [76] (with α = 1). Here, we choose R and B as prescribed matrices
in Rm and Rn, respectively. For linear observation operators H the solution u(a)

is the unique minimizer of the functional (4.6).

Here, we choose our matrix B to be Gaussian with respect to the distance of
coordinates ri, rj ∈ Ω, i.e. we have

Bi,j := ce−σ|ri−rj |
2

, ri, rj ∈ Ω, (4.13)

where σ > 0 is a decay parameter for the statistical dependencies and c is a
norming constant. The covariance matrix R is considered to be diagonal, which
corresponds to statistically independent measurements with the different electrodes
H` for ` = 1, ...,m.

In the case where we do not know any reasonable system dynamics yet, we
can employ the zero dynamics for the first propagation, i.e. we work with u(b) ≡ 0
on Ω for t = 0 to t = tn and carry out estimates based on the zero background
field. For the second iteration, we have now estimated some kernel and ub will be
non-zero for any further iteration step. If some neural kernel is given, we can use

52

the neural field equation to calculate a first guess u(b)(·, tk) at time tk from earlier
estimates u(a)(·, tk−1). We will denote the model propagation of the state at time
tk−1 to time tk by Mk−1,k.

Definition 4.2.1 (3D-VAR for Neural State Estimation).
The three-dimensional variational method for neural state estimation from elec-
trode measurements employs measurements

yk = Hu(true)(·, tk) + ε (4.14)

with error ε ∈ Rm and a first guess or background

u(b)(·, tk) := Mk−1,ku
(a)(·, tk−1) (4.15)

to calculate an estimate u(a)(·, tk) of the neural activity at time tk according to the
equation (4.12).

u(a) := u(b) +BHT (R +HBHT)−1(y −Hu(b))

For 3D-VAR, the background state covariance matrix B can be calculated from
statistical evaluations of neural fields, or it can be chosen by generic arguments.
Here, we will start with a Gaussian matrix as given by (4.13).

In the case of high-dimensional state spaces X and a large number of measure-
ments, the solution of the equation

(R +HBHT)z = y −Hu(b), (4.16)

which is needed to evaluate equation (4.12), is usually carried out based on the
conjugate gradient method. Then, the analysis increment u(a) − u(b) is calculated
by BHT z in a subsequent step. When the dimension n of the state space X allows
explicit inversion of the equation (4.12), we can employ standard implementations
of Gauss’ method.

We can see an example of this idea how we expect its convergence in Figure 4.1
where the original state u is shown in red, and the measurements appear in blue.
Using the observation operator y = Hu and covariance matrix B, the estimation
by 3D-Var based on the reconstruction is shown in magenta. Here, we have used an
observation operator H which selects states at each 5th point on a unit circle. We
have chosen a B matrix as defined in (4.13), an observation error covariance matrix
R = rI to be the identity matrix I multiplied by a scalar r. Reconstructions are

53

Figure 4.1: In this figure, the original state in red looks close to the updated one
in magenta where reconstructed kernel appears in blue

54

then obtained on all points by (4.16). The code of this example is presented in
Section A.2.

Complete numerical examples of applying 3D-Var to estimate the neural state
are described in Section 6.3. After applying the estimation of the state, we now
ready to the next step. We put together the both methods of kernel reconstruction
and state estimation in one iterative approach and study its stability in next
Chapter 5.

4.3 Summary

Following the application of inverse problem technique to reconstruct the kernel
of NFE, this part is concerned on estimate the neural state using data assimilation
or precisely 3D-VAR method. Although the effectiveness of kernel reconstruction
approach has been shown before in different studies and discussed in details for
delay case in Chapter 3, the argument was always built on assumption of having
knowledge of the excitation field. In reality, we have measurements of the field
and we need to use one of data assimilation technique to fill this gap.

In this chapter, we provide a study of the application of 3D-VAR method in
neural field equation. That could improve by updating the kernel using inverse
problem. This is leading to the next step of introducing the iteration of inversion
and data assimilation in next chapter.

Finally, in next chapter, we show the opportunity to build a complete scheme
based on applying both procedures of data assimilation and inverse problems tech-
niques in turns.

55

Chapter 5

Iteration of Data Assimilation
and Inversion

Let us briefly review the developments worked out in Chapter 3 on inverse
neural delay and Chapter 4 on data assimilation for neural fields.

• We have developed an inverse problems technique to reconstruct the connec-
tivity kernel once the full neural activity u(x, t) is known for all x in space
and for time t in some interval [0, T] of times.

• We have developed a data assimilation technique to estimate the full neural
activity u(x, t) from measurements yk at times tk, k = 1, 2, 3, ... for tk ∈ [0, T].

For the kernel reconstruction, the full excitation field u is the critical input. It
is determining the kernel w as a result of the inversion or reconstruction process.
For the estimation step by data assimilation, the first guess or background u(b) is
very important, since the quality of the analysis u(a) is strongly depending on the
prior knowledge of the dynamics and, thus, on the kernel w which is our critical
input to the estimation process.

We summarize the dependencies as follows:

• The quality of the kernel reconstruction is strongly depending on the quality
of the input u for its reconstruction.

• The quality of the state estimation of u is strongly depending on the quality
of the input, which is both the measurements yk and the background fields
u(b)(x, t). The background fields u(b) depend on the knowledge of the kernel
w, since they are simulated based on some initial field u(b)(x, 0) and the
neural dynamics (4.1) or (4.2), which includes the kernel w.

56

A simple idea to resolve the mutual dependencies of inversion and state esti-
mation is iteration.

(S1) Based on some initial knowledge of our kernel we simulate background fields
u(b)(x, t) for x ∈ Ω and t ∈ [0, T]. We call this the transport map.

(S2) Then, we employ our measurements yk at tk and the background fields to
estimate the full neural fields u(a)(x, t) for x ∈ Ω and t ∈ [0, T] using the
techniques of Chapter 4. We call this the estimation step.

(S3) We now employ the full neural excitation field u(a)(x, t) to carry out an
inversion step following Chapter 3 and reconstruct the neural connectivity
kernel w.

(S4) With the kernel w we have gained better knowledge of the neural dynamics,
such that we can go back to step 1 and restart the whole process of transport,
estimation and inversion. We speak about iterating estimation and inversion.

As an important part of the full development of our methods, we need to
investigate the convergence and the stability of our iterative approach of taking
inversion and data assimilation in turns to improve kernel reconstruction and fore-
casting. Although the basic idea of an iterative approach of data assimilation and
inversion for neural fields is easily explained, the convergence and stability of the
iterative method turns out to be a challenging task due to the ill-posedness of the
kernel reconstruction and the strong role of the regularisation scheme, which needs
to be balanced with the errors of the state estimation during the iteration process.

There is a well developed theory and convergence analysis for the usefulness and
effectiveness of both the inverse problems technique and each data assimilation step
individually. This work considers the iterative procedure of kernel reconstruction
and state estimation, which calculates an approximation both for the neural field
u and for the kernel w. We note that the use of the same observations each time
step in (S2) introduces correlations between the observation and background errors
after the first iteration. This could be treated by some regularization method.

The question at this point is about the convergence of the iterative procedure
to the best estimate for both u and w. In our first Section 5.1 we develop the
combination of inversion and data assimilation into one iterative approach. This
iteration of data assimilation and inversion is described and analyzed in Section
5.2 by decomposing it into three operators and studying their properties. We
formulate the iterative approach as a sequential application of these three operators

57

in Section 5.3. Then we work out the convergence proof, for our iterative method
in Section 5.4. Numerical examples will be given in the subsequent Chapter 6.

For our mathematical derivation, we will limit our presentation to the case
of non-delay equations to keep the approach readible. In principle, as we have
transfered the existence proof to the delay case, we believe that this should be
possible for the arguments presented as well. But it is beyond the possiblities of
this thesis and has to be left to future work.

5.1 On The Combination of State Estimation and

Inversion

In this section we introduce an iterative method to solve the combined inverse
neural field problem when measurements are given based on some basic electrode
forward model. The main idea is schematically sketched in Figure 5.1. We treat
the case where our measurements provide knowledge about the underlying neural
activation function u, but these states are not directly accessible. Here, differ-
ent types of measurements are possible, modeled by the observation operator H
introduced in (4.9). Different approaches to state estimation can be seamlessly
integrated into our iteration procedure.

The main idea of the iterative scheme is summarized through the following
points. In each step ` for ` = 1, 2, 3, ...:

(S1) We first take some initial kernel w(0) and calculate initial fields u(b,1)(x, t)
for x ∈ Ω and t ∈ {t1, t2, ..., tK} based on some initial field u(x, t0), x ∈ Ω
solving equation (4.1) or (4.2). This is called the transport step and we use
the notation

u(b,`) = T (w(`−1)) (5.1)

with the transport map T . Note that if no knowledge about the kernel is
given, we can take w(0) ≡ 0 and then also u(b,`)(x, t) ≡ 0 for x ∈ Ω and
t ∈ {t1, ..., tN}.

(S2) We now calculate an approximation u(a,`)(x, t) for x ∈ Ω and t ∈ {t1, t2, ..., tK}
to the full neural activity field from measurements y1, ..., yK at times t1, ..., tK .
The estimation is carried out based on the background u(b,`) calculated in
step (S1). We use the notation

u(a,`) = E(u(b,`))

= E(T (w(`−1))) (5.2)

58

with the estimation operator E.

(S3) As third step, we calculate a reconstruction w(`) of the neural connectivity
kernel from the estimation u(a,`) of the full time-dependent neural field. We
write this in the form

w(`) = K(u(a,`)) (5.3)

with the kernel reconstruction operator K.

(S4) We now iterate the above steps (S1) - (S3), until a reconstruction of the
kernel w of sufficient precision is achieved. We might have to stop the itera-
tions after some steps, since error in the measurements may otherwise spoil
the reconstruction. This will be discussed in more detail in the upcoming
sections. Here, we now integrate our iteration steps into the formula

w(`) = K(E(T (w(`−1)))), ` = 1, 2, 3, ... (5.4)

Neural Field
Dynami-

cal System
Neural Kernel

Excitation
Field u(x, t)

Measurement
Y = H(u)

Integro-differential
Equation

(Transport
Operator T)

Measurement
(Operator H)

Data Assimilation
(Estimation Operator E)

Kernel Reconstruction
(Operator K)

Figure 5.1: The main idea and components of iterative approach based on inver-
sion and data assimilation to simulate neural system dynamics. First, applying
data assimilation we obtain the neural field u. Then, using the kernel reconstruc-
tion approach we approximate the kernel w.

59

Here, we have the special situation that both the mapping K as well as the
mapping E are operators solving ill-posed problems. Both of them include regu-
larization with some regularization parameter αK and αE, respectively. There are
two important points to take into account here:

• In general, we know that for small parameters α the norm of regularization
operators becomes large, i.e. they are bounded, but still lead to very ill-
conditioned operations. As a consequence, in general we cannot expect the
norm of KET to be bounded in any reasonable space. This means that in
operator norm we do not expect the iteration (5.4) to converge, meaning
that for each u0 and utrue we have

||(KET)n(u0)− u(true)|| → 0, n→∞, (5.5)

but not uniformly in u0 or u(true). We will provide a more detailed conver-
gence analysis in Sections 5.3 and 5.4.

• As for iterative methods to solve inverse problems, see for example Chapter
3 of [76] or [57], it might be possible to achieve convergence when an ap-
propriate stopping rule is employed. In this case, we have an improvement
of the kernel for its lower modes for several or even many iteration steps,
until the influence of noise amplified by the ill-posed inverse takes over and
destroys the achieved reconstructions.

At the end of this section, let us address an important question. Usually,
in estimation theory where the error covariance matrix R and the background
error covariance matrix B is employed, the errors are assumed to be statistically
independent. When you calculate an analysis estimate of the form ua = BHT (R+
HBHT)(y − Hub) for u from observations y, you introduce correlations between
ua and y. A second estimate, where now ub is replaced by ua would now violate
the assumption of stochastical independence of the background uncertainty and
the observation error distribution.

Do we fall into this problem with the iteration approach described above? We
note that for our approach we try to solve the non-linear equation

(KEyT)w = w, (5.6)

where y is one choice of observations parametrizing the operator Ey, which maps
Tw onto an excitation field u = EyTw. The data y in (5.6) are parametrizing the
operator A := KEyT , which is set-up once. After this, we are merely carrying
out the standard iteration An(w0), which in the case where A is a contraction will
converge to the unique solution of A(w) = w.

60

So the main point here is to investigate the stochastical properties of the for-
mulation of the full non-linear inverse kernel reconstruction problem as equation
(5.6). We realize that the arguments are not completely settled here, and that
stochastical analysis of the iterations should be studied in more detail in future
research.

5.2 Analysis of the Algorithmic Components

The task of this section is to analyse the different parts of the iterative algo-
rithms. Firstly, we study the neural transport map T in Section 5.2.1, considered
as a mapping w 7→ T (w) of the neural kernel onto the solution of the neural field
equation. Secondly, the state estimation or data assimilation map E is investi-
gated in Section 5.2.2, which when you consider it as a mapping u(b) 7→ u(a) of the
background u(b) onto the analysis u(a) has some contraction properties. The third
component, the kernel reconstruction K, is analysed in Section 5.2.3, studied as a
mapping u(a) 7→ w.

5.2.1 The Transport Map: Dependence on the Kernel

We assume that the neural activity function u obeys the Amari neural field
equation without delay

τ
∂u

∂t
(x, t) = −u(x, t) +

∫
Ω

w(x, y)f(u(y, t)) dy, x ∈ Ω, t ∈ [0, T], (5.7)

with initial condition u(x, 0) = u0. We note that when reconstructing w and u,
we do neither know w nor do we know u0 or u when we start our reconstruction.
The task is to reconstruct all these. However, for our analysis we will assume that
we are given u0 and finally argue what can be done if u0 is unknown. It has been
shown in [85] that the equation can be solved by transforming it into an integral
equation. Here, we study the dependence of the solution u on the neural kernel w.
We first present our main result and then carry out the proof in several steps.

Theorem 5.2.1. We assume that f is a Lipschitz continuous function R→ [0, 1]
and τ > 0 is a constant. Let u1, u2 be two solutions of the neural field equation
(5.7) with kernels w1 and w2, respectively, and with initial condition uj(·, 0) = u

(j)
0 ,

for j = 1, 2. Then, there is a constant C such that

||u1(·, t)− u2(·, t)||∞ ≤ C
(
||u(1)

0 − u
(2)
0 ||∞ + ||w1 − w2||∞

)
(5.8)

for t ∈ [0, T].

61

Proof. We proceed in several steps.

