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Highlights 

 Sample-based estimators for the total sensitivity index are compared   

 Avenues to improve the existing best practices (design and estimators) are explored  

 The convergence to the analytical values of test functions is adopted as benchmark 

 The two-matrices design outperforms other multiple-matrices based designs 

 Distributing model evaluations on the most important factors yields improvements   
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Abstract 
Variance-based sensitivity indices have established themselves as a reference among practitioners of sensitivity 

analysis of model outputs. A variance-based sensitivity analysis typically produces the first-order sensitivity 

indices 𝑆𝑗 and the so-called total-effect sensitivity indices 𝑇𝑗 for the uncertain factors of the mathematical model 

under analysis. 

Computational cost is critical in sensitivity analysis. This cost depends upon the number of model evaluations 

needed to obtain stable and accurate values of the estimates. While efficient estimation procedures are available 

for 𝑆𝑗 (Tarantola et al., 2006), this availability is less the case for 𝑇𝑗 (Iooss and Lemaître, 2015). When 

estimating these indices, one can either use a sample-based approach whose computational cost depends on the 

number of factors or use approaches based on meta-modelling/emulators (e.g., Gaussian processes).  
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The present work focuses on sample-based estimation procedures for 𝑇𝑗 for independent inputs and tests 

different avenues to achieve an algorithmic improvement over the existing best practices. To improve the 

exploration of the space of the input factors (design) and the formula to compute the indices (estimator), we 

propose strategies based on the concepts of economy and explorativity. We then discuss how several existing 

estimators perform along these characteristics.  

Numerical results are presented for a set of seven test functions corresponding to different settings (few 

important factors with low cross-factor interactions, all factors equally important with low cross-factor 

interactions, and all factors equally important with high cross-factor interactions). We conclude the following 

from these experiments: a) sample-based approaches based on the use of multiple matrices to enhance the 

economy are outperformed by designs using fewer matrices but with better explorativity; b) among the latter, 

asymmetric designs perform the best and outperform symmetric designs having corrective terms for spurious 

correlations; c) improving on the existing best practices is fraught with difficulties; and d) ameliorating the 

results comes at the cost of introducing extra design parameters. 

  

Table 1 - Legend 

𝑨,𝑩, 𝑪,… Sample matrices 

𝑨𝑩
(𝑗)

 Sample matrix where all columns are from 𝑨 except 

for column 𝑗, which is from 𝑩; likewise for other 

sample matrices 𝑪,𝑫,𝑬 and so forth 

𝒂𝑖, 𝒃𝑖, 𝒄𝑖 , … 𝑖𝑡ℎ row of matrices 𝑨,𝑩, 𝑪, etc., respectively 

𝒂𝒃𝑖
(𝑗)

 𝑖𝑡ℎ row of matrix 𝑨𝑩
(𝑗)

 

𝑒 Economy of a given design, defined as the number of 

elementary effects useful to compute 𝑇𝑗 (𝑒 =  
𝐸𝑇
𝑁𝑇
⁄ ) 

𝑒𝑒 Generic elementary effect 

𝐸𝑇 Total number of elementary effects 

𝐸𝑋𝑗(), 𝑉𝑋𝑗() Expected value and variance of argument (·) taken 

over factor 𝑋𝑗 

𝐸𝑿~𝑗(), 𝑉𝑿~𝑗() Expected value and variance of argument (·) taken 

over all factors but 𝑋𝑗 

𝐻 Generic sample matrix 𝑨,𝑩, 𝑪,…𝒁 

𝑖 Running index for the rows of a sample matrix 

𝑖 = 1,2, …𝑁 

𝑗 Running index for factor 𝑗 = 1,2,…𝑘 

𝑘 Number of factors  

l Running index over factor j; 𝑙 = 1,2,… 𝑗  
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𝑚, 𝑞 Running indices for the pool of sample-matrices (e.g., 

𝐻1 = 𝐴, and  𝐻1−2
(𝑗)

= 𝐴𝐵
(𝑗)

) 

𝑛 Number of sample matrices  

𝑁 Column-dimension (length) of a single sample matrix 

𝑁𝑇  Total number of points in the design  

p Running index for the block on which the algorithm is 

executed (each block has column length 𝑁 = 2𝑝) 

𝑟 Running index for the repetition 𝑟 = 1,2, …50 

𝑠 Running index for the block with a power of two 

𝑠 = 1,2,…𝑘 − 1 

𝑆𝑗 First-order effect sensitivity index for a generic factor 

𝑗 

𝑇𝑗 Total-effect sensitivity index for a generic factor 𝑗  

𝜒 Explorativity, the fraction of non-repeated coordinates 

in the design 

 

1. Introduction 

The sensitivity analysis of mathematical models aims to ‘apportion the output uncertainty to the 

uncertainty in the input factors’ (Saltelli and Sobol’, 1995). Uses of sensitivity analysis are found in 

quality assurance, model calibration, model validation, uncertainty reduction, and model 

simplification, which are just a few among the possible applications.  

Over the last three decades, sensitivity analysis (SA) has made steps to establish itself as a self-

standing discipline with a community of practitioners gathering around the SAMO (Sensitivity 

Analysis of Modelling Output) international conferences since 1995. Special issues have been devoted 

to SA (Borgonovo and Tarantola, 2012; Ginsbourger et al., 2015; Helton et al., 2006; Saltelli, 2009; 

Tarantola and Saint-Geours, 2015; Tarantola and Saltelli, 2003; Turányi, 2008), mostly in relation to 

the SAMO events. Available textbooks for sensitivity analysis include Borgonovo (2017), Cacuci 

(2003), de Rocquigny et al. (2008), Fang et al. (2005), and Saltelli et al. (2008, 2004, 2000). SA is 

acknowledged as a useful practice in model development and applications. Its use in regulatory 

settings (e.g., in impact assessment studies) is prescribed in guidelines both in Europe and the United 

States (European Commission, 2015; Office of Management and Budget, 2006; US EPA, 2015). SA 

is also an ingredient of sensitivity auditing (Saltelli et al., 2013; Saltelli and Funtowicz, 2014), a 

procedure to investigate the relevance and plausibility of model-based inference as an input to policy 

(European Commission, 2015; Science Advice for Policy by European Academies, 2019).  
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Tools such as sensitivity analysis and sensitivity auditing are particularly needed at this point in time 

when the accuracy, relevance and plausibility of the statistical and mathematical models used to 

support policy are often the subject of controversy (Jakeman et al., 2006; Padilla et al., 2018; Pilkey 

and Pilkey-Jarvis, 2007; Saltelli and Funtowicz, 2017; Saltelli and Giampietro, 2017), including at the 

time of submitting the present article, the COVID-19 pandemic (Saltelli et al., 2020; Steinmann et al., 

2020). As highlighted elsewhere (Lo Piano and Robinson, 2019; Saltelli et al., 2019; Saltelli and 

Annoni, 2010), part of the problem in the validation of models is that the quality of the accompanying 

SA is often wanting. Most SA applications still favour the use of a method known as OAT, where the 

sensitivity of factors is gauged by moving One-factor-At-a-Time (Ferretti et al., 2016; Saltelli et al., 

2019). When a sensitivity analysis is run in this fashion, it results in a perfunctory test of the 

robustness of the model predictions. While different methods exist for sensitivity analysis (see recent 

reviews in Becker and Saltelli (2015), Borgonovo and Plischke (2016), Iooss and Lemaître (2015), 

Neumann (2012), Norton (2015), Pianosi et al. (2016), Saltelli et al. (2012), and Wei et al. (2015)), 

the so-called ‘variance-based’ methods are considered to be a reference among practitioners. To make 

an example, when a new method for SA is introduced, its performance is investigated against 

variance-based measure (see, e.g., Mara et al. (2017)). At present, the most widely used variance-

based measures are Sobol’ indices (Sobol’, 1993), particularly the Sobol’ first-order sensitivity 

measures 𝑆𝑗 and the so-called total sensitivity indices 𝑇𝑗 (Homma and Saltelli, 1996). In the following, 

we take the suggestion from Glen and Isaacs (2012) and for simplicity adopt the symbol 𝑇𝑗, rather 

than 𝑆𝑇𝑗 or 𝑆𝑗
𝑇, for the total sensitivity indices, although these notations are also commonly found in 

the literature.  

