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Hepcidin-Mediated Hypoferremia Disrupts Immune
Responses to Vaccination and Infection
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Nicole U. Stoffel,4 Katherine Wray,1 Barbara Kronsteiner,5 Gaby Smits,6 Dean R. Campagna,7

Tiago L. Duarte,8 José M. Lopes,9 Akshay Shah,10 Andrew E. Armitage,1 João Arezes,1 Pei Jin Lim,1

Alexandra E. Preston,1 David Ahern,1 Megan Teh,1 Caitlin Naylor,1 Mariolina Salio,1 Uzi Gileadi,1

Simon C. Andrews,11 Susanna J. Dunachie,5 Michael B. Zimmermann,4 Fiona R.M. van der Klis,6

Vincenzo Cerundolo,1 Oliver Bannard,1 Simon J. Draper,12 Alain R.M. Townsend,1 Bruno Galy,3

Mark D. Fleming,7 Marie C. Lewis,2 and Hal Drakesmith1,13,15,16,*

SUMMARY

Background: How specific nutrients influence adaptive immunity is of
broad interest. Iron deficiency is the most common micronutrient defi-
ciency worldwide and imparts a significant burden of global disease;
however, its effects on immunity remain unclear.
Methods: We used a hepcidin mimetic and several genetic models to
examine the effect of low iron availability on T cells in vitro and on im-
mune responses to vaccines and viral infection in mice. We examined
humoral immunity in human patients with raised hepcidin and low
serum iron caused by mutant TMPRSS6. We tested the effect of iron
supplementation on vaccination-induced humoral immunity in piglets,
a natural model of iron deficiency.
Findings: We show that low serum iron (hypoferremia), caused by
increased hepcidin, severely impairs effector and memory responses
to immunizations. The intensified metabolism of activated lymphocytes
requires the support of enhanced iron acquisition, which is facilitated by
IRP1/2 and TFRC. Accordingly, providing extra iron improved the
response to vaccination in hypoferremic mice and piglets, while
conversely, hypoferremic humans with chronically increased hepcidin
have reduced concentrations of antibodies specific for certain patho-
gens. Imposing hypoferremia blunted the T cell, B cell, and neutralizing
antibody responses to influenza virus infection in mice, allowing the vi-
rus to persist and exacerbating lung inflammation and morbidity.
Conclusions: Hypoferremia, a well-conserved physiological innate
response to infection, can counteract the development of adaptive im-
munity. This nutrient trade-off is relevant for understanding and
improving immune responses to infections and vaccines in the globally
common contexts of iron deficiency and inflammatory disorders.
Funding: Medical Research Council, UK

INTRODUCTION

Adaptive immunity is essential for protection from infectious disease and for the

preservation of health. After activation, antigen-specific lymphocytes proliferate

rapidly, differentiate, and acquire effector functions, necessitating accelerated

metabolism and macromolecular synthesis.1 Iron is necessary for many fundamental

Context and Significance

Iron deficiency is very common in

humans and animals. Frost et al

demonstrate that low

concentrations of iron in serum,

caused by the hormone hepcidin,

inhibit the body’s response to

vaccines and infections;

conversely, increasing iron can

boost immunity.

Med 2, 1–16, February 12, 2021 ª 2020 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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cellular processes, including DNA synthesis, the tricarboxylic acid cycle, and oxida-

tive phosphorylation,2 and a rare mutation in transferrin receptor that disrupts the

ability of cells to acquire iron causes immunodeficiency.3

The high global prevalence of iron deficiency and anemia results from a combination

of nutritional iron deficiency, blood loss, and inflammation-induced hepcidin.4 The

master iron regulatory hormone hepcidin suppresses dietary iron absorption and

macrophage iron recycling by inhibiting the iron-exporter protein, ferroportin, which

releases iron into serum.5,6 Hepcidin expression is regulated both by iron, as part of

homeostatic mechanisms,5,7 and inflammation, as part of the innate immune re-

sponses that attempt to deny iron to invading pathogens.8 Hepcidin rapidly de-

creases serum iron concentrations, and persistent high hepcidin and hypoferremia

can lead to anemia.9 We found very low concentrations of serum iron and high hep-

cidin levels (driven by inflammation) in Gambian infants.10,11

There have beenmany studies linking iron deficiency and impaired immunity, but re-

sults have been inconsistent, and the methods used to define iron deficiency and to

analyze immune responses have varied considerably, leading to uncertainty.12,13

More recent reports have suggested that iron can exacerbate autoimmune T cell ac-

tivity,14 and severe nutritional iron deficiency may impair B cell-proliferative re-

sponses.15 However, whether hepcidin, as the iron-regulatory hormone, influences

adaptive immunity to vaccination and infection is unknown. In this study, we show

how physiological variation in serum iron concentrations, controlled by hepcidin

or iron supplementation, profoundly influences lymphocyte biology and immune

responses.

RESULTS

Hepcidin Activity Inhibits Responses to Immunization via Hypoferremia

To begin testing how changes in serum iron levels affect the adaptive immune

response, mice were placed on a low iron diet (2 ppm Fe) to model low iron supply.

Three days after immunization, the mice were injected daily with minihepcidin (a

mimetic of hepcidin with the same mechanism of action16), which transiently sup-

presses serum iron concentrations to ~5 mmol/L (Figures 1A and S1A). Mice in the

low iron treatment group had low serum iron and decreased endogenous liver hep-

cidin mRNA expression (Figure 1A, indicating low iron stores), and exhibited a pro-

foundly suppressed antigen-specific CD8 T cell response to immunization with re-

combinant adenovirus encoding ovalbumin (AdHu5-ovalbumin [OVA]) and to OVA

protein in adjuvant (Figures 1B and 1C). In addition, the T follicular helper cell,

germinal center (GC) B cell, and plasma cell responses were strikingly reduced,

and anti-OVA IgG titers were suppressed (Figure 1D). We dissected the key aspects

of altered iron homeostasis that influenced the adaptive immune response. Mice on

a low iron diet for 4 weeks had substantially decreased liver iron and liver hepcidin

mRNA, indicating low iron stores, but serum iron remained unchanged, and the an-

tigen-specific CD8+ T cell and GC B cell responses to immunization were unaltered

(Figures S1B and S1C). The lack of effect of 4 weeks of a low iron diet to alter serum

iron, but to deplete liver iron, was reproducible in the absence of immunization (Fig-

ure S1D), and a low iron diet did not alter the growth rate of mice (Figure S1E).

Furthermore 4 weeks of a low iron diet only resulted in mild microcytic hypochromic

anemia (Figure S1F).

In mice on a normal iron diet (188 ppm Fe), a single injection of minihepcidin 3 h

before immunization with OVA in adjuvant, to cause low serum iron for ~24 h
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concurrent with dendritic cell (DC)-T cell interactions, did not alter the magnitude

of subsequent OT-I (OVA-specific CD8+ T cell) responses (Figure S1G). However, 2

injections of minihepcidin on days 3 and 4 after immunization were sufficient to

suppress the expansion of OT-I cells, and the fewer responding cells had increased

transferrin receptor (TFRC) expression, indicating relative cellular iron deficiency,

and liver hepcidin mRNA was decreased, which is consistent with hypoferremia

(Figure 1E). The injection of ferric ammonium citrate rescued the minihepcidin-

induced suppression of OT-I expansion, decreased TFRC expression on respond-

ing T cells, and increased liver hepcidin mRNA (Figure 1E). Neither hepcidin pep-

tide nor minihepcidin directly altered T cell proliferation or TFRC expression

in vitro (Figures S2A–S2C), suggesting that the in vivo effect of minihepcidin is

mediated via iron redistribution during the expansion phase of the immune

response. Hepcidin causes hypoferremia in part by sequestering iron in splenic

macrophages. However, injecting mice with iron-dextran, which induces iron accu-

mulation in splenic macrophages without decreasing serum iron, did not (unlike

minihepcidin) inhibit the OT-I response to immunization (Figures S2D–S2G). There-

fore, decreased serum iron, caused by minihepcidin, is necessary and sufficient for

impairing the response of activated and proliferating antigen-specific lymphocytes

to immunization.

A

B C

E
D

Figure 1. Minihepcidin-Induced Serum Iron Deficiency Inhibits Immune Responses

(A) Experimental design for investigation of the effect of combined minihepcidin injection and low iron diet on the primary immune response to

immunization. Serum iron levels and liver hepcidin mRNA were measured 24 h after the last minihepcidin injection. Means G SDs. Student’s 2-tailed t

test, unpaired.

(B) Left: representative flow cytometry plots showing frequency of OVA (SIINFEKL) tetramer-positive CD8 effector T cells (Tetramer+ CD44+ CD8 T cells)

as a percentage of CD8s T cells. Right: number of splenic OVA-specific CD8 effector cells 7 days after immunization with AdHu5-OVA. Means G SDs.

Student’s 2-tailed t test, unpaired.

(C) Number of splenic OVA-specific CD8 effector cells 7 days after OVA protein in adjuvant immunization. Means G SDs. Student’s 2-tailed t test,

unpaired.

(D) Number of T follicular helper cells (PD-1+ CXCR5+ CD44+ CD4 T cells), germinal center (GC) B cells (IgD�CD95+ B220+ B cells), plasma cells (CD138+

IgD� cells), and anti-OVA IgG titer (a.u., arbitrary unit) 7 days after immunization with OVA in adjuvant. Means G SDs. Student’s 2-tailed t test, unpaired.

