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There have been significant advances in the field of Internet of Things (IoT)

recently, which have not always considered security or data security con-

cerns: A high degree of security is required when considering the sharing

of medical data over networks. In most IoT-based systems, especially those

within smart-homes and smart-cities, there is a bridging point (fog comput-

ing) between a sensor network and the Internet which often just performs

basic functions such as translating between the protocols used in the Internet

and sensor networks, as well as small amounts of data processing. The fog

nodes can have useful knowledge and potential for constructive security

and control over both the sensor network and the data transmitted over the

Internet. Smart healthcare services utilise such networks of IoT systems. It

is therefore vital that medical data emanating from IoT systems is highly

secure, to prevent fraudulent use, whilst maintaining quality of service pro-

viding assured, verified and complete data. In this paper, we examine the

development of a Cognitive Fog (CF) model, for secure, smart healthcare

services, that is able to make decisions such as opting-in and opting-out from

running processes and invoking new processes when required, and provid-

ing security for the operational processes within the fog system. Overall, the

proposed ensemble security model performed better in terms of Accuracy

Rate, Detection Rate, and a lower False Positive Rate (standard intrusion

detection measurements) than three base classifiers (K-NN, DBSCAN and

DT) using a standard security dataset (NSL-KDD).
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1 INTRODUCTION
The Internet of Things (IoT) is a network of smart connected objects

covering electronics, software, and network connectivity. According

to [Rahmani et al. 2015], IoT is a manageable set of convergent de-

velopments in sensing, identification, communication, networking,

and informatics devices and systems. The IoT is increasingly being

integrated into daily lives due to advances in automating daily func-

tions and roles, such as healthcare monitoring which becomes more

efficient using an IoT architecture [Wu et al. 2014]. According to a

2015 IBM white-paper [Green 2015], the IoT needs to be smarter so

that better results from connected devices could be attained [Maa-

mar et al. 2018]. In most IoT system architectures, such as healthcare

monitoring systems within smart homes or hospitals, there exists

a bridging point, called fog node, between the IoT devices and the

Internet (i.e. the cloud). This fog layer often only performs basic

functions such as translating between the protocols used in the Inter-

net and the deployed smart objects such as Low power devices and

Lossy Networks (LLN) [Agustin et al. 2017] along with the provision

of basic data storage and manipulation services (e.g., data filtering

and aggregation) [Rahmani et al. 2015]. Fog computing offers the

ability to extend not only storage capabilities but also networking

and computing capabilities of the cloud to the edge of the network.

The better positioning of fog nodes within the network, in rela-

tion to fog connectivity with end-devices, can boost functionality,

especially for systems that require data synchronisation with low

latency (i.e. real-time healthcare service systems) [Al-khafajiy et al.

2018]. These include examples such as heart-monitors and smart-

meters. Fog nodes can have the advantage of providing knowledge

and constructive control over both the network of IoT devices and

the data transmitted over the network. This enables fog nodes to not

only act on the data but also make intelligent decisions regarding

resource utilization and security.
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In this paper, we propose a novel Cognitive Fog (CF) model that

interacts with surrounding objects (e.g. the IoT devices and other

fog nodes) and enables:

• (i) Completion of the processes of the running services and

satisfying their needs and requirements, assuring correctness

of medical/clinical data, for example.

• (ii) Decision making for contributing to serving other IoT

devices based on their interactions and computational abilities

ensuring agility and robustness within a healthcare services

system.

• (iii) Security awareness for detecting malicious activities that

may undermine the performance or privacy of a healthcare

services fog system.

Cognitive capabilities provided by the model include reasoning,

problem solving, planning, and learning from experience. The cog-

nitive capabilities relate to monitoring performance on related fog

nodes and IoT devices to determine how best to allocate resources,

transmit data, and detect malicious activity based upon analysis of

current and previous performance Shi et al. [2019]Balasubramanian

et al. [2019b]Ali and Cheng [2019]. These are important considera-

tions in the provision of medical and healthcare service via smart

networks. The model uses monitoring data to enhance service pro-

visioning and security within the fog system. A fog node federation

gathers relevant fogs’ processes and models together according

to the needs and requirements of different situation that required

cognitive fog decisions to handle incoming requests. The model

operates in both a planned and ad-hoc mode. The planned mode is

developed during the set-up stage and has the fog nodes and IoT

devices already identified with respect to a situation’s needs and re-

quirements. The ad-hoc mode is activated when the existing planned

federations cannot deal with a situation and, hence, necessary fog

constituents that will satisfy this situation’s needs and requirements,

are identified. An important aspect of the Cognitive Fog model is

performance free from malicious intervention. Intrusion Detection

Systems (IDSs) are essential units in networks, and aim to protect

the networks against malicious activities that may interfere with the

network and manipulate the data traffic. The Cognitive Fog model,

particularly in healthcare systems, uses an ensemble classifier based

on K-Nearest Neighbor (K-NN), Density-Based Spatial Clustering of

Applications with Noise (DBSCAN) and Decision Trees (DT), that

enables detection of attacks that may target the CF. The goal of the

research presented in this paper is a CF model that uses planned and

ad-hoc federations to monitor and control resources and prevent

malicious activity in a healthcare services system based upon an

ensemble classifier that uses K-NN, Density-Based Spatial Cluster-

ing of Applications with Noise (DBSCAN) and Decision Trees (DT)

to detect malicious activity that may undermine performance and

security.

To this end, the main contributions of this paper are as follow:

• Empower fog nodes with reasoning, learning, and adaptation

capabilities to provide resilience to attacks, swift recovery of

systems, following any security incidents and robustness to

attack, though for example, early detection. These fog nodes

would be incorporated into services provisioning models fa-

cilitating the proposed intelligent control and security.

• Propose an ensemble classifier based on K-NN, Density-Based

Spatial Clustering of Applications with Noise (DBSCAN) and

Decision Tree (DT), that is able to detect attacks that may

target the CF and classify these attacks with high accuracy

and efficiency level.