In the next section, we briefly describe how 𝑆𝑗 and 𝑇𝑗 are defined and computed for the case of 

independent input factors (Sections 2.1-2.2). Then, we present the set of estimators used (Section 2.3) 

and define the concepts of economy and explorativity in the estimation procedures for 𝑇𝑗 (Saltelli et 

al., 2010) (Section 2.4). The experimental set up, including the test functions, is outlined in Section 3. 

Section 4 is dedicated to presenting and discussing our findings, while the general conclusions on the 

lessons learned are drawn in Section 5. 

2 Variance-based sensitivity analysis 

2.1 Variance-based sensitivity measures  
For a scalar model output 𝑌 = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑘), where 𝑋1 to 𝑋𝑘 are 𝑘 uncertain factors, the first-order 

sensitivity index 𝑆𝑗 can be written as  

𝑆𝑗 =
𝑉𝑋𝑗(𝐸𝑿~𝑗(𝑌|𝑋𝑗))

𝑉(𝑌)
           (1)  
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where we assume, without any loss of generality and for the case of independent variables, that the 

factors are uniformly distributed over the k-dimensional unit hypercube .  

The inner mean in (1) is taken over all-factors-but-𝑋𝑗, (written as 𝑿~𝑗), while the outer variance is 

taken over factor 𝑋𝑗. 𝑉(𝑌) is the unconditional variance of the output variable 𝑌.  

A short recap of this measure should mention the following without proof (the proof of which can be 

found in Glen and Isaacs (2012)).  

 An efficient way to estimate 𝑆𝑗 is to obtain a curve corresponding to 𝐸𝑿~𝑗(𝑌|𝑋𝑗) by 

smoothing or regressing the scatterplot of 𝑌 versus the sorted values of variable 𝑋𝑗 and then 

compute the variance of this curve over 𝑋𝑗, as shown in Figure 1. 

 The Pearson’s correlation ratio squared (Pearson, 1905, 1903), the fraction of the total 

variability of a response that can be explained by a given set of covariates, commonly 

indicated as η2, coincides with 𝑆𝑗.  

 When the relationship between 𝑌 and 𝑋𝑗 is linear, 𝑆𝑗 reduces to the squared value of the 

standardised regression coefficient 𝛽2, as shown in Figure 1. 

 𝑆𝑗 is a first-order term in the variance decomposition of 𝑌 (valid when the input factors are 

independent), which includes terms up to the order 𝑘, i.e.,  

1 = ∑ 𝑆𝑗 + ∑ 𝑆𝑗𝑙 +⋯+ 𝑆12…𝑘𝑙<𝑗
𝑘
𝑗=1        (2)  

 Terms higher than first-order indices are used sparingly in applications due to their 

multiplicity: a model with 𝑘 = 3 has just three second-order terms, but one with 𝑘 = 10 has 

as many as forty-five second-order terms. The total number of terms in (2) is 2𝑘 − 1.  

 The meaning of 𝑆𝑗 in plain language is ‘the fractional reduction in the variance of 𝑌 which 

would be obtained on average if 𝑋𝑗 could be fixed’. This is derived from another useful 

relationship:  

𝑉𝑋𝑗 (𝐸𝑿~𝑗(𝑌|𝑋𝑗)) + 𝐸𝑋𝑗 (𝑉𝑿~𝑗(𝑌|𝑋𝑗)) = 𝑉(𝑌)       (3) 

The second term in (3) is the average of all partial variances obtained by fixing 𝑋𝑗 to a given 

value over its uncertainty range. Thus, the first term in (3) is the average reduction. Note that 

while 𝑉𝑿~𝑗(𝑌|𝑋𝑗) could be greater than 𝑉(𝑌), 𝐸𝑋𝑗 (𝑉𝑿~𝑗(𝑌|𝑋𝑗)) is always smaller than 

𝑉(𝑌) because of (3).  
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Figure 1 Sensitivity measures and their relationships in a hypothetical 𝑌(𝑋𝑗) chart. The dashed line represents the local 

mean 𝐸𝑿~𝑗(𝑌|𝑋𝑗) of the points in the scatterplot while the straight line corresponds to the standardised regression 

coefficient 𝛽2.  

The total-order sensitivity indices 𝑇𝑗 can be written as follows:  

𝑇𝑗 =
𝐸𝑿~𝑗(𝑉𝑋𝑗(𝑌|𝑿~𝑗))

𝑉(𝑌)
          (4) 

The following points are worth recalling for this measure.  

 Unlike the case of 𝑆𝑗, the smoothing/interpolation of the inner variance is precluded by the 

impossibility to sort by 𝑿~𝑗 other than by using emulators or Fourier amplitude sensitivity 

testing, FAST (Saltelli et al., 1999). However, this method requires parametric equations for 

the search-curve exploring the input space with factor-specific frequencies. Thus, it is more 

labourious to set up than purely Monte Carlo methods. FAST was the most efficient strategy 

to compute both 𝑆𝑗 and 𝑇𝑗 before the work of Saltelli (2002). 

 The meaning of 𝑆𝑗, in plain language (explicitly descending from Equation (4)), is ‘the 

fraction of variance that would remain on average if one received perfect information on all 

other factors 𝑋~𝑗’. 

 Applying (3) again, one gets  

𝐸𝑿~𝑗 (𝑉𝑋𝑗(𝑌|𝑿~𝑗)) + 𝑉𝑿~𝑗 (𝐸𝑋𝑗(𝑌|𝑿~𝑗)) = 𝑉(𝑌)      (5) 
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Noting that the second term in (5) is the first-order effect on all-but-𝑋𝑗, one derives that the first 

term in (5), i.e., the numerator in the Equation (4), is the total variance of all terms in 

decomposition (2) that do include factor 𝑋𝑗. For example, for a model with just three factors, one 

can write  

1 = 𝑆1 + 𝑆2 + 𝑆3 + 𝑆12 + 𝑆13 + 𝑆23 + 𝑆123 

and  

𝑇1 = 𝑆1 + 𝑆12 + 𝑆13 + 𝑆123 

 Hence, a parsimonious description of the model = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑘) can be obtained by 

computing all 𝑘 𝑆𝑗s and all 𝑘 𝑇𝑗s. This description tells us which factors behave additively 

(𝑆𝑗 = 𝑇𝑗) and which do not (𝑆𝑗 < 𝑇𝑗). For an additive model, it holds that 𝑆𝑗 = 𝑇𝑗 for all 𝑗, 

and ∑ 𝑆𝑗 = 1
𝑘
𝑗=1 . A limitation of this parsimonious SA is that, in the case of non-negligible 

interactions, it does not provide information about which factors and which order of 

interactions are specifically involved.  

Computing the couples 𝑆𝑗, 𝑇𝑗 can become cumbersome when 𝑌 = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑘) is computationally 

time consuming. This could be the case of a mathematical model involving large systems of 

differential equations, a labourious optimisation programme, natural system simulators involving 

spatially distributed grid points, and so on. This difficulty is especially relevant for 𝑇𝑗, and this is the 

reason why it is the focus of our contribution.  

2.2 Sample-based estimation procedures  

When estimating a sensitivity measure, two elements are generally demanded: the first is a design, 

i.e., a strategy to arrange the sample points into the multidimensional space of the input factors; and 

the second is an estimator, i.e., a formula to compute the selected sensitivity measures. Different 

authors have suggested different designs and estimators to compute the sensitivity measures (see the 

contributions reviewed below). In principle, different designs could be tested for a fixed estimator and 

vice versa, although this is not the most common approach in the literature. In the present work, we 

have strived to keep the inference and conclusions relative to the design (e.g., in terms of number of 

sampling matrices) distinct from those relative to the estimator.   