(E) Experimental design to determine whether parenteral iron supplementation can reverse the effect of minihepcidin injection; FAC = ferric ammonium

citrate. Left: the frequency of antigen-specific splenic OT-I CD8 T cells; center: normalized relative mean fluorescence intensity (MFI) of surface CD71

expression by OT-I CD8 T cells 5 days after OVA and adjuvant immunization were detected with flow cytometry; right: liver hepcidin mRNA. Means G

SDs. One-way ANOVA with correction for multiple comparisons.
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Hypoferremia Inhibits T Cell Cytokine Production in Response to Viral Vectors

Exploring this concept in more depth, we found that minihepcidin injections

decreased the endogenous CD8 T cell OVA-specific response to AdHu5-OVA in

the spleen and peripheral blood, the splenic OT-I response to Modified Vaccinia An-

kara encoding OVA (MVA-OVA), the splenic OT-I response to OVA in adjuvant, and

the endogenous CD8 T cell splenic vaccinia-specific (B8R peptide) response toMVA-

OVA, all in mice on a standard iron diet (Figures 2A and 2B). Beyond the effects on

proliferation, OT-I CD8 cells from minihepcidin-treated mice secreted less of the

effector cytokines interferon g (IFNg) and tumor necrosis factor-a (TNF-a), and fewer

of these cells produced interleukin-2 (IL-2), on ex vivo restimulation (Figure 2C). Min-

ihepcidin also suppressed the endogenous cytokine-producing effector CD4 T cell

response to MVA-OVA and the CD4 OT-II T follicular helper cell response to OVA

in adjuvant; furthermore fewer splenic OT-II CD4 effector cells secreted IL-2 or

TNF-a on restimulation with peptide ex vivo, and splenic GC B cell responses

were suppressed (Figures 2D and 2E). In summary, hypoferremia inhibits several el-

ements of immune responses across multiple vaccination platforms and different

antigens.

Iron Acquisition Is a Cell-Intrinsic Requirement for Lymphocyte Responses

To investigate the cell-intrinsic nature of iron-dependent responses, we tested how

the Y20H mutation in TFRC, which impairs cellular iron uptake and causes immuno-

deficiency in humans,3 influences lymphocyte responses to immunization. Compet-

itive bone marrow transplant experiments were performed in which bone marrow

from wild-type (WT) mice and TfrcY20H/Y20H mice were mixed and transferred into

lethally irradiated WT recipient mice, and both lymphopoiesis and response to im-

munization were analyzed (Figure 3A). The TfrcY20H/Y20H allele did not influence

the reconstitution of T cells or B cells into the circulation (Figure 3B), but after immu-

nization with MVA-OVA, responding antigen-specific CD8 T cells, T follicular helper

cells, and GC B cells carrying the TfrcY20H/Y20H allele were underrepresented

compared to their WT counterparts, indicating that the TfrcY20H/Y20H mutation be-

stows cell-intrinsic defects to proliferative lymphocyte responses specifically after

immunization (Figure 3C).

Impaired Iron Acquisition Impairs T Cell Physiology

To understand the basis of T cell sensitivity to iron deprivation, we assessed the

expression of key iron-handling proteins5 in the first 24 h after the activation of

CD8 T cells in standard cell culture media from published datasets.17 TFRC was high-

ly upregulated, ferrous ion importers DMT1 (Slc11a2) and ZIP14 (Slc39a14) and intra-

cellular iron sensors18 IRP1 and IRP2 (iron-responsive element-binding proteins 1

and 2) were also increased, while levels of the iron-storage protein ferritin (FTL

and FTH) were not significantly altered; the iron export protein ferroportin

(Slc40a1) was not detected, but ferroportin mRNA expression was strongly

decreased after activation (Figures S3A and S3B). These changes indicate a drive

to sense, acquire, and retain iron after activation.

IRP1 and IRP2 control cellular iron homeostasis.18 To test the functional importance

of these regulators in CD8+ T cells, we used floxed Irp1 and Irp2 alleles that are

excised via a tamoxifen-activated Cre-ERT2 recombinase (Figure S3C). Stimulated

CD8+ T cells induced to delete Irp1 and Irp2 did not upregulate TFRC to the same

extent as control cells and proliferated relatively poorly; however, proliferation

was substantially improved by the addition of inorganic FeSO4, which is taken up

independently of TFRC (Figures 4A, 4B, and S3D). Thus, Irp1/2 control of TFRC-

mediated T cell iron acquisition is required for proliferation after activation.
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D

Figure 2. Minihepcidin-Mediated Serum IronDeficiency Inhibits the CD8 TCell Response to aDiverse Range of Immunizations and Impairs theQuality

of CD4 T Cell Responses.

(A) Experimental scheme to examine effect of minihepcidin injection on immunization.

(B) Antigen-specific T cell populations quantified by flow cytometry 7 days after immunization. Left to right: number of splenic endogenous OVA-specific

CD8 T cells after AdHu5-OVA immunization, frequency of endogenous OVA-specific CD8 T cells as a percentage of total CD8s in peripheral blood after

AdHu5-OVA immunization, number of splenic OT-I OVA-specific CD8 T cells after MVA-OVA immunization, number of splenic OT-I OVA-specific CD8

T cells after OVA and adjuvant immunization, and frequency of endogenous vaccinia (B8R epitope)-specific CD8 T cells as a percentage of total CD8s,

resolved by IFNg production after ex vivo peptide restimulation, induced by MVA-OVA immunization. Means G SDs. t test. Student’s 2-tailed t test,

unpaired.

(C) Left to right: relative MFI of IFNg and TNF-a for OT-I effector cells producing the respective cytokine, MFI normalized to average of vehicle group;

percentage of OT-I effector cells that secrete IL-2. Cytokine-producing cells resolved by intracellular cytokine staining after ex vivo restimulation of

splenocytes from mice with SIINFEKL peptide 7 days after MVA-OVA immunization. Means G SDs. t test. Student’s 2-tailed t test, unpaired.

(D) Frequency of endogenous vaccinia-specific IFNg, TNF-a, or IL-2 producing CD40L+ CD4 Th1 effector T cells as a percentage of total CD4s, resolved

by intracellular cytokine staining after ex vivo restimulation of splenocytes with MVA-OVA-pulsed dendritic cells. Means G SDs. t test. Student’s 2-tailed

t test, unpaired.

(E) Number of splenic OT-II T follicular helper cells induced by OVA and adjuvant immunization. Frequency of splenic TNF-a+ and IL-2+ OT-II effector

cells induced by OVA and adjuvant immunization as a percentage of total OT-II CD4 T cells after ex vivo restimulation with peptide. Frequency of splenic

GC B cells as a percentage of B cells after OVA and adjuvant immunization. All 7 days post-immunization. Means G SDs. t test. Student’s 2-tailed t test,

unpaired.
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To further explore the effect of low iron availability on aspects of T cell physiology,

we activatedWTCD8 T cells in vitro across a range of transferrin-iron concentrations.

Low iron did not alter early CD69 upregulation but resulted in fewer cells with higher

than 2N DNA content within 24 h and decreased proliferation over 3 days (Fig-

ure S3E). Iron deficiency reduced total cellular ATP content 24 h after activation

and decreased ATP production due to lower mitochondrial ATP generation, while

A

B

C

Figure 3. Iron Uptake via the Transferrin Receptor Is Cell-Intrinsically Essential for Immune Responses

(A) Experimental design for establishing mixed bone marrow chimeras to investigate cell-intrinsic effect of TfrcY20H/Y20H allele on immune response

in vivo. Data from TfrcY20H/Y20H ; WT chimeras are displayed in red, whereas data from WT;WT chimeras are in blue.

(B) Ratio of the frequencies of CD45.2:CD45.1 cells within peripheral blood CD8 T cells, CD4 T cells, and B cells at 65 days after establishment of

chimeras, determined by flow cytometry. Means G SDs. Student’s 2-tailed t test, unpaired.

(C) Comparison of the ratio of the frequencies of CD45.2:CD45.1 cells within naive and effector lymphocyte populations within each chimeric mouse,

72 days after establishment of chimeras and 1 week after MVA-OVA immunization. The data are displayed for naive (CD44�) and effector tetramer+

splenic CD8 T cells, dLN naive (CD44�) CD4 T cells and T follicular helper cells (PD-1+ CXCR5+ CD44+ CD4 T cells), and dLN naive follicular (IgD+,

CD95�) and GC B cells (IgD� CD95+ GL7+ B cells). Student’s 2-tailed t test, paired.
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glycolytic ATP production was unaltered, and after 72 h, iron-deficient T cells had

relatively depolarized mitochondria (Figure 4C). Notably, DNA synthesis and mito-

chondrial ATP synthesis are iron-dependent processes, while in contrast none of

the 10 enzymes that mediate glycolysis appear to require iron.

Mammalian target of rapamycin complex 1 (mTORC1) senses diverse environ-

mental signals and is an important regulator of T cell differentiation17,19; while

iron-dependent regulation of mTORC1 can regulate the erythroid response to

iron deficiency,20 the presence of this signaling axis in other primary cell types is

unknown. We found that low iron also reduced CD8+ T cell mTORC1 activity (as

measured by intracellular phosphorylated S6 ribosomal protein) and expression

of the amino acid transporter CD98, and decreased cell size (Figure S3F). Further-

more, granzyme B and the IL-2 receptor (CD25) levels were reduced, indicating an

impaired effector phenotype (Figure S3G). In complementary experiments, we

increased iron availability to activated CD8 T cells from TfrcY20H/Y20H mice by

providing iron in forms that bypass the defective Y20H TFRC protein (Figure S4A).

Rapid CD69 upregulation was unaffected, but FeSO4 improved TfrcY20H/Y20H CD8

T cell ATP content, mitochondrial health, increased cell size and the percentage of

phospho-S6+ cells, and rescued proliferation (Figures S4B–S4D). In summary, after

A B

C

Figure 4. Cellular Iron Metabolism Is Remodeled upon T Cell Activation, and Iron Deficiency Disrupts T Cell Physiology

(A) Left to right: Histograms of CD71 (Tfrc) expression on 4-OHT treated CD8 T cells from IRP1/2 floxed mice lacking (blue) or expressing Cre (red) at 24h

(top) and 72h (bottom) after in vitro activation; relative CD71 MFI for CD8 T cells treated with 4-OHT measured by flow cytometry (72h after activation);

relative CD71 MFI of 4-OHT treated compared to EtOH treated CD8 T cells (to control for effects of 4-OHT, 72h after activation). Mean+/- SD, Student’s

two tailed T-test, unpaired.