I. We formulate an integral equation for the difference δu := u1 − u2 between the
two activity functions u1 and u2. Each of these functions satisfies the equation

τ(uj(x, t)− uj(x, 0)) = −
∫ t

s=0

uj(x, s) ds

+

∫ t

s=0

∫
Ω

wj(x, y)f(uj(y, s)) dy ds (5.9)

for j = 1, 2, x ∈ Ω and t ∈ [0, T]. Here, we consider the slightly more general
situation where initial values of δu(x, t) are given by the fixed function γ(x) :=
δu(x, 0), x ∈ Ω. Then, for δu we derive

τδu(x, t) = γ(x)−
∫ t

s=0

δu(x, s) ds

+

∫ t

s=0

∫
Ω

w1(x, y)f(u1(y, s)) dy ds

−
∫ t

s=0

∫
Ω

w2(x, y)f(u2(y, s)) dy ds

= −
∫ t

s=0

δu(x, s) ds (5.10)

+

∫ t

s=0

∫
Ω

w1(x, y)
(
f(u1(y, s))− f(u2(y, s)

)
dy ds

+ γ(x) +

∫ t

s=0

∫
Ω

(
w1(x, y)− w2(x, y)

)
f(u2(y, s) dy ds.

For the function f : R→ R+ we note that

f(s) ⊂ [0, 1], s ∈ R. (5.11)

Here, we will work with general Lipschitz continuous functions f satisfying this
condition. We assume that the kernel w satisfies

• (H1) w(x, ·) ∈ L1(Ω), ∀ x ∈ Ω ⊂ Rm,

such that we obtain a well defined integral of the form

g(x, s) :=

∫
Ω

w(x, y)f(u(y, s))dy, x ∈ Ω, s ∈ R,

The condition

62

• (H2) supx∈Ω ‖w(x, ·)‖L1(Ω) ≤ C1.

with some constant C1 leads to g being bounded on Ω× R. We need g(x, s) to be
continuous in dependence of x and s, which for continuous functions u is achieved
by the additional condition

• (H3) ‖w(x, ·)− w(x∗, ·)‖L1(Ω) → 0 for |x− x∗| → 0.

Then, from the existence Theorem 2.7 of [85] we know that there is a unique
solution to the integral equations (5.9) for j = 1, 2 under the assumptions on f
and w as stated in 5.11 and the conditions H1-3 earlier in this section.

We consider u2 as fixed reference and write u1 = u2 + δu. Then, from (5.10)
we conclude that δu satisfies the non-linear equation

δu = A(δu) + F on Ω× [0, T] (5.12)

with

A(δu) :=

∫ t

s=0

∫
Ω

w1(x, y)
(
f(u2(y, s) + δu(y, s))− f(u2(y, s))

)
dy ds (5.13)

and the forcing term F defined by

F (x, t) := γ(x) +

∫ t

s=0

∫
Ω

(
w1(x, y)− w2(x, y)

)
f(u2(y, s) dy ds (5.14)

for x ∈ Ω and t ∈ [0, T].

II. Referring to the definition 2.1.7, with the arguments of Lemma 2.5 of [85],
we conclude that A is a contraction on the space BC(Ω × [0, ρ]) for all w1 with
|w1| ≤ c with some constant c and with some sufficiently small constant ρ > 0
depending on the Lipschitz constant L of f and on c. Since F is a constant function
not depending on δu, this contraction property also holds for the operator A(·)+F .
By the Banach fixed-point theorem, which is introduced in Section 2.1.4, there is
a unique solution to the equation and the solution is the limit of the sequence

u0 := 0, δuk := A(δuk−1) + F, k = 1, 2, 3, ... (5.15)

We take the norm in (5.15) and estimate

||δuk|| ≤ ||A(δuk−1)||+ ||F ||
≤ cA||δuk−1||+ σ (5.16)

with the contraction constant 0 < cA < 1 of A and the constant σ := ||F ||. Then,
a bound αk for ||δuk|| is defined by

α0 := 0, αk := cAαk−1 + σ, k = 1, 2, 3, ... (5.17)

63

which by induction has the explicit representation

αk = σ
k−1∑
j=0

cjA + (cA)kα0 = σ
1− ckA
1− cA

+ (cA)kα0, k = 1, 2, 3, ..., (5.18)

where we kept the α0 term to clarify that the following estimate does not depend
on the choice of the initial field u0. This leads to the estimate

||δu|| ≤ 1

1− cA
σ. (5.19)

Finally, we estimate σ based on

||F (y, s)|| ≤ ||γ||+ ||w1 − w2||∞ρ|Ω| (5.20)

to be given by σ = c̃||w1 − w2||∞ with the constant c̃ = ρ|Ω|.

Now, for the interval [0, ρ] we employ γ = u
(1)
0 − u

(2)
0 and the estimate (5.19)

obtains the form

||δu|| ≤ c
(
||u(1)

0 − u
(2)
0 ||∞ + ||w1 − w2||∞

)
(5.21)

in BC(Ω× [0, ρ]) with constant c := (1 + ρ|Ω|)/(1− ρ).

III. The arguments from above are now repeated for the interval [ρ, 2ρ]. The
full framework from above can be used, with the only difference that now γ(x) :=
δu(x, ρ) needs to be employed. In this case, from the estimates on the first interval

[0, ρ] we have ||γ|| ≤ c(||u(1)
0 − u

(2)
0 ||+ ||w1 −w2||∞), such that the estimate (5.21)

holds also on BC(Ω × [0, 2ρ]), with a modified constant c. After [T/ρ] steps
(denoting the smallest integer larger than T/ρ) the estimate is achieved for the
full interval [0, T] with some constant C. This ends the proof for (5.8).

As a special case of the above Theorem 5.2.1 for u
(1)
0 = u

(2)
0 , we have shown

that the nonlinear mapping of the kernel w onto the solution u of the neural field
equation (1.4) is both bounded and continuous from BC(Ω×Ω) into BC(Ω×[0, T]).
The derivative of u is estimated as follows.

Theorem 5.2.2. The mapping of w onto the solution u of the neural field equation
satisfies

||u1(x, t)− u2(x, t)||BC(Ω)×BC1([0,T]) ≤ C
(
||u(1)

0 − u
(2)
0 ||∞ + ||w1 − w2||∞

)
(5.22)

with some constant C.

64

Proof. We employ equations (5.9) and the estimate (5.8). Differentiation of (5.9)
with respect to t leads to∣∣∣∂u1

∂t
(x, t)− ∂u2

∂t
(x, t)

∣∣∣ ≤ ∣∣∣ ∂
∂t

(
A(u1 − u2)(x, t) + F (x, t)

)∣∣∣ (5.23)

with A given by (5.13) and F defined in (5.14). Again using the Lipschitz conti-
nuity of f estimating the derivative of A yields∣∣∣ ∂

∂t
A(u1 − u2)(x, t)

∣∣∣ ≤ c̃L||u1 − u2||∞ (5.24)

with some constant c̃. Similarly, for F we estimate∣∣∣ ∂
∂t
F (x, t)

∣∣∣ ≤ c||w1 − w2||∞ (5.25)

with some constant c. Finally, with the help of the estimate (5.8) we now obtain
(5.22) including the temporal derivative of the excitation function u.

5.2.2 Assimilation in finite and infinite dimensional Setup

One of the main components of kernel reconstruction is the estimation of the
state of the neural activity from given measurements. We call it either the state
estimation task or the data assimilation component of the full problem. Here, we
will focus on the three-dimensional variational approach to data assimilation (c.f.
[76], Section 5.1).

In the following paragraphs we summarize the data assimilation setup either
in the classical finite dimensional framework or in a Hilbert space environment. In
the finite-dimensional case, the state space X is given by X = Rn, n ∈ N, and the
observation space is Y = Rm, m ∈ N. In this case we study the setup where B
is an invertible matrix in Rn×n, R is an invertible matrix in Rm×m, y ∈ Y is the
observation and x ∈ X is the state.

In the case of the infinite dimensional setup we consider X and Y being the
weighted L2-type Hilbert spaces with scalar products 〈x, x̃〉 on X and 〈y, ỹ〉 on Y .
We define weighted scalar products by

〈x, x̃〉B−1 =
〈
x,B−1x̃

〉
(5.26)

:=

∫
Ω

xB−1x̃ dµ, x, x̃ ∈ X (5.27)

65

with some set Ω, a measure µ on Ω, measurable functions x, x̃ on Ω and a bounded
self-adjoint and boundedly invertible operator B : X → X and an analogous setup
on Y , i.e.

〈y, ỹ〉R−1 =
〈
y,R−1ỹ

〉
(5.28)

:=

∫
Ω̃

yR−1ỹ dσ, y, ỹ ∈ Y. (5.29)

We note that the notation (5.26) and (5.28) can be used both in the finite-
dimensional and infinite-dimensional case and we will carry out our arguments in
a uniform way for both cases.

The assimilation step based on a three-dimensional variational algorithm (3D-
VAR) can be understood as the minimization of the functional

J(x) := ||x− x(b)||2B−1 + ||y −Hx||2R−1 , (5.30)

over x ∈ X. By standard functional analytic tools, here the calculation of the
normal equations (see equation (5.2.14) of [76]), the minimizer of (5.30) is given
by

x(a) = x(b) +H∗(I +HH∗)−1(y −Hx(b)) (5.31)

= x(b) +BH ′(R +HBH−1)−1(y −Hx(b)), (5.32)

with the adjoint H ′ of H with respect to the scalar products 〈x, x̃〉 and 〈y, ỹ〉 in
X and Y , respectively, without weights.

The two equations (5.31) and (5.32) are transformed into each other based on
H∗ = BH ′R−1 (compare equation (5.2.11) of [76]). To study the dependence on
R, we employ the adjoint H ′ with respect to the scalar products 〈x, x̃〉 and 〈y, ỹ〉
(without weights B or R).

We note that from

〈y,Hx〉 = 〈H ′y, x〉
=

〈
H ′y,BB−1x

〉
=

〈
BH ′y,B−1x

〉
= 〈BH ′y, x〉B−1 (5.33)

we see that H† := BH ′ is the adjoint of the operator H with respect to the scalar
products 〈y, ỹ〉 on Y and 〈x, x̃〉B−1 on X.

66

Similarly, we obtain
H∗ = BH ′R−1 = H†R−1 (5.34)

for the adjoint between the weighted scalar products 〈x, x̃〉B−1 and 〈y, ỹ〉R−1 , com-
pare equation (5.2.11) of [76]. Using equation (5.2.12) of [76]

H∗(I +HH∗)−1 = (I +H∗H)−1H∗ (5.35)

we can also write the assimilation step as

x(a) = x(b) + (I +H∗H)−1H∗(y −Hx(b))

= x(b) + (I +H†R−1H)−1H†R−1(y −Hx(b)). (5.36)

If y = Hx(true) is a measurement of the true state x(true), we obtain

x(a) − x(true) = x(b) − x(true)

+(I +H†R−1H)−1H†R−1H(x(true) − x(b))

=
[
I − (I +H†R−1H)−1H†R−1H

]
(x(b) − x(true))

= (I +H†R−1H)−1
[
(I +H†R−1H)−H†R−1H

]
(x(b) − x(true))

= (I +H†R−1H)−1(x(b) − x(true)). (5.37)

Equation (5.37) can be used to study bounds for the analysis error. We for-
mulate this result in a particular form as a lemma.

Lemma 5.2.3. Let R := αR0 with α ∈ R+ and R0 be a self-adjoint boundedly
invertible operator on Y . Then, under the assumption of perfect observations, we
have the estimate

||x(a) − x(true)||B−1 = ||(I +H†(αR0)−1H)−1(x(b) − x(true))||B−1

≤ ||α(αI +H†R−1
0 H)−1(x(b) − x(true))||B−1 (5.38)

and the pointwise convergence

||α(αI +H†R−1
0 H)−1x)||B−1 → 0, α→ 0 (5.39)

for each fixed x ∈ X.

We note that in the above lemma the choice of y = Hx(true) corresponds to
convergence in the case where y has no measurement error. The assumption is
needed to obtain a convergence to a true solution when measurement error tends
to zero or is zero.

67

Proof. The inequality (5.38) is an immediate consequence of (5.37) and the choice
R = αR0. We first note that H†R−1

0 H is self-adjoint with respect to the scalar
product 〈x, x̃〉B−1 , since we have〈

x,H†R−1
0 Hx̃

〉
B−1 =

〈
Hx,R−1

0 Hx̃
〉

=
〈
R−1

0 Hx,Hx̃
〉

=
〈
H†R−1

0 Hx, x̃
〉
B−1 . (5.40)

This means there is an orthonormal system {ϕn, n ∈ N} in (X, 〈, 〉B−1) and
a sequence {λn, n ∈ N} of real positive eigenvalues ordered according to its size
λ1 ≥ λ2 ≥ ... ≥ 0, such that

H†R−1
0 Hx =

∞∑
n=1

λn 〈ϕn, x〉ϕn, (5.41)

where the sum is finite in the finite-dimensional case. Thus, the operator α(α +
H†R−1

0 H)−1 has the spectral representation

α(αI +H†R−1
0 H)−1x =

∞∑
n=1

α

α + λn
〈ϕn, x〉B−1 ϕn. (5.42)

Now, for x ∈ X fixed given ε > 0 we can first choose N such that

∞∑
n=N+1

| 〈ϕn, x〉B−1 |2 ≤
ε

2
. (5.43)

Then, since α/(α + λN) → 0 for α → 0 we can choose α > 0 small enough such
that

(
α

α + λN
)2

N∑
n=1

| 〈ϕn, x〉B−1 |2 ≤
ε

2
. (5.44)

This yields

∞∑
n=1

(α

α + λn

)2

| 〈ϕn, x〉B−1 |2 ≤
(α

α + λN

)2
N∑
n=1

| 〈ϕn, x〉B−1 |2

+
∞∑

n=N+1

| 〈ϕn, x〉B−1 |2

≤ ε

2
+
ε

2
= ε. (5.45)

This shows the pointwise convergence (5.39), and the proof is complete.

68

The convergence of Lemma 5.2.3 is carried out with respect to the norm ||·||B−1

on X. We note that since B and B−1 are bounded linear operators on X, we have
for x ∈ X the estimate

||x||2B−1 =
〈
x,B−1x

〉
≤ ||x|| · ||B−1x|| ≤ C||x||2 (5.46)

with the constant C := ||B−1||, leading to

||x||B−1 ≤
√
||B−1|| · ||x||. (5.47)

We also note that we have

||x||2 = 〈x, x〉 =
〈
x,BB−1x

〉
=
〈
Bx,B−1x

〉
= 〈Bx, x〉B−1 ≤ ||Bx||B−1 · ||x||B−1 (5.48)

and
||Bx||2B−1 = 〈Bx,Bx〉B−1 = 〈Bx, x〉 ≤ ||B|| · ||x||2, (5.49)

such that

||Bx||B−1 ≤
√
||B|| · ||x|| (5.50)

and from (5.48)

||x||2 ≤
√
||B|| · ||x|| · ||x||B−1 (5.51)

which dividing by ||x|| finally yields

||x|| ≤
√
||B|| · ||x||B−1 . (5.52)

Corollary 5.2.4. Under the assumptions of Lemma 5.2.3 the pointwise conver-
gence (5.39) also holds in || · || of X, i.e. we have

||α(αI +H†R−1
0 H)−1x)|| → 0, α→ 0 (5.53)

for each fixed x ∈ X.