The evaluation of sensitivity indices is often based on the integration of Monte Carlo methods. Monte 

Carlo based procedures for the estimation of 𝑆𝑗 have been proposed by Glen and Isaacs (2012), Janon 

et al. (2014), Lilburne and Tarantola (2009), Mara and Joseph (2008), McKay (1995), Owen (2013), 

Plischke et al. (2013), Ratto et al. (2007), Saltelli (2002), Saltelli et al. (2010), Sobol’ (1993), and 

Sobol’ et al.  (2007). Some particularly efficient algorithms for the estimation of 𝑆𝑗 belong to the class 
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of spectral methods, which may be preferred in case the model has some regularity (Prieur and 

Tarantola, 2016). These include random balance designs (Tarantola et al., 2006), discrete cosine 

transformations (Plischke, 2012) and an “Effective Algorithm to compute Sensitivity Indices – EASI” 

(Plischke, 2010). All of these require a total number of model evaluations that does not depend on the 

number of factors.  

In this paper, we focus solely on 𝑇𝑗 and on those estimations based on the actual evaluation of the 

function at the sampled points without resorting to meta-modelling approaches. We move from the 

recipe given in Saltelli et al. (2010), which is in turn derived from Saltelli (2002). A quick recap of the 

main ingredients of this recipe is as follows.  

 The computation is based on a quasi Monte Carlo (QMC) method and makes use of quasi-

random (QR) points of Sobol’ LP sequences (Sobol, 1976; Sobol’, 1967). QR sequences 

possess desirable uniformity properties over the unit hypercube . QR numbers are not 

random: they are designed to optimally fill the unit hypercube in the sense of avoiding 

inhomogeneous (clustered) points. A useful concept in this respect is that of discrepancy 

(Kucherenko et al., 2015).  

 Given a set of 𝑀 points inside , their discrepancy is the maximum deviation of the 

theoretical density (𝑀 times the volume of the parallelepiped) over all possible 

parallelepipeds drawn within the hypercube  against the actual density (the number of points 

in the parallelepiped). Sobol’ LP sequences are designed to be ‘low discrepancy’ and 

perform well in existing QR method inter-comparisons (e.g., Sobol’ et al. (2011)).  

 In this instance, we use two different sequence generators for Sobol’ points: Algorithm 659 

(Bratley and Fox, 1988) and SobolSeq16384, distributed by Broda Ltd. (2016) and based on 

Sobol’ et al. (2011). The different sequences are used in the implementations of our 

experiment with different programming languages: Python for the former, and Matlab® for 

the latter.  

 A relevant characteristic of LP sequences is that its uniformity properties deteriorate moving 

from left to right along a row of the sequence. This means that, for any given 𝑁, one would 

expect that the left-most columns of the sample matrix have lower discrepancy than the right-

most (Kucherenko et al., 2015). 

 The estimation of 𝑇𝑗 requires points in  that are separated by what is called a ‘step in the 𝑋𝑗 

direction’. In other words, one needs two points in  that only differ in the value of factor 𝑋𝑗. 

Note that 𝑆𝑗 instead requires steps in the non-𝑋𝑗 direction, e.g., couples of points where all 

factors but 𝑋𝑗 have differing values. As discussed elsewhere (Campolongo et al., 2011), the 

estimation procedure for 𝑇𝑗 resembles the method of Morris. However, 𝑇𝑗 is preferred to 
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Morris since the estimation of 𝑇𝑗 requires less modelling assumptions and is easier to 

interpret. 

 Given the two 𝑁 × 𝑘 matrices 𝑨 and 𝑩, we build an additional set of 𝑘 matrices that we label 

as 𝑨𝑩
(𝑗)

, where column 𝑗 comes from matrix 𝑩 and all other 𝑘 − 1 columns come from matrix 

𝑨. We indicate that 𝒂𝑖 is the 𝑖𝑡ℎ row of 𝑨. Likewise, 𝒂𝒃𝑖
(𝑗)

 is the 𝑖𝑡ℎ row of 𝑨𝑩
(𝑗)

. Thus, 𝒂𝒃𝑖
(𝑗)

 is 

the 𝑖𝑡ℎ row of a matrix whose columns come from 𝑨 except for column j that comes from 𝑩. 

 The model 𝑌 = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑘) is run for all 𝑓(𝒂𝑖) and 𝑓 (𝒂𝒃𝑖
(𝑗)
) points at a cost of 𝑁(𝑘 + 1) 

model runs, i.e., 𝑁 times for the 𝑓(𝒂𝑖) points and 𝑁𝑘 times for the 𝑓 (𝒂𝒃𝑖
(𝑗)
) points.  

 The numerator in Equation (4), which is needed to compute 𝑇𝑗, is obtained from the following 

estimator (Jansen, 1999):  

�̂�𝑿~𝑗 (𝑉𝑋𝑗(𝑌|𝑿~𝑗)) =
1

2𝑁
∑ [𝑓(𝒂𝑖) − 𝑓 (𝒂𝒃𝑖

(𝑗)
)]
2

𝑁
𝑖=1      (6) 

 The total variance, the denominator of Equation (4), has been estimated using independent 

runs, i.e., those corresponding to the rows of matrix 𝑨.  

 Each summand in Equation (6) constitutes an elementary effect fungible for the computation 

of the total sensitivity index 𝑇𝑗. 

Sobol′ (2001) noted that this formula (6) was originally proposed by Šaltenis and Dzemyda (1982) (in 

Russian), and so in the following we shall call it the Šaltenis estimator. 

In this contribution, we compare the Šaltenis estimator with Saltelli’s design (Saltelli 2002) to those of 

Glen and Isaacs (2012), Owen (Iooss et al., 2020), and Lamboni (2018) under a broad set of the test 

functions. 

2.3 The examined estimators 

The estimators used in Glen and Isaacs (2012) are symmetric (the two base matrices 𝑨 and 𝑩 are 

entrusted the same role and importance) and based on computing the Pearson correlation coefficients 

between vectors (not to be confused with the Pearson correlation ratio discussed in Section 2.1). This 

means that for each of the couples of vectors just described (see Table 2), one first computes the 

correlation coefficients. For example, for the first entry in Table 2, instead of applying the Šaltenis 

estimator (6), one calculates the following:  

𝑗 =
1

(𝑁−1)
∑

(𝑓(𝒂𝑖)−〈𝑓(𝒂𝑖)〉)(𝑓(𝒂𝒃𝑖
(𝑗)
)−〈𝑓(𝒂𝒃𝑖

(𝑗)
)〉)

√𝑉(𝑓(𝒂𝑖))𝑉(𝑓(𝒂𝒃𝑖
(𝑗)
))

𝑁
𝑖=1 ,        (7) 
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where 〈𝑓(𝒂𝑖)〉 is the mean of the 𝑓(𝒂𝑖)s over the 𝑁 runs and 𝑉(𝑓(𝒂𝑖)) is their variance. This is also 

the case for 𝑓 (𝒂𝒃𝑖
(𝑗)
). For simplicity, we have not indicated the dependence of 𝑗 upon the selected 

couples of function values 𝑓(𝒂𝑖) and 𝑓 (𝒂𝒃𝑖
(𝑗)
). The best performing estimator according to Glen and 

Isaacs (2012) – named D3 in their manuscript – has also been used in this study (Equation 8), where 

the term 𝑐𝑑−𝑗 is  

1

2𝑁
∑ (

(𝑓(𝒂𝑖)−〈𝑓(𝒂𝑖)〉)(𝑓(𝒂𝒃𝑖
(𝑗)
)−〈𝑓(𝒂𝒃𝑖

(𝑗)
)〉)

√𝑉(𝑓(𝒂𝑖))𝑉(𝑓(𝒂𝒃𝑖
(𝑗)
))

+
(𝑓(𝒃𝑖)−〈𝑓(𝒃𝑖)〉)(𝑓(𝒃𝒂𝑖

(𝑗)
)−〈𝑓(𝒃𝒂𝑖

(𝑗)
)〉)

√𝑉(𝑓(𝒃𝑖))𝑉(𝑓(𝒃𝒂𝑖
(𝑗)
))

)𝑁
𝑖=1  and the other terms are 

detailed in the Appendix (Table A1). 