(B) Percentage divided CD8 T cells of each genotype/EtOH or 4-OHT combination cultured with a titration of FeSO4, 72 h after activation. Percentage of

divided determined as percentage of cells that had diluted out their CellTrace Violet signal once or more. Mean G range. Two-way ANOVA, corrected

for multiple comparisons, p values for difference between EtOH (control), and 4-OHT at each iron concentration.

(C) Left to right: ATP content was measured using CellTiter Glo luminescent assay for equal numbers of WT CD8 T cells per condition and normalized to

the control condition of each biological replicate. Total, glycolytic, and mitochondrial ATP production rates measured by Seahorse. Each data point is a

biological replicate from a single mouse, representing the average of 2–5 technical replicate wells. Mitochondrial content (MitoTracker Green [MTG])

and mitochondrial inner membrane potential (MitoTracker Deep Red [MTDR]) were measured by flow cytometric analysis of 72-h activated divided cells

and the ratio calculated. Mean G range. One-way ANOVA, effect of iron, paired within each biological replicate.
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activation, CD8 T cells transform their ability to acquire iron, and iron is required

for T cell mitochondrial and effector functions, optimal metabolic activity, and

cell-cycle progression.

Transient Hypoferremia Has Long-Term Consequences on T Cell Memory

The in vitro requirements of T cells for iron and the strong effects of hypoferremia on

primary immune responses led us to test whether low iron availability had longer-

term effects on the formation of immunological memory. We transferred OT-I cells

into recipient mice, injected OVA protein in adjuvant, then treated mice with mini-

hepcidin daily for 4 days; 28 days later, at which point serum iron was normalized,

there were marginally decreased total splenic OT-I memory cells and a marked sig-

nificant reduction in the frequency of memory cells with a central memory-like

phenotype (CD62L+; or CD27+, CD43�; or CX3CR1�)21,22 from mice that had

received minihepcidin during priming (Figure S5A). Following in vitro restimulation,

fewer splenic memory cells capable of synthesizing IL-2, IFNg, and TNF-a (individu-

ally or combined) were detected in mice that had experienced low serum iron during

the primary immune response; responding cells also produced less of each cytokine

(Figures S5B–S5E). Finally, to test recall responses in a separate experiment, mice

that had been injected with OVA in adjuvant with or without minihepcidin on days

3–6 post-immunization were re-challenged with OVA subcutaneously on day 35 af-

ter immunization and the secondary response analyzed on day 40. Hypoferremia

during priming reduced the OVA-specific CD8 T cell recall response and the per-

centage of IFNg-producing CD8+ T cells (Figure 5A). Hence, transient hypoferremia

during primary responses impairs the quality and quantity of subsequent T cell mem-

ory and recall capacity in mice.

Impaired Anitbody Responses in Iron-Deficient Piglets and Humans

To understand whether similar principles of iron-limiting immune responses apply in

species with different metabolic needs, we took advantage of the natural piglet

physiology, in which the low iron reserves at birth due to large litter size, rapid

post-natal growth, and iron-poor sow’s milk necessitates additional provision of

iron to prevent the swift onset of anemia.23 In piglets reared only on sow’s milk

replacer without added iron, serum iron was relatively low and hemoglobin levels

dropped steadily in the 4 weeks after birth; the red blood cell number was also

decreased while platelets were increased, indicating iron-deficiency anemia (IDA)

(Figures 6A, S6A, and S6B). At 2 weeks of age, piglets were vaccinated against

A B

Figure 5. CD8 T Cell Recall Responses Are Disrupted by Serum Iron Deficiency during the Primary

Immune Response

(A) Experimental design to investigate the effect of serum iron deficiency during the primary

immune response on the magnitude of the secondary recall CD8 T cell response.

(B) Number of endogenous OVA-specific secondary CD8 effector cells in the spleen detected by

OVA tetramer binding and percentage of splenic OVA-specific CD8 effector cells detected by

IFNg+ production after ex vivo stimulation with SIINFEKL. Means G SDs. Student’s 2-tailed t test,

unpaired.
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Mycoplasma hyopneumoniae (a standard immunization against an important piglet

pathogen24), at which time there was no significant difference in antibody titer (Fig-

ure S6C). Two weeks later, the vaccine-specific antibody response was relatively

increased in the piglets that had received iron (Figures 6B and S6C). Therefore,

against a background of IDA, iron supplementation not only maintains hemoglobin

but can also improve responses to vaccination.

A rare form of iron-refractory IDA (IRIDA) in humans is caused by increased hepci-

din in patients with mutations in TMPRSS6, a protease that normally represses hep-

cidin.25 The quality of adaptive immunity in IRIDA patients has not been explored

before. We investigated antibodies specific for various pathogens that are tar-

geted by vaccines in a group of 12 IRIDA patients who had increased hepcidin

levels, hypoferremia (~5 mmol/L serum Fe) and hematological parameters indica-

tive of IDA (Figure S6D) compared to controls of similar age collected at the

same clinic (Figure 6C). None of the IRIDA patients (and controls) had raised C-

reactive protein (all IRIDA patients <0.5 mg/L), indicating a lack of systemic

inflammation (Figure S6D). Compared to the control group, the IRIDA group

A
B

C D

Figure 6. Iron Supplementation Normalizes Piglet Iron Status and Improves Vaccine Responses at 28 Days of Age

Routine vaccinations are less efficacious in IRIDA patients.

(A) Serum iron and hemoglobin of control and iron-supplemented piglets. Means G SDs. Serum iron, mixed-effects model, p value is effect of iron

supplementation. Hemoglobin, 2-way ANOVA, p value is effect of iron supplementation.

(B) Antibody response against M. hyopneumoniae vaccination reported as improvement in percentage block at 28 days post-natal, relative to pre-

immunization percentage block at 14 days after birth. Mean G range. Student’s 2-tailed t test, unpaired.

(C) Age of TMPRSS6 and WT control cohorts. Means G SDs. Student’s 2-tailed t test, unpaired.

(D) Antibody concentrations against rubella, Haemophilus influenzae b, and Streptococcus pneumoniae serotype 1 measured in IRIDA patients with

TMPRSS6 mutations and non-anemic healthy controls without mutant TMPRSS6 alleles from the same clinic. Means G SDs. Student’s 2-tailed t test,

unpaired; Mann-Whitney U test for rubella. Right-most panel: analysis of the frequency of individuals for both genotypes with antibody concentrations

against Streptococcus pneumoniae serotype 1 exceeding the protective threshold of 0.35 mg/mL (dotted line). Fisher exact test.
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had lower serum immunoglobulin G (IgG) concentrations against rubella, Hib and

anti-Streptococcus pneumoniae serotype 1 (PS1), a leading cause of invasive pneu-

mococcal disease globally26 (Figure 6D). For anti-PS1, none of the IRIDA patients

achieved an antibody concentration above the World Health Organization (WHO)

protective threshold of 0.35 mg/mL (Figure 6D), and overall, IRIDA patients were

less likely to achieve protective concentrations to S. pneumoniae serotypes (Fig-

ure S6E). Controlling for age and gender, we found genotype effects on anti-

PS1 (p = 0.005), anti-PS18C (p = 0.048), and anti-Hib (p = 0.066) serum IgG (all

lower in the IRIDA group). These data show that a condition of persistently high

hepcidin associates with lower antibody levels against some important pathogens

in humans.

Hypoferremia Exacerbates Influenza Virus Infection and Lung Inflammation

Innate immune responses to infection increase hepcidin, contributing to hypoferre-

mia of infection.8 We investigated how minihepcidin treatment, to enforce pro-

longed hypoferremia, influenced the immune response to a respiratory viral infec-

tion (influenza A virus) in mice (Figure 7A). We observed fewer virus-specific CD8

T cells in the spleen and lungs; fewer granzyme B-expressing splenic CD8 T cells;

and fewer T-follicular helper cells, antigen-experienced CD44+ CD4 cells, and GC

B cells in the mediastinal lymph nodes on day 8 post-infection (Figures 7B and

7C); however, lung mRNA expression of pro-inflammatory cytokines IL-6 and

TNF-a was higher (Figure S7A). Cellular immune responses in the spleen were also

reduced on day 10 post-infection (Figure S7B), circulating influenza neutralizing an-

tibodies were undetectable (Figure 7D), and lung viral load (measured as influenza

nucleoprotein RNA) was significantly higher (Figure 7E). Histologically, focal airway

inflammation was present in all of the infected mice, but despite suppressed

lymphocyte responses, perivascular/peribronchiolar inflammation was more severe

in the lungs of minihepcidin-treated infected mice, with marked extension into the

alveolar parenchyma (Figures 7F and 7G). The increased inflammatory cell infiltrates

in minihepcidin-treated mice comprised both mononuclear cells and neutrophils,

with larger areas of the lung exhibiting disrupted alveolar structures (Figures 7F,

7G S7C, and S7D); however, no change in lung non-heme iron content was observed

(Figure S7E). In addition to this increased tissue damage, minihepcidin-treated mice

failed to recover infection-induced weight loss (Figure S7F). Therefore, mice with

persistent hypoferremia had a suppressed adaptive immune response, were less

able to clear the virus, and experienced more severe pulmonary disease and sus-

tained morbidity.