For later use, we finally need to discuss the estimation of the derivative ∂x(a)

∂t

of the estimated activity function u = x(a) and its dependence on the first guess.
Clearly, the temporal change ∂u

∂t
of the activity u = x(a) depends on the temporal

change of the true data y(true)(t) = H(x(true)(t)), t ∈ [0, T], and the temporal
structure of the measurement noise. The true excitation is BC1([0, T]) since it

69

obeys the Amari equation. If H depends on space only, then the true data y(true)

is also an element of BC1([0, T]). We note that we can differentiate the term

z := α(αI +H†R−1
0 H)−1x (5.54)

in (5.53) with respect to time, to obtain

∂z

∂t
:= α(αI +H†R−1

0 H)−1∂x

∂t
. (5.55)

This means that the temporal derivative ∂u
∂t

of the reconstructed u shows the
same convergence behaviour (5.53) as the function u itself.

5.2.3 Kernel Reconstruction: Dependence on the Analysis

For the final step we analyse the full-field kernel reconstruction method. We
have introduced the problem in Definition 3.3.2 and discussed thoroughly in Sec-
tion 3. In this section we consider infinite speed v =∞ as it has been introduced
and discussed in a series of papers [85, 12, 84, 87]. In this section we develop norm
estimates for the dependence of the kernel w on the field u. These could be de-
rived as a consequence of the sensitivity analysis of Chapter 3.5 or by elementary
norm estimates. Here, we choose the elementary approach, which will also provide
detailed insight into the evolution of the constants.

Here, we follow Equations 3.27 and 3.26, which is based on the functions

ψ(r, t) := τ
∂u(r, t)

∂t
+ u(r, t), r ∈ Ω, t ∈ [0, T] (5.56)

and
ϕ(r, t) := f(u(r, t)), r ∈ Ω, t ∈ [0, T]. (5.57)

The inverse problem is then given by the family of integral equations

ψ(r, t) =

∫
Ω

ϕ(r′, t)w(r, r′) dr′, t ∈ [0, T] (5.58)

which, since the function ϕ(r′, t) is continuous in r′ ∈ Ω and t ∈ [0, T], for each
point r ∈ Ω is an integral equation of the first kind.

It is well known (e.g. [76], Chapter 3) that the inversion of an integral equation
of the first kind is ill-posed, i.e. the inverse operator is not bounded. However,
using regularization techniques it is possible to approximate the unbounded inverse

70

by a bounded inverse. Here, we employ classical Tikhonov regularization for the
inversion of (5.58). We define the integral operator

(V η)(t) :=

∫
Ω

ϕ(r′, t)η(r′) dr′, t ∈ [0, T] (5.59)

as an operator from L2(Ω) into L2([0, T]). Then, its adjoint V ∗ : L2([0, T]) →
L2(Ω) is given by

〈V η, σ〉 =

∫ T

0

∫
Ω

ϕ(r′, s)η(r′) σ(s) dr′ ds

=

∫
Ω

η(r)

∫ T

0

ϕ(r, s)σ(s) ds dr

= 〈η, V ∗σ〉 , (5.60)

such that

(V ∗σ)(r) =

∫ T

0

ϕ(r, s)σ(s) ds, r ∈ Ω. (5.61)

The family (5.58) of integral equations can be written in the form

V w(r, ·) = ψ(r, ·), r ∈ Ω. (5.62)

The regularized solution of (5.58) is given by

wα(r, t) :=
(

(αI + V ∗V)−1V ∗ψ(r, ·)
)

(t)

=
(
V ∗(αI + V V ∗)−1ψ(r, ·)

)
(t), r ∈ Ω, t ∈ [0, T], (5.63)

where we used Equation 3.45.

We note some useful properties of this regularized inverse.

Lemma 5.2.5. For each fixed α > 0 the operator (αI + V V ∗)−1 maps L2([0, T])
boundedly into itself. Further, the operator V ∗ maps L2([0, T]) boundedly into
BC(Ω), and thus the same is true for V ∗(αI + V V ∗)−1.

Proof. The kernel ϕ(r′, s) is continuous for r′ ∈ Ω and s ∈ [0, T], where Ω is a
bounded set. Thus, the operators V and V ∗ define compact bounded linear op-
erators V : L2(Ω) → L2([0, T]) and V ∗ : L2([0, T]) → L2(Ω). The boundedness
of the inverse of αI + V V ∗ on L2([0, T]) as well as the boundedness of the in-
verse of αI + V ∗V on L2(Ω) is a consequence of the structure of the self-adjoint

71

operators and the compactness of V and V ∗. As a final step, consider V ∗σ with
σ ∈ L2([0, T]). The function is bounded on Ω by use of the Cauchy-Schwartz
inequality

∣∣∣∣∣∣(V ∗σ)(r)
∣∣∣∣∣∣
∞

= sup
r∈Ω

∣∣∣ ∫ T

0

ϕ(r, s)σ(s) ds
∣∣∣
∞

≤
(∫ T

0

|ϕ(r, s)|2 ds
) 1

2
(∫ T

0

|σ(s)|2 ds
) 1

2

≤ T
1
2 ||ϕ||∞||σ||L2([0,T]). (5.64)

We also note that, similarly, (V ∗σ)(r) depends continuously on r ∈ Ω, such
that the second statement of the lemma is obtained and the proof is complete.

We can now summarize the boundedness and convergence for the regularized
solution of the family (5.58) of integral equations in the following theorem. Since
ψ is the sum of the derivative of u with respect to time t (times a constant)
and u itself, we need u to be in H1([0, T]), the closure of the space of functions
u ∈ C1([0, T]) whose temporal derivatives are in L2([0, T]). Clearly, the mapping
u 7→ ψ = τ ∂u

∂t
+ u is bounded from H1([0, T])→ L2([0, T]).

Theorem 5.2.6. For each fixed α > 0 the regularized reconstruction of w from u
by (5.63) is a bounded mapping from BC(Ω)×H1([0, T]) into BC(Ω)×L2([0, T])
and BC(Ω × [0, T]) into BC(Ω × [0, T]). If u is a true solution of some Amari
type equation (1.4) with kernel w(true), then for α→ 0 we have convergence

V ∗(αI + V V ∗)−1ψ(r, ·)→ w∗(r, ·) (5.65)

in L2(Ω), where w∗ is the projection of w(true) onto N(V)⊥.

Proof. We note that by continuity of the kernel V is a compact linear operator
L2(Ω) → L2([0, T]). It is injective on N(V)⊥ since for σ ∈ N(V)⊥ from V σ = 0
we conclude σ ∈ N(V) ∩N(V)⊥ = {0}, thus σ = 0. Clearly, we have V w = V w∗

since w−w∗ ∈ N(V) by definition. Now, we apply classical convergence theory for
Tikhonov regularization in Hilbert spaces, as stated in Theorem 2.3.4 , to conclude
the convergence (5.65).

72

As a second step of our analysis we need to investigate the dependence of the
operator V on the activity function u. We note that the kernel ϕ = f(u) is a
non-linear function of the activity u. In the case where f is Lipschitz continuous,
we obtain the following result.

Theorem 5.2.7. The operator V defined by (5.59) depends continuously on u ∈
BC(Ω× [0, T]) and it is bounded in the sense that the mapping

V : BC(Ω× [0, T])→ BL
(
BC(Ω), BC([0, T])

)
, u 7→ V [u] (5.66)

satisfies
||V [u]− V [ũ]||∞ ≤ C||u− ũ||∞ (5.67)

with some constant C, where the norm of V [u] is the operator norm in the spaces
of bounded continuous functions. An analogous estimate is true for V ∗ defined in
(5.61).

Proof. We employ the Lipschitz continuity of the kernel to estimate

||V [u]η − V [ũ]η||∞ =
∣∣∣ ∫

Ω

(
f(u(r′, t))− f(ũ(r′, t))

)
η(r′) dr′

∣∣∣
≤

∫
Ω

|f(u(r′, t))− f(ũ(r′, t))||ηr′| dr′

≤ L

∫
Ω

|u(r′, t)− ũ(r′, t)| dr′ · ||η||∞

≤ L|Ω| · ||u− ũ||∞ · ||η||∞, (5.68)

where L is a Lipschitz constant. With the operator norm ||V [u]|| defined as

||V [u]||∞ := sup
||η||∞>0

||V [u]η||∞
||η||∞

, (5.69)

this implies (5.67). The derivation for V ∗ works the same way.

The dependence of (αI + V ∗V)−1V ∗ on u is now estimated in a canonical way,
based on general estimates for operators A, Ã and B, B̃

||BA− B̃Ã|| ≤ ||B − B̃|| · ||A||+ ||B̃|| · ||A− Ã||. (5.70)

and

||A−1 − Ã−1|| ≤ ||A−1A(A−1 − Ã−1)ÃÃ−1||
≤ ||A−1|| · ||Ã− A|| · ||Ã−1||, (5.71)

73

where we first apply (5.70) to A = V [u], B = V ∗[u], Ã = V [ũ] and B̃ = V ∗[ũ],
then the estimate (5.71) to A = α+ V ∗[u]V [u] and Ã = α+ V ∗[ũ]V [ũ] and finally
the estimate (5.70) to A = (α + V ∗[u]V [u])−1, B = V ∗[u], Ã = (α + V ∗[ũ]V [ũ])−1

and B̃ = V ∗[ũ].

We abbreviate

Wα[u]η := (αI + V ∗[u]V [u])−1V ∗[u]η. (5.72)

From the arguments above we obtain

||Wα[u]η −Wα[ũ]η|| ≤ cα||u− ũ||BC(Ω×[0,T])||η|| (5.73)

with some constant cα depending on α > 0.

We now finally estimate the total dependence of the regularized solution (5.63)
of (5.58) on u and formulate the result as a theorem.

Theorem 5.2.8. For each α > 0, the mapping u 7→ wα = Wα[u]ψ[u] defined by
(5.72), (5.63), (5.57) and (5.56) satisfies the estimate

||Wα[u]ψ[u]−Wα[ũ]ψ[ũ]|| ≤ Cα||u− ũ||, ũ ∈ BC(Ω)×BC1([0, T]) (5.74)

with some constant Cα depending on α and u.

Proof. Based on the estimates (5.70) and (5.71) applied to the components of
Wα[u] and Wα[ũ] defined in (5.72) we only need to carry out the final step to
estimate ||Wα[u]ψ[u]−Wα[ũ]ψ[ũ]|| based on the estimates for Wα[u] and Wα[ũ].

As stated in Theorem 5.66 for ψ defined by (5.56) we have

||ψ[u]− ψ[ũ]||L2(Ω)×L2([0,T]) ≤ (1 + τ)||u− ũ||L2(Ω)×H1([0,T]), (5.75)

where the space H1([0, T]) is needed since ψ involves the temporal derivative of
the excitation function u. We now employ the standard decomposition

||Wα[u]ψ[u]−Wα[ũ]ψ[ũ]|| ≤ ||Wα[u]ψ[u]−Wα[ũ]ψ[u]||
+||Wα[ũ](ψ[u]− ψ[ũ])||

≤ Cα||u− ũ||L2(Ω)×H1([0,T]), (5.76)

with some constant Cα dependent on α based on (5.73) for the first term and
(5.75) for the second. This completes the proof.

74

5.3 The iterative kernel and state reconstruction

approach

We here use the notation x for the state to introduce the data assimilation
discussion. Let Z denote the space of kernels w under consideration. The ex-
citation functions u live on Ω for all times t ∈ [0, T]. We assume that we have

measurements at times tk for k = 1, ..., nk. Then, we use the letter x
(b)
k to denote

the excitation state at time tk and

x(b) =
{
x

(b)
k , k = 1, ..., nk

}
. (5.77)

We denote this state space by X = X × · · · × X, where X is the state space
of excitations for one given point in time. We can work with X = L2(Ω) or
X = C(Ω).

As introduced in (5.1), we write the simulation of the neural excitation as a
mapping of the kernel w onto the background state x(b), i.e.

x(b) = T (w), w ∈ Z. (5.78)

The letter T is chosen due to the transport activity of this operator, which trans-
ports the initial state through time based on the kernel w.

As introduced in (5.2), the estimation of the neural states from measured data
y is written in the form

x(a) = E(x(b)), (5.79)

with the estimation operator E, where E depends on the data

y = {yk, k = 1, ..., nk}, (5.80)

with yk ∈ Y being the measurements at time tk, living in the observation space Y .
Since for the iteration process, which we are studying, this data y is constant, we
will not explicitly include it into our notation.

As introduced in (5.3), the regularized solution of the inverse kernel problem
is denoted by Kα, i.e.

w(a) = K(x(a)). (5.81)

The letter K is chosen since this is the kernel estimation step. The operator K is
a nonlinear operator in the excitation states u = xa defined in (5.77), defined by

ψ(r, t) = τ
∂u

∂t
(r, t) + u(r, t), r ∈ Ω, t ∈ [0, T], (5.82)

75

ϕ(r, t) := f(u(r, t)), r ∈ Ω, t ∈ [0, T] (5.83)

and

ψ(r, t) =

∫
Ω

ϕ(r′, t)w(r, r′) dr′, r ∈ Ω, t ∈ [0, T], (5.84)

where we note that u is another notation for the state vector xa in the neural field
framework, xa is the standard data assimilation notation for the result of the state
estimation problem.

As introduced in (5.4), we summarize the three steps into the notation

S = K(E(T (·))), (5.85)

where S is a non-linear operator on the kernel space Z and the letter S is chosen
since this is one iteration or estimation step of the iterative data assimilation kernel
estimation approach.

5.4 Convergence Proof

In this section, we provide a proof of the convergence of the iteration method
we have introduced in this chapter. The proof is achieved under assumption that
the observation operator is invertible and in the case where perfect observations
are given.

In the case where you have imperfect observations, clearly convergence cannot
be expected. Depending on the size of the observation error, you need a stopping
rule to stop the iterations. Here we will focus on showing the potential of the
method to provide a full kernel reconstruction when observations have no error.

We first formulate three lemmas on which our convergence analysis is based.

Lemma 5.4.1. For the non-linear operator T we have

||T (w)− T (w̃)||BC(Ω)×BC1([0,T]) ≤ c||w − w̃||∞ (5.86)

with some constant c and with the infinity norm ||w||∞ = ||w||BC(Ω×Ω).

Proof. The result is a consequence of the continuous dependence of the neural field
equation on the kernel with respect to the norm L2(Ω×Ω) or C(Ω×Ω) shown in
Theorem 5.2.2.

Here, Tk : w 7→ u
(b)
k is considered as a mapping from BC(Ω × Ω) into BC(Ω)

We also note that
||u(b)||L2(Ω) ≤ C||u(b)||BC(Ω) (5.87)

76

with the constant C = |Ω| 12 . We will consider our estimation step in the spaces of
square-integrable functions L2(Ω) or L2

B−1(Ω). We note that since the estimation
takes place with respect to the spatial variables only, estimates for the temporal
derivatives of the functions are obtained by simple differentiation, which can be
pulled through the operator mapping of the estimation step. Numerically we apply
a finite difference approximation, which is a convergent regularization scheme for
calculating the derivative of u with respect to time.