�̂�𝑗 = 1 − 𝑐𝑑−𝑗 + 𝑝𝑗
𝑐𝑎𝑗

1−𝑐𝑎𝑗𝑐𝑎−𝑗
         (8) 

Additionally, Glen and Isaacs (2012) note that supposedly uncorrelated vectors, such as 𝑓(𝒂𝑖) and 

𝑓(𝒃𝑖) or 𝑓 (𝒂𝒃𝑖
(𝑗)
) and 𝑓 (𝒃𝒂𝑖

(𝑗)
) (where 𝒃𝒂𝑖

(𝑗)
 is the 𝑖𝑡ℎ row of matrix 𝑩𝑨

(𝑗)
), may be affected by spurious 

correlations for finite values of 𝑁. We say ‘supposedly uncorrelated’ since no columns are shared 

between 𝑓(𝒂𝑖) and 𝑓(𝒃𝑖), nor is this the case for 𝑓 (𝒂𝒃𝑖
(𝑗)
) and 𝑓 (𝒃𝒂𝑖

(𝑗)
). These spurious correlations 

are explicitly computed in Glen and Isaacs (2012) and then used as correction terms in the 

computation of the sensitivity indices.  

The main advantage of the symmetric design proposed over the asymmetric design of Saltelli et al. 

(2010) is that the coordinates of the base sample appear disproportionately with respect to the other 

coordinates in Saltelli (2002) while this is not the case with Glen and Isaacs (2012).  

To assess whether the use of multiple matrices can be beneficial, we tested the Owen estimator (Iooss 

et al., 2020) as Equation (9) (where 𝒄𝒃𝑖
(𝑗)

 is the 𝑖𝑡ℎ row of matrix 𝑪𝑩
(𝑗)

). According to the author (Owen, 

2013), three-based matrices estimators offer better accuracy than those based on two matrices.  

�̂�𝑿~𝑗 (𝑉𝑋𝑗(𝑌|𝑿~𝑗)) = 𝑉(𝑌) − 
1

𝑁
∑ [𝑓(𝒃𝒊) − 𝑓 (𝒄𝒃𝒊

(𝒋)
)]𝑁

𝑖=1 [𝑓 (𝒃𝒂𝒊
(𝒋)
) − 𝑓(𝒂𝒊)]   (9) 

The same case is made by  Lamboni (2018) as regards the use of estimators based even on more 

matrices as per Equation (10)  

�̂�𝑿~𝑗 (𝑉𝑋𝑗(𝑌|𝑿~𝑗)) =
𝑛−1

𝑁𝑛2 
∑ ∑ [∑

1

𝑛−1
𝑛
𝑞=1,𝑞≠𝑚 [𝑓(𝒉𝑚,𝑖) − 𝑓 (𝒉𝑚−𝑞,𝑖

(𝑗)
)]]𝑛

𝑚=1

2
𝑁
𝑖=1    (10) 

where 𝒉𝑚,𝑖 is a generic row 𝑖 of a base matrix and 𝒉𝑚−𝑞,𝑖
(𝑗)

 the same row but for coordinate 𝑗, as well 

as the Saltelli et al. (2010) asymmetric design of the Šaltenis estimator for a variable number of 

matrices. 
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2.4 Economy and explorativity of the design of estimators 

As discussed in Saltelli et al. (2010), there is a natural trade-off between the economy of a design 

(how many elementary effects we can obtain with a given number of runs, as in Equation 11) and how 

well the design fills or explores the input-factor space, i.e., in our case, the unit hypercube . These 

aspects are taken here as measures of the quality of different estimators. In this contribution, economy 

(𝑒) and explorativity (𝜒) are defined in the context of the calculation of 𝑇𝑗. 

The trade-off between the economy (𝑒) and explorativity (𝜒) of the hypercube comes from the fact 

that one should strive to use any given point more than once to make a computation efficient. 

However, the more a given point is re-used, the less the k-dimensional space of the input is explored. 

In practice, when using 𝑛 matrices 𝑨, 𝑩, 𝑪, etc. each of column length N, as well as hybrid matrices 

such as 𝑨𝑩
(𝑖)

, the following situation occurs: the 𝑛𝑁 points corresponding to the 𝑛 matrices 𝑨, 𝑩, 𝑪, 

etc. will all contain original coordinates while all the hybrid matrices such as 𝑨𝑩
(𝑖)

 reuse coordinates. 

The points are in general different, i.e., no point in 𝑨𝑩
(𝑖)

 coincides with points of either 𝑨 or 𝑩 (except 

for the very few rows in the beginning of Sobol’ LP sequences, which include repeated coordinates) 

while, for example, 𝑨 and 𝑨𝑩
(𝑖)

 share 𝑘 − 1 columns and 𝑁(𝑘 − 1) coordinates in total. We shall show 

in a moment how the number of non-repeated coordinates for a fixed total number of runs diminishes 

by increasing the number of matrices 𝑛.  

We know from the previous subsection that the estimator described in Equation (6) yields 𝑁 

elementary effects per factor, i.e., 𝑁𝑘 differences 𝑓(𝒂𝑖) − 𝑓 (𝒂𝒃𝑖
(𝑗)
) are used in Equation (6) at the cost 

of 𝑁(𝑘 + 1) runs of the model. The economy e of the design is thus the following: 

𝑒 =  
𝐸𝑇

𝑁𝑇
 =

𝑁𝑘

𝑁(𝑘+1)
=

𝑘

𝑘+1
          (11) 

which is less than one.  

From now on we shall call this design ‘asymmetric’ due to the different roles entrusted to matrices 

𝑨 and 𝑩: the coordinates of 𝑨 are used more than those of 𝑩.  

Saltelli et al. (2010) also tried to use a larger number 𝑛 > 2 of base matrices. The idea was that with, 

e.g., 𝑛 = 3 matrices, 𝑩, 𝑪, and always using 𝑨 as the base sample matrix, one would have (
𝑛
2
) =

(
3
2
) = 3 ways of generating elementary effects. In addition to couples of function values 

𝑓(𝒂𝑖), 𝑓 (𝒂𝒃𝑖
(𝑗)
), one can also use the couples 𝑓(𝒂𝑖), 𝑓 (𝒂𝒄𝑖

(𝑗)
) and 𝑓 (𝒂𝒃𝑖

(𝑗)
) , 𝑓 (𝒂𝒄𝑖

(𝑗)
). All these couples 

are in fact only one step 𝑋𝑗 apart. This design produces 3𝑁𝑘 elementary effects at the cost of 𝑁(1 +

2𝑘) runs for an economy of 3𝑘 (1 + 2𝑘)⁄ , which is greater than one. By computing all functional 
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values for the three matrices (and not just for 𝑨), one computes 3𝑁 functional values 

𝑓(𝒂𝑖), 𝑓(𝒃𝑖), and 𝑓(𝒄𝑖).  

The next functional values corresponding to all possible mixed matrices are 𝑓 (𝒂𝒃𝑖
(𝑗)
) and 𝑓 (𝒂𝒄𝑖

(𝑗)
) but 

also 𝑓 (𝒃𝒂𝑖
(𝑗)
), 𝑓 (𝒃𝒄𝑖

(𝑗)
), 𝑓 (𝒄𝒂𝑖

(𝑗)
), and 𝑓 (𝒄𝒃𝑖

(𝑗)
). An additional set of 6𝑁𝑘 function values for a total of 

3𝑁(1 + 2𝑘) runs has been generated. Each of the three matrices 𝑨, 𝑩 and 𝑪 can be used to compute 

2𝑁𝑘 effects, as shown in the first six rows of Table 2 below. 3𝑁𝑘 additional effects can be obtained 

by mixing the hybrid matrices (last three rows in Table 2).  