DISCUSSION

Iron and Immunometabolism

Hepcidin-induced hypoferremia is a well-conserved component of the innate im-

mune response in vertebrates.8 We demonstrate that hypoferremia may impair mul-

tiple aspects of adaptive immunity if it occurs during the period of lymphocyte

expansion, with the potential for subsequent long-term inhibition of T cell memory

even after hypoferremia has resolved. We show that appropriate regulation of

cellular iron uptake controlled by IRP1/2 is essential for T cell effector functions;

and TFRC-mediated iron acquisition is cell-intrinsically required for B and T cell re-

sponses in vivo. The remarkable upsurge in the expression of TFRC by activated

T cells, increasing by ~1 million copies of protein per cell within 24 h, along with es-

calations in transmembrane iron importers, indicates a significant intensification of

efforts to acquire iron from extracellular sources. Although we showed that oxidative

metabolism and DNA synthesis studies are two iron-dependent processes inhibited

in T cells by low iron availability, many other cellular pathways important in T cell

ll
OPEN ACCESS

10 Med 2, 1–16, February 12, 2021

Please cite this article in press as: Frost et al., Hepcidin-Mediated Hypoferremia Disrupts Immune Responses to Vaccination and Infection, Med
(2020), https://doi.org/10.1016/j.medj.2020.10.004

Clinical and Translational Article



biology, including epigenetic reprogramming and hypoxia sensing, also require iron

and should be investigated. Furthermore, reduced CD25 expression and failure to

sense IL-2 could contribute to the poorer quality of effector/memory CD8 T cells

observed in iron deficiency.27 Because the accelerated metabolic activity of acti-

vated lymphocytes is particularly sensitive to iron availability, physiological varia-

tions in iron concentrations strongly influence immune responses. Therefore, iron

may be considered a nutrient relevant to concepts of immunometabolism.28

Figure 7. Serum Iron Deficiency Suppresses Adaptive Immune Responses to Influenza Infection, Worsening Lung Inflammation and Preventing

Recovery of Weight

(A) Experimental scheme for investigation effect of minihepcidin injection on the outcome of infection with 0.08 hemagglutination units of influenza

virus A/X-31 (H3N2).

(B) Representative plots of the frequency of influenza nucleoprotein (NP)-specific CD8 effector cells as a percentage of CD8 T cells in the spleens of mice

8 days post-infection. Numbers of NP-specific CD8 effector cells in the spleen and lung at 8 days post-infection. Number of splenic granzyme B+ CD8

T cells. Means G SDs. Student’s 2-tailed t test, unpaired.

(C) Mediastinal lymph node T follicular helper cell number (PD-1+ CXCR5+ CD44+ CD4 T cells) and frequency of CD44+ antigen-experienced CD4 T cells

as a percentage of CD4 were identified by flow cytometry. Representative plots of the frequency of mediastinal lymph node GC B cells as a percentage

of total B cells and the number of mediastinal lymph node GC B cells at day 8 post-infection (IgD�CD95+ GL7+ B cells). Means G SDs. Student’s 2-tailed

t test, unpaired.

(D) Half-maximal effective concentration (EC50) of neutralizing antibody from serum on day 10 post-infection. LOD, limit of detection. Means G SDs.

Student’s 2-tailed t test, unpaired.

(E) Influenza NP RNA in homogenates of a whole lung lobe taken at day 10. Means G SDs. Student’s 2-tailed t test, unpaired.

(F) Leder staining of representative lung sections from mice on day 10 post-influenza infection from each group; 2003, scale bar 20 mm.

Polymorphonuclear cells stained with pink cytoplasm indicated by arrows.

(G) Lung inflammation and neutrophil infiltration scoring. Means G SDs. Kruskal-Wallis test with correction for multiple comparisons.
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Hepcidin, Hypoferremia, and Viral Infections

Hepcidin-controlled iron redistribution protects against some bacterial infections

and malaria in mice.29,30 In humans, increased hepcidin and hypoferremia occur af-

ter experimental norovirus, typhoid, and malaria infections,31–33 and during the

initial emergence of viremia in HIV-1-infected blood donors.34 Although inflamma-

tory hypoferremia can be beneficial in the context of infections with single-cell or-

ganisms that must acquire iron from their host, evidence that low serum iron is pro-

tective in the context of viral infections is lacking. In fact, in our experiments with

influenza virus, imposing hepcidin-induced hypoferremia resulted in an impaired

adaptive immune response, viral persistence, and severe pulmonary disease, sug-

gesting that low serum iron may sometimes be an unhelpful response to infection.

Recent reports show that hypoferremia is present in coronavirus disease 2019

(COVID-19) patients on admission to the intensive care unit (ICU).35 Low serum

iron correlated with lymphopenia, and extremely low serum iron (~3 mmol/L) iden-

tified COVID-19 patients with severe respiratory hypoxemia, likely secondary to

pulmonary damage. This hypoferremia is more profound than in previously re-

ported cohorts of non-COVID-19 ICU patients, including those with sepsis,36,37

indicating that extreme hypoferremia may be a particular feature of severe

COVID-19 disease. IL-6 drives hepcidin expression, and an unbalanced inflamma-

tory response of high IL-6 and relatively low type I and type III IFN associates with

severe COVID-19 and poor outcomes.38,39 IL-6-driven and hepcidin-mediated hy-

poferremia could impair the antiviral adaptive immune response, contributing to

the severity of infection. Tocilizumab, which targets IL-6R, under investigation as

a therapeutic for COVID-19, may counteract hypoferremia. Monitoring serum

iron in COVID-19 patients may be useful in evaluating disease severity and the ef-

fects of treatments.

The Iron Trade-Off—Consequences for Adaptive Immunity and Vaccination

Previous characterizations of the role of iron in the context of infection describe the

attempts of the pathogen to hijack host iron, which the host defends, leading to an

evolutionary arms race.40 We propose that the hypoferremia of infection also rep-

resents a trade-off for the host, which attempts to decrease the virulence of

invading pathogens by withholding iron, but in so doing simultaneously withholds

iron from adaptive immune responses. The outcome of this trade-off will depend

on the nature of the causative infection, the magnitude and type of the inflamma-

tory response, and the underlying iron status of the host. Globally, hypoferremia is

common in populations in which nutritional iron deficiency is prevalent and in

which there is also a burden of infections and inflammation that increase hepcidin,

a combination that likely affects hundreds of millions of individuals.4,10 As well as

influencing responses to infection directly, hypoferremia may have indirect effects

on the infectious burden by impairing responses to vaccination. The efficacy and

immunogenicity of some vaccines is suboptimal in populations in which iron defi-

ciency is endemic,41 and in such populations, childhood mortality from vaccine-

preventable infections remains unacceptably high.42 Here, we demonstrate in a

piglet model that iron augments responses to vaccination in the context of natu-

rally occurring iron deficiency. Recently, we showed in a retrospective analysis of

Kenyan infants that anemia associates with impaired humoral responses to some

vaccines and that iron supplementation may enhance the humoral response to a

measles vaccine.43 However, iron can also increase the risk of some infections

and adversely influence gut microbiota.4 Consequently, bespoke trials are needed

to determine whether targeted nutritional iron given around the time of vaccina-

tions improves the efficacy of immunizations in populations with iron deficiency,

including children and the elderly.
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Raised hepcidin and hypoferremia in IRIDA patients with mutations in TMPRSS6may

associate with impaired humoral immunity, at least against some pathogens. Persis-

tently high hepcidin and hypoferremia are also features of non-infectious chronic in-

flammatory disorders such as chronic kidney disease,9 and inflammation and iron

deficiency are observed in cancers.44 Adaptive immunity in these populations and

conditions may be compromised by hypoferremia. Of note, pharmacological or ge-

netic manipulation of hepcidin activity, intended as a therapeutic intervention for

iron-related disorders, is relatively well developed.45 Therefore, hepcidin is already

a potentially accessible target and can be investigated as a modality of controlling

immune responses in multiple contexts.

Limitations of Study

While our study found that iron restriction impairs T cell aerobic metabolism as as-

sessed by oxygen consumption andmitochondrial membrane potential, broader hy-

pothesis-free approaches could provide a more holistic appreciation of the mecha-

nism by which limiting iron availability disrupts the function of T cells. Both T and B

cell responses are impaired by serum iron deficiency in vivo, but we did not explore

how the physiology of isolated B cells is perturbed by iron deficiency or how T cell

differentiation is influenced by iron. Furthermore, we have not asked to what extent

the impairment of CD8 T cell memory by iron deficiency extends to CD4 and B cell

memory and how these observations could affect responses to vaccines and protec-

tion against infection.

Summary

We found that hepcidin-induced hypoferremia impaired primary and memory re-

sponses to immunization, and we uncovered a profound demand of activated

T cells for iron mediated at least in part by IRP1/2 and TFRC. High hepcidin can

inhibit adaptive immune responses to pathogens, while against a background of

low serum iron, supplemental iron can improve immune responses. These results

indicate that serum iron, regulated by hepcidin, is an important and potentially

targetable control point for immunity.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Purified low endotoxin CD3, clone 145-C11 Biolegend 100339; RRID:AB_11150783