• Implement the CFs federation based on Planned Federations (PF )

and Ad-hoc Federations (AF ). In (PF ), all CFs are known to

each other from the design time to assist, or take benefit from,

each other. Contrarily, in (AF ), the CFs are communicating

with each other based on a need (i.e., formed on the fly). In

both cases the data security benefits ensue from the robust

configuration of the CFs in terms of communication, threat

awareness, process recovery and, not least, because of the

intelligent control of data by the CFs.

The remainder of this paper is organized as follows: In Section 2,

related works to this paper are discussed, and the main challenges

are described. The proposed architecture and framework presented

in more details in Section 3 and 4. The case study, testing and evalu-

ation are discussed in Section 5. Finally, the conlusions and future

directions are summarised in Section 6.

2 RELATED WORK
This section discusses the state-of-the-art work in healthcare data

processing over fog and cloud computing. This includes, for exam-

ple, resources allocation for healthcare data processing, workload

distribution, and use of machine learning to improve the perfor-

mance and security of IoT-enabled applications. Despite the growing

interest in fog computing for IoT-enabled applications, there does

not appear to be established approaches for intelligence distribution

via Cognitive Fog Computing models for applications in healthcare

service systems. Previous research has discussed federated devices,

Cognitive fog IoT, and load-distribution via fog cloud models. Fog

entities are being used to deliver continuous/stable simple/complex

services for surrounding environments [Al Ridhawi et al. 2019].

Moreover, Also, trust-based security solutions have been the focus

of both industry and academia. Trust can help in detecting and

isolating those malicious entities which are part of a network using

legal identities. Besides, trust plays an important role in nurturing

the relation between different fog nodes in term of maintaining user

privacy and information security.

There are many trust-based models and resource access control

across heterogeneous networks that have been reviewed thoroughly

in the literature [Balasubramanian et al. 2019a; Galluccio et al. 2015;

Henze et al. 2014; Wang et al. 2018b]. Kai Hwang with his team

present the idea of trust in clouds, in which he suggested to combine

security-based data centers, data access and virtual clusters driven

by reputation systems [Hwang et al. 2009]. The work of [Henze

et al. 2014] introduces a trust mechanism using a point-based tech-

nique for protecting against unauthorized entry. For securing data

transmission between two devices, trust was used in the gateway

devices. However, it does not guarantee the credibility of sensor

data and cloud providers.

Heil et al. [Heil et al. 2007] propose a context-aware federation

approach for IoT devices to support user access, connect, and locate

arbitrary devices according to their functionalities. The approach
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utilizes the Federated Devices Assemblies (FDX) for integrating real-

word IoT devices into service federations. Mathlouthi et al’s [Math-

louthi and Saoud 2017] present an approach which enables the com-

position of federated cloud based System of Systems (SoS) to work

co-operatively in order to achieve common goals. A SoS constitutes

several complex, heterogeneous, and autonomous system deployed

on heterogeneous cloud environments. Both the functional and the

non-functional requirements are considered to obtain the best SoS

composition and maintain the overall Quality of Service (QoS). Heil

et al’s things federation and Mathlouthi et al’s SoS composition

approach are different from ours in the sense that we advocate and

focus on the cognitive fog and fog federation in response to specific

situations relating to performance and security.

Al-Turjman et al. [Al-Turjman 2017] propose a Cognitive Cashing

approach for the Future Fog that focuses on data exchange in Infor-

mation Centric Sensor Networks (ICSNs). It depends on functional

parameters (such as age of information and data fidelity) to assign

a value to the cashed data while retaining the most valuable one

in the cache for prolonged time period. This enables a significant

availability of the most valuable and difficult to retrieve data in the

ICSNs. The work of Jalali et al. [Jalali et al. 2017] propose a cogni-

tive IoT gateway based approach supported by cognitive analytic

and machine learning to improve the performance of IoT-enabled

applications. The proposed approach enables the IoT devices to auto-

matically learn and decide whether and when to run an application

on the Cloud or on the fog.

Fog-based trust management is on its inception, because there

have been very few reported work on the topic of trust mechanism

in fog computing. In [Alrawais et al. 2017], the authors carried out

a survey for finding the current security issues and challenges in

IoT and propose a fog-based security mechanism to improve the

distribution of certification revocation information between IoT de-

vices. The authors in [Wang et al. 2018a] come up with the concept

of fog-based hierarchical trust-based mechanism for SDN, which

has two distinctive features: trust in network structure, and the

trust between cloud service providers (CSPs) and sensor service

providers (SSPs). They focus on the packet loss rate, route failure

rate and forwarding delay only. Elmisery et al. [Elmisery et al. 2016]

propose a fog-based middleware where trust between a fog node

and the cloud is calculated in a decentralized fashion using entropy

definition. The authors in [Soleymani et al. 2017] proposed a fuzzy

trust-based model that considers experience and plausibility for se-

curing vehicular networks. To ensure the correctness of information

collected from authorized vehicles, a series of security checks are

performed. Moreover, a fog -based facility is used to evaluate the

level of accuracy of event’s location.

A mobile fog is proposed by Hong et al. [Hong et al. 2013], which

is a high-level programmingmodel that is geographically distributed

on large scale and highly sensitive towards latency Balasubramanian

et al. [2020]. A bundle of various functions and event handlers are

included in the mobile fog, which an application can access when-

ever required. The mobile fog model is static, and therefore does

not present a generic model. However, it is a model for a particular

applications while excluding functions that take care of the process-

ing primitives. Moreover, using mobile fog as a primary resource is

not a good solution as the mobile fog may not be available due to

signal loss. Beate et al. [Ottenwälder et al. 2013] introduce a place-

ment and migration technique for cloud and fog resources providers.

They demonstrate how the application prior knowledge of Complex

Event Processing (CEP) system helps reduce the necessary band-

width of Virtual Machines (VMs) migration. Notwithstanding, the

work failed to enhance the workload mobility as fog nodes are also

capable of performing computationally intensive tasks.

The authors in [Agarwal et al. 2016] focus on resource allocation.

They propose a three-layer architecture: Clients, Fog, and Cloud.

