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Abstract  24 

 25 

We hereby show that root systems adapt to a spatially discontinuous pattern of water 26 

availability even when the gradients of water potential across them are vanishingly small. A paper 27 

microfluidic approach allowed us to expose the entire root system of Brassica rapa plants to a square 28 

array of water sources, separated by dry areas. Gradients in the concentration of water vapor across the 29 

root system were as small as 10-4 mM·m-1 (~4 orders of magnitude smaller than in conventional 30 

hydrotropism assays). 31 

In spite of such minuscule gradients (which greatly limit the possible influence of the well-32 

understood gradient-driven hydrotropic response), our results show that (i) individual roots as well as 33 

the root system as a whole adapt to the pattern of water availability to maximize access to water, and 34 

that (ii) this adaptation increases as water sources become more rare.  35 

These results suggest that either plant roots are more sensitive to water gradients than 36 

humanmade water sensors by 3 to 5 orders of magnitude, or they might have developed, like other 37 

organisms, mechanisms for water foraging that allow them to find water in the absence of an external 38 

gradient in water potential. 39 

Significance Statement 40 

 41 

The supply of water is the most reliable predictor of survival and performance in crops. 42 

Nonetheless, our ability to design or breed plants with superior tolerance to drought or flooding is 43 

constrained by our limited understanding of how roots adapt to inhomogeneous water supplies. 44 

We here show evidence that roots might not need external gradients in the potential of water 45 

to improve their access to it. Our microfluidic apparatus quantified how root systems adapt to 46 



inhomogeneous water supplies while being exposed to gradients in water vapor concentrations that are 47 

orders of magnitude smaller than those detectable by some of our best engineered water sensors. We 48 

conclude by suggesting possible mechanisms that could explain this behavior. 49 

Introduction 50 

 51 

/body 52 

A secure water supply is the strongest predictor of survival in crops(1, 2) and most plants (not 53 

all(3)) uptake water mostly from their roots. Therefore, harvesting water is one of the most important, 54 

and yet still poorly understood functions of the root system. For example, in spite of great progress(4-55 

11), we still do not fully understand how the architecture of the root system develops to optimize its 56 

access to a water supply that is inhomogeneously distributed. Therefore, we have limited information 57 

on how to design genomes or select phenotypes that promote, for example, tolerance to drought(4).  58 

The availability of water to plants is usually determined by the water potential (WP), and the 59 

hydraulic conductivity (HC) (12). Intuitively, these parameters help quantify respectively how easy is to 60 

pull the water (i.e., the lower the WP, the more thermodynamically stable the water is, and the more 61 

difficult it is, in general, to change its state), and how rapidly it can be pulled (i.e., the flow of water 62 

under a certain pressure differential). These physical parameters can have biological consequences and 63 

induce a response: e.g., low water availability can limit the rate of water uptake by the plant and 64 

therefore induce drought stress. Such limitation on water uptake can be due to the water being too hard 65 

to pull, too slow to obtain, and/or too limited in quantity. 66 

Plants can adapt to water scarcity by collecting information about the distribution and 67 

availability of water in the surrounding volume of soil and develop the structure of their root system 68 

accordingly(13).  69 



Organisms generally “collect information” about their environment by sensing some external 70 

potential gradient (e.g., gravitational potential in gravitropism, chemical potential in chemotropism). 71 

Therefore, the study of the adaptation of roots to an inhomogeneous water supply has historically 72 

focused on understanding how roots grow towards higher WP (i.e., hydrotropism, first reported in 73 