Purified low endotoxin CD28, clone 37.51 Biolegend 102115; RRID:AB_11150408

Purified CD16/CD32, clone 93 Biolegend 101302; RRID:AB_312801

FITC CD8, clone 53.6.7 Biolegend 100705; RRID:AB_312744

FITC CD3, clone 17A2 Biolegend 100203; RRID:AB_312660

FITC CD71, clone R17217 Biolegend 113805; RRID:AB_313566

FITC CD11b, clone M1/70 Biolegend 101205; RRID:AB_312788

FITC CD4, clone GK1.5 Biolegend 100405; RRID:AB_312690

FITC CD45.1, clone A20 Biolegend 110706; RRID:AB_313495

FITC CD62L, clone MEL-14 Biolegend 104405; RRID:AB_313092

FITC GL7, clone GL7 Biolegend 144603; RRID:AB_2561696

FITC CD44, clone IM7 Biolegend 103005; RRID:AB_312956

FITC CD25, clone PC61 Biolegend 102005; RRID:AB_312854

FITC Tcrb, clone H57-597 Biolegend 109205; RRID:AB_313428

FITC TNF-alpha, MP6-XT22 Biolegend 506303; RRID:AB_315424

PerCP/Cy5.5 CD4, clone GK1.5 Biolegend 100433; RRID:AB_893330

PerCP/Cy5.5 CD8, clone 53.6.7 Biolegend 100733; RRID:AB_2075239

PerCP/Cy5.5 Tcrb, clone H57-597 Biolegend 109227; RRID:AB_1575176

PerCP/Cy5.5 IgD, clone 11-26c2a Biolegend 405709; RRID:AB_1575115

PerCP/Cy5.5 CD90.2, clone 30-H12 Biolegend 105337; RRID:AB_2571944

PerCP/Cy5.5 B220, clone RA3-6B2 Biolegend 103235; RRID:AB_893356

PE CD71, clone R17217 Biolegend 113807; RRID:AB_313568

PE CD43, clone 1B11 Biolegend 121207; RRID:AB_493389

PE CD69, clone H1.2F3 Biolegend 104507; RRID:AB_313110

PE CD62L, clone MEL-14 Biolegend 104407; RRID:AB_313094

PE CD98 (4F2), clone RL388 Biolegend 128207; RRID:AB_1186107

PE CD127, clone SB/199 Biolegend 121111; RRID:AB_493510

PE CD138, clone 281-2 Biolegend 142503; RRID:AB_10915989

PE CD154, clone MR1 Biolegend 106505; RRID:AB_313270

PE CD185 (CXCR5), clone L138D7 Biolegend 145503; RRID:AB_2561967

PE CX3CR1, clone SA011F11 Biolegend 149005; RRID:AB_2564314

PE IL-2, clone JES6-5H4 Biolegend 503807; RRID:AB_315301

PE/Cy7 CD71, clone R17217 Biolegend 113811; RRID:AB_2203383

PE/Cy7 CD8, clone 53-6.7 Biolegend 100707; RRID:AB_312746

PE/Cy7 CD279 (PD-1), clone RMPI-30 Biolegend 109109; RRID:AB_572016

PE/Cy7 IFN-gamma, clone XMG1.2 Biolegend 505825; RRID:AB_1595591

PE/Cy7 KRLG1, clone 2F1/KRLG1 Biolegend 138415; RRID:AB_2561735

PE/Cy7 CD98 (4F2), clone RL388 Biolegend 128213; RRID:AB_2750546

(Continued on next page)
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. Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

PE/Cy7 Tcrb, clone H57-597 Biolegend 109221; RRID:AB_893627

PE/Cy7 CD69, clone H1.2F3 Biolegend 104511; RRID:AB_493565

Pacific Blue CD3, clone 17A2 Biolegend 100213; RRID:AB_493644

Pacific Blue CD8, clone 53-6.7 Biolegend 100728; RRID:AB_493426

Pacific Blue CD44, clone IM7 Biolegend 103019; RRID:AB_493682

Pacific Blue Tcrb, clone H57-597 Biolegend 109225; RRID:AB_1027655

Pacific Blue GL7, clone GL7 Biolegend 144613; RRID:AB_2563291

BV421 CD27, clone LG.3A10 Biolegend 124223; RRID:AB_2565547

BV421 CD71, clone R17217 Biolegend 113813; RRID:AB_10899739

BV421 CD127, clone A7R34 Biolegend 135027; RRID:AB_2563103

BV421 CD138, clone 281-2 Biolegend 142507; RRID:AB_11204257

BV421 TNF-alpha, clone MP6-XT22 Biolegend 506328; RRID:AB_2562902

BV605 CD8, clone 53-6.7 Biolegend 100744; RRID:AB_2562609

BV605 B220, clone RA3-6B2 Biolegend 103244; RRID:AB_2563312

BV605 CD45.1, clone A20 Biolegend 110737; RRID:AB_11204076

BV605 IL-2, clone JES6-5H4 Biolegend 503829; RRID:AB_11204084

BV785 CD44, clone IM7 Biolegend 103041; RRID:AB_11218802

BV785 CD8, clone 53-6.7 Biolegend 100749; RRID:AB_11218801

BV785 CD3, clone 17A2 Biolegend 100231;RRID:AB_11218805

BV785 CD45.1, clone A20 Biolegend 110743; RRID:AB_2563379

APC CD4, clone GK1.5 Biolegend 100411; RRID:AB_312696

APC CD44, clone IM7 Biolegend 103011; RRID:AB_312962

APC CD25, clone PC61 Biolegend 102011; RRID:AB_312860

APC CD45.1, clone A20 Biolegend 110713; RRID:AB_313502

APC CD62L, clone MEL-14 Biolegend 104411; RRID:AB_313098

APC CX3CR1, clone SA011F11 Biolegend 149007; RRID:AB_2564491

APC IFN-gamma, clone XMG1.2 Biolegend 505809; RRID:AB_315403

APC IL-2, clone JES6-5H4 Biolegend 503809; RRID:AB_315303

APC Tcrb, clone H57-597 Biolegend 109211; RRID:AB_313434

APC B220, clone RA3-6B2 Biolegend 103211; RRID:AB_312996

APC/Cy7 B220, clone RA3-6B2 Biolegend 103224; RRID:AB_313007

APC/Cy7 CD11b, clone M1/70 Biolegend 101226; RRID:AB_830642

PE/Cy7 CD95, clone Jo2 BD 557653; RRID:AB_396768

APC pS6, clone D57.2.2E Cell Signaling 14733S; RRID:AB_2721245

Alkaline phosphatase conjugated Goat ant-mouse IgG Sigma A-3562; RRID:AB_258091

Bacterial and Virus Strains

A/X-31 (H3N2) A/Aichi/2/1968 (46) N/A

H3N2 (X31) GFP expressing pseudotyped reporter virus (S-
FLU)

(47) N/A

AdHu5-OVA (Wang et al., 2016)48 N/A

MVA-OVA (Wang et al., 2016)48 N/A

Chemicals, Peptides, and Recombinant Proteins

Chicken Ovalbumin Invivogen Vac-pova

(Continued on next page)
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. Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

MPLA Invivogen Vac-mpla

alpha-galactosylceramide GS. Besra, University of Birmingham/ Enzo Life
Sciences

KRN7000

Pannexin NTS serum substitute (made iron free to order) Pan Biotech P04-95080

Holotransferrin Sigma/Merck T0665

Apotransferrin Sigma/Merck T1147

4-hydroxytamoxifen Sigma/Merck H6278

FeSO4 Sigma/Merck F8633

Ferric Ammonium Citrate Sigma/Merck F5879

DNAase1 Sigma/Merck D5025

Collagenase IV Sigma/Merck C5138

Percoll GE Healthcare 17-0891-02

Cell Trace Violet Invitrogen C34557

Mitotracker Green Thermofisher M7514

Mitotracker Deep Red Thermofisher M22426

Interleukin-2 (murine recombinant) Biolegend 575402

FLT3L (murine recombinant) Biolegend 550702

CpG ODN 1826 Invivogen Tlrl-1826

SIINFEKL (OVA peptide 257-264) Invivogen Vac-sin

OVA 323-339 Invivogen Vac-isq

B8R (20-27, TSYKFESV) Anaspec AS-64688

Suwaxyn MH-One Zoetis Ltd N/A

bathophenanthrolinedisulphonic acid Sigma/Merck 146617

Thioglycolyic acid Sigma/Merck 88652

Minihepcidin PR73 (29) Chinese Peptide Company N/A

Purebright SL220/ Sunbright DSPE-020CN NOF N/A

Critical commercial assays

CD8 T cell isolation kit Stem Cell Technologies 19853

CD8 T cell isolation kit Miltenyi Biotech 130-104-075

RNeasy plus kit QIAGEN 74136

High capacity RNA to cDNA kit Life technologies 4387406

M. hyopneumoniae detection kit, Thermo Scientific Oxoid, UK, K004311

Seahorse real-time ATP rate assay kit Agilent 103592-100

Cell titer-Glo Promega G7570

Taqman Gene expression master mix Thermofisher 4369542

Control iron diet (200ppm) Teklad TD.07801

Low iron diet (2ppm) Teklad TD.99397

Experimental Models: Cell Lines

MDCK-SIAT cells for Influenza virus propagation ECACC 05071502

Experimental Models: Organisms/Strains

C57BL/6 Envigo N/A

OT-II transgenic mice Oliver Bannard N/A

OT-I transgenic mice Vincenzo Cerundolo N/A

(Continued on next page)
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RESOURCE AVAILABILITY

Lead Contact

Further information and requests for resources and reagents should be directed to

and will be fulfilled by the Lead Contact, Hal Drakesmith (alexander.drakesmith@

imm.ox.ac.uk)

Materials Availability

This project did not generate new unique reagents

Data and Code Availability

This project did not generate any new code or novel datasets

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice

Unless otherwise stated, animal procedures were performed under the authority of

UK Home Office project and personal licenses in accordance with the Animals (Sci-

entific Procedures) Act 1986, and were approved by the University of Oxford ethical

review committee. Mice were housed in individually ventilated cages and fed ad-li-

bitum with a standard diet containing 188ppm iron (SDS Dietex Services, diet

801161), or irradiated low iron diet (2ppm Fe, TD.99397, Teklad Envigo), or irradi-

ated adjusted iron diet (control for low iron diet, 200ppm Fe, TD.07801, Teklad En-

vigo). Mice were euthanised in increasing CO2 concentrations.

. Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

B6SJLCD45.1 mice Oxford University Core breeding facility N/A

Tfrc Y20H/Y20H mice Raif S. Geha (3) N/A

Aco1flox/flox,Ireb2flox/flox, Rosa26+/CreERT2 Bruno Galy (49) N/A

Oligonucleotides

Aco1 primer 1 TACTGTAGCAAAAATGCTTTGTCTCTG Sigma/Merck N/A

Aco1 primer 2 TCTATCCCTGAGGTCGGTAGGC Sigma/Merck N/A

Aco1 primer 3 GTCATTTTTCTCATTTCTTGAGCATTAG Sigma/Merck N/A

Ireb2 primer 1 GGCTTCAATAGTCTTCATACCACG Sigma/Merck N/A

Ireb2 primer 2 CTGAAAGACTGACCCTTCTTGTTC Sigma/Merck N/A

Ireb2 primer 3 TGAGTGGTGCCTGCATTTTAAG Sigma/Merck N/A

Taqman probe: Hypoxanthine-guanine
phosphoribosyltransferase

Applied biosystems/ Thermofisher Mm01545399_m1

Taqman probe: Interleukin 6 Applied biosystems/ Thermofisher Mm99999064_m1

Taqman probe: Tumor necrosis factor alpha Applied biosystems/ Thermofisher Mm00443258_m1

Taqman probe: Ferroportin Applied biosystems/ Thermofisher Mm01254822_m1

Taqman probe: Beta-2-microglobulin Applied biosystems/ Thermofisher Mm00437762_m1

Taqman probe: Hepcidin Applied biosystems/ Thermofisher Mm04231240_s1

Taqman probe: Influenza Nucleoprotein Applied biosystems/ Thermofisher NC_002019.1 Assay ID:
AIX02UC

Software and Algorithms

Graphpad prism version 8 http://graphpad.com N/A

Flowjo version 10.4r1 https://flowjo.com N/A
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WT C57BL/6JOlaHsd mice were ordered from Envigo. WT B6.SJL-Ptprca Pepcb/

BoyJ (congenic C57BL/6 CD45.1 expressing mice) were bred in house at the Univer-

sity of Oxford.WTmice were maintained on standard 188ppm iron diet for at least 2-

weeks in house before comparisons to transgenics was made. TfrcY20H/Y20H mice on

a homogeneous C57BL/6 background were a kind gift from Raif Geha, Boston Chil-

dren’s Hospital, Harvard Medical School.3 OT-I CD45.1: Transgenic C57BL/

6.Tg(TcraTcrb)1100Mjb (OT-I) mice crossed with BL6 congenic strain B6.SJL-Ptprca

Pepcb/BoyJ in house were a kind donation from Mike Bogetofte Barnkob and

Vincenzo Cerundolo (MRC HIU). OT-II CD45.1/CD45.2 heterozygous mice. Trans-

genic B6.Cg-Tg(TcraTcrb)425Cbn/J (OT-II) mice were a girft from Oliver Bannard

and originally from The Jackson Laboratory, Bar Harbor ME and crossed to congenic

homozygous B6.SJL-Ptprca Pepcb/BoyJ (CD45.1) to generate mice heterozygous

for the Tg(TcrbaTcrb)425Cbn transgene, Pepc and Pepb alleles: OT-II CD45.1/

CD45.2 heterozygous. All mice were sex matched and age matched (to within 2-

weeks) within individual experiment. For in vivo immunisation experiments mice

were used between 6-9 weeks of age, all mice were between 6-12 weeks-of-age

when initiating the experiment. Within each experiment mice were randomly allo-

cated to treatment groups such that an equal number of mice in each cage received

each treatment. For diet experiments mice were randomly assigned to diet groups at

the beginning of the experiment.

T cells with conditional loss of IRP function were derived from animals obtained by

crossing mouse lines carrying floxed Irp1 (Aco1) and Irp2 (Ireb2) alleles49 with a

knock-in strain bearing a tamoxifen-inducible CRE recombinase (CreERT2) sequence

into the permissive Rosa26 locus.50 Aco1flox/flox, Ireb2flox/flox, Rosa26+/+ (CRE nega-

tive, termed IRP1/2flox/flox Cre –ve) and Aco1flox/flox,Ireb2flox/flox, Rosa26+/CreERT2 lit-

termates (CRE positive, termed IRP1/2flox/flox Cre +ve) were on a homogeneous

C57BL/6 background. The breeding and procedures carried out on mice at the

DKFZ was done according to institutional guidelines. Mice were genotyped using

the Aco1 and Ireb2 primer sequences in the Key Resources Table.

Injected substances

Minihepcidin: An appropriate mass of mini-hepcidin PR7329 (da-TH-Dpa-bhPro-

RCR-bhPhe-Ahx-Ida(Hexadecylamine)-NH2) was dissolved in 80% ethanol and

thenmixed with 60mg of Purebright SL220/ Sunbright DSPE-020CN (NOF). The con-

trol solution was Purebright SL220 dissolved in ethanol. The ethanol was evaporated

off using a vacuum chamber warmed to 50�C. The resultant gel was stored up to 24

hours at 4�C and re-dissolved in an appropriate volume of water to give a mHep con-

centration of 1mM: 100nMoles of mini-hepcidin in 100 mL of water was injected per

mouse per dose.

Ferric ammonium citrate (FAC) (F5879 Sigma Aldrich) was dissolved to 3mg/ml in

PBS. 100 mL was injected intraperitoneally into mice. Iron dextran (Sigma, D8517)

was adjusted to 20mg/ml in PBS and 100 mL was injected intraperitoneally into mice.

Immunizations

Modified vaccinia virus Ankara expressing Ovalbumin: MVA-OVA was a kind gift

from the Viral Vector Core Facility, Jenner Institute, University of Oxford. Virus was

diluted to 10^7 plaque forming units (PFU)/mL in PBS, 100 mL was injected sub-cuta-

neously into the flank of mice.

Adenovirus human serotype 5 expressing Ovalbumin: AdHu5-OVA was a kind gift

from the Viral Vector Core Facility, Jenner Institute, University of Oxford. Virus was
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diluted to 10^10 viral particles (VP)/mL in PBS, 100 mL was injected sub-cutaneously

into the flank of mice.

For primary OVA protein immunisations mice received 200ug (for OT-I or OT-II re-

sponses) or 800ug (endogenous responses) of OVA (endofit Ovalbumin vac-pova,

Invivogen), 25ug of MPLA (vac-mpla, Invivogen) and 1ug of alpha-galactosylcera-

mide (gift from GS Besra, University of Birmingham, UK or KRN7000 Enzo Life Sci-

ences). For secondary OVA protein immunisations mice received 200ug of OVA

and 25ug of MPLA subcutaneously in the flank.

Adoptive transfers

For experiments involving response of OT-I CD8 or OT-II CD4 T cells, red cell lysed

spleen suspensions were obtained and the frequency of OT-I CD8 T cells or OT-II

CD4 T cells was evaluated by flow cytometry. The concentration of whole spleen sus-

pension was adjusted to 50,000 OT-I CD8 T cells/ml or 500,000 OT-II CD4 T cells/ml

and 100ul of cell suspension in PBS was injected i.v.

Mixed bone marrow chimeras

For mixed bone marrow chimerism experiments a mix of 60% TfrcY20H/Y20H CD45.2

(or WT CD45.2) bone marrow was combined with 40% CD45.1 bone marrow to test

the capacity of TfrcY20H/Y20H cells to reconstitute and contribute to immune re-

sponses relative to wild-type cells. Male CD45.2 recipients at 8-weeks of age

received were lethally irradiated with 4.5 Gy for 300 s, followed by a 3-hour rest,

and a subsequent 4.5 Gy dose for 300 s. Mice received 2 million total bone marrow

cells from the specified mice, after 9-weeks of rest peripheral blood was taken to

analyze reconstitution by flow cytometry. To prevent bacterial infection recipient

mice received antibiotics in their drinking water (0.16mg/mL Enrofloxacin (Baytril),

Bayer Coporation).

Influenza virus infection

Influenza virus (A/X-31 (H3N2) A/Aichi/2/1968)46 was propagated in MDCK-SIAT1

cells and quantified by hemagglutination assays and TCID50 as previous

described.47

Mice were anaesthetised with aerosolised isoflurane and infected with 0.08 haemag-

glutination units (HAU) of influenza virus X-31 intranasally. Virus suspension was pi-

petted drop wise onto the nares such that the virus is inhaled.

Influenza specific antibody titers in serum of infected mice was measured by in vitro

microneutralisation assays of infection of MDCK-SIAT1 cells with a H3N2 (X31) GFP

expressing pseudotyped reporter virus (S-FLU) as described47 with minor modifica-

tions. In brief, collected mouse sera was heat inactivated at 56C for 30min. Dilutions

of sera (starting dilution 1:40) was incubated with H3N2 (X31) S-FLU for 2 hours at

37C before addition of 3e4 of indicator MDCK-SIAT1 cells. Plates were incubated

overnight at 37C. Plates were then washed and fixed in 10% formalin. GFP expres-

sion was measured on a Clariostar plate reader and the dilution of sera that resulted

in 50% reduction of infection of the virus (determined via 50% reduction in GFP

signal) was reported as the neutralising titer (EC50).

Piglet study

Piglet housing and experimental procedures were all performed at the Centre for

Dairy Research (CEDAR), University of Reading, in accordance with local ethical

guidelines. All experiments were approved by the Reading Animal Welfare and
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Ethical Review Body (AWERB) and were performed under a UK HomeOffice License.

To assess the impact of iron deficiency on responses to vaccination, 18 large white

F1 hybrid piglets from 6 litters were distributed evenly between 2 sex-matched treat-

ment groups at 1 day old. Treatments were: group 1: Non-iron supplemented con-

trol, fed sow milk replacer (SMR) similar to bovine-based infant formula milk; group

2: fed iron supplemented (150mg/kg BW) SMR, half this group also received an intra-

muscular (IM) iron injection (200mg Fe) at 1 day old (Figure S6). Prior to their arrival at

CEDAR, the piglets did not receive vaccinations, antibiotics or standard husbandry

IM iron injections. Initially piglets were housed in 2 groups (oral iron and no oral iron

supplementation) in order to learn to drink from bowls and at 2 days old were indi-

vidually housed. Throughout the trial piglets were housed at 30�C on sawdust and

straw and provided with heat lamps under a 12h light and dark cycle and had free

access to fresh drinking water. Piglets were initially fed 10% SMR concentration

(either iron supplemented or non-supplemented) every 4 hours (5 feeds/day) and

this was increased to 15% and finally to 20% (4 feeds/day, standard concentration)

by day 4 in order to reduce the risk of scouring. Following twice-a-week weight mea-

surements, the amount of SRM and ferrous sulfate (oral iron supplementation) was

increased accordingly to achieve 150mg/kg body weight throughout the trial. All

piglets received an IM vaccination against Mycoplasma hyopneumoniae (2ml, Su-

waxyn MH-One, Zoetis Ltd, Leatherhead, UK) at 2 weeks old and blood samples

were collected via venepuncture using non-EDTA vacutainers at 2 weeks (pre-vacci-

nation), 3 and 4 weeks old (post-vaccination). Blood was immediately refrigerated

for 3-4 hours before being centrifuged to obtain serum, which was stored at

�80�C. At 28 days, piglets were killed by overdose of pentobarbital sodium BP

20% (Dolethal, Vetoquinol Ltd, Northamptonshire, UK).