Table 2 Couplings leading to 

elementary effects, i.e., couples of 

function values fungible for the 

computation of 𝑇𝑗 in the case of 

𝑛 = 3 matrices 

𝑓(𝒂𝑖) 𝑓 (𝒂𝒃𝑖
(𝑗)
) 

𝑓(𝒂𝑖) 𝑓 (𝒂𝒄𝑖
(𝑗)
) 

𝑓(𝒃𝑖) 𝑓 (𝒃𝒂𝑖
(𝑗)
) 

𝑓(𝒃𝑖) 𝑓 (𝒃𝒄𝑖
(𝑗)
) 

𝑓(𝒄𝑖) 𝑓 (𝒄𝒂𝑖
(𝑗)
) 

𝑓(𝒄𝑖) 𝑓 (𝒄𝒃𝑖
(𝑗)
) 

𝑓 (𝒂𝒃𝑖
(𝑗)
) 𝑓 (𝒂𝒄𝑖

(𝑗)
) 

𝑓 (𝒃𝒂𝑖
(𝑗)
) 𝑓 (𝒃𝒄𝑖

(𝑗)
) 

𝑓 (𝒄𝒂𝑖
(𝑗)
) 𝑓 (𝒄𝒃𝑖

(𝑗)
) 

 

This gives a total of 9𝑁𝑘 effects for the case of 𝑛 = 3 matrices for an economy 

𝑒 = 9𝑁𝑘 3𝑁(1 + 2𝑘)⁄ = 3𝑘 (1 + 2𝑘)⁄ .  

How can this be extended to a design with a generic number of matrices? Given 𝑛 matrices, there are 

(
𝑛
2
) pairwise combinations; and for each of the 2𝑘 matrices that are produced, there is twice the 

number of factors (since for each couple of matrices, such as 𝑨 and 𝑩, we shall have to consider both 

matrices 𝑩𝑨
(𝑗)

and 𝑨𝑩
(𝑗)

). Since each matrix is composed of 𝑁 runs, 𝑁𝑇 will be 𝑁 (𝑛 + 2𝑘 (
𝑛
2
)) =

𝑁(𝑛 + 𝑘𝑛(𝑛 − 1)) = 𝑛𝑁(1 + 𝑘(𝑛 − 1)). With similar considerations, one derives that the number of 
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effects 𝐸𝑇 will be 𝑁𝑘𝑛(𝑛 − 1) + 3𝑁𝑘 (
𝑛
3
) = 𝑁𝑘𝑛(𝑛 − 1) +

1

2
𝑁𝑘𝑛(𝑛 − 1)(𝑛 − 2) =

1

2
𝑁𝑘𝑛2(𝑛 −

1). 

In summary, we have  

𝑁𝑇 = 𝑛𝑁(1 + 𝑘(𝑛 − 1))         (12) 

𝐸𝑇 = 
1

2
𝑁𝑘𝑛2(𝑛 − 1)          (13) 

and the resulting economy is defined in Eq. (14), whereby the value of e tends to 𝑛 2⁄  for a large 𝑛 

or/and a large 𝑘. 

𝑒 =
𝐸𝑇

𝑁𝑇
=

1

2
𝑁𝑘𝑛2(𝑛−1)

𝑛𝑁(1+𝑘(𝑛−1))
=

𝑘𝑛(𝑛−1)

2(1+𝑘(𝑛−1))
         (14) 

Note that the same development made for 𝑇𝑗 could be replicated for 𝑆𝑗, although first-order indices are 

not in the scope of this manuscript. 

Different arrangements can be explored to calculate 𝑇𝑗 to have the couples of points differing for the 

𝑗𝑡ℎ coordinate only. These settings can be compared against how many coordinates are used out of the 

maximum number of 𝑁𝑇𝑘coordinates available (explorativity, 𝜒). The lower 𝜒 is, the less explorative 

the design, although the design’s economy (𝑒) may be increased in these settings. Possible 

arrangements are detailed as follows. We recall from our legend (Table 1) that economy here is 

relative to the sole computation of the elementary effects useful to estimate 𝑇𝑗 for all the 𝑘 factors. 

Couples. The 𝑁𝑇 points are arbitrarily arranged in 
𝑁𝑇

2⁄  couples. Each couple needs just k coordinates 

for one point and only one extra coordinate for the companion point. The points of each couple differ 

for one of the j coordinates. To produce this arrangement, one needs to generate 
𝑁𝑇(𝑘 + 1)

2⁄  

coordinates. Thus, the fraction 𝜒 of coordinates relative to the maximum 𝑁𝑇𝑘 is  

𝜒 =
𝑁𝑇(𝑘+1)/2

𝑁𝑇𝑘
=
𝑘+1

2𝑘
            (15) 

which tends to ½ as k increases.  

Stars. 
𝑁𝑇
𝑘+1

 points are initially generated in the hypercube, which is the core of the star, from which 

each of the available k dimensions is explored in turn. In this way, each star is made of k+1 points and 

needs k+k coordinates: k for the centre point of the star and one for each of its k rays. Thus, the 

fraction 𝜒 is now the follows:  

𝜒 =
2𝑁𝑇𝑘

𝑁𝑇(𝑘+1)𝑘
=

2

𝑘+1
           (16) 
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which decreases as k increases.  

Winding stairs (one trajectory). In a winding-stair design, the hypercube is explored using a curve 

whereby each coordinate is increased in turn. This design needs k coordinates to generate the first 

point and 𝑁𝑇 − 1 additional coordinates for the remaining points 

𝜒 =
𝑁𝑇+𝑘−1

𝑁𝑇𝑘
            (17) 

which generally tends to 1/k as N>>k. This changes if one uses more than one trajectory. For 

example, if one uses trajectories of length k+1, the explorativity becomes identical to that of ‘stars’ 

above.  

Saltelli et al. (2010) asymmetric. The design needs one base matrix A and k additional matrices 

𝑨𝑩
(1)
, 𝑨𝑩
(2)
. . 𝑨𝑩

(𝑘)
 with column length N. This corresponds to a total of 𝑁𝑇 = 𝑁(𝑘 + 1) points for a 

total of 𝑁𝑘(𝑘 + 1)) coordinates. However, one only needs a total of 2Nk coordinates, Nk for each of 

the two matrices A and B. Hence,  

𝜒 =
2𝑁𝑘

𝑁𝑘(𝑘+1)
=

2

𝑘+1
           (18) 

which is the same as the ‘stars’ above. This design is one of the most widely used standards in the 

literature against which we will be benchmark the performance of the assessed estimators. 

Saltelli (2002) symmetric. In this design, one makes use of both sets 𝑨𝑩
(1)
, 𝑨𝑩
(2)
. . 𝑨𝑩

(𝑘)
 and 

𝑩𝑨
(1)
, 𝑩𝑨
(2)
. . 𝑩𝑨

(𝑘)
 for a total of 𝑁𝑇 = 2𝑁(𝑘 + 1) points, which in principle would correspond to a 

total of 𝑁𝑇 = 2𝑁𝑘(𝑘 + 1) coordinates. However, only 2Nk coordinates are needed, Nk for each of 

the two matrices A and B. Hence,  

𝜒 =
2𝑁𝑘

2𝑁𝑘(𝑘+1)
=

1

𝑘+1
           (19) 

Glen and Isaacs (2012) (estimator D3, symmetric). This is the same as Saltelli 2002, symmetric 

above. 

Owen (Iooss et al., 2020) (Equation 9). Only the matrices 𝑨, 𝑩,𝑩𝑨
(𝑗)

, and 𝑪𝑩
(𝑗)

 are used in this 

estimator for a total of cost of 𝑁𝑇 = 2𝑁(𝑘 + 1). Equation 19 is based only on one summation; 

hence, it counts only for one effect. Thus, 𝐸𝑇 = 𝑁𝑘 and 𝑒 =
𝑁𝑘

2𝑁(𝑘+1)
=

𝑘

2(𝑘+1)
. The number of 

coordinates used is 2𝑁𝑘(𝑘 + 1), of which only 3𝑁𝑘 are non-repeated.  