1811(13)). Since 1872, hydrotropism was further investigated by Sachs(14), Molisch(15), Darwin(16), 74 

and, more recently, by others(17-21). These recent studies have focused on observing deflections of 75 

single roots (22) when exposed to gradients in the potential of water vapor(23) or of the water in the 76 

nutrient solution (18).  77 

Nonetheless we were prompted by the observation that in the animal kingdom, foraging is not 78 

always guided by sensing of the food source (olfactory, auditory, vision, tactile). Forage can be collected 79 

by trapping(24), harvesting(25), luring(26), symbiosis(27), parasitism(28), or its location can be encoded 80 

in memory(29) or into a chemical trail(30, 31). These distinct mechanisms allow animals (and some 81 

plants(32)) to forage for food sources that cannot be sensed due to their distance, or that move too 82 

rapidly to be caught. It is therefore conceivable that plants might have developed one or more 83 

mechanisms to seek water in the absence of external gradients of water potential. Therefore we set out 84 

to find out. 85 

Experiment Design 86 

 87 

Exploring the development of a branched root system in the presence of heterogeneous water 88 

availability and in the absence of WP gradients is an experimentally challenging problem. We explain 89 

here the design choices that addressed the numerous requirements of such a study. 90 

Analyzing the branched root system of a representative plant. Mechanisms of water foraging that do 91 

not involve sensing of an external water potential could rely on the entire root system and might 92 

therefore not be observable in single-root assays. Therefore, we designed an experimental habitat in 93 



which a branched root system can be imaged in its entirety.    94 

We chose Brassica rapa (Wisconsin Fast Plants® AstroPlants, Carolina®, USA) as a model plant for its fast 95 

growth, relatively thick roots that are easy to image, reliably high germination rates, and membership in 96 

an economically important family (Brassicaceae). 97 

Removal of the influence of other tropisms on the direction of root propagation. Root systems 98 

respond to many stimuli other than water (e.g., gravity, oxygen, nutrients, temperature, light, touch). 99 

Isolating the influence of one tropism from the others is notoriously challenging(33, 34).  100 

The effect of gravity on root development (i.e., gravitropism) is especially difficult(35, 36) to remove(35, 101 

37). We constrained the development of roots to a flat, horizontal surface (Figure 1A) (38) to limit the 102 

effect of gravity on the direction of root growth(39). Roots are also sensitive to contact with surfaces 103 

(i.e., thigmotropism), but our approach ensures that every root tip experiences nearly the same type of 104 

contact with the support. 105 

Gradients in the concentrations of nutrients and chemicals affect root development (i.e., 106 

chemotropism(40)). We ensured that the concentrations of nutrients accessible by the root system 107 

(Murashige-Skoog (MS) medium at 0.5X concentration) were constant in time and space by controlling 108 

the water transport in the system, as described in a previous publication(41). In short, the plant was 109 

grown on what we call the “growth sheet” (Whatman 1 chromatography paper). The growth sheet was 110 

placed on top of a stack of paper that was almost completely immersed in a reservoir of nutrient 111 

solution (Figure 1A). The concentration of nutrients in the growth sheet was not distinguishable from 112 

the one in the reservoir due to the small vertical distance between the two (~1mm). The concentration 113 

of nutrients changed little over time because the total amount of nutrients in the reservoir was much 114 

larger than the amount consumed by the plant, and evaporation of the reservoir was limited by 115 

conducting experiments at high relative humidities (>75%) and was compensated by periodic additions 116 

of water (41). Lastly the habitat was sealed and fully autoclaved before use, to avoid the potential 117 



influence of microbial contamination (and the potentially associated mechanisms of foraging like 118 

symbiosis). 119 

Light also affects the direction of root growth as well as the cellular development of the root tissue(34). 120 

Therefore, we covered the root system with a slanted sheet of aluminum (Figure 1A). The choice of 121 

aluminum was based on its cost, cleanliness, simplicity, and surface chemistry: as the sheet creates a 122 

nearly closed environment around the root, condensation can happen on the surface of the sheet that 123 

faced the root. This condensation could cause water droplets to bead and drop on the root, thereby 124 

changing the distribution of water across the root system. Aluminum’s surface is hydrophilic and has 125 

small contact and sliding angles for water that cause condensation to drain back into the reservoir 126 

(Figure 1A). 127 

Control over gas transport. The rate of evaporation and plant transpiration is governed by the RH of the 128 

atmosphere, the temperature, and by the WP in soil(42). Our laboratory was set to constant 129 

temperature (25±1C) through a redundant air conditioning and ventilation system. We established a 130 

homeostatic RH for the plant shoots of 85.0% (SD = 0.77)(38) by placing a supersaturated solution of 131 