IRIDA patients

Collection, genotyping, and hematological phenotyping of IRIDA and control pa-

tients has been described previously.51

Cell culture

All cells were cultured at 37�C, 20% O2 and 5% CO2. Media. Complete R10. RPMI

with 10% FCS (sigma), glutamine (2mM), penicillin (100U/ml), streptomycin

(0.1mg/ml) and Beta-mercaptoethanol (55mM). Iron modified culture medium. Pan-

nexin NTS serum substitute (P04-95080; Pan Biotech) lacking iron was ordered. Iron

free Pannexin NTS serum substitute was added at 10% v/v to RPMI alongside gluta-

mine (2mM), penicillin (100U/ml), streptomycin (0.1mg/ml) and Beta-mercaptoetha-

nol (55mM) to make iron free complete medium. To modify the iron content of the

iron free complete medium, holotransferrin (T0665 Sigma Aldrich) was added at

the specified concentration. Apotransferrin (T1147 Sigma Aldrich) was also added

to iron free complete medium to maintain the total transferrin concentration of

the medium at 1.2mg/ml.

CD8 T cells. Single cell suspensions were made from cervical, inguinal, axillary and

brachial lymph nodes by mechanical dissociation through a 40 mm cell strainer.

When proliferation was analyzed lymph node suspensions were resuspended in

500 mL of PBS with 5mM Invitrogen Cell Trace Violet (C34557) and stained at 37�C
for 8 minutes before quenching with 12ml of complete medium, washing and pro-

ceeding to T cell isolation. CD8 T cells were isolated from the lymph nodes of WT

C57BL/6, TfrcY20H/Y20H, OT-I CD45.1 using the Stem Cell Technologies CD8 T cell

isolation kit (19853, Stem Cell Technologies) and Easy Plate Magnet, and from

IRP1/2flox/flox Cre -/+ ve mice using theMiltenyi Biotech negative CD8 T cell isolation

kit (130-104-075, Miltenyi Biotech) as per manufactures instructions.
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Flat bottom tissue culture treated plates were coated with 5 mg/ml of anti-mouse

CD3 (145-2C11) for 2 hours at 37�C and then washed with PBS. CD8 T cells were

plated in complete medium with a final concentration of 100U/ml mouse IL-2 and

1 mg/ml anti-mouse CD28 (37.51). Cultures involving TfrcY20H/Y20H, WT C57BL/6 cells

or IRP1/2flox/flox Cre -/+ ve were carried out in complete R10medium. Cultures exam-

ining the effect of reduced iron concentration on WT T cells from C57BL6/ or OT-1

CD45.1mice were performed in iron free complete medium. CD8 T cells were plated

at a final concentration of 500,000/ml for analysis at 72hrs post activation for prolif-

eration analysis or 700,000/ml for analysis at 24hrs post activation for activation

analysis.

For culture of IRP1/2flox/flox Cre -/+ ve cells were treated with either 4-hydroxytamox-

ifen (4-OHT) (H6278, Sigma/Merck) at 100nM or a comparable volume of pure

ethanol concurrent with the activation mixture of soluble anti-CD28, IL-2 and

plate-bound anti-CD3. When cell proliferation was to be analyzed, after 24hrs of cul-

ture cells were harvested, spun down and resuspended in fresh medium with 100U/

ml mouse IL-2 and 1 mg/ml anti-mouse CD28 to remove 4-OHT or EtOH and re-

plated in wells coated with anti-mouse CD3. Cells were cultured for an additional

48hrs and proliferation was evaluated by flow cytometry.

For iron rescue experiments iron sulfate (FeSO4) (F8633, Sigma Aldrich) or ferric

ammonium citrate (FAC) (F5879, Sigma Aldrich) was added at the indicated concen-

tration from the start of culture and replenished in the case of the IRP1/2flox/flox

Cre -/+ ve experiments after 24hrs when 4-OHT/EtOH was removed.

BMDCs were cultured as described52 with minor modifications. In brief, red cell

lysed bone marrow cells from C57BL/6 mice were resuspended at 1 million cells/

ml in complete R10 medium with 100ng/ml FLT3L (550702, Biolegend) and cultured

for 7 days before use.

METHOD DETAILS

Flow cytometry

Single cell suspensions of lymph nodes or spleen were made by mechanical dissoci-

ation through a 40 mm cell strainer. Red cells were lysed in spleen suspensions using

Tris ammonium chloride (ACT) Red cell lysis buffer (2.06 g/L Tris base and 7.47 g/L

NH4Cl, 1L H20, adjusted to pH 7.2)

To isolate lymphocytes from the lung, lungs were minced with scissors and digested

for 30 minutes in 4ml of digestion medium: RPMI, 40U/ml DNase I (Sigma-Aldrich,

catalog number: D5025) and 0.4mg/ml of Collagenase IV (Sigma-Aldrich, catalog

number: C5138). Single cell suspensions were made by crushing through a 70mM

cell strainer. Cells were pelleted and red cell lysed with ACT Red cell lysis buffer.

A 40%/80% Percoll (GE Healthcare 17-0891-02) layer isolation was then used to

enrich for lymphocytes in the lung suspension. Enriched lymphocytes were then

washed and counted before flow staining.

For analysis of murine peripheral blood leukocytes, 100ml of whole blood

collected by tail bleed into a BD microtainer EDTA tube was mixed with 1ml of

ACT Red Cell lysis buffer and incubated at room temperature for 20 minutes.

The blood solution was spun down at 400 g for 5 minutes, supernatant removed,

and the leukocyte pellet transferred to a round bottom 96 well plate for flow cy-

tometric staining.
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Tissue cell suspensions or in vitro activated cells at appropriate time points after acti-

vation cells were transferred to a 96 well round bottom plate, spun down and washed

with 200 mL of PBS. Cells were stained with appropriate concentrations of FC recep-

tor block, fluorophore conjugated antibodies and a fixable live dead dye in 40 mL of

PBS for 20 minutes at 4�C in the dark. Cells were washed and ran directly on an In-

vitrogen Attune or BD LSR Fortessa. For some experiments, cells were fixed for

10 minutes in 100ul of 4% paraformaldehyde at 4�C in the dark before washing

and resuspension for analysis or resuspended in saponin based perm buffer to stain

intracellular antigens.

Tetramer staining using reagents from the NIH tetramer facility was carried out at

room temperature for 30 mins in FACs buffer (PBS with 2% FCS and 0.04% Sodium

Azide) prior to antibody staining.

For mitochondrial analysis, cells were washed and stained with Mitotracker Green

(M7514, Thermofisher Scientific) and Mitotracker Deep Red (M22426, Thermofisher

Scientific) at 100nM in complete media (either iron deficient medium for serum iron

deficiency recapitulating cultures or R10 for TfrcY20H/Y20H cultures) for 30mins at

37�C as per the manufacturer’s instructions. We found that MTDR staining was sen-

sitive to pharmacological disruption of the mitochondrial membrane potential with

Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) consistent with pub-

lished literature.53 The ratio of MTDR to MTG was calculated to indicate the mem-

brane potential normalized for volume of mitochondria.

For detection of intracellular cytokines splenocytes were plated at 2 million cells/

200ml in complete media in a round bottom 96 well plate with 0.1mg/ml SIINFEKL

(OVA 257-264)(Vac-sin Invivogen) peptide for OVA specific responses, 0.5mg/ml

B8R peptide for Vaccinia specific responses (AS-64688, Anaspec) or 1ug/ml OVA

(323-339), (Va- isq, Invivogen) to induce OT-II cytokine production. After 30mins

5mg/ml Brefeldin A was added and cells were cultured for a further 4 hours before

surface/intracellular staining for flow cytometry.

For detection of MVA specific CD4 responses by ICS, day 7 BMDCwere plated at 0.3

million cells per well of a 96 well plate with 50ng/ml FLT3L. BMDCs were either left

unstimulated, non-specifically stimulated with 0.5mM of CpG (ODN 1826) (Tlrl-1826,

Invivogen) or infected with MOI of 1 of MVA-OVA overnight. The following day the

cells were washed and 2 million splenocytes from unimmunised or MVA immunized

mice were added. After 30mins Brefeldin A was added to a final concentration of

5mg/ml and cells were cultured for a further 4 hours before surface/intracellular stain-

ing for flow cytometry. Cytokine secreting CD4 T cells were defined as CD154+

cytokine+ (compared to unstimulated CD4 on CpG pulsed DCs or CD4s from naive

mice).

See Key Resources Table for antibodies used.