Lemma 5.4.2. For the operator E between the spaces L2(Ω) and L2
B−1(Ω) we have

||E(x)− E(x̃)|| ≤ ρ||x− x̃|| (5.88)

on the state space X, where the constant ρ depends on the covariance operator R.
For a covariance matrix R = αR0 in the case where H is invertible, ||B−1|| ≤ c
and ||H−1|| ≤ C with constants c, C > 0 we obtain the asymptotics

ρ→ 0 for α→ 0, (5.89)

i.e. for α sufficiently small E is a contraction and the contraction constant ρ tends
to zero when the observation error R = αR0 tends to zero.

Proof. The operator E is given by nk equations

x
(a)
k = x

(b)
k +BHT (R +HBHT)−1(yk −Hx(b)

k), k = 1, ..., nk. (5.90)

For k = 1, ..., nk, we calculate

x
(a)
k =

(
I −BHT (R +HBHT)−1H

)
x

(b)
k +BHT (R +HBHT)−1yk (5.91)

Thus, we obtain

Ek(x)− Ek(x̃) = (I −BHT (R +HBHT)−1H)(xk − x̃k) (5.92)

We note that using equation (5.34) ,we have

BHT (αR0 +HBHT)−1 = BHTR−1
0 (αI +HBHTR−1

0)−1

= H∗(αI +HH∗)−1,

= (αI +H∗H)−1H∗ (5.93)

by using equation (5.35) such that we can write (5.92) in the form

Ek(x)− Ek(x̃) =
(
I − (αI +H∗H)−1H∗H

)
(xk − x̃k)

=
(

(αI +H∗H)−1(αI +H∗H)−H∗H)
)

(xk − x̃k)

= α(αI +H∗H)−1(xk − x̃k) (5.94)

77

for k = 1, ..., nk. The singular value representation of (5.94) following (3.38) where
µn are the singular values of the operator H is given by

Ek(x)− Ek(x̃) =
∞∑
n=1

α

α + µ2
n

〈gn, xk − x̃k〉 gn. (5.95)

This proves (5.88) with ρ = 1 in L2
B−1(Ω) with weighted norm (5.26), which by

(5.52) is carried over to L2(Ω) with some different constant ρ. In the case where H
is invertible with a bound on the inverse, we have µn ≥ c > 0 with some constant
c. This proves the second statement (5.89).

Further, differentiating both sides of (5.94) with respect to t yields the esti-
mate in the space L2(Ω) × BC1([0, T]). At this point, we need to point out an
important ingredient needed for convergence. The kernel reconstruction relies on
the knowledge of the field u and its temporal derivative ∂u

∂t
. The derivative can be

reconstructed

• either by measuring the temporal derivative of the data yk and then using
the estimation as above to reconstruct the temporal derivative of the field u,

• or by measuring yk as above and after reconstruction of uk using a method
like finite differences to estimate ∂uk

∂t
at tk.

Clearly, the reconstruction of the derivative from function values is ill-posed it-
self. Convergence relies on the convergence of the measured data yk to the true
measurements in combination with an appropriate regularization scheme. Finite
differences with a temporal grid ht which is chosen to tend to zero carefully when
the error in yk tends to zero can achieve this. Classical regularization theory
applies, for further discussion about regularization we refer to [37, 76].

We note the boundedness of the kernel reconstruction operator K : u(a) 7→ w
defined in (5.3) and (5.63) in the following lemma.

Lemma 5.4.3. For each fixed α > 0 there is a constant Cα such that

||Kα(u(a))−Kα(ũ(a))||BC(Ω×Ω) ≤ Cα||u(a) − ũ(a)||L2(Ω)×H1([0,T]) (5.96)

for all u(a), ũ(a) ∈ X .

Proof. The theorem is just a reformulation of Theorem 5.2.8, where K defined in
(5.3) can be seen to be identical to K(u) = Wαψ[u] with Wα given by (5.72) and
ψ given in (5.56).

78

We are now prepared to formulate our main result on the operator S defined
in (5.85). For the following Lemma we employ the notation Eρ to refer to the
relationship between the estimation operator E and the parameter ρ defined in
Lemma 5.4.2.

Theorem 5.4.4. For ρ sufficiently small, the operator Sρ = KEρT given in (5.85)
is a contraction on the space Z of kernels equipped with the norm L2(Ω × Ω) or
C(Ω× Ω).

Proof. From Lemma 5.4.1, 5.4.2 and 5.4.3 we obtain

||Sρ(w)− Sρ(w̃)|| ≤ ||K(Eρ(T (w)))−K(Eρ(T (w̃)))||
≤ Cαρc||w − w̃||, (5.97)

where Cα and c are given constants and under particular conditions ρ can be made
arbitrarily small. We can achieve

τ := Cα · ρ · c (5.98)

to be smaller than 1, such that Sρ is a contraction. This completes the proof.

As a consequence of the above lemma, we know that in the case where we have
sufficient observations (in the sense that the observation operator H is injective)
and the observation error R is sufficiently small, the iteration process is a contrac-
tion. Thus, by the Banach fixed point theorem, the iteration will converge to a
unique fixed point. In the case of true observations and when the temporal grid
spacing is tending to zero, this limit of the sequence of fixed points will be the
projection of the true kernel onto the space N(V)⊥.

5.5 Summary

In this chapter we have developed and analysed an iterative method based
on kernel reconstruction by inversion and data assimilation for the neural field
equation. We started by introducing the idea of iterating the two processes of
kernel reconstruction and state estimation for neural field equation as a combined
method. Then we have analysed the algorithmic components using three different
mappings:

• the transport map,

• the estimation operator,

79

• the kernel reconstruction operator.

We have studied the boundedness of the transport map and the boundedness
and convergence of both the state estimation and kernel reconstruction. Then, we
have analysed the complete process of iteration formulating a proof of convergence.
A numerical example of these results will be shown in Section 6.4.

80

Chapter 6

Numerical Examples

The goal of this chapter is to demonstrate the arguments of this work in a visual
way. We provide numerical examples to show the feasibility and effectiveness of
our methods in each of their different components. The chapter is divided into
four main sections. Each section is related to one part of our previous discussions.
In first two Sections 6.1 and 6.2 we show the feasibility of inversion (solving the
kernel reconstruction problem) and its sensitive analysis. The numerical examples
are related to Chapter 3. Then, in Section 6.3 we present a feasibility study of
3D-VAR described in Chapter 4. Finally, in Section 6.4, we show examples for the
iterative method and its convergence from the discussion of Chapter 5.

6.1 Feasibility of Kernel Reconstructions

Here we demonstrate the feasibility of the inverse method for the reconstruc-
tion of spatial kernels which model excitations of the spatio-temporal neural field
activity. We study a) feasibility of the reconstruction in Section 6.1 and b) sensi-
tivity with respect to variations in the input function u in Section 6.2. First, we
consider a one-dimensional manifold embedded in a two-dimensional space, illus-
trating the method for a case with 10,000 degrees of freedom. Then, an example
involving a two-dimensional spatial domain evaluates the method for an inverse
problem with more than 200,000 degrees of freedom for the kernel estimation.

We first need to consider the role of boundaries in the neural field model equa-
tion (1.6) and its examples. For any distribution of neurons in space, some activity
u(r, t) depending on time t can be defined. Mutual influence in space is given by
the integral in equation (1.4). In contrast to models based on partial differential
equations, there is no direct boundary effect in these equations. However,

• if one uses a local kernel w(r, r′) with strong connectivity only in a neighbor-

81

hood of r, boundary effects for neurons close to the boundary of the domain
will appear, since less neurons are included in a neighborhood there; whereas

• if the activity of neurons close to the boundary is close to zero, usually such
boundary effects remain negligible.

We will study a setup which avoids boundary effects by the choice of an embedding
of a one-dimensional manifold into two-dimensional space in our first example,
where there are always the same number of neurons in a neighborhood of any
neuron on the whole manifold. The second example instead limits boundary effects
by using only small excitations close to the boundary in a two-dimensional neural
patch.

Example 1. We start with a simple one-dimensional closed curve or manifold,
respectively, embedded in a two-dimensional space. In particular, we study the
dynamics of the activity field u(r, t) on the boundary ∂BR ⊂ R2 of a disk with
radius R, as displayed in Figure 6.1. Here we consider that v = 1, and use a simple
and smooth delay function for r = (x, y) and r′ = (x′, y′) with r, r′ ∈ ∂BR based
on the embedding into R2 which defined by

D(r, r′) := D̃(r, r′) = |r − r′| =
√

(x− x′)2 + (y − y′)2, r, r′ ∈ ∂BR. (6.1)

This simple sandbox for testing our method hence can be considered as neurons
growing on the boundary of a disk, but connecting directly through its interior.
This is reminiscent of the thin exterior layer of gray matter containing neurons
connecting through an interior bulk of white matter containing axons in the brain.
However, we point out that this is a different setup from previous studies that su-
perficially appear similar, where the spatial domain instead is a ring with periodic
boundary conditions [51, 101].

We implemented the delay neural field equation in MATLABr based on an
Euler method for the time-evolution of the system with zero-order or first-order
quadrature (rectangular rule or trapezoidal rule) for the integral parts of the
integro-differential equation. For the purposes of studying the kernel reconstruc-
tion on a rather short temporal window this simple approach is completely suf-
ficient and does not show any deficiencies compared to higher-order methods for
the forward problem, as employed for example in [87, 25, 76].

We first solve the direct problem, i.e., calculate the time-evolution of the exci-
tation field u(r, t). As initial condition, we choose an exponential function

u(r, 0) = e−σ|r−r0|
2

, r ∈ ∂BR. (6.2)

82

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 6.1: Time sequence of excitation of the one-dimensional delay neural
field. The original field is shown in black, in red the dynamics based on the
delay kernel reconstruction. One cycle of the oscillation is shown at time steps
1, 3, 6, 10, 13, 16, 19, 22, 25, with a step size of ∆t = 0.2, in panels (a) to (i).

83

(a) (b)

Figure 6.2: For the one-dimensional example the kernel can be visualized as a
two-dimensional scalar function w(r, r′). We display (a) the original and (b) the
reconstructed kernel of the one-dimensional delay dynamics shown in Figure 6.1.

We prescribe a neural kernel of the form

w(r, r′) = c
(
e−τ |r−r1|

2

e−τ |r
′−r0|2 + e−τ |r−r2|

2

e−τ |r
′−r1|2 + e−τ |r−r0|

2

e−τ |r
′−r2|2

)
(6.3)

for r, r′ ∈ ∂BR ⊂ R2 with constants c > 0 and τ > 0.

The full set of values used for our simulations are given in Table 6.1. This leads
to delayed excitation of areas around three points r0, r1 and r2 equally distributed
on a circle, where, with some delay, the excitation field around r0 will excite the
field around r1, the field around r1 will excite the field around r2 and the field
around r2 will excite the field around r0 again. The function f is chosen to be
sigmoidal as in Equation (1.3). We have generated a classical oscillator, as can
be seen in the snapshots in Figure 6.1 (black curves). Its kernel is visualized in
Figure 6.2(a).

r0 (cos(π), sin(π))
r1 (cos(π/3), sin(π/3))
r2 (cos(−π/3), sin(−π/3))

σ 1.0
τ 1.0
c 3.0

Table 6.1: Parameter values for example 1. Simulations have been carried out
with N = 101 equally distributed nodes on the circle, Nt = 50 time steps, and a
time step size ∆t = 0.2 for the inverse problem.

Next we reconstruct the kernel by the inverse problem technique from the so
obtained temporal evolution of the excitation field u(r, t) for some time window
t ∈ [0, T] according to equations (3.31) and (3.40). Given a discretized version of

84

u(r, t) on nodes

r` :=

(
cos

(
2π · `
N

)
, sin

(
2π · `
N

))
, tk = k ·∆t, (6.4)

for ` = 0, ..., N and k = 0, ..., Nt − 1, we calculate φ and ψ according to equa-
tions (3.26) and (3.27) and then employ the regularization (3.40) via equation (3.43)
to solve equation (3.36) for r ∈ ∂BR. In Figure 6.2, we compare the original with
the reconstructed kernel in the case where no additional noise is added, carried
out with α = 0.01 and find a very good agreement between both.

As a test, we employ the reconstructed kernel with the same initial condition
to calculate a reconstructed neural field urec(r, t) on (r, t) ∈ ∂BR × [0, T]. The
original dynamics is shown in black in Figure 6.1, based on the kernel Eq. (6.3)
visualized in Figure 6.2(a).

The reconstructed dynamics is shown in red in Figure 6.1, based on the re-
constructed kernel visualized in Figure 6.2(b). A very good agreement between
original and reconstructed solution is observed.

Example 2. As a second example, we study oscillating two-dimensional neural
field activity. Here, the dimension of the state space is higher with N = 21× 22 =
462 spatial elements as shown in Figures. 6.3 and 6.4. Our approach is analogous
to the one-dimensional example, but now with 213,444 degrees of freedom for the
possible connectivity values. We first simulate the neural field dynamics based on
equation (1.6) on a neural patch described by Ω := [a1, b1]× [a2, b2] = [0, 6]× [0, 6].
Time slices of this dynamical evolution are displayed in Figure 6.3. The kernel has
been chosen to be of a form similar to equation (6.3), but now with points r0, r1

and r2 in the two-dimensional neural patch. This leads to an oscillating field in an
area around these points rj with j = 0, 1, 2. The activation function f is chosen
to be sigmoidal again. The initial condition is a Gaussian excitation around the
point r0. For our simple tests, we again employ zero or first order quadrature and
Euler’s method to carry out the simulation.

The kernel w(r, r′) with r, r′ ∈ Ω now lives on a subset U := Ω × Ω of a four-
dimensional space, since Ω is a subset of a two-dimensional patch. Visualization of
w(r, r′) can be carried out by either fixing r′ and showing a two-dimensional surface
plot, or by re-ordering r and r′ into one-dimensional vectors, so that w(r, r′) can
be displayed in full as a two-dimensional surface. The first approach is chosen in
Figure 6.4(c), where the white star indicates r′. The second approach is shown
in Figure 6.4(a). Next, we solve the inverse delay neural problem and reconstruct
the kernel based on Equation (3.31) regularized as indicated by Equations. (3.40)

85

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 6.3: Selection of time slices for the two-dimensional delay neural field. We
display time steps 3, 6, 9, 12, 15, 18, 21, 24, 27 with ∆t = 0.2 to show one and a half
cycles of the oscillation in panels (a) to (i). Each panel shows the original on the
left and simulation with the reconstructed kernel on the right.