Then, they implement a workload distribution algorithm between

the cloud and fog layers. This necessitated implementing a module

that checks if enough computational resources exist in the des-

ignated fog node. Consequently, incoming tasks can be executed

subject to resource availability; or otherwise postponing few tasks

or dispatching them to the cloud node. Hence, the main limitation of

this work is the assumption that a manager does exist between every

fog and cloud node to manage the cooperation among them. This

approach does not thoroughly support the proper execution of dis-

tributed tasks. Kapsalis et al. [Kapsalis et al. 2017] propose a new fog

layer that incorporates the ‘manager’; thereof, allocating resources

and managing tasks run in the same fog layer. It utilizes a distributed

communication method based on publication/subscription pattern

resource sharing between fogs. In their fog stratum, they define a

so-called “utility metric" among fog nodes which identify the com-

munication benefits when/if the fog nodes share resources. They

first specify an organised list of preference pairing fog nodes for

each node. Each node in the fog layer will then set a pairing request

to its preferred pairing nodes. On the reception side, depending on

the preference and benefits of the previously received requests, a

target node decides either to accept or reject the request. A limita-

tion of this work is that the core parameters upon which the fog

nodes take decisions are the communication cost between nodes

which can be affected by some factors (e.g., time and location) of the

pairing. In addition, they do not consider the QoS (such as latency,

bandwidth and etc.) in the resource sharing decisions.

Much research considered the challenges of intrusion detection in

fog networks [Bhuyan et al. 2014], [Alom and Taha 2017], [Soheily-

Khah et al. 2018], [Otoum et al. 2017b] and [Otoum et al. 2017a]. Par-

ticle Swarm Optimization (PSO) has been adopted in [Aburomman

and Reaz 2016] for proposing an IDS-based on ensemble technique.

Another ensemble technique has been introduced in [M.Govindarajan

2016], where the authors presented a hybrid IDS by adopting both

Support Vector Machine (SVM) and the Radial Basis Function (RBF)

in which they utilized various datasets and showed that heteroge-

neous models performed better than homogeneous models. Other

ensemble-based solutions are presented in [Govindarajan 2016]

and [Moustafa et al. 2019]. The authors in [Govindarajan 2016]

used arcing for heterogeneous and bagging for homogeneous clas-

sifiers in which they utilized SVM and RBF as base classifiers in

their proposed ensemble method. The work presented in [Moustafa

et al. 2019] proposes an ensemble intrusion detection mechanism to

minimize malicious activities affecting IoT protocols. The authors

adopted Artificial Neural Network (ANN), Naive Bayes (NB) and

Decision Tree (DT) to detect such malicious activities. Thus far, the

work in the field of fog computing revolves around the on network

communication and content migration.
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Table 1. Notations used in the paper

Symbol Description

CF cognitive fog node

𝑡𝑠 task to be executed by CF

AF ad-hoc federations

PF planned federations

𝐸 (𝑆) entropy for a set 𝑆

𝑝 (𝑥) probability of an event 𝑥

𝐸 (𝑆,𝑇 ) Entropy with respect to feature 𝑇

𝐺 (𝑆,𝑇 ) Entropy change after a decision on feature 𝑇 , where 𝑆 is a set

However, our work focuses on investigating a fog framework

to empower optimal load on fog nodes, and provides appropriate

security, facilitating protection and privacy of medical data in ex-

changes between IoT systems and practitioners. Abouelmehdi et al

[Abouelmehdi et al. 2018] commented that concerns over healthcare

data security and privacy are steadily increasing, in particular with

regard to cloud based healthcare data [Sajid and Abbas 2016]. This

framework aims to support fog activities and support high data traf-

fic levels, and large volumes of data that need processing, through

a cognitive fog model.

3 PROPOSED COGNITIVE FOG MODEL
The core concepts of CF and fog federations is elaborated in this

section. Before we present the details, i) mostly used notations are

given in Table 1, and ii) some key definitions are highlighted below:

Cognitive Fog (CF)model concerns interpreting gathered/received

data from IoT devices, via pattern matching in a way that mimics the

process of cognition in the human mind [Sheth 2016]. CFs can learn

from their past processes according to different situations/scenarios,

and improve when performing repeated processes. The Cognitive

fog model employs algorithms concerning pattern recognition and

data mining to boost performance and achieve better experiences

on the repeated processes. In this paper, the context of CF takes

the same concepts of cognitive computing which can be define ac-

cording to DARPA definition of cognitive system as a system that

can “reason, use represented knowledge, learn from experience, accu-
mulate knowledge, explain itself, accept direction, be aware of its own
behavior and capabilities as well as respond in a robust manner to
surprises" [Maamar et al. 2018; Sheth 2016]

Fog Federation concerns gathering multiple fog nodes to per-

form/achieve a specific task in a certain situation or scenario. Fogs

become members of a federation because of their capabilities that

permit the satisfaction of the needs and requirements of the situ-

ation assigned to this federation for handling. Hence, fogs are to

be described and discovered for federation and, then, selected for a

particular federation according to 𝑝𝑙𝑎𝑛𝑛𝑒𝑑 and 𝑎𝑑-ℎ𝑜𝑐 federations.

• Planned federation formed at design-time, all its fog partici-

pants are already identified and ready to act according to a

task’s needs and requirements.

• Ad-hoc federation formed at run-time, fogs are joined to-

gether according to certain occasions where each fog can

empower the federation with various types of processing and

controls that enhance performance.

3.1 Fog Architecture
We propose to adopt the general 𝐼𝑜𝑇 -𝐹𝑜𝑔 based architecture which

has been proposed in our previous work [Al-khafajiy et al. 2018]

and in-line with other fog architectures in [Al-khafajiy et al. 2018;

Fan and Ansari 2018; Yousefpour et al. 2018] to apply to the provi-

sion of smart medical and healthcare systems. Thus, realising the

fog based architectures helps obtain a better insight into the real

cognition of fog’s abilities in such systems. The main layers of such

CF architecture are “𝐷𝑒𝑣𝑖𝑐𝑒” layer, “𝐹𝑜𝑔” layer, and “𝐶𝑙𝑜𝑢𝑑” layer

as per Fig. 1.