𝜒 =
3𝑘𝑁

2𝑘𝑁(𝑘+1)
=

3

2(𝑘+1)
           (20) 
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Generalisation of the symmetric case. The design now includes n base matrices A, B, …X, where X 

is the n
th
 matrix, plus a total of two times (

𝑛
2
)𝑘 additional hybrid matrices of the type 𝑨𝑩

(1)
, 𝑨𝑩
(2)
. . 𝑨𝑩

(𝑘)
 

and 𝑩𝑨
(1)
, 𝑩𝑨
(2)
. . 𝑩𝑨

(𝑘)
, where the binomial corresponds to the possible number of couplings of two 

matrices. Thus, the total number of matrices is 𝑛 + 2(
𝑛
2
) 𝑘 = 𝑛 + 𝑛(𝑛 − 1)𝑘 = 𝑛(1 + 𝑘(𝑛 − 1)). 

The total number of points is 𝑁𝑇 = 𝑛𝑁(1 + 𝑘(𝑛 − 1)), corresponding to a maximum number of 

coordinates 𝑛𝑁𝑘(1 + 𝑘(𝑛 − 1)). Since the number of coordinates used in this design is just those of 

the base matrices, i.e., nNk, the fraction 𝜒 is  

𝜒 =
𝑛𝑁𝑘

𝑛𝑁𝑘(1+𝑘(𝑛−1))
=

1

1+𝑘(𝑛−1)
          (21) 

which decreases as n increases and reduces to (15) for n=2. 

Lamboni (2018) (Equation 10) The total cost is the same 𝑁𝑇 = 𝑛𝑁(1 + 𝑘(𝑛 − 1)) as above for 

multiple matrices. 𝐸𝑇 = 𝑁𝑘𝑛(𝑛 − 1) effects are computed in this case since the 3𝑁𝑘 (
𝑛
3
) differences 

among couples of mixed matrices are not accounted for in this estimator. Hence, 𝑒 =  
𝑁𝑘𝑛(𝑛−1)

𝑛𝑁(1+𝑘(𝑛−1))
=

 
𝑘(𝑛−1)

(1+𝑘(𝑛−1))
 

while the explorativity 𝜒 is the same as in the generalisation of the symmetric case showed in 

Equation 21. 

The economy and explorativity of the different designs are compared in Figure 2 
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Figure 2 Explorativity 𝜒 vs economy 𝑒 for the different designs in the case of 𝑘 = 6 factors. The winding stair interval is 

defined by the explorativity 𝜒 on the minimum number of points (𝑁𝑇 = 𝑘 + 1, 𝜒 =  
2
(𝑘 + 1)⁄ ) and the asymptotic case 

(𝑁𝑇 ≫ 𝑘, 𝜒 =  1 𝑘⁄ ). 

The overall cost of the sensitivity analysis in terms of 𝑁𝑇 and the number of factors 𝑘 are typically 

known to the modeller prior to the analysis. Hence, different couples of 𝑛 and 𝑁 can be chosen to 

meet the target 𝑁𝑇 value. To maximise 𝐸𝑇 , one would set 𝑛 as high as possible. In terms of 

discrepancy (𝐷) and 𝜒, one would rather have lower values of 𝑛 to have less repeated coordinates. 

The lower the fraction of repeated coordinates (the higher 𝜒) is, the better the space-filling properties 

of the design, and hence 𝐷 is lower. Therefore, 𝐷 and 𝜒 have an inverse relation. 

Note that the relation between the discrepancy and error is not simple. A given 𝐷 can be perfect for a 

smooth function and inadequate for a jigsaw-shaped one. With fixed 𝑘 and 𝑁𝑇, there is an inverse 

quadratic relation between 𝑛 and 𝑁, as shown in Equation (12), which describes the trade-off between 

𝑒 and 𝜒.  

Let us examine the case where 𝑘 = 6 and the cost 𝑁𝑇 ≈ 500 runs (Table 3). Since 𝑁 needs to be a 

power of two in quasi-random number sequences based on Sobol’ LP sequences, the value of 𝑁𝑇 may 

deviate from 500. 𝐷 has been estimated using the computational method provided by Jäckel (2002) 

and rounded to two digits (Table 3).  

 

The last row has the highest number of effects using the smallest number of random points –, i.e., just 

one row of a single QMC matrix in six dimensions. The opposite applies to the first row since it uses 

as many as 64 rows from two QMC matrices, but it gives the fewest effects. In other words, the first 

row is the most explorative while the last is the most economical in terms of the number of effects per 

run. 

Table 3 - Possible values of 𝑛 and 𝑁 corresponding to a model with 𝑘 = 6 factors, an affordable 𝑁𝑇  ≅ 500 and 

discrepancy D. 𝑁𝑇 has been adjusted to have a power of 2 for N, as requested in the QMC simulations based on 

Sobol’ LP sequences. 

𝑁 𝑛 𝑁𝑇 𝐸𝑇 𝑛𝑁 𝐷 𝜒 

64 2 (asymmetric) 448 384 128 0.0065 0.27 

32 2 (symmetric) 448 384 64 0.0076 0.13 

16 3 (symmetric) 624 864 48 0.013 0.077 

8 4 (symmetric) 608 1152 32 0.020 0.053 

4 5 (symmetric) 500 1200 20 0.032 0.04 

2 7 (symmetric) 518 1764 14 0.053 0.027 

1 10 (symmetric) 550 2700 10 0.11 0.018 
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Using 𝑛 > 2 (Saltelli et al., 2010) resulted in poorer convergence with respect to the case 𝑛 =

2. According to that paper, the Šaltenis estimator in conjunction with 𝑛 = 2 was the best available 

sample-based practice. Contrasting findings have been reported by Lamboni (2018), according to 

whom the optimal number of matrices may be different from two depending on the function 

evaluated.  

We also tested whether a variable explorativity 𝜒 across factors could improve the accuracy of the 

estimate. This experiment consisted of allocating more runs to the factors having the highest standard 

deviation of the elementary effects after an initial warm up. The number of residual runs is attributed 

according to the importance obtained at that given point in the simulation. The computational details 

of this experiment are described in section 4. 

 

3 Experimental set up - Test cases 

3.1 Test Functions 
Saltelli et al. (2010) and Glen and Isaacs (2012) base their analysis on a single function, namely, the 

widely used G function, which is defined as follows: 

𝐺(𝑋1, 𝑋2, … , 𝑋𝑘 , 𝑎1, 𝑎2, … , 𝑎𝑘) = ∏ 𝑔𝑗
𝑘
𝑗=1 ,       (22) 

with  

𝑔𝑗 =
|4𝑋𝑗−2|+𝑎𝑗

1+𝑎𝑗
            (23) 

With this test function, one can modulate the importance of a factor 𝑋𝑗 via the associated constant 𝑎𝑗, 

as shown in Table 4.  

Table 4 – Factors’ importance in the function G 

dependent on the constant 𝑎𝑗   

𝒂𝒋 Importance of 𝑿𝒋 

0 - 0.99 Very high 

0.99 − 9.9 High 

9.9 – 99 Non-important 

> 99 Non-significant 

 

Although this function can be attributed to Davis and Rabinowitz (1984), it was further developed by 

Saltelli and Sobol’ (1995) and is known among practitioners as Sobol’s 𝐺 function. It is reduced to the 

function used in Davis and Rabinowitz (1984) when all 𝑎𝑗 = 0. 
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A six-dimensional version of the 𝐺 function with coefficients 𝑎𝑗 = {0 0.5 3 9 99 99} is used here as 

in Glen and Isaacs (2012), Saltelli et al. (2010), and function A2 below (Equation 25). To test the 

effectiveness of the estimators with a wider typology of functions, we have used the taxonomy 

suggested by Kucherenko et al. (2011) in Equations (24 –30). 