86

r0 (1.5, 3.0)
r1 (4.5, 4.5)
r2 (4.5, 1.5)

σ 2.0
τ 1.0
c 2.1

Table 6.2: Parameter values for Example 2. Simulations have been carried out
with N = 21 × 22 = 462 nodes, Nt = 30 time steps with time step size ∆t = 0.2
for the inverse problem. The kernel estimation problem has 213,444 degrees of
freedom.

and (3.43). Again, this is carried out by calculation of φ and ψ first according
to Equations (3.26) and (3.27), then solving Equation (3.36) by regularization
via Equation (3.40) with the regularization parameter chosen as α = 0.1. This
choice leads to a reasonable stability of the reconstructions combined with high
reconstruction quality, and has been chosen by trial and error. That choice is made
to reach a sufficient results. There are different well-known methods to choose the
regularization parameter, such as Morozov’s discrepancy or the L-curve approach,
see e.g. section 3.1.6 of [76]. Since this is not the focus of this work, we have
decided to stay with a simple approach.

Figure 6.4(c) and (d) displays the original and the reconstructed kernel col-
umn, which represents the impact of the location at the black star to all other
spatial locations of the neural patch. The result as displayed in (b) shows that
the regularized reconstruction of the delay neural kernel is not perfect. However,
it is working well if the field activity reaches specific parts of the neural envi-
ronment. Otherwise the reconstruction is just zero due to missing input for the
reconstruction equations and the regularization chosen here. The regularization
penalizes the distance to the zero kernel function. Therefore, the results clearly
demonstrate the feasibility of the method. To summarize our results, we see that
those examples provide a great evidence of the effectiveness and applicability of
the kernel reconstruction method.

6.2 Sensitivity with Respect to Functional Input

In this section we will carry out a numerical sensitivity study of our first exam-
ple to explore the dependence of the kernel reconstructions on the input function
u. It complements our sensitivity analysis of Section 3.5.

We study the stability of the reconstruction when we add some random error
to the measured signal u(r, t) displayed in Figure 6.1. We remark that we need
measurements of our signal which are differentiable with respect to time, since

87

(a) (b)

(c) (d)

Figure 6.4: We display (a) the original and (b) the reconstructed kernel of the two-
dimensional neural delay dynamics shown in Figure 6.3. The images (c) and (d)
show a column of the original and reconstructed kernel, visualizing the connection
from the point indicated by the black star to the rest of the neural patch.

88

Figure 6.5: In the upper image we display the input signal u(r, t) independence
of the point index of the discretized vector r and the temporal evolution t ∈ [0, T].
The lower image shows the measurement error which has been added to the signal
before a reconstruction has been carried out.

the calculation of ψ in Equation (3.27) includes the temporal derivative of the
signal. In practical situations, this would be achieved by a temporal smoothing
of the signal. Here, for testing the sensitivity we have added a random shift of
a temporally smooth signal in each of the analysis points. The amplitude of the
signal is given by ε = 0.01, which corresponds to noise of 1% added to the measured
temporal signal, compare Figure 6.5.

Now, we study reconstructions with different regularization parameters α,
where larger α means we regularize in a stronger way, damping the error which
comes from the measurement error. Figure 6.6 displays three different choices of
α, where α = 1 leads to reasonable reconstructions, α = 0.1 shows kernel re-
construction still disturbed by noise, and α = 0.01 does not lead to satisfactory
reconstructions at all.

According to Theorem 3.5.1 we have continuity of u 7→ w, such that if we lower
the error ε for fixed α, we need to have convergence to the reconstructed kernel in
the case of no data error. Indeed, we obtain a figure similar to Figure 6.6 when
we lower the error parameter ε from ε = 0.01 to ε = 0.005 and ε = 0.001, leading
to the reconstruction displayed in Figure 6.2(b) for ε = 0.

89

(a)

(b)

(c)

Figure 6.6: We show reconstruction kernels and the reconstruction error for 1%
noise shown in Figure 6.5 with regularization parameters α = 0.01 in (a), α = 0.1
in (b) and α = 1 in (c). A sufficient reconstruction quality is achieved with α = 1.

90

Figure 6.7: A visualisation of the background error covariance matrix

6.3 3D-Var for Neural Field Equations

We now come to our second task, i.e. to apply data assimilation. In this section,
we provide a numerical example for the state estimation of a neural field following
our theory of Section 4.2.

We first start with introducing the background error covariance matrix in Figure
6.7. Here, we have chosen it to be a Gaussian distribution in space in the sense
that each fields at a point r has a covariance with respect to the field at a point
r′ defined by

B(r, r′) := ce−
1
2
|r−r′|2

σ2 , r, r′ ∈ R2. (6.5)

In the two-dimensional case, when we employ a regular grid with a total of n points
over some area [a1, b1]× [a2, b2] and sort the points line by line into an array, the
visual display of the corresponding correlation matrix B ∈ Rn×n is shown in Figure
6.7.

Then, we provide a visualization of the state estimation processes. We sim-
ulate data based on some traveling pulse. The figure shows in four images the
components of data assimilation in Figure 6.8.

6.4 Iteration with convergence Examples

The goal of this section is visualizing the results of our iterative method. We
provide the numerical example to demonstrate the iterative method of inversion

91

(a) (b) (c)

(d) (e)

Figure 6.8: An illustration of the components of data assimilation of neural field
at five different time steps. The figure consists of 4 images. They are from top to
bottom the background u(b), the observations y, the 3D-VAR estimation u(a) and
an estimate without background.

92

and data assimilation for neural field equation and its convergence.
In Chapter 5 we have shown that under suitable conditions the transport map

is bounded, the estimator is convergent and the reconstruction is convergent and
bounded. As a consequence, the numerical examples for the iteration should show
a convergent behavior in the sense that

• the distance between the true kernel and true excitation and the iterates for
each of these should become smaller during an initial set of iterations.

• When using noisy data, we expect the error to start to be dominant after a
set of initial iterations, such that

• in the case of noisy data we should stop iterating when the error starts to
dominate.

First we consider a one-dimensional case, embedded in a two-dimensional space.
We apply the iterative method carrying out five iterations and visualize the results
of third iteration in Figure 6.9. This choice depends on the results where we
got convergence. It can be seen as a stopping role in the case of incomplete
observations.

6.5 Summary

We have worked out numerical examples on one- and two-dimensional spatial
domains for

• kernel reconstruction as a typical inverse problem for delayed neural field
equations,

• variational data assimilation applied to neural activity functions, when mea-
surements of neural activity are given at some points of the neural tissue or
integrated values as they are typically measured based on standard medical
electrodes,

• the iterative method of iterating state estimation and kernel reconstruction
to carry out kernel reconstruction in a realistic environment.

These examples show that the regularized reconstruction of the delay neural
kernel is practically feasible. We study the numerical sensitivity, by adding ran-
dom noise of size ε (testing 1%, 0.1% and 0.01%) and studying the regularized
reconstruction with different regularization parameters.

93

Then, we provide an illustration of applying the 3D-VAR method for neural
dynamics based on traveling pulses and considering a Gaussian distribution of
the background error covariance. Our example shows four components of data
assimilation process.

Finally, we demonstrate the iteration of inversion and state estimation approach
and its convergence. This example is comparing the estimated field resulted from
applying the iteration with the original.

94

(a) (b) (c)

(d) (e)

(f) (g)

(h) (i) (j)

Figure 6.9: A comparison of the results of third iteration of different time steps
when applying the iterative method on the one-dimensional delayed neural field.
One cycle of the oscillation is shown at the third iteration in sequence of different
time steps 1, 4, 6, 9, 11, 14, 16, 19, 21, 24, with a step size of ∆t = 0.2, in panels (a)
to (j). The choice of this iteration is due to when the convergence is obtained.

95

Chapter 7

Conclusions and Outlook

The iteration of inversion and data assimilation is a combined work aims to
merge the effectiveness of the both famous techniques. Data assimilation is the
method of obtaining best estimations of the system state depending on knowledge
of the model dynamics, observations and error statistics. On the other hand,
inversion is the method of finding the cause of the activity.

The objective of this thesis is to build a theory from three different aspects.
First, we discuss the delayed neural field equation and its inversion. Second, we
introduce the application of data assimilation in neural field equation. Finally, we
study an iterative approach for the neural field equation (1.4). This research is
motivated by the challenge of complexity of neural systems and several promising
recent studies on this topic.

In the two following sections we summarize the aim and results of this work
and the what future work with high potential could be built on our investigation.

7.1 Conclusions

The idea is divided to various tasks starting with studying the solvability of the
delayed neural field equation, where we provide an easy to follow and non-trivial
proof using tools of functional analysis. Then, we start our study by applying
inverse problems techniques to reconstruct its kernel in Chapter 3. This work is
following the theory that has been developed in [85, 82] for non-delay case. Due to
the ill-posedness of the inverse problem, we need to approximate the solution using
a regularization method. We chose to use Tikhonov regularization as a simple and
very popular approach.

The kernel reconstruction is built on a sequence of known system states u,
although, in reality, this knowledge is not completely available. We actually have

96

some measurements or experimental results. This leads to the need of applying
data assimilation. In Chapter 4, an introduction of the theory of data assimilation
is provided and the application of 3D-Var is studied to estimate the state.

The final task is the combination of both techniques in one iterative approach
and studying its convergence. We formulate the method using three sequential
operators and study the theory of its convergence. This theory has been discussed
in detail in Chapter 5.

In Chapter 6 we support our discussion by numerical examples. We show the
feasibility of the inversion, the sensitivity analysis, application of 3D-Var and the
iteration approach.

We conclude that we have made a significant step forward to develop an ap-
proach for practical kernel reconstruction by combination of data assimilation and
inverse problems techniques. Further, we have suggested an innovative iterative
approach and studied its convergence. For all three parts of the thesis, i.e. kernel
reconstruction, state estimation and iteration of the approaches, we have shown
feasibility by numerical examples.

7.2 Future Investigation

The result of this work is promising for future research from many different
points of view. First, the kernel reconstruction approach is opening the doors
to develop the theory in other disciplines such as machine learning. The idea of
reconstructing the kernel is not only applicable to neural field equations, but also
to different dynamical systems where connections are employed. That means this
method could work, for instance, to reconstruct the kernel for machine learning
problems or radiative transfer equation with scattering.

Reconstructing of the firing rate function is another problem could be consid-
ered. However, it is more difficult and challenging due to the non- linearity of its
inverse problem, since the neural field equation contains the product of the kernel
w with f(u(·)), such that any reconstruction of both w and f will be a non-linear
inverse problem.

The construction of the kernel could be also considered in more biologically
realistic distributions of velocities, which is more challenging as well, since the
distribution of propagation speed would be an unknown parameter field on top of
other unknown parts of the system.

97

Our theory could also be applied to neural field models that separate out
excitation and inhibition such as the activity-based Wilson and Cowan model
as well as for spiking neural networks. This could, for example, be realized by
different kernel functions for exciting and inhibiting influence. The resulting kernel
matrix (w+,−w−)T for exciting and inhibiting neural signalling could, e.g. be
reconstructed using similar techniques as applied in this work, under the condition
that the sensitivity functions f+ and f− in both cases lead to linear independent
reconstruction matrices, when solving the kernel reconstruction problem for

.
u (x) + u(x) =

∫
Ω

w+(x, y)f+(u(y)) dy −
∫

Ω

w−(x, y)f−(u(y)) dy, x ∈ Ω.

We have used Tikhonov regularization for inverting the kernel equations. There
are, of course, many further regularization methods, which are not explored yet in
the area of inverse neural field theory.

Secondly, we provide a theory for using 3D-Var for a neural field equation.
This theory should be improved in future work for (delayed) neural field equation.
We note that with 3D-VAR we apply a particular data assimilation technique to
estimate the neural state, although there are many other data assimilation methods
which could be used for state estimation. 3D-VAR employs a fixed covariance
matrix. The Ensemble Kalman Filter could be used which employs an ensemble of
forcasted states to calculate a dynamic covariance matrix. 3D-Var and the Kalman
Filter are both based on second-order statistics, using a mean and covariance
matrix with an exact update for Gaussian distributions. For higher order statistics
particle filters might be useful. It is important to note that the field is young and
not explored widely yet.

Finally, our theoretical study of the iterative estimation and inversion method
contains many interesting elements which need further investigation. What will
happen in the case of incomplete data? What is the influence of further knowledge
about properties of the neural tissue on the iteration process? What would be an
appropriate stopping rule for the iterations?

Clearly, we have studied very simple systems to show the feasibility of the
methods developed in this work. It is an open question how the techniques could
be improved to overcome any additional exotic dynamics. We remark, however,
that these challenges are common to most chaotic dynamical systems and data
assimilation methodology applied to such systems. The community is intensely
working on, for example, particle filters, which treat the strongly non-Gaussian
distributions which arise from chaotic dynamics.

98

Bibliography

[1] H. D. I. Abarbanel. Predicting the Future: Completing Models of Observed
Complex Systems. Springer, 2013.

[2] J. Alswaihli, R. Potthast, I. Bojak, D. Saddy, and A. Hutt. Kernel re-
construction for delayed neural field equations. Journal of Mathematical
Neuroscience, 8:3, 2018.

[3] Z. An, D. Rey, J. Ye, and H. D. I. Abarbanel. Estimating the state of a
geophysical system with sparse observations: time delay methods to achieve
accurate initial states for prediction. Nonlin. Processes Geophys., 24(1):9–22,
2017.

[4] J. A. Anderson and E. Rosenfeld. Neurocomputing, Foundations of Research.
Massachusetts Institute of Technology, England, 1988.

[5] P. Argoul. Overview of inverse problems. DEA. Parameter Identification in
Civil Engineering, Ecole Nationale des Ponts et Chaussées, page 13, 2012.

[6] F. M. Atay and A. Hutt. Stability and bifurcations in neural fields with
finite propagation speed and general connectivity. SIAM J. APPL. MATH.,
65, No. 2:644–666, 2005.

[7] G. E. Backus and J. F. Gilbert. Numerical applications of a formalism for
geophysical inverse problems. Geophysical Journal of the Royal Astronomical
Society, 13(1-3):247–276, 1967.

[8] G. E. Backus and J. F. Gilbert. The resolving power of gross earth data.
Geophysical Journal International, 16(2):169–205, 1968.

[9] S. Baillet. Forward and Inverse Problems of MEG/EEG, pages 1–8. Springer
New York, 2014.

[10] R. N. Bannister. A review of operational methods of variational and
ensemble-variational data assimilation. Q. J. R. Meteorol. Soc., 2017.

99

[11] D. M. Barker, W. Huang, Y.-R. Guo, and A. Bourgeois. A three-dimensional
variational (3dvar) data assimilation system for use with mm5. NCAR Tech.
Note. NCAR/TN-453 + STR, 68 pp, 2003.

[12] P. beim Graben and R. Potthast. Inverse problems in dynamic cognitive
modeling. Chaos - An Interdisciplinary Journal of nonlinear Science, 2009.

[13] E. Blayo, E. Cosme, M. Nodet, and A. Vidard. Introduction to data assim-
ilation, 2011.

[14] C. G. Boeree. The neuron. General Psychology, 1-6, 2008.

[15] I. Bojak and D. T. Liley. Axonal velocity distributions in neural field equa-
tions. PLoS Comut. Biol., 6(1): e1000653, 2010.

[16] F. Bouttier and P. Courtier. Data assimilation concepts and methods. Train-
ing Course notes of ECMWF, 1999.