Device Layer: Also termed the perception layer, this is the start-

ing point where IoT data is generated. This layer contains the inter-

connected devices (e.g., heart-rate sensors and embedded systems)

which feed the fog layer with data. Each device in this layer is fa-

cilitated with a communication protocol (e.g., IEEE 802.15.4, WiFi,

Blue-tooth, and MQTT) which permits the device to transmit the

generated data to the fog nodes over the network.

Fog Layer: It contains a number of decentralised nodes. This

layer handles the primary refining, and processing of data generated

in the devices layer. Fog nodes aim to improve the efficiency of IoT

applications, in terms of the potential to reduce the amount of data

transmitted to the cloud layer, and minimizing the request-response

time for IoT applications, as well as performing cognitive processes

and making decisions that can enhance user experiences.

Cloud Layer: is the top layer of the IoT architecture that enables

convenient and appropriate network access for shared resources

(e.g., storage and services) over the IoT network. The cloud performs

the more processing intensive services of data analysis that the fog

layer cannot perform.

3.2 Cognitive Fog Model
For the fog layer to be cognitive so that it can reason about the en-

vironment, learn from past occurrences, and adapt to changes, the

fog requires components such as pattern recognition that enables

the fog network to interpret the network environment. In addition,

a cognitive fog requires computation/processing capability for task

processing needs, resources for storage needs and communication

abilities for networking and interactions. The operations over the

CF run or interact with the four connected worlds as per Fig. 2. The

data world featuring both row and filtered data, the process world

featuring processing models, the fog world featuring the CF pro-

cesses and controls, and finally the devices word which is controlled

by the CF to adapt to the environment. The CF either acts upon

device data or directs devices to engage in continuous interactions

that should better perform certain tasks, such as directing traffic

following congestion or accidents. Each CF has a number of param-

eters that either permit the CF to participate in decision making

processes or just to step-out of the process. Such parameters can

influence CF involvement in active processes in the process world

due to limited availability (e.g. busy network), security restrictions

(e.g., malicious processes), processing or storage limitations, and/or
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Fig. 1. IoT-Fog Architecture Layers

bandwidth limitations. Therefore, participation considers restric-

tions that influence CF participation with other CFs process during

planned or ad-hoc federations (Section 3.3).

The cognitivemodel can be defined as a three stage cycle as per Fig. 3.

The first stage is the reasoning stage, where all cognition activities

take place to assess the surroundings according to the received data

from the data and devices worlds. Prior to any decision made by the

CF, it will check its parameters in terms of restrictions for any pro-

cesses and/or participation within the new context that may impact

the CF’s performance. In the second stage, the CF relies on both

the device’s data and data in the data world to make decisions and

reasoning that could lead to the CF participating in a new process as

well as adjusting behaviours, such as executing additional processes

(e.g., pattern recognition) to identify certain activities, then ideally,

to redirect the connected devices accordingly. In the third stage, the

lessons learned during the adaptation and participation of CF will

feed into a learning process, such as making new rules/notes for

its parameters. All learning outcomes will feed into the reasoning

stage that applies to the CF in future interactions.

3.3 Cognitive Fog Federation
To model CF federations, understanding the insight of the CF design

is essential. In our proposed model, each CF consists of set of 4-tuple

CF = {𝑖, 𝑡, 𝑐, 𝑙}. Where 𝑖 refers to CF unique identifier, such as, IP

address, 𝑡 denotes the type of CF (e.g., type of processes or jobs

that the CF is capable of). 𝑐 denotes to the total capability of the CF

node, such as fog hardware limitations (e.g., CPU frequency), and

finally 𝑙 denotes to the actual geographical location where the CF is

installed. Thus, these CF’s tuples are used to define each CF in the

network, prior or during any federation. Fig. 4 shows both types

of federations (planned and ad-hoc federations). In planned feder-

ations (PF ), all CFs are known to each other initially (i.e., during

design time) and are designed to assist, or take benefit from each

other. While in ad-hoc federations, the fog nodes are communicat-

ing with each other based on a need, hence they are formed and

introduced to each other on the fly to perform a certain task.

Thus, the CF in a particular geographical-area, having the same

𝑡 (i.e., same type of processes or jobs) and 𝑙 (e.g., within the same

network domain), are designed to communicate with each other to

deliver a single task. We can formulate a PF as:

PF = {CF 𝑡𝑠1
1

, CF 𝑡𝑠2
2

, ..., CF 𝑡𝑠𝑛
𝑛 } (1)

Where 𝑡𝑠 refers to the tasks required from CF during the federa-

tion. For instance, the roadside of a highway supplied with a set of

CFs to perform road monitoring tasks, such as traffic and accidents

(known from data provided from devices planted along the way).

The CFs are connected to each other at the design time, thus in

this scenario, the planned federations occurs when one or more CF
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Fig. 2. Interactions of the Cognitive Fogs in healthcare

Fig. 3. Cognition of the Cognitive Fog as a 3 stage cycle based on healthcare

failed for whatever reasons, the active CF will federate to cover the

failure of the CF. In PF , CF would usually be connected to perform

a specific task (e.g., road monitoring) and not multi-tasks.

In contrast, in AF , the CFs are communicating with each other

based on a need (i.e., formed on the fly) and usually perform differ-

ent types of tasks (i.e., multi-tasks are achieved from the federation)
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Fig. 4. Planned and Ad-hoc federations

according to a specific situation, for example, multiple CFs can form

a federation to detect and react upon a patient’s illness. In form-

ing a federation the CFs create a trust environment whereby the

computational power and data capabilities of the federation can

be optimised for a given set of circumstances. Past occurrences of

patient illness and subsequent engendered set of actions can be both

utilised and reasoned upon to provide swift diagnoses and best prac-

tice responses. Hence, within the AF , multiple CFs could perform

one or more tasks according to requirements, therefore, theAF can

be formulated as a 2-dimensional matrix of CF communications

according to tasks, as follow:

AF =

©«
CF 𝑡𝑠1

1,1
CF 𝑡𝑠1

1,2
· · · CF 𝑡𝑠

1,𝑛

CF 𝑡𝑠2
2,1

CF 𝑡𝑠2
2,2

· · · CF 𝑡𝑠
2,𝑛

.

.

.
.
.
.

. . .
.
.
.