 

𝐴1: 𝑓(𝑋)  =  ∑ (−1)𝑗𝑘
𝑗=1  ∏ 𝑥𝑗

𝑗
𝑙=1          (24) 

𝐴2: 𝑓(𝑋)  =  ∏
|4𝑥𝑗−2|+𝑎𝑗

1+𝑎𝑗

𝑘
𝑗=1           (25) 

𝐵1: 𝑓(𝑋)  =  ∏
𝑘−𝑥𝑗

𝑘−0.5
𝑘
𝑗=1           (26) 

𝐵2: 𝑓(𝑋) = (1 +
1

𝑘
)𝑘  ∏ √𝑥𝑗

𝑘𝑘
𝑗=1          (27) 

𝐵3: 𝑓(𝑋)  =  ∏
|4𝑥𝑗−2|+𝑎𝑗

1+𝑎𝑗

𝑘
𝑗=1           (28) 

𝐶1: 𝑓(𝑋)  =  ∏ |4𝑥𝑗 − 2|
𝑘
𝑗=1           (29) 

𝐶2: 𝑓(𝑋) = 2𝑘  ∏ 𝑥𝑗
𝑘
𝑗=1           (30) 

 

The analytical values for the sensitivity indices are available (Kucherenko et al., 2011; Saltelli et al., 

2010) from the GitHub repository: https://github.com/Confareneoclassico/New_estimator_algorithm. 

Following the taxonomy of Kucherenko et al. (2011), the functions of group A are the easiest for SA, 

with only a few important factors and low cross-factor interactions. In class B functions, all the 

factors are important, but the cross-factor interactions are low. Class C functions are the most difficult 

to treat for SA with non-negligible interactions across all important factors.  

When the coefficients aj of function G are all equal and large, one is dealing with a B-type function 

(B3, Equation 28, for which all 𝑎𝑗=6.42). By contrast, the case of aj null coefficients (Davis and 

Rabinowitz, 1984) would correspond to a C-type function (function C1 above, Equation 29). 

3.2 Computational arrangements 
The Python code used for the computations reported in the present work is available from the 

following GitHub repository: https://github.com/Confareneoclassico/New_estimator_algorithm. A 

second Matlab® code was used in a separate set of computations limited to one test function (A2): 

https://github.com/Confareneoclassico/Variance_SA_estimators_designs_explorativity_economy/tr
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ee/master/MatlabCode. The agreement of the independent computations coded and run by separate 

co-authors (SLP and FF) is offered as internal validation of the results presented in this paper.  

Each test comparison is repeated 50 times to ensure reproducibility and reduce the stochastic variation 

in the results. Some of the experiments were also run 500 times to ensure stability. However, no major 

difference was observed between 50 and 500 repetitions: 

https://github.com/Confareneoclassico/Variance_SA_estimators_designs_explorativity_economy/tree/

master/Extra_material. Each repetition uses an equal number 𝑁 of quasi-random rows from the Sobol’ 

matrix with the input factors 𝑥𝑗 uniformly distributed in (0,1). The total cost of the analysis is kept 

consistent across methods.  

For each of the 50 repetitions, the randomisation procedure is based on the column permutations of 

the QMC matrix. The first thirty-six columns (that correspond to 6𝑘 since 𝑛 = 6 is the largest number 

of multiple-matrix design tests) of the Sobol’ sequence are scrambled in each repetition. The k left-

most ones are attributed to matrix A, the following k to matrix B and so forth depending on the 

number of matrices assessed in the estimator.  

As customarily done in QMC computations using Sobol’ sequences, the column dimension 𝑁 of each 

matrix is rounded to the nearest power of two: each power of two corresponds to a ‘full scan’ of the 

hyperspace for each block of the sequence. Different blocks of size 2𝑝 (𝑝 = 2, 3, …14) have been 

tested for selected functions (classes A, B and C) against 𝑁𝑇 .  

Following Saltelli et al. (2010), the simulation results are presented in terms of the mean absolute 

error (MAE) versus the total cost of the analysis, where the MAE is defined as follows: 

𝑀𝐴𝐸 =
1

50
∑ (

∑ |𝑇�̂�−𝑇𝑗|
𝑘
𝑗=1

𝑘
)
𝑟

50
𝑟=1        (31) 

where 𝑇𝑗 is the analytical value of the total sensitivity index, and �̂�𝑗 is its estimated value. In other 

words, the total error over all factors is considered for the difference between the numerical estimate 

of the index (averaged over all available elementary effects) and its analytic value. The results are 

plotted on a decimal logarithmic scale. 

  

 4 Results and discussion 

The best-performing estimator suggested by Glen and Isaacs (2012), named by them as estimator D3, 

is compared against Šaltenis with the Saltelli asymmetric design (from now on the Šaltenis 

asymmetric estimator for short) (Figure 3). These results have also been confirmed by the Matlab® 

implementation. 
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Figure 3 MAE vs cost (NT) on a logarithmic scale for the Šaltenis asymmetric estimator (circle, continuous line)and the 

Glen-Isaacs estimator (triangle, dashed line). Functions: A1, A2, B1, B2, B3, C1, and C2 (Eq. 24-30). Python 

implementation. Glen-Isaacs cannot achieve a very low cost due to its higher cost evaluating the same number of rows 

evaluation with respect to Šaltenis.   

As previously discussed, computing 𝑆𝑗 requires couples of points where all factors but 𝑋𝑗 have 

differing values. The logic of correcting these sets of points for spurious correlations is that we are 

considering vectors such as 𝑓(𝒂𝑖) and 𝑓 (𝒃𝒂𝑖
(𝑗)
), where 𝑖 = 1,2,…𝑁, when computing the correlation 

𝑗  for the sensitivity index 𝑆𝑗. If any of these columns is spuriously correlated in the two matrices 

because of the finite value of 𝑁, then this spurious correlation should be removed from 𝑗  as 

described in Glen and Isaacs (2012).  

These authors suggest that a similar correction is useful for computing 𝑇𝑗. However, the Šaltenis 

asymmetric estimator for 𝑇𝑗 shows better convergence properties for type A and B functions and 

marginal better convergence properties for type C functions. This can be explained by considering 
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that the computation of 𝑇𝑗 requires vectors such as 𝑓(𝒂𝑖) and 𝑓 (𝒂𝒃𝑖
(𝑗)
), where 𝑖 = 1,2, …𝑁, where 

now all columns but 𝑗 are identical in the two vectors, and the differing column 𝑗 is the one under 

investigation. There are no chances of strong spurious correlations in this case. Looking back to Table 

3 or Figure 2 tells us that one should not expect an improvement when changing from the asymmetric 

to the symmetric case for 𝑛 = 2 because we obtain the same number of effects at the cost of halving 

the explorativity of the design. 

The Owen estimator (Iooss et al., 2020) has higher explorativity, as seen in section 2.4. This estimator 

makes different use of the set of base matrices 𝑨,𝑩, and 𝑪 to improve the computation of the 

elementary effects. However, one can see in Figure 4, that the Šaltenis asymmetric estimator 

systematically outperforms this estimator. 

 

Figure 4 - MAE vs cost (NT) on a logarithmic scale for the Šaltenis asymmetric estimator (circle, continuous line) and the 

Owen estimator (triangle, dashed line). Functions: A1, A2, B1, B2, B3, C1, and C2 (Eq. 24-30). Python implementation. 