[17] P. C. Bressloff and S. Coombes. Physics of the extended neuron. Interna-
tional Journal of Modern Physics B, 11:2343–2392, 1997.

[18] P. C. Bressloff and Z. P. Kilpatrick. Two-dimensional bumps in piecewise
smooth neural fields with synaptic depression. SIAM J. APPL. MATH,
71:379–408, 2011.

[19] S. A. Campbell. Time Delays in Neural Systems, pages 65–90. Springer.,
2007.

[20] A. Carrassi, M. Bocquet, L. Bertino, and G. Evensen. Data assimilation
in the geosciences: An overview of methods, issues and perspectives. Wiley
interdisciplinary reviews, 2018.

[21] S. Cavallari, S. Panzeri, and A. Mazzoni. Comparison of the dynamics of
neural interactions between current-based and conductance-based integrate-
and-fire recurrent netwworks. Frontiers in Neural Circuits., 8, 2014.

[22] W. Cheney. Analysis for Applied Mathematics. Springer-Verlag New York,
2001.

[23] S. Coombes. Waves, bumps, and patterns in neural field theories. Biological
Cybernetics, 93:91–108, 2005.

[24] S. Coombes. Large-scale neural dynamics: Simple and complex. NeuroImage,
52:731–739, 2010.

100

[25] S. Coombes, P. beim Graben, and R. Potthast. Tutorial on neural field
theory, pages 1–43. Springer, 2014.

[26] S. Coombes, P. beim Graben, R. Potthast, and J. Wright. Neural Fields:
Theory and Applications. Springer, 2014.

[27] S. Coombes and C. Laing. Delays in activity-based neural networks. Phil.
Trans. R. Soc., 367:1117–1129, 2009.

[28] S. Coombes and H. Schmidt. Neural fields with sigmoidal firing rates:
Approximate solutions. Discrete and Continuous Dynamical Systems -A,
28(4):1369–1379, 2010.

[29] S. Coombes and J. R. Terry. The dynamics of neurological disease: In-
tegrating computational, experimental and clinical neuroscience. European
Journal of Neuroscience, 36:2118–2120, 2012.

[30] S. Coombes, N. Venkov, L. Shiau, I. Bojak, D. Liley, and C. Laing. Modeling
electrocortical activity through improved local approximations of integral
neural field equations. Phys. Rev. E, 76:051901-8, 2007.

[31] R. Daley. Atmospheric Data Analysis. Cambridge University Press, 1991.

[32] G. Deco and V. K. Jirsa. Ongoing cortical activity at rest: Critically, multi-
stability, and ghost attractors. Journal of Neuroscience, 32(10):3366–3375,
2012.

[33] G. Deco, V. K. Jirsa, P. A. Robinson, M. Breakspear, and K. Friston. The
dynamic brain: From spiking neurons to neural masses and cortical fields.
PLOS Computayional Biology, 4(8), 2008.

[34] O. Diekmann. Delay Equations: Functional-, Complex-, and Nonlinear Anal-
ysis. Springer- Verlag Ne York, Inc., 1995.

[35] K. Dijkstra, S. A. van Gils, and S. G. Janssens. Pitchfork-hopf bifurcations
in 1d neural field models with transmission delays. Physica D: Nonlinear
Phenomena, 297:88–101, 2015.

[36] G. T. Einevoll. Mathematical modeling of neural activity. Dynamics of
Complex Interconnected Systems: Networks and Bioprocesses, pages 127–
145, 2006.

[37] H. W. Engl, M. Hankle, and A. Neubauer. Regularization of Inverse Prob-
lems. Mathematics and Its Applications. Springer Netherlands, 2000.

101

[38] B. Ermentrout. Neural networks as spatio-temporal pattern-forming sys-
tems. Reports on Progress in Physics, 61:353–430, 1998.

[39] Z. Fang, A. S. Wong, K. Hao, A. J. A. Ty, and H. D. I. Abarbanel. Precision
annealing monte carlo methods for statistical data assimilation and machine
learning. Nonlin. Processes Geophys., 24(1):9–22, 2017.

[40] G. Faye and O. Faugeras. Some theoretical and numerical results for delayed
neural field equations. Physica D, 239:561–578, 2010.

[41] M. Fisher. Background error covariance modelling, 2003.

[42] S. J. Fletcher. Data Assimilation for Geoscience: From Theory to Applica-
tion. Elsevier Inc., USA, 2017.

[43] D. R. Freestone, P. J. Karoly, D. Nes̆ić, P. Aram, M. J. Cook, and D. B.
Grayden. Estimation of effective connectivity via data-driven neural model-
ing. Frontiers in Neuroscience, 8, 2014.

[44] M. A. Freitag and R. W. E. Potthast. Synergy of inverse problems and
data assimilation techniques. Radon Series on Computational and applied
Mathematics, pages 1–54, 2013.

[45] A. Ghosh, Y. Rho, A. R. McIntosh, R. K’́otter, and V. K. Jirsa. Cortical
network dynamics with time delays reveals functional connictivity in the
resting brain. Cogn. Neurodyn, 2(2):115–120, 2008.

[46] A. Ghosh, Y. Rho, A. R. McIntosh, R. K’́otter, and V. K. Jirsa. Noise
during rest enables the exploration of the brain’s dynamic repertoire. PLOS
Comput. Biol., 4(10), 2008.

[47] S. Gils, S. G. Janssens, Y. Kuznetsov, and S. Visser. On local bifurcations
in neural field models with transmission delays. Journal of Mathematical
Biology, 66:837–887, 2013.

[48] C. W. Groetsch. Inverse problems in the mathematical sciences. Theory and
Practice of Applied Geophysics Series. Vieweg, 1993.

[49] A. Hutt. Generalization of the reaction-diffusion, swift-hohenberg, and
kuramoto-sivashinsky equations and effects of finite propagation speeds.
Phys. Rev. E, 75:026214, 2007.

[50] A. Hutt and F. M. Atay. Analysis of nonlocal neural fields for both general
and gamma-distributed connectivities. Physica D, 203:30–54, 2005.

102

[51] A. Hutt, M. Bestehorn, and T. Wennekers. Pattern formation in intracortical
neural fields. Network: Comput. Neural Syst., 14:351-368, 2003.

[52] A. Hutt and L. Buhry. Study of gabaergic extra-synaptic tonic inhibition in
single neurons and neural populations by traversing neural scales: Applica-
tion to propofol-induced anaesthesia. J. Comput. Neurosci., 37(3):417-437,
2014.

[53] S. ichi Amari. Homogeneous nets of neuron-like elements. Biolobical Cyber-
netics, 17:211–220, 1975.

[54] S. ichi Amari. Dynamics of patterns formation in lateral-inhibition type
neural fields. Biolobical Cybernetics, 27:77–87, 1977.

[55] S. I. Kabanikhin. Definitions and examples of inverse and ill-posed problems.
J. Inv. Ill-posed Problems, 16:317–357, 2008.

[56] E. Kalnay. Atmospheric Modeling, Data Assimilation and Predictability.
Cambridge University Press, 2003.

[57] B. Kaltenbacher, A. Neubauer, and O. Scherzer. Iterative Regularization
Methods for Nonlinear Ill-Posed Problems. Radon Series on Computational
and Applied Mathematics. De Gruyter, 2008.

[58] E. R. Kandel, J. H. Schwartz, and T. M. Jessell. Principles of Neural Science.
Appleton & Lange, USA, 1991.

[59] A. Kirsch. An Introduction to The Mathematical Theory of Inverse Problems.
Applied Mathematical Sciences. Springer-Verlag New York, 2011.

[60] A. Kolossa. Computational Modeling of Neural Activities for Statistical In-
ference. Springer, Switzerland, 2016.

[61] R. Kress. Numerical Analysis. Springer-Verlag New York, Inc., 1998.

[62] R. Kress. Linear Integral Equations, volume 82 of Applied Mathematical
Sciences. Springer New York, 1999.

[63] W. A. Lahoz and P. Schneider. Data assimilation: making sense of earth
observation. Frontiers in Environmental Science, 2:16, 2014.

[64] C. R. Laing and S. Coombes. The importance of different timings of excita-
tory and inhibitory pathways in neural field models. Computation in Neural
Systems, 17:151–172, 2006.

103

[65] L. Lapidus and G. Pinder. Numerical Solution of Partial Differential Equa-
tions in Science and Engineering. Wiely-Interscience Publication, 1999.

[66] K. Law, A. Steuart, and K. Zygalakis. Data Assimilation: A Mathematical
Introduction. Springer, 2015.

[67] P. Lima and E. Buckwar. Numerical investigation of the two-dimentional
neural field equation with delay. In 2015 Second International Conference
on Mathematics and Computers in Science and in Industry (MCSI), pages
131–137, Sliema, 2015.

[68] P. M. Lima and E. Buckwar. Numerical solution of the neural field equation
in the two-dimentional case. SIAM J Sci Comput, 37:963-979), 2015.

[69] N. Lingala, N. S. Namachchivaya, and H. C. Yeong. Data assimilation in
multiscale complex systems. 2015 8th International Workshop on the Analy-
sis of Multitemporal Remote Sensing Images (Multi-Temp), pages 1–4, 2015.

[70] J. T. Manter, A. J. Gatz, and R. G. Clark. Manter and Gatz’s Essentials of
Clinical Neuroanatomy and Neurophysiology. F. A. Davis Company, USA,
original from the University of California, 1975.

[71] C. D. Meliza, M. Kostuk, H. Huang, A. Nogaret, D. Margoliash, and H. D. I.
Abarbanel. Estimating parameters and predicting membrane voltages with
conductance-based neuron models. Biological Cybernetics, 2014.

[72] C. M. Michel and D. Brunet. Eeg source imaging: A practical review of the
analysis step. Frontiers in Neurology, 2019.

[73] A. Miller, D. Li, J. Platt, A. Daou, D. Margoliash, and H. D. I. Abarbanel.
Statistical data assimilation: Formulation and examples from neurobiology.
Frontiers in Applied Mathematics and Statistics, 26, 2018.

[74] M. J. Moye and C. O. Diekman. Data assimilation methods for neuronal
state and parameter estimation. The Journal of Mathematical Neuroscience,
8, 2018.

[75] T. T. Nakagawa, M. Woolrich, H. Luckhoo, M. Joensson, H. Mohseni, M. L.
Kringelbach, V. Jirsa, and G. Deco. How delays matter in an oscillatory
whole-brain spiking-neuron network model for meg alpha-rhythms at rest.
NeuroImage, 87:383–349, 2014.

[76] G. Nakamura and R. Potthast. Inverse Modeling: An Introduction to The
Theory and Methods of Inverse Problems and Data Assimilation. IOP Insti-
tute of Physics, Bristol, UK, 2015.

104

[77] A. Nogaret, C. D. Meliza, D. Margoliash, and H. D. I. Abar-
banel. Automatic construction of predictive neuron models through
large scale assimilation of electrophysiological data. Scientific Reports 6,
www.nature.com/scientificreport, 2016.

[78] P. L. Nunez. The brain wave equation: A model for the eeg. Mathematical
Biosciences 21, 279-297, 1974.

[79] P. L. Nunez. Neocortical Dynamics and Human EEG Rhythms. Oxford
University Press, 1995.

[80] E. R. Oby, M. D. Golub, J. A. Hennig, A. D. Degenhart, E. C. Tyler-Kabara,
B. M. Yu, S. M. Chase, and A. P. Batista. New neural activity patterns
emerge with long-term learning. PNAS, 116 (30):15210–15215, 2019.

[81] A. Oleynik, A. Ponosov, and J. Wyller. Iterative schemes for bump solutions
in a neural field model. Differ. Equ. Dyn. Syst., 23:79–98, 2015.

[82] R. Potthast. Inverse problems in neural population models. Encyclopedia of
Computational Neuroscience, pages 1453–1456, 2015.

[83] R. Potthast. Introduction to functional analysis and inverse problems. Lec-
ture notes, Spring-term 2007.

[84] R. Potthast and P. beim Graben. Dimensional reduction for the inverse
problem of neural field theory. Frontiers in Computational Neuroscience,
3,17, 2009.

[85] R. Potthast and P. beim Graben. Existence and properties of solutions
for neural field equations. Mathematical Methods in the Applied Science,
33(8):935–949, 2009.

[86] R. Potthast and P. beim Graben. Inverse problems in neural field theory.
SIAM Journal on Applied Dynamical Systems, 8:1405 –1433, 2009.

[87] R. Potthast and P. Graben. Inverse problems in neural field theory. SIAM
Journal on Applied Dynamical Systems, 8(4):1405–1433, 2009.

[88] J. Rankin, D. Avitabil, J. Baladron, G. Faye, and D. J. Lloyd. Continuation
of localised coherent structures in nonlocal neural field equations. SIAM
Journal on Scientific Computing, 36:1:70–93, 2014.

[89] D. Rey, M. Eldridge, M. Kostuk, H. D. I. Abarbanel, J. Schumann-Bischoff,
and U. Parlitz. Accurate state and parameter estimation in nonlinear systems
with sparse observations. Physics Letters A, 2014.

105

[90] M. E. Rule, D. Schnoerr, M. H. Henning, and G. Sanguinetti. Neural field
models for latent state inference: Application to large-scale neuronal record-
ing. PLOS Computayional Biology, 15(11), 2019.

[91] P. C. Sabatier. Past and future of inverse problems. Journal of Mathematical
Physics, 41(6), 2000.

[92] L. Spek, Y. A. Kuznetsov, and S. A. V. Gils. Neural field models with
transmission delays and diffusion. arXiv 1912.09762[math.DS], 2019.

[93] A. Tarantola. Inverse Problems Theory and Methods for Model Parameter
Estimation. Society for Industerial and Applied Mathematics, 2005.

[94] A. Tarantola and B. Valette. Inverse problems = quest for information.
Journal of Geophysics, 50(1):159–170, 1982.

[95] W. van Drongelen. Modeling neural activity. ISRN Biomathematics, 2013:37
pages, 2013.

[96] R. Veltz and O. Faugeras. Stability of the stationary solutions of neural field
equations with propagation delays. Journal of Mathematical Neuroscience,
1:1–25, 2011.

[97] R. Veltz and O. Faugeras. A center manifold result for delayed neural fields
equations. SIAM J. Math. Anal., 45(3), 1527-1562, 2013.

[98] N. A. Venkov. Dynamics of neural field models. Ph.D. Thesis, 2008.

[99] N. A. Venkov, S. Coombes, and P. C. Matthews. Dynamic instabilities
in scalar neural field equations with space-dependent delays. Physica D:
Nonlinear Phenomena, 232(1):1–15, 2007.

[100] P. D. Wasserman. Neural Computing, Theory and Practice. Van Nostrand
Reinhold, 1989.

[101] T. Wennekers. Orientation tuning properties of simple cells in area v1 de-
rived from an approximate analysis of nonlinear neural field models. Neural
Comput., 13(8):1721-1747, 2001.