CF 𝑡𝑠
𝑥,1 CF 𝑡𝑠

𝑥,2 · · · CF 𝑡𝑠
𝑥,𝑛

ª®®®®®¬
(2)

So that, one row could refer to the multiple CFs collaborations

to achieve one task (CF 𝑡𝑠1
1,1

& CF 𝑡𝑠1
1,2

& · · · & CF 𝑡𝑠
1,𝑛), while the

total CFs in the federation (i.e., all rows and columns) are achieving

multiple tasks.

3.4 Cognitive Fog Security
The CFs, in this area of smart healthcare systems, are proposed to

both maintain policy enforcement across the various domains whilst

creating, adapting and coordinating consistent security, privacy and

data security through the system. The majority of cloud security

options are unable to offer reliable data security solutions as they

tend to be separately deployed as an overlay. The CF model allows

security concerns not only to be embedded in the initial system

set-up but also to be adaptable and evolvable. Upon receipt of data,

reasoning takes place within the CFs, which maybe to identify

malicious use or detect intrusions. At this point the current context

of policies, constraints and system norms will be assessed. The CF

then reasons, in this context, to reach a decision to, for example,

adjust behaviour, identify an intrusion or instruct an associated

device. Finally, the CF assimilates the learning into its cognitive

model for use in future reasoning’s.

4 PROTECTED COGNITIVE FOG
In our proposed ensemble-based intrusion detection model (Sec-

tion 4.1), the gathered traffic from the CF nodes has been directed

to three base classifiers namely K-Nearest Neighbor (K-NN) classi-

fier, Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) classifier, and Decision Tree (DT) classifier following a

time-slotted method in a round-robin fashion as shown in Figure

5, where 𝑓1, 𝑓2, and 𝑓3 refers to classifiers 1, 2 and 3 respectively,

𝑡1, 𝑡2, ..., 𝑡𝑛 refers to the gathered traffic 𝐷 at time slots 1, 2,..., 𝑛,

respectively. The results from the three classifiers are integrated

provide a conclusion from the ensemble technique.

4.1 Proposed Ensemble Method
In the proposed ensemble technique, we adopt three base classifiers,

K-Nearest Neighbor (K-NN) classifier, Density-Based Spatial Clus-

tering of Applications with Noise (DBSCAN) classifier, and Decision

Tree (DT) classifier, which together provide analysis of CF collected

traffic.

The NSL-KDD dataset [for Cybersecurity 2018] has been used for

training and testing the presented techniques. The NSL-KDD fea-

tures records that have been forwarded to the three base classifiers.

The collected decisions from the three classifiers are combined us-

ing the combiner to produce the overall conclusion of the ensemble

technique as represented in Figure 6. As the combining technique,

we adopt the majority voting rule. The majority voting rule is the
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simplest and most effective voting scheme in this instance; the class

with the highest number of votes from the three classifier systems

is the outcome.

4.1.1 K-Nearest Neighbour Classifier. K-Nearest Neighbour (K-NN)
Classifier is considered an effective classifier for classification pur-

poses. In order to classify an input traffic, an establishment for k

nearest training patterns will be done based on the Euclidean dis-

tance measurement between the gathered traffic (input traffic) and

every training pattern. After that, the traffic is then assigned to the

class by using the majority voting technique where the traffic is clas-

sified to the frequent class amongst the 𝑘 nearest training patterns.

The adopted K-NN procedure is presented in Algorithm 1 [Tay et al.

2014].

4.1.2 Density-Based Spatial Clustering of Applications with Noise
(DBSCAN). The DBSCAN technique has been adopted as one of

the proposed ensemble technique base classifiers. DBSCAN is a

density-based clustering mechanism where it formulates clusters as

dense regions [Otoum et al. 2017a][Ma and Zhang 2004]. It classifies

the clusters such as all adjacent clusters undergo under the same

class [Jiang et al. 2001]. The adopted DBSCAN technique is shown

in Algorithm 2. Where 𝜖 refers to the neighborhood regions’ radius,

𝑀𝑖𝑛𝑃𝑡𝑠 refers to the minimum number of gathered points together

within that neighborhood and 𝐷𝑎𝑡𝑎 refers to the used dataset. The

algorithm starts by randomly picking up point from the adopted

dataset (𝐷𝑎𝑡𝑎) till all the points have been visited. If at least𝑀𝑖𝑛𝑃𝑡𝑠

within 𝜖 radius, all these points will be within the same cluster which

have been tested and achieved using the 𝐶𝐿𝑈𝑆𝑇𝐸𝑅𝐼𝑁𝐺 function

as shown in Algorithm 2 .To this end, the clusters will be extended

by repeating the neighborhood calculation (𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑝𝑡𝑠) for all

neighboring points.

4.1.3 Decision Tree classifier. Decision Tree (DT) classifier is adopted
as a base classifier for our proposed ensemble-based intrusion de-

tection. In DT, each data point can be utilized to make a choice by

splitting the data points into reduced groups, made up of nodes

that formulate the rooted tree. In DT, any tree contains three nodes

categories, namely, the terminal, internal and root nodes [Farid et al.

2010]. Iterative Dichotomiser-3 (ID-3) is the DT which is adopted in

this work.

Each node in ID-3 links to a various feature while each arc char-

acterizes the possible value of each attribute. Entropy is utilized in

ID-3 in order to calculate the event predictability which represents

the amount of data uncertainty while the information gain princi-

ples are utilized to regulate the features splits goodness, such as,

the feature with the maximum gain is considered as the splitting-

purpose feature [Pujari 2001]. Entropy 𝐸 (𝑆) for a set 𝑆 is formalized

as in Equation 3 [Pujari 2001],

𝐸 (𝑆) =
∑
𝑥𝜀𝑋

𝑝 (𝑥) log
2

1

𝑝 (𝑥) (3)

Higher 𝐸 (𝑆) values specify the high uncertainty while the lower

values represent the low ones. Information gains 𝐺 (𝑆,𝑇 ) refers to
the entropy change after a decision on feature 𝑇 , where 𝑆 is a set.

𝐺 (𝑆,𝑇 ) is formalized in Equation 4.