Owen cannot achieve a very low cost due to its higher cost evaluating the same number of rows with respect to Šaltenis.   
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Moving to the case of multiple-matrix-based designs, one would have hoped that moving to 𝑛 > 2 

could improve 𝑒 because the decrease in 𝜒 is offset by an increased number of effects as per Table 3, 

but this does not appear to be the case (Figure 5). The asymmetric design based on just two matrices 

is still the best option to compute the total sensitivity indices 𝑇𝑗, even when compared against the 

symmetric design for the Šaltenis asymmetric estimator and those based on multiple matrices (Figure 

5). It would thus appear that 𝜒 is more important than 𝑒: the increased number of effects is 

outperformed by the decreased number of original coordinates. While a slight mismatch in the costs 

exists due to the different number of sample matrices, the performance gap is significant to the point 

that the estimator lagging behind is not capable of catching up with the front runner, even when 

doubling the sample size in most of the cases assessed. The differences are slightly decreasing from 

the A- and B-functions to the C-functions. 
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Figure 5 MAE vs cost (NT) on a logarithmic scale for the Šaltenis asymmetric estimator (circle, continuous line), two-matrix-

based symmetric estimator (triangle, dashed line), three-matrix-based estimator (square, dot-dashed-dotted line), four-

matrix-based estimator (cross, dash-dotted line) and six-matrix-based estimator (empty square, cross-dotted line). 

Functions: A1, A2, B1, B2, B3, C1, and C2 (Eq. 24-30). Python implementation. 

The results of the comparison with the Lamboni estimator are examined in Figure 6. Note that the 

two-matrix symmetric design of the Šaltenis estimator corresponds to Lamboni’s for this number of 

matrices. The lower distance of the Lamboni estimator from the frontrunner (the Šaltenis asymmetric 

estimator) confirms that this design outperforms the multiple-matrix-based design for the Šaltenis 

estimator (comparing Figure 5 and Figure 6). However, it is still beaten by the Šaltenis asymmetric 

estimator. The result is also confirmed when the difference with the analytic error is measured as the 

root-mean squared error (not shown). 
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Figure 6 - MAE vs cost (NT) on a logarithmic scale for the Šaltenis asymmetric estimator (circle, continuous line), two-

matrix-based symmetric estimator (triangle, dashed line), Lamboni three-matrix-based estimator (square, dot-dashed-dotted 

line), Lamboni four-matrix-based estimator (cross, dash-dotted line) and. Lamboni six-matrix-based estimator (empty 

square, cross-dotted line). Functions: A1, A2, B1, B2, B3, C1, and C2 (Eq. 24-30). Python implementation. 

As shown above, the trade-off between 𝑒 and 𝜒 demonstrates that 𝑛 > 2 is not a convenient design 

choice. Another way to look at these results is to assess them in terms of stars, which are 

computationally equivalent to the Saltelli asymmetric design (Saltelli et al., 2010), as seen in section 

2.4. The basic design is the one where each star is made of k+1 points using 2k coordinates. To 

increase 𝑒, one must increase the number of points in the stars, although this results in decreasing 𝜒 

since one uses more coordinates of the core. The cases where the number of matrices is greater than 2 

fall into this class. This approach led to worse results. In other words, increasing 𝑒 does not seem to 

pay off.  

We have also tried to compute 𝑇𝑗 using matrix 𝑨 alone, i.e., instead of computing 𝑇𝑗 from 𝑓(𝒂𝑖) and 

𝑓 (𝒂𝒃𝑖
(𝑗)
), we used 𝑓(𝒂𝑖) and 𝑓 (𝒂𝒊,(𝑖+1)

(𝑗)
). In this approach, when the last N-th row is reached, one uses 

𝑓(𝒂𝑁) and 𝑓 (𝒂𝑵,𝟏
(𝑗)
) for 𝑇𝑗, i.e., the system closes on itself. However, this approach did not lead to 

improvements. 

Another sampling procedure we have tested to improve the Šaltenis asymmetric estimator consisted of 

variably investing the computational budget by improving 𝑇𝑗’s estimation for the subset of the most 

important factors while devoting less computational resources to the least important ones for each 

subsequent model execution. In this adaptive sampling strategy, the choices of the factor to estimate 

are made using increasing blocks of power of two to fully take advantage of the properties of the low-

discrepancy Sobol’ sequence. 

The number of design parameters of the adaptive sampling strategy is reduced to a modicum. Let one 

assume that one has 𝑁𝑇 = (𝑘 + 1)2
𝑝 model runs available.  

 The algorithm is run as per the Šaltenis asymmetric estimator (Saltelli et al., 2010) to ‘warm 

up’ to a sample size 𝑁=2𝑝+2−𝑘 at a cost of (𝑘 + 1)2𝑝+2−𝑘.  

 The 𝑘 factors are then ordered in decreasing order of the standard deviation of the elementary 

effect 𝑠𝑡𝑑𝑒𝑒
𝑗

.  

 At every following block of rows 𝑁=2𝑠+𝑝+2−𝑘 (with 𝑠 in the range 1, 𝑘 − 1), it is decided 

whether the computation of the elementary effect can be stopped at the (𝑘 − 𝑠)𝑡ℎ factor per 

order of decreasing importance, thus saving runs.  

 The condition upon which this decision is made is the ratio between 𝑠𝑡𝑑𝑒𝑒
𝑗

-s. It is assumed 

that 𝑠𝑡𝑑𝑒𝑒
𝑗

 would be reduced by a factor of √2 by doubling the sample size.  
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 Hence, the main assumption of the computation is that if 
𝑠𝑡𝑑𝑒𝑒

𝑘−𝑠−1

√2
⁄ > 𝑠𝑡𝑑𝑒𝑒

𝑘−𝑠, this latter 

factor (and all those having lower 𝑠𝑡𝑑𝑒𝑒
𝑗

s) can be removed from the calculation in the 

following block. 

The computational details are available from the dedicated Jupyter notebook. The results are here 

presented for test functions A1 and A2, for which 𝑇𝑗 differs across parameters. Another type of 

function G has also been tested in this experiment, where A3 (𝑎𝑗 = {1 2 4 8 16 32}) corresponds to 

various degrees of importance across parameters.  

In Figure 7, one can appreciate how our method outperforms the Šaltenis asymmetric estimator by up 

to a factor of two for functions A2 and A3. In this context, the importance of input variables on the 

output uncertainty can be easily disentangled due to the difference in magnitude across factors’ 𝑇𝑗. 

This is the setting of a typical real-world model, where the importance of the input factors on the 

output uncertainty obeys the Pareto principle (Pareto, 1906) with few factors responsible for most of 

the output variance. However, the case where the sensitivity indices of the input factors are closer in 

magnitude is more challenging. This adaptive sampling strategy does not outperform the Šaltenis 

asymmetric estimator in the case of function A1 (Figure 7). 

 

Figure 7 - MAE vs cost (NT) on a logarithmic scale for the Šaltenis asymmetric estimator (circle) and the proposed adaptive 

sampling strategy (triangle). Each point corresponds to the MAE reported at full cost 𝑁𝑇 = (𝑘 + 1)2
𝑝. Functions: A1 and 

A2 (Eqs. 24-25, respectively) and A3. 

 

5 Conclusions 

Taking the works of Glen and Isaacs (2012), Lamboni (2018), and Saltelli et al. (2010) as our points 

of departure, we have explored different estimators to improve the computation of the total-effect 

index 𝑇𝑗 for independent factors using a taxonomy of test functions proposed by Kucherenko (2011).  
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We have seen that the estimator of Glen and Isaacs (2012) is outperformed by Šaltenis and Dzemyda 

(1982) and the Saltelli asymmetric design (Saltelli et al., 2010). Furthermore, we did not observe 

improvements in the computational results by extending the symmetric matrix arrangement to values 

𝑛 > 2. The larger number of effects obtained with 𝑛 > 2 does not compensate for the loss of 

explorativity, as is also evidenced by our discrepancy calculation. The increase in economy by using 

more matrices is offset by the loss of explorativity due to the higher share of repeated coordinates.  

To increase the explorativity, one would need to rely on a ‘stars’ design with centres having less than 

k rays, which decreases the economy. The latter approach has led to an improvement in the setting of 

factors receiving a number of estimates proportional to their importance. However, this comes at the 

cost of introducing an extra design parameter. 
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