[102] H. R. Wilson and J. D. Cowan. Excitatory and inhibitory interactions in
localized populations of model neurons. Biophys. J., 12(1):1–24, 1972.

[103] H. R. Wilson and J. D. Cowan. A mathematical theory of the functional
dynamics of cortical and thelamic nervous tissue. Kybernatik, 13(2):55–80,
1973.

106

[104] F. Yaman, V. G. Yakhno, and R. Potthast. A survey on inverse problems
for applied sciences. Mathematical Problems in Engineering, 2013.

107

Appendix A

Appendix

Here, we collect the codes which have been used to generate the images of this
thesis. We have been using MATLAB or its free clone OCTAVE to carry out all
calculations and simulations.

A.1 Firing function and control code

We first define the sigmoidal firing rate function f , as given by (1.3).

function s_out = f(s_in,eta)

s_out = 1./(1+exp(-20*(s_in-eta*ones(size(s_in)))));

We also set our variables and parameters as shown in the following code, where
a simple Euler scheme is used to simulate the neural field equation (1.4).

clear all; close all;

a = 2*pi;

N = 101; % number of grid points

h = a/(N-1); % grid spacing

p = 0:h:2*pi; % grid on circle

R = 3; % radius for visualization

px = R*cos(p);

py = R*sin(p);

sigma = 1; % decay parameter for Gaussians

r1 = R*sqrt((cos(p)+1).^2 + (sin(p)).^2);

for j=1:N

rmat(j,:) = R*sqrt((cos(p)-cos(p(j))).^2 +(sin(p)-sin(p(j))).^2);

end

uv(:,1) = exp(-sigma*r1.^2);

108

r2 = R*sqrt((cos(p)-cos(pi/3)).^2 + (sin(p)-sin(pi/3)).^2);

r3 = R*sqrt((cos(p)-cos(-pi/3)).^2 + (sin(p)-sin(-pi/3)).^2);

Wmat = 10*(0.3*repmat(exp(-sigma*r2.’.^2),1,N).* % construct kernel

repmat(exp(-sigma*r1.^2),N,1)+ % ~

0.3*repmat(exp(-sigma*r3.’.^2),1,N).* % ~

repmat(exp(-sigma*r2.^2),N,1)+ % ~

0.3*repmat(exp(-sigma*r1.’.^2),1,N).* % ~

repmat(exp(-sigma*r3.^2),N,1))*h; % ~

Nt = 50; % number of time steps

eta = 0.5; % threshold

ht = 0.2; % time stepping

tau = 1; % time constant

fo = figure; % start figure generating dynamics

for k=1:Nt

disp([’k=’ num2str(k)]);

%fflush(stdout);

for j=1:N;

kv = round(rmat(j,:));

for xi=1:N

ec(xi,1) = f(uv(xi,max(1,k-kv(xi))),eta);

end

du(j,1) = ht/tau*(-uv(j,k) + Wmat(j,:)*ec)\;

end

uv(:,k+1) = uv(:,k)+ du;

% visualization of current excitation function u

if(1==1)

plot3(px,py,zeros(size(px)),’k.-’);

hold on;

plot3(px,py,uv(:,k+1),’r.-’,’LineWidth’,3);

axis([-R,R,-R,R,-0.1, 1.1]);

hold off;

drawnow;

end

end

109

A.2 Example of Chapter 4

In this MATLAB script, we show the code we use to draw Figure 4.1. The script
assumes that uv has been simulated before.

ND=5;

M = floor(N/ND);

H = zeros(M,N);

for j=1:M

H(j,ND*j) = 1; % Setup Observation Operator

end

u = uv(:,1);

y = H*u; % Observation Simulation

alpha = 0.01;

ualpha1 = inv(alpha*eye(N,N)+H’*H)*H’*y; % 3D-VAR with B=I

sigma = 2;

B = exp(-sigma*rmat.^2); % Gaussian B Matrix

ualpha2 = B*H’*inv(alpha*eye(M,M)+H*B*H’)*y; % 3D-VAR with B

%

fo = figure;

plot3(px,py,zeros(size(px)),’k.-’);

hold on;

plot3(px,py,u,’r.-’,’LineWidth’,3);

plot3(px,py,ualpha1,’m.-’,’LineWidth’,3,’MarkerSize’,15);

plot3(px,py,ualpha2,’b.-’,’LineWidth’,3,’MarkerSize’,15);

axis([-R,R,-R,R,-0.1, 1.1]);

hold off;

drawnow;

saveas(fo,’estimated1.png’,’png’);

A.3 Examples of Chapter 6

A.3.1 Examples of Section 6.1

To show the dynamics of the activity field u(r, t) on the boundary ∂BR ⊂ R2 of a
disk with radius R, as displayed in Figure 6.1 of Example 1.,

The script for the dynamics is:

uv_b(:,1) = uv(:,1);

fo = figure;

110

for k=1:Nt % loop over time steps

disp([’k=’ num2str(k)]); % time index

for j=1:N % loop over grid points

kv = round(rmat(j,:)); % distance to index

for xi=1:N % collecting delayed input

ec(xi,1) = f(uv_b(xi,max(1,k-kv(xi))),eta);

end

du(j,1) = ht/tau*(-uv_b(j,k) + Wmat_alpha(j,:)*ec);

end

uv_b(:,k+1) = uv_b(:,k) + du; % Euler step next

subplot(1,2,1) % Visualization

plot3(px,py,zeros(size(px)),’k.-’);

hold on; % of original and

plot3(px,py,uv(:,k+1),’b.-’,’LineWidth’,5);

axis([-R,R,-R,R,-0.1, 1.1]);

hold off;

drawnow;

subplot(1,2,2)

plot3(px,py,zeros(size(px)),’k.-’);

hold on; % reconstructed dynamics

plot3(px,py,uv_b(:,k+1),’r.-’,’LineWidth’,5);

axis([-R,R,-R,R,-0.1, 1.1]);

hold off;

drawnow;

% save current figure with time index k

saveas(fo,[’dynamics_’num2str(k,3)’.png’],’png’)

end

Then, for the reconstruction and visualization of the kernel as shown in Figure
6.2, we used the code:

for j=1:N

kv = round(rmat(j,:)); % distance to index

for k=1:(Nt-1) % calculate functions psi and phi

psi(k) = tau*(uv(j,k+1)-uv(j,k))/ht + uv(j,k);

for xi=1:N

phi(xi,k) = f(uv(xi,max(1,k-kv(xi))),eta);

end

end

%

111

A = phi’; % setup matrix and

rhs = psi’; % right-hand side

alpha = 0.1; % regularization parameter

nn = size(A,2); % dimension of A

% kernel reconstruction by Tikhonov Regularization

Wmat_alpha(j,:) = (inv(alpha*eye(nn,nn)+A’*A)*A’*rhs)’;

end

ca = 0.2; % parameter for axis control

fo = figure; % original kernel

surf(p,p,Wmat); shading interp; caxis([0 ca]); colorbar;

axis tight; view(30,50); axis([0 a 0 a -0.1 ca])

set(gca,’FontSize’,14)

saveas(fo,’kernel_original.png’,’png’)

fo = figure; % reconstructed kernel

surf(p,p,Wmat_alpha); shading interp; caxis([0 \; ca]); colorbar;

axis tight; view(30,50); axis([0 a 0 a -0.1 ca])

set(gca,’FontSize’,14)

saveas(fo,’kernel_reconstruction.png’,’png’)

fo = figure; % kernel reconstruction error

surf(p,p,Wmat-Wmat_alpha); shading interp; colorbar;

axis tight; view(30,50); axis([0 a 0 a -0.1 ca])

set(gca,’FontSize’,14)

saveas(fo,’kernel_differences.png’,’png’)

We then set up for example 2 of 2D neural field that is shown in Figures 6.3
and 6.4 by this code is divided in next three scripts. The code control delay 2d

is given first.

clear all; close all;

a1 = 0; % parameters for 2d domain

b1 = 6; % [a1 b1]x[a2 b2]

a = b1;

a2 = 0;

b2 = 6;

N1 = 21; % number of grid points

N2 = 22; % N1 x N2

N = N1*N2; % total number of nodes

h1 = (b1-a1)/(N1-1);

112

h2 = (b2-a2)/(N2-1);

h = h1*h2; %

x1 = a1:h1:b1; % setting up grid

x2 = a2:h2:b2; %

x1mat = repmat(x1,N2,1);

x2mat = repmat(x2’,1,N1);

x1v = reshape(x1mat,N,1);

x2v = reshape(x2mat,N,1);

sigma = 2; % decay parameter for Exponentials

r1 = sqrt((x1v-1.5).^2 + (x2v-3).^2);

uv(:,1) = exp(-sigma*r1.^2);

r2 = sqrt((x1v-4.5).^2 + (x2v-4.5).^2);

r3 = sqrt((x1v-4.5).^2 + (x2v-1.5).^2);

for j=1:N % matrix of distances

rmat(j,:) = sqrt((x1v-x1v(j)).^2 + (x2v-x2v(j)).^2);

end

if(1 == 0)

fo=figure(1); % visualization of initial field

uvmat = reshape(uv(:,1),N2,N1);

surf(x1,x2,uvmat) % surf plot

set(gca,’FontSize’,14) % axes control

view(3); % ~

colorbar % ~

end

% definition of neural kernel on 2d domain

Wmat = 7*(0.3*repmat(exp(-sigma*r2.^2),1,N).*...

repmat(exp(-sigma*r1.’.^2),N,1)+...

0.3*repmat(exp(-sigma*r3.^2),1,N).*...

repmat(exp(-sigma*r2.’.^2),N,1)+...

0.3*repmat(exp(-sigma*r1.^2),1,N).*...

repmat(exp(-sigma*r3.’.^2),N,1))*h;

Nt = 30; % number of time steps

eta = 0.5; % threshold for neural processing

ht = 0.2; %

tau = 1; % temporal parameter

113

fo = figure; % visualize dynamical evolution

for k=1:Nt % temporal loop

disp([’k=’ num2str(k)]);

for j=1:N; % loop over grid points

kv = 1.0*round(rmat(j,:));

for xi=1:N % collect temporal delay

ec(xi,1) = f(uv(xi,max(1,k-kv(xi))),eta);

end %

du(j,1) = ht/tau*(-uv(j,k) + Wmat(j,:)*ec);

end % ODE Euler step

uv(:,k+1) = uv(:,k)+ du;

if(1==0)

uvmat = reshape(uv(:,k+1),N2,N1);

fo=figure(1);

surf(x1,x2,uvmat)

set(gca,’FontSize’,14)

view(2);

axis([a1 b1 a2 b2 0 1]);

hold off;

drawnow;

if(mod(k,3) == 0)

filename=[’dyn_’ sprintf(’%02d’,k)];

saveas(fo,filename,’png’)

end

end

end

Then, the code inverse delay 2d which is:

for j=1:N % loop over grid points

disp([’j=’ num2str(j)]);

fflush(stdout);

kv = round(rmat(j,:)); % distance to index

for k=1:(Nt-1) % define functions psi and phi

psi(k) = tau*(uv(j,k+1)-uv(j,k))/ht + uv(j,k);

for xi=1:N % collect past influence

phi(xi,k) = f(uv(xi,max(1,k-kv(xi))),eta);

end

114

end

A = phi’; % setup reconstruction matrix

rhs = psi’; % and right-hand side

alpha = 0.1; % regularization parameter

nn = size(A,2); % dimension

% kernel reconstruction by Tikhonov Regularization

Wmat_alpha(j,:) = (inv(alpha*eye(nn,nn)+A’*A)*A’*rhs)’;

end

% display the kernel and its reconstruction

ca = 0.2; % display parameter

fo = figure; % show original kernel

colormap(pink); % setup colormap for visualization

colormap(flipud(colormap))

surf(Wmat); shading interp; caxis([0 ca]); colorbar;

axis tight; view(30,50); axis([1 N 1 N -0.01 ca])

set(gca,’FontSize’,14)

saveas(fo,’kernel_original.png’,’png’)

fo = figure; % show reconstructed kernel

colormap(pink) %

colormap(flipud(colormap))

surf(Wmat_alpha); shading interp; caxis([0 ca]); colorbar;

axis tight; view(30,50); axis([1 N 1 N -0.01 ca])

set(gca,’FontSize’,14)

saveas(fo,’kernel_reconstruction.png’,’png’)

fo = figure; % show kernel reconstruction error

colormap(pink) %

colormap(flipud(colormap))

surf(Wmat-Wmat_alpha); shading interp; colorbar;

axis tight; view(30,50); axis([1 N 1 N -0.01 ca])

set(gca,’FontSize’,14)

saveas(fo,’kernel_differences.png’,’png’)

Then, the code show inverse result 2d calculates the dynamical behaviour with
reconstructed kernel.

colormap(bone) % setup colormap

colormap(flipud(colormap))

uv_b(:,1) = uv(:,1); % initial excitation field

115

fo = figure; % figure for dynamical display

for k=1:Nt % temporal loop

disp([’k=’ num2str(k)]);

for j=1:N; % loop over grid points

kv = round(rmat(j,:));

for xi=1:N % collecting influence

ec(xi,1) = f(uv_b(xi,max(1,k-kv(xi))),eta);

end % ODE Euler Step

du(j,1) = ht/tau*(-uv_b(j,k) + Wmat_alpha(j,:)*ec);

end % integrate NFE

uv_b(:,k+1) = uv_b(:,k)+ du;

subplot(1,2,1) % show original dynamics

colormap(bone) %

colormap(flipud(colormap))

uvmat = reshape(uv(:,k+1),N2,N1);

surf(x1,x2,uvmat) % surf plot

set(gca,’FontSize’,14) % plot parameter settings

view(3); %

axis([a1 b1 a2 b2 0 1]);

axis equal; set(gca,’ztick’,[])

title(’Original’)

hold off;

hold off;

drawnow;

%

subplot(1,2,2) % show reconstructed dynamics

colormap(pink) %

colormap(flipud(colormap))

uvmat = reshape(uv_b(:,k+1),N2,N1);

surf(x1,x2,uvmat) % surf plot

set(gca,’FontSize’,14) % plot parameter settings

view(3); %

axis([a1 b1 a2 b2 0 1]);

axis equal; set(gca,’ztick’,[])

title(’Reconstruction’)

hold off;

hold off;

116

drawnow;

saveas(fo,[’dynamics_’ sprintf(’%02d’,k) ’.png’],’png’)

end

A.3.2 Figures of Section 6.2

we used this code to produce the figure 6.5.

% run control_delay_1d.m first !!!