𝐺 (𝑆,𝑇 ) = 𝐸 (𝑆) − 𝐸 (𝑆,𝑇 ) = 𝐸 (𝑆) −
𝑛∑
𝑖=0

𝑝 (𝑥)𝐸 (𝑇 ) (4)

In Equation 4, 𝑝 (𝑥) refers to the probability of an event 𝑥 . As a

summary, ID-3 algorithm begins with the root node creation, cal-

culating the 𝐸 (𝑆), calculating the entropy with respect to feature T

𝐸 (𝑆,𝑇 ), choosing the feature 𝑇 with maximum gain 𝐺 (𝑆,𝑇 ), elimi-

nating the feature with the highest𝐺 and finally, repeating the same

steps for all features [DT2 2018].

4.1.4 The combiner technique. The Majority Voting technique has

been adopted as the combiner technique for our proposed ensemble-

based intrusion detection model. The majority voting technique

forwards the gathered data into the class that has the majority

among the output gathered from the base classifiers [Bouziane et al.

2011].

4.2 Cognitive Fog Ensemble for Security
Specifically for anomalous events such as intrusion detection in

smart healthcare systems, the ensemble of CFs using these 3 base

classifiers and majority voting effectively analyse and provide action

for reasoning over the collected network traffic data. To identify

anomalous events, a clear baseline for what is considered normal is

required. This subjective metric is often based on the network policy

that defines which users are allowed to access network resources.

In the case of the CFs, this initial policy can be adapted and evolved

by the CFs themselves.

5 CASE STUDY AND TESTBED SETUP

5.1 Case Study
The case study concerns improving the operation and security of a

healthcare and biomedical systems by the introduction of CFs. In this

paper, our case study examines a CF to monitor the health and activ-

ities of elderly people in care-home premises, including associated

concerns of data security and privacy. Consider an IoT healthcare

system, to monitor patients with chronic diseases symptoms data,

offered by a healthcare organisation to patients in care-homes. The

system supports real-time monitoring of patient activities. It con-

sists of smart healthcare wearable devices (e.g., heart rate and fall

sensors), CFs, cloud and a dashboard for the caregivers and doc-

tors to monitor a patients symptoms. The fogs are responsible for

obtaining real-time data from wearable devices, ensuring the secu-

rity and privacy of that data and making primary analyses of the

gathered data for healthcare purposes. While the cloud data-center

is responsible for data storage and future analysis (non-real-time

processes) including the machine learning (ML) segment for data

training and analysis activities, both on the data itself and assessing

vulnerability to attack, etc., from a data security perspective. The IT

division experts install CFs according to the care-home size, with

at least two CFs at any given location of their care-home premises.

The reason for this is to make sure that a backup fog is always

available in case of one CF’s failure. Also, in case of one node being

busy with processes of a planned or an ad-hoc federation. To handle

the patient monitoring, we have focused on monitoring the pulse
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Fig. 5. Gathered traffic distribution mechanism between 𝑓1, 𝑓2 and 𝑓3

Fig. 6. The proposed Ensemble model

rate (i.e., heart-rate) with either abnormal racing or dropping in the

pulse. At all stages the CFs are monitoring and reasoning on the

state of the system, providing adaptable and intelligent data security

services as well as high functionality. To this end, two possible cases

have been considered:

(1) First time pulse rate is racing/dropping: CF will analyse the

received data from the pulse sensor to detect/check for any

abnormal racing or dropping in the patients pulse. For any

suspicious situation, a planned CFs federation is formed, with

respect to the rescue CF non-functional requirements, to in-

vestigate patient’s status and make a decision based on feder-

ated CFs experiences with such situations. Once a decision is

taken, the caregiver will be notified through the dashboard

and every CF will make note for a set of learned lessons which

could be used in the future.

(2) Recurrent abnormality detected: on a similar situation, CFwill

learn (i.e. make note of repeated actions) the conduct taken
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Algorithm 1 K-NN pseudo-code

1: procedure KNN-learning (D , C , 𝑥 )

2: Input: D , C , 𝑥

3: ⊲ D as training data, ⊲ C as classes, ⊲ 𝑥 as data sample

4: Output: 𝑑𝑖𝑠
5: Classify (D , C , 𝑥)
6:

7: for 𝑖=1 to 𝑗 do
8: Compute 𝑑𝑖𝑠(D𝑖 ,𝑥)

Compute set 𝑁 ⊲ 𝑁 are the indices for 𝑘 shortest distances 𝑑𝑖𝑠(D𝑖 ,𝑥 )

9: Return the majority label C𝑖 such as 𝑖 ∈ 𝑁

Algorithm 2 DBSCAN algorithm

1: procedure DBSCAN (𝜖 ,𝑀𝑖𝑛𝑝𝑡𝑠 , 𝐷𝑎𝑡𝑎)

2: Input:
3: 𝜖 ,𝑀𝑖𝑛𝑝𝑡𝑠 , 𝐷𝑎𝑡𝑎, 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑝𝑡𝑠

4: Initialize: 𝐶𝐿𝑈𝑆 = 0.

5: ⊲ 𝐶𝐿𝑈𝑆 = 0 no clusters yet

6: ⊲ 𝐷𝑎𝑡𝑎 is the dataset

7:

8: for each un-visited data point 𝑁 in the dataset 𝐷𝑎𝑡𝑎 do
9: Mark 𝑁 as visited

10: 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑝𝑡𝑠= Query (𝑁 , 𝜖)

11:

12: if sizeof(𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑝𝑡𝑠) < 𝑀𝑖𝑛𝑝𝑡𝑠 then
13: Mark 𝑁 as 𝑛𝑜𝑖𝑠𝑒

14:

15: else
16: 𝐶𝐿𝑈𝑆= next cluster

17: CLUSTERING (𝑁 , 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑝𝑡𝑠 , 𝐶𝐿𝑈𝑆 = 0, 𝜖 ,𝑀𝑖𝑛𝑝𝑡𝑠)

18:

Query(𝑁 , 𝜖)

19: all points in 𝑁 region (with 𝑁 )

20:

21: CLUSTERING (𝑁 , 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑝𝑡𝑠 , 𝐶𝐿𝑈𝑆 = 0, 𝜖 ,𝑀𝑖𝑛𝑝𝑡𝑠)

22: Add 𝑁 to cluster 𝐶𝐿𝑈𝑆 .