Example gating schemes for key populations are depicted in Supplementary

Methods Figures 1–6. CD8+ CD44+ Tetramer+ CD8 T cells (Supplementary

Methods Figure 1A) and effect of minihepcidin on tetramer positive CD8s (Supple-

mentary Methods Figure 1B). B220+ IgD- CD95+ germinal center B cells (Supple-

mentary Methods Figure 2A) and effect of minihepcidin on germinal center B cells

(Supplementary Methods Figure 2B). CD4+ CD44+ CXCR5+ PD-1+ T follicular help-

er cells (Supplementary Methods Figure 3A) and effect of minihepcidin on T follicular

helper cells (Supplementary Methods Figure 3B). CD138+ IgD- plasma cells
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(Supplementary Methods Figure 4A) and effect of minihepcidin on plasma (Supple-

mentary Methods Figure 4B). CD8+ CD45.1+ OT-I CD8s (Supplementary Methods

Figure 5A) and effect of minihepcidin onOT-I effector cells (SupplementaryMethods

Figure 5B). Gating of OT-I IFN-gamma, TNF-alpha or IL-2 producing CD8 T cells by

ICS (Supplementary Methods Figure 6A) and effect of minihepcidin on cytokine pro-

ducing CD8 T cells (Supplementary Methods Figure 6B).

Gene expression analysis by quantitative real time PCR (qRT-PCR)

RNA was extracted from liver explants or lung lobes harvested into RNA later

(AM7020 Thermofisher Scientific) and snap frozen cell pellets with the RNeasy plus

kit (QIAGEN, 74136) and reverse transcribed to cDNA (Life Technologies,

4387406) for quantitative PCR on the Applied Biosystems 6500 Fast Real-Time

PCR systemmachine using TaqMan assays listed in the Key Resources Table. accord-

ing to the manufacturer’s protocols. Gene expression is presented as 2^([CT of

endogenous control gene] – [CT of gene of interest]). Hprt was used an endogenous

control gene for liver and lung qRT-PCR. B2m was used as a control gene for CD8

T cell cultures as the CT does not change during T cell activation.

Tissue and serum iron measurements

Tissues were dried for 3 hours at 100�C, and the dry mass of tissue piece was

measured. Tissue pieces were digested in 10% trichloroacetic acid/ 30% hydrochlo-

ric acid for 20 hours at 65�C. Non-haem iron content was determined by reaction of

the acid digested tissue with chromogen reagent containing 0.1% (w/v) bathophe-

nanthrolinedisulphonic acid (Sigma, 146617) and 0.8% thioglycolyic acid (Sigma,

88652) measuring absorption at 535nm and comparing to a standard curve of ferric

ammonium citrate as described.54

For serum analysis of murine samples up to 400ml of blood obtained by cardiac punc-

ture was placed in a BD microtainer SST tube (Beckton Dickinson). Serum was ob-

tained by spinning the clotted blood sample was spun at 8,000 g for 5 minutes

and stored at �80�C. Serum iron was quantified using the Abbott Architect

c16000 automated analyzer (Abbott Laboratories) and the MULTIGENT Iron Kit at

Oxford John Radcliffe Hospital, UK.

Analysis of piglet study

Pig serum iron was measured using an automated assay on an Abbott Architect

c16000 automated analyzer (Abbott Laboratories) in the Department of Clinical

Biochemistry, OUHNHS. Serum samples were tested for M. hyopneumoniae anti-

bodies using a commercial monoclonal blocking ELISA (M. hyopneumoniae detec-

tion kit, Thermo Scientific Oxoid, UK, K004311) according to manufacturer’s in-

structions at Biobest Laboratories Ltd, Edinburgh; sample optical density (OD)

results were corrected using the mean OD of buffer control wells. Serum titers

of neutralising antibodies (agnostic of isotype) were calculated as a percentage

blocking of signal derived from binding of the defined anti-M. hyopneumoniae

HRP conjugated antibody included in the assay. Results were reported as improve-

ment in % block on day 28 (14 days post immunisation) relative to day 14 (day of

immunisation) to detect improvement in antibody responses above inherited

maternal antibody. Improvement in % block = (% block on day 28) – (% block

on day 14).

Murine anti-OVA IgG titers

Antibody titers against OVA protein from immunized mice were determined

by ELISA. In, brief, plates were coated with OVA protein (InvivoGen Endofit,
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50 ml/well at 10 mg/ml) over night. Dilutions of test sera (in triplicate) were added to

the plate. Plates were washed 6 times with PBS-T (PBS, 0.05% Tween). To detect

OVA binding IgG, the goat anti-mouse secondary Ab binding an alkaline-phospha-

tase–conjugated goat anti-mouse IgG (Sigma Aldrich A-3562), followed by further

washing. OD405 after addition of pNPP substrate was quantified using an ELx800

plate reader (Bio-Tek). The dilution at which the OD was first below background +

3 SD was recorded in AU as the endpoint titer.

Human sera antibody measurements in IRIDA patients

Antibody concentrations (IgG) against Measles, Mumps, Rubella, Varicella, Ptx,

FHA, Prn, Dtxd, Ttx, Hib, and Steptococcus pneumoniae seroptypes 1, 3, 4, 5,

6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 23F in sera from IRIDA patients with mutant

TMPRSS6 alleles and non-iron deficient wild-type TMPRSS6 controls were

measured at National Institute for Public Health and the Environment, Bilthoven,

Netherlands. In no case was mean antibody concentration significantly higher in

TMPRSS6 patients.

Histology

To evaluate airway inflammation, lung samples were fixed with 4% paraformalde-

hyde in phosphate buffer and embedded in paraffin at the HEMS core facility at

i3S, Portugal. Following deparaffinization with xylene and hydration by a passage

through a grade of alcohols, 3mm-thick sections were stained with hematoxylin-

eosin. Histopathology scores for pulmonary inflammation were assigned using

modified criteria55 as follows: 0, normal, no inflammation; 1, minimal, rare foci of

inflammation; 2, mild, inflammatory cell infiltrate of the perivascular/peribronchiolar

compartment with none or scarce alveolar extension; 3, moderate, inflammatory cell

infiltrate of the perivascular/peribronchiolar space with modest extension into the

alveolar parenchyma; and 4, severe, inflammatory cell infiltrate of the perivascu-

lar/peribronchiolar space with a greater magnitude of inflammatory foci found in

the alveolar parenchyma. Neutrophilic infiltration was classified as 0, no evidence

of polymorphonuclear leukocytes (PMN); 1, presence of dispersed PMN; 2, frequent

PMN with focal aggregation; 3, frequent PMN with multifocal aggregation. Neutro-

phil infiltration was further evaluated with the chloracetate esterase (Leder) stain,

performed at the Anatomic Pathology Service at Centro Hospitalar de São João,

Portugal. Orcein staining (performed at IPATIMUP Diagnostics, Portugal) was used

to evaluate the elastic fibers of the alveolar septa and assess the degree of alteration

of the alveolar lung structure associated to the presence of the inflammatory infil-

trate. Sections were scored by two investigators, including a trained pathologist in

a blinded manner without prior knowledge of the treatment groups. The mean score

was calculated and compared between treatment groups. Spleen sections were pro-

cessed similarly, but stained with Perls’ Prussian blue reaction for ferric iron using

standard procedures.

ATP production rate by Seahorse metabolic flux analysis

ATP production rate and the relative contribution of mitochondrial and glycolytic

metabolism to this was calculated as per manufacturer’s protocol using the Agilent

Seahorse XF real-time ATP rate assay kit (103592-100) and an Aligent XF96 instru-

ment. In brief CD8 T cells were harvested after 48 hours of activation in media

with the specified transferrin concentration, washed, resuspended in Seahorse

Assay Media (unbuffered RPMI pH 7.40 with 1mM pyruvate, 2mM L-glutamine and

10mM Glucose) and 150,000 viable cells/well were aliquoted into a Poly-D-lysine

coated XF96 microplate. Oxygen consumption rates (OCR) and extracellular
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acidification rates (ECAR) were measured upon sequential addition of 1.5 mMOligo-

mycin and 0.5 mM Rotenone/Antimycin A.

ATP quantification by luminescence

ATP production was measured using Cell Titer-Glo (Promega G7570) according to

manufacturer’s instructions. In brief CD8 T cells were cultured as described in ‘cell

culture’ for 24 hr (and therefore analyzed to prior to the initiation of cell division),

spun down and resuspended in 50 mL of medium (iron free for iron deficiency cul-

tures, normal RPMI with 10% FCS for TfrcY20H/Y20H cultures), transferred to a white

walled opaque 96-well plate appropriate for luminescence measurements and

50 mL of Cell Titer-Glo was added.Wells weremixed and luminescence, proportional

to ATP content, was measured on a Promega GloMax Luminometer.

QUANTIFICATION AND STATISTICAL ANALYSIS

Standard randomization procedures were used for in vivo experiments mice of the

same age and sex (experimental and control mice were chosen at random from

among littermates). The investigators were not blinded to allocation during experi-

ments and assessments. The required number of mice for each experiment was

determined from availability of bred animals, power calculations, prior experience

of performing experiments with the same strains of mice and data from pilot

experiments. Statistical analyses were performed using Prism version 6 (GraphPad

Software). Details of specific statistical tests are given in figure legends.

For antibody concentrations of TMPRSS6 IRIDA patients, we conducted statistical

analyses with SPSS (IBM SPSS statistics, Version 22). Data were checked for normality

by Smirnov-Kolmogorov tests and by visual inspection of histogram plots. Non-nor-

mally distributed data were logarithmically transformed for statistical analyses. We

defined immunological response as protective when participants had anti-diph-

theria serum IgG concentrations R 0$1IU/ml,56 anti-tetanus IgG > 0.5IU/ml,57

anti-Hib IgG > 1.0mg/ml,57 anti-PCV IgG R 0$35 mg/ml58 and anti-measles IgG R

0$12IU/ml.59 There is no protective serum concentration established for anti-

pertussis IgG.57 For between-group effects, independent sample t tests or indepen-

dent sample non-parametric tests were used. We performed analysis of covariance

(ANCOVA) to assess the effect of group (IRIDA versus control) on serum IgG concen-

trations. Group was defined as fixed effect and we sequentially added known predic-

tors of vaccine response: gender, age, Hb, TSAT as covariates to the models. We

performed Pearson Chi-Square test and Fisher’s Exact test to compare seroconver-

sion between the IRIDA and control groups.
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