%

close all;

sv = 2*pi/(Nt+1)*(1:(Nt+1));

eps = 0.01;

rand ("seed", 10)

for jj=1:N

cr = 2*(rand(1,1)-0.5);

uv(jj,:) = uv0(jj,:) + eps*(sin(sv+cr*2*pi));

end

if(1 == 1)

fo = figure;

%

subplot(2,1,1)

colormap(flipud(pink))

surf(uv0);

set(gca,’FontSize’,14)

view(2);

shading flat;

caxis([0 1])

axis tight;

xlabel(’time steps’)

ylabel(’point index’)

title(’input signal u’)

colorbar;

%

subplot(2,1,2)

117

colormap(flipud(pink))

surf(uv-uv0);

set(gca,’FontSize’,14)

view(2);

shading flat;

caxis([-eps eps])

axis tight;

xlabel(’time steps’)

ylabel(’point index’)

title(’noise on input’);

colorbar;

%saveas(fo,’sensitivity_input.png’,’png’);

end

j0 = 20;

for j=j0; %1:N

disp([’j=’ num2str(j)]);

%

kv = round(rmat(j,:));

for k=1:(Nt-1)

psi(k) = tau*(uv(j,k+1)-uv(j,k))/ht + uv(j,k);

for xi=1:N

phi(xi,k) = f(uv(xi,max(1,k-kv(xi))),eta);

end

end

%

A = phi’;

rhs = psi’;

alpha = 0.01;

nn = size(A,2);

% solving A*Wmat =

Wmat_alpha(j,:) = (inv(alpha*eye(nn,nn)+A’*A)*A’*rhs)’;

end

fo = figure;

plot(Wmat(j0,:),’LineWidth’,3);

118

hold on;

plot(Wmat_alpha(j0,:),’LineWidth’,3);

set(gca,’FontSize’,14);

xlabel(’point index’);

The next code is for Figure 6.6:

disp(’--- p3_inverse.m ----------------’)

for j=1:N

disp([’j=’ num2str(j)]);

fflush(stdout);

%

kv = round(rmat(j,:));

for k=1:(Nt-1)

psi(k) = tau*(uv(j,k+1)-uv(j,k))/ht + uv(j,k);

for xi=1:N

phi(xi,k) = f(uv(xi,max(1,k-kv(xi))),eta);

end

end

%

A = phi’;

rhs = psi’;

alpha = 0.1;

nn = size(A,2);

% solving A*Wmat =

Wmat_alpha(j,:) = (inv(alpha*eye(nn,nn)+A’*A)*A’*rhs)’;

end

%--

% solve the inverse problem next

%--

ca = 0.2;

fo = figure;

colormap(pink)

colormap(flipud(colormap))

surf(p,p,Wmat); shading interp; caxis([0 ca]); colorbar;

axis tight; view(30,50); axis([0 a 0 a -0.01 ca])

119

set(gca,’FontSize’,14)

saveas(fo,[’kernel_original_alpha=’ num2str(alpha) ’.png’],’png’)

fo = figure;

colormap(pink)

colormap(flipud(colormap))

surf(p,p,Wmat_alpha); shading interp; caxis([0 ca]); colorbar;

axis tight; view(30,50); axis([0 a 0 a -0.01 ca])

set(gca,’FontSize’,14)

saveas(fo,[’kernel_reconstruction_alpha=’ num2str(alpha) ’.png’],’png’)

fo = figure;

colormap(pink)

colormap(flipud(colormap))

surf(p,p,Wmat-Wmat_alpha); shading interp; colorbar;

axis tight; view(30,50); axis([0 a 0 a -0.01 ca])

set(gca,’FontSize’,14)

saveas(fo,[’kernel_differences_alpha=’ num2str(alpha) ’.png’],’png’)

A.3.3 Figures of Section 6.3

These two codes are used for Figures 6.7 and 6.8.

The visualization of the background error covariance matrix

is produced by the code:

fobj13 = figure(13);

%set(fobj13,’Renderer’,’zbuffer’);

surf(B);

shading interp;

axis equal;

axis tight;

view(2);

set(gca,’FontSize’,14);

120

saveas(fobj13,’B_matrix.png’,’png’);

where B matrix is introduced in the following code

%close all

disp(’running neuro_da.m’)

% kt = 3;

disp([’kt=’ num2str(kt)]);

%

% run neuro_sim.m before!

%

% Setup observation operator H:

m = 50;

% m = 900;

H = zeros(m,N);

ind1 = 1:floor(N/m):N;

chi = zeros(N,1);

for j=1:m

H(j,ind1(j)) = 1;

chi(ind1(j)) = 1;

end

x = phi(:,kt);

y = H*x;

yv = zeros(N,1);

for j=1:m

yv(ind1(j))= y(j);

end

yAll(:,kt,iter)=yv;

%

% calculate simulation data

%

% Setup B matrix

sigmaB = 0.1;

x1vecM = repmat(x1vec,1,N);

x2vecM = repmat(x2vec,1,N);

B = exp(-sigmaB*sqrt((x1vecM-x1vecM’).^2+(x2vecM-x2vecM’).^2));

% figure; surf(B);view(2);shading flat;

%

% reconstruct x from measurements

alphaR = 0.01;

alphaR2 = 0;

121

xb = phi4(:,kt);

xa = xb + B*H’*inv(alphaR*eye(m,m)+H*B*H’)*(y-H*xb);

xa0 = B*H’*inv(alphaR2*eye(m,m)+H*B*H’)*(y);

if(1==1)

% visualize data versus

fobj = figure(5);

%set(fobj,’Renderer’,’zbuffer’);

subplot(4,1,1)

surf(x1,x2,reshape(x,N2,N1));

caxis([0,1])

view(2);

shading flat;

axis equal;

axis tight;

%

subplot(4,1,2)

surf(x1,x2,reshape(yv,N2,N1));

caxis([0,1])

view(2);

shading flat;

axis equal;

axis tight;

%

subplot(4,1,3)

surf(x1,x2,reshape(xa0,N2,N1));

caxis([0,1])

view(2);

shading flat;

axis equal;

axis tight;

%

subplot(4,1,4)

surf(x1,x2,reshape(xa,N2,N1));

caxis([0,1])

view(2);

shading flat;

axis equal;

axis tight;

122

saveas(fobj,[’da_est_’ num2str(kt)],’png’);

drawnow;

end

A.3.4 Figures of Section 6.4

The next codes are used to generate Figure 6.9. The first code is control all:

% first generate nature run and data

control_delay_1d;

% now do the loop of estimation and inversion

ualpha1 = zeros(N,Nt+1);

Nit = 5; % number of iterations

for la=1:Nit % iteration loop 3D-VAR <-> kernel rec

disp([’la=’ num2str(la)])

tic;

estimation; % Estimate

t = toc;

disp([’time needed: t=’ num2str(t) ’s’])

inverse_delay_1d; % Learning / Kernel Reconstruction

t = toc;

disp([’time needed: t=’ num2str(t) ’s’])

ua_all(:,:,la) = ualpha2;

integrate_kernel; % forward integration

t = toc;

disp([’time needed: t=’ num2str(t) ’s’])

ub_all(:,:,la) = uv_b;

ualpha1=uv_b; % first guess for next estimate

end

This is the code control delay 1d:

a = 2*pi; % setup grid on circular domain

N = 101; % number of grid points

h = a/(N-1); % grid spacing

p = 0:h:2*pi; % vector of angles

R = 3; % radius for visualizations

px = R*cos(p); % grid points

py = R*sin(p); % ~

123

sigma = 1; % decay parameter

r1 = R*sqrt((cos(p)+1).^2 + (sin(p)).^2);

for j=1:N % distance matrix

rmat(j,:) = R*sqrt((cos(p)-cos(p(j))).^2 + (sin(p)-sin(p(j))).^2);

end % initial field

uv(:,1) = exp(-sigma*r1.^2);

r2 = R*sqrt((cos(p)-cos(pi/3)).^2 + (sin(p)-sin(pi/3)).^2);

r3 = R*sqrt((cos(p)-cos(-pi/3)).^2 + (sin(p)-sin(-pi/3)).^2);

%Wmat = zeros(N,N);

Wmat = 10*(0.3*repmat(exp(-sigma*r2.’.^2),1,N).*...

repmat(exp(-sigma*r1.^2),N,1)+...

0.3*repmat(exp(-sigma*r3.’.^2),1,N).*...

repmat(exp(-sigma*r2.^2),N,1)+...

0.3*repmat(exp(-sigma*r1.’.^2),1,N).*...

repmat(exp(-sigma*r3.^2),N,1))*h;

Nt = 25; % number of time steps

eta = 0.5; % threshold in neural equation

ht = 0.2; % time stepping

tau = 1; % time parameter

for k=1:Nt % temporal loop

if(mod(k,10)==0)

disp([’k=’ num2str(k)]);

end

drawnow;

for j=1:N % loop over grid points

kv = 1.0*round(rmat(j,:));

for xi=1:N % collect temporal influence

ec(xi,1) = f(uv(xi,max(1,k-kv(xi))),eta);

end % ODE Euler Step

du(j,1) = ht/tau*(-uv(j,k) + Wmat(j,:)*ec);

end

uv(:,k+1) = uv(:,k)+ du;

if(1==0)

fo = figure(1); % visualize simulated excitation

plot3(px,py,zeros(size(px)),’k.-’);

124

hold on;

plot3(px,py,uv(:,k+1),’r.-’,’LineWidth’,3);

axis([-R,R,-R,R,-0.1, 1.1]);

hold off;

drawnow;

end

end

uv0 = uv;

Then, we run the estimation code.

ND=5; % measure every ND-th excitation

M = floor(N/ND); %

H = zeros(M,N); % setup observation operator

for j=1:M % ~

H(j,ND*j) = 1; % ~

end % ~

for jj=1:Nt

u = uv(:,jj); % original field

y = H*u; % simulated observation

alpha = 0.5; % regularization parameter

sigma = 2; % decay parameter for Gaussian kernel

B = exp(-sigma*rmat.^2); % Gaussian B matrix

% 3D-VAR estimation step

ualpha2(:,jj) = ualpha1(:,jj) ...

+ B*H’*inv(alpha*eye(M,M)+H*B*H’)*(y-H*ualpha1(:,jj));

if(1 == 0)

fo = figure(2); % visualize original u and

plot3(px,py,zeros(size(px)),’k.-’);

hold on;

plot3(px,py,u,’r.-’,’LineWidth’,3);

% visualize first guess ualpha1 and 3D-VAR estimate ualpha2

plot3(px,py,ualpha1(:,j),’b.-’,’LineWidth’,3,’MarkerSize’,15);

plot3(px,py,ualpha2(:,j),’m.-’,’LineWidth’,3,’MarkerSize’,15);

axis([-R,R,-R,R,-0.1, 1.1]);

hold off;

drawnow;

125

end

end

uav = ualpha2;

%saveas(fo,’estimated.png’,’png’);

Then, we run inverse delay 1d.

for j=1:N % loop over gridpoints

if(mod(j,20)==0)

disp([’j=’ num2str(j)]);

end

drawnow;

%

kv = round(rmat(j,:)); % distance to index

for k=1:(Nt-1) % temporal loop

psi(k) = tau*(uav(j,k+1)-uav(j,k))/ht + uav(j,k);

for xi=1:N % collect temporal influence

phi(xi,k) = f(uav(xi,max(1,k-kv(xi))),eta);

end

end

%

A = phi’; % setup reconstruction matrix

rhs = psi’; % and right-hand side

alpha = 0.1; % regularization parameter

nn = size(A,2); % dimension

% kernel reconstruction by Tikhonov Regularization

Wmat_alpha(j,:) = (inv(alpha*eye(nn,nn)+A’*A)*A’*rhs)’;

end

% visualize kernel reconstructions

if(1 == 0)

ca = 0.2;

fo = figure(3); % visualize original kernel

colormap(pink)

colormap(flipud(colormap))

surf(p,p,Wmat); shading interp; caxis([0 ca]); colorbar;

axis tight; view(30,50); axis([0 a 0 a -0.01 ca])

set(gca,’FontSize’,14)

saveas(fo,[’kernel_original_alpha=’ num2str(alpha) ’.png’],’png’)

fo = figure; % visualize reconstructed kernel

126

colormap(pink)

colormap(flipud(colormap))

surf(p,p,Wmat_alpha); shading interp; caxis([0 ca]); colorbar;

axis tight; view(30,50); axis([0 a 0 a -0.01 ca])

set(gca,’FontSize’,14)

saveas(fo,[’kernel_reconstruction_alpha=’ num2str(alpha) ’.png’],’png’)

fo = figure; % visualize kernel reconstruction error

colormap(pink)

colormap(flipud(colormap))

surf(p,p,Wmat-Wmat_alpha); shading interp; colorbar;

axis tight; view(30,50); axis([0 a 0 a -0.01 ca])

set(gca,’FontSize’,14)

saveas(fo,[’kernel_differences_alpha=’ num2str(alpha) ’.png’],’png’)

end

uv_b(:,1) = uv(:,1);

for k=1:Nt % temporal loop

if(mod(k,20) == 0) %

disp([’k=’ num2str(k)]);

end

drawnow;

for j=1:N; % loop over grid points

kv = round(rmat(j,:));

for xi=1:N % collect temporal influence

ec(xi,1) = f(uv_b(xi,max(1,k-kv(xi))),eta);

end % ODE Euler Step

du(j,1) = ht/tau*(-uv_b(j,k) + Wmat_alpha(j,:)*ec);

end

uv_b(:,k+1) = uv_b(:,k)+ du;

end

127

	Introduction
	Overview
	The Biological Aspect
	The Mathematical Modeling
	Delayed Neural Field Equations
	Related Work
	The contribution of this work

	Outline of This Thesis

	Basic Material and Method
	Basic Functional Analysis
	Vector Spaces
	Normed Spaces
	Convergence, Compactness and Completeness
	The Banach Fixed Point Theorem
	The Fréchet Derivative

	Methods of Approximation
	Collocation Method

	Fundamental Knowledge of Regularization
	Ill-Posedness Problems
	Regularization Schemes
	Tikhonov Regularization.

	Inverse Delay Neural Field Equation
	Introduction to Inverse Problems.
	Solvability of Delay Neural Field Equation
	The Direct and the Inverse Delay Neural Field Problems
	The Inverse Problem of Kernel Reconstruction with delays
	Kernel Reconstruction with Delays
	Regularization for Kernel Reconstruction

	Sensitivity Analysis
	Summary and Further Discussion

	State Estimation for Neural Field Equations
	Introduction to Data Assimilation.
	Errors and Uncertainty in Data assimilation
	Methods of Data Assimilation
	Overview of 3D-Var

	Data Assimilation of Neural Fields
	Summary

	Iteration of Data Assimilation and Inversion
	On The Combination of State Estimation and Inversion
	Analysis of the Algorithmic Components
	The Transport Map: Dependence on the Kernel
	Assimilation in finite and infinite dimensional Setup
	Kernel Reconstruction: Dependence on the Analysis

	The iterative kernel and state reconstruction approach
	Convergence Proof
	Summary

	Numerical Examples
	Feasibility of Kernel Reconstructions
	Sensitivity with Respect to Functional Input
	3D-Var for Neural Field Equations
	Iteration with convergence Examples
	Summary

	Conclusions and Outlook
	Conclusions
	Future Investigation

	Bibliography
	Appendix
	 Firing function and control code
	Example of Chapter 4
	Examples of Chapter 6
	Examples of Section 6.1
	Figures of Section 6.2
	Figures of Section 6.3
	Figures of Section 6.4