23:

24: for each data point 𝑁 ′
in 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑝𝑡𝑠 do

25:

26: if 𝑁 ′
is not visited then

27: Mark 𝑁 ′
as visited

28: 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑝𝑡𝑠 ′= Query (𝑁 ′
, 𝜖)

29:

30: if sizeof(𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑝𝑡𝑠 ′) >=𝑀𝑖𝑛𝑝𝑡𝑠 then
31: 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑝𝑡𝑠= 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑝𝑡𝑠 with 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑝𝑡𝑠 ′

32:

33: if 𝑁 ′
is not in cluster then

34: Add 𝑁 ′
to 𝐶𝐿𝑈𝑆

35:

by caregiver on such situations, so that CF can automate the

processes and take the action quicker and on behalf of the

caregiver, such as request ambulance and notify the doctor(s)

regarding the patient’s status. In such scenarios, an ad-hoc

CF federation is formed after selecting the necessary CFs (i.e.

according to their functional requirements) with respect to

their non-functional requirements to run multiple processes.
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Fig. 7. Cognitive Fog Testbed

For example, care-home CF communicating with CF of near-

est hospital to send an ambulance to care-home address, also

communicating with roadside CF to clear the way for the

ambulance in advance to avoid traffic delays and congestion.

Once the case is over, the ad-hoc CFs federation becomes a

planned federation that could be initiated in the future, this

should be stored under a task with a similar situation with

similar non-functional requirements.

Our proposal is that CF for health monitoring would reason about

sensed data, such as pulse abnormality, time detected and the cir-

cumstances of pulse racing or dropping as well as, for data security,

access control and threat monitoring. Ideally, the CF will be able

to act accordingly and form the appropriate federations to solve all

issues. As previously stated these federations will be based on the

context of functional and non-functional requirements. Functional

requirement comprise the services controlled and monitored by the

CF. For example, pulse monitors, camera control, sensors reading,

etc. The non-functional requirements are the responses to meta-data

concerned largely with security and performance of the composed

CFs. For example adaptation of reasoning models, monitoring of

performance, data integrity, security and privacy, etc.

5.2 Testbed Setup
Our CF testbed shown in Fig. 7. The testbed was assembled using

four CFs and three device nodes. We assume that the CFs are located

in these locations, in the care-home (𝐶𝐹1 & 𝐶𝐹2) where patients are

based and in the hospital (𝐶𝐹3) and on-street fog (𝐶𝐹4) ( located

on roadside between the care-home and the hospital connected to

traffic-light and CCTV thing nodes). 𝐶𝐹1, 𝐶𝐹2 and 𝐶𝐹3 are a Rasp-

berry Pi (RPi) (Quad Core 1.2GHz CPU, 1GB RAM). However, each

with different functionality, according to our case-study, 𝐶𝐹1 and

𝐶𝐹2 are connected to a pulse sensor (SEN-11574) to measure heart-

rate and temperature-humidity sensor DHT22 (AM2302) sensor,

these are used as patient’s sensors. While 𝐶𝐹3, is used for hospital

processes, such as dispatching ambulance and contacting doctors

according to the data received from 𝐶𝐹1 and/or 𝐶𝐹2. Finally, 𝐶𝐹4 is

composed of a Lenovo Ideapad laptop (i5 1.8GHz CPU, 8GB RAM)

connected to the Internet over Ethernet cable and fitted with an HD

Lenovo EasyCamera Webcam (as a device/thing node) with 0.92MP.

In addition,𝐶𝐹4 is connected to a traffic light node (as a device/thing

node) which has 2 LED diodes (Green and Red) wired through the

breadboard to the RPi.

The interactions between CFs themselves, and CFswith IoT things

are over the publish/subscript protocol, that is Message Queuing

Telemetry Transport (MQTT) protocol. Thus, via the subscribed

topic, which is a UTF-8469 string that MQTT broker uses to decide

on which client receive which message, the subscribers of a specific

topic will receive useful data in real-time. For example, the traffic

light receives signals through the “CF/traffic" topic, upon which it

changes to green or red.

During the ad-hoc federation, a CF will be responsible to com-

municate with the camera device and the traffic device to clear the

way for an ambulance travelling from/to the hospital. Therefore, to

detect ambulances, we developed an in-house Python image recog-

nition program that processes RGB477 images using an Open Source

Computer Vision (OpenCV) library. Upon ambulance detection by

the CF, according to the live frames from the camera, it will send an

alert to the traffic-light, to stop or redirecting the traffic, over the

MQTT protocol via “CF/traffic" topic to set the traffic-light sign.
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5.3 Experiment and Evaluation
In our experiment, we employ the four CFs as follow: 𝐶𝐹1 & 𝐶𝐹2 is

for interacting with patients things (i.e., the pulse and temperature

sensors) as well as interpreting the sensed data, 𝐶𝐹3 is for alerting

the hospital’s A&E about patient’s situation, instruction for ambu-

lance driver to go to patient’s address (supplied from 𝐶𝐹1 or 𝐶𝐹2)

and 𝐶𝐹4 is for interacting and controlling devices/things that are

planted on the roadside (i.e., camera and traffic-light). The camera is

for broadcasting live images from the way to the care-home, traffic-

light is regulating the access of ambulance. For evaluation needs,

two simulation scenarios were carried as follow:

Scenario 1: we considered a PF of two CFs, namely 𝐶𝐹1 and

𝐶𝐹2, upon needs after detecting abnormality in patient’s pulse, thus

experiences of multi CFs is required to make a decision. The PF
evaluated in term of time-delay and efficiency in forming such fed-

eration, therefore, we measured the total time required to form PF
between 𝐶𝐹1 and 𝐶𝐹2 when the pulse sensor provide a reading that

looks abnormal (i.e., 60Bpm ⩾ pulse ⩾ 100Bpm as in [Al-khafajiy

et al. 2019]). 𝐶𝐹1 interpret the sensed data from both pulse and

temperature sensors to reason the measured data, thereafter, upon

suspected values or abnormality, 𝐶𝐹1 will seek an assist from 𝐶𝐹2,

forming a PF to make a decision for either alerting the caregiver

or not. During the same execution life-cycle, we change the payload

of sensed data and experience different set of data across number

of iterations which has been grouped into 50, 100 and 150 iteration.

The objective was to observe how the test-bed behaves with respect

to the number of detected abnormality and the time taken to make

a decision including the time required to exchange number of mes-

sages between both CFs. Fig. 8 reports the performance results of

the PF within the three iterations. It worth noting that the aborted

federation in 8 is due to some non-functional requirements.

Scenario 2: we expanded Scenario 1: to include all four CFs,

namely 𝐶𝐹1, 𝐶𝐹2, 𝐶𝐹3 and 𝐶𝐹4. In this scenario both PF and AF
are formed according to following: i) 𝐶𝐹1 detect an abnormality,

in patient’s pulse, and through a PF with 𝐶𝐹2 makes decision for

requesting ambulance. ii) 𝐶𝐹1 will search for nearest hospital and

communicate with its CF, in this case𝐶𝐹3, and from anAF . To this

end, 𝐶𝐹3 will inform the doctor and send out an ambulance to the

patient. iii)𝐶𝐹3 will also from anAF with𝐶𝐹4 to clear the path for

the ambulance, upon detecting the ambulance via the camera thing,

through controlling the traffic-light signs. The AF evaluated in

term of time-delay and efficiency in forming the federations, thus,

we measured the total time required to form an AF among all CFs.

Fig. 9 reports the performance results of the AF within three itera-

tions (50, 100 and 150 iteration). It worth noting that the time-delay

(in millisecond) for AF is higher due to the multi-tasks required

from the federation, also, the aborted federation is due to some

non-functional requirements. Within this scenario, we checked how

the test-bed behaves when PF of things (i.e., pulse sensor) are

merged with an AF federation to evaluate the execution/process

time required to perform a collaboration. Fig. 10 illustrates the re-

sults showing cases of execution time related to PF versus AF
federations; it took between 85ms to 90ms to execute an AF feder-

ation and between 18ms to 22ms to execute PF federation.

5.3.1 NSL-KDD dataset. NSL-KDD dataset has been used in our

simulations for training and testing our proposed security model.

KDD which refers to the Knowledge Discovery in Data mining is

a sub-set from KDDCup99 [for Cybersecurity 2018]. We utilized

NSL-KDD since it is an improved version of KDDCup99 that has

been introduced to manage the KDDCup’99 problems such as the

duplicate records and the huge number of records. In NSL-KDD

dataset, each record consists of 41 features and attack types are

categorized into 4 types: Remote to Local (R2L), Denial of Service

(DoS), User to Root (U2R), and Probe.

5.3.2 Results analysis. Training and testing the ensemble-based

intrusion detection model has been achieved in each trial. In which

each run is done for 10 trials whereas the average of the 10 trials is

considered for each run. The three base classifiers (K-NN, DBSCAN

and DT) are built using the KDDTrain+ dataset as the training

dataset for the training phase.While KDDTest+ as the testing dataset

has been used for the attacks detection and classification purposes.

The models’ performance evaluation is achieved using Accuracy

Rate (AR), Detection Rate (DR) and False Positive Rate (FPR) which

are considered as the standard intrusions detection measurements.

AR refers to the ratio of truly classified behaviors, DR refers to the

behaviors that accurately classified as abnormal behaviors while FPR

refers to the non-malicious behaviors that inaccurately classified as

malicious.

Figure 11 represents AR and DR comparison between the three

base classifiers (K-NN, DBSCAN andDT) and the proposed ensemble

classifier. It is clear that the ensemble-based classifier performs over

the other three classifiers. False Positive Rate (FPR) has been tested

for the three base classifiers and the ensemble-based classifier as

presented in Figure 12. The ensemble-based classifier performs with

the least 𝐹𝑃𝑅 followed by the K-NN classifier.

Detection rates for NSL-KDD attacks and normal activities has

been registered as shown in Figure 13.

Receiver Operating Characteristics (ROC) curve that represents

the sensitivity (True Positives Rate (TPR)) versus (1-specificity)

(False Positives Rate (FPR)) [Otoum et al. 2019] ratio has been traced

for the proposed technique and compared with the individual clas-

sifiers ones. In Figure 14, the area under the curve considers as the

sensitivity-specificity ratio where the larger area reflects the best

performance. A ROC-based comparison between the base classifiers

(K-NN), DBSCAN and DT along with the ensemble-based classifier

to assess the system performance is shown in Figure 14. It is clear

that the ensemble-based solution performs better with the largest

area under the curve followed by the individual classifiers (K-NN),

DBSCAN and DT.
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Fig. 8. The Execution time for Planned Federations

6 CONCLUSION AND FUTURE WORK
Due to the fog computing location within the network, fog nodes

can have beneficial knowledge and constructive control over both

the sensor network and the data transmitted over the Internet. In

this paper, we utilise the strategic position of fog nodes to develop

a cognitive fog for smart healthcare systems interacting with other

IoT systems that is able to make decisions acting upon received

data in a secure fog environment. Empowering the fog model with

reasoning, adaptation, and learning capabilities allows the fog to

be pro-active, i.e. to reason, learn, and adapt to different scenarios.

Our CF test-bed was assembled using four CFs and three device

nodes based on a healthcare scenario. The gathered traffic on the

CF nodes was directed to three base classifiers namely K-NN, DB-

SCAN, and DT classifiers. In future work, we will further analyze

the self-learning and adaptation process. Fog nodes could be ex-

posed to unknown situations that require new courses of action.

Although intelligence in fog computing is still in its infancy, it has

great potential for achieving beneficial and sustainable computing

ecosystems. Further, future work involves scaling up the Case Study,

described in this paper, and moving the implementation out of the

testbed and into real world application. Furthermore, additional CFs

are needed to be considered for realistic scenarios: A wider range

of devices, both with a specialist healthcare function and with a

real-world application, interacting in a smart healthcare network,

are required.
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