NaCl inside the plant habitats (Figure 1A). In these conditions, the RH ranged between 75% at the 132 

surface of the supersaturated salt solution to ~100% at the surface of the nutrient solution. The shoot 133 

lies in between and was therefore exposed to intermediate values of humidity.  134 

Aeration is essential to the health of plants. Passive aeration systems (i.e., Parafilm membranes) are 135 

ineffective(43). Therefore we actively aerated the habitats with water-saturated sterile air (Figure 1A). 136 

Control over the distribution of water availability in space and time. Our goal was to test whether the 137 

development of the root system is affected by a spatially heterogeneous but temporally constant 138 

distribution of water availability, while eliminating the influence of gradients in WP. Since water 139 

availability must be modified while maintaining WP constant, the design objective became the spatial 140 

control over HC.   141 



It is important to point out that answering our question does not require the spatial control over the 142 

absolute values of HC. It only requires the establishment of a binary pattern of HC (i.e., step-wise 143 

variations between two constant values), where the low value of HC is sufficiently limiting to water 144 

uptake to cause a biological response (e.g., limit plant growth). This point is important because absolute 145 

values of HC are difficult to measure reliably: its quantification in our system would have to assume 146 

knowledge of the pressure differential caused by the plant in each point of the root system, and the 147 

validity of Darcy’s law for capillary flow in paper. Both of these assumptions are unwarranted.  148 

We used paper-based microfluidics(44) to solve this problem. In our assay, the flow of nutrient solution 149 

to the roots occurs by capillarity: from the reservoir, through the stack of paper sheets underneath the 150 

growth sheet, and lastly, through the growth sheet itself (Figure 1B). The HC through the paper stack is 151 

determined by the rate of capillary flow. This flow can be hindered (and the HC reduced drastically) by 152 

coating the cellulose fibers in the growth sheet with a hydrophobic substance, e.g., wax. This coating can 153 

be printed arbitrarily on the growth sheet, thereby designing areas of different HC. The flow of water 154 

vapor to the roots is instead unaffected by coating of the cellulose fibers, thereby preventing the 155 

establishment of a RH gradient across the root system. 156 

We used a commercially available desktop printer (Xerox Colorqube), to print patterns of wax ink on the 157 

top surface of the growth sheet (Figure 1C). Steam autoclaving simultaneously melted the wax and 158 

sterilized the paper. As the wax melted, it coated the paper fibers across the entire thickness of the 159 

growth sheet, and it spread laterally (Figure 1C). The thickness of a line of wax increased by 1.62 mm as 160 

a result of autoclaving, regardless of the original width of the printed line (ALW 161 

=(1.0126±0.023)*PLW+(1.62±0.12), where PLW is the printed line width and ALW is the printed line 162 

width after autoclaving), indicating a constant lateral spreading of 0.81±0.06 mm (Figure 1D).  163 

This approach allowed us to create flat supports for root growth where dry areas of negligible HC (i.e., 164 

where the wax was printed and molten) and wet areas with high HC (where no wax was printed – we 165 



call these areas “pores” for convenience) were determined with precision, almost as pixels on a screen, 166 

and did not change over time.  167 

Figure 1E shows how patterns of pores could be obtained by printing a square grid of wax (we used 168 

square patterns for simplicity, but any printable pattern can be chosen). When the autoclaved sheet is 169 

placed on a wet reservoir, the pores are filled with water by capillarity (Figure 1F, the water is dyed in 170 

red for clarity). The capillary transport of water was effective even for the smallest pores (0.4 mm2, 171 

Figure 1G) and the size of the pores did not affect the local WP (i.e., the pressure required to draw water 172 

from the pores): no water was drawn into a capillary in the printed areas, while columns of water of 173 

identical height (26 mm at steady state, corresponding to a pressure of 255 Pa) were drawn from pores 174 

of different sizes (cf. Supporting Information). 175 

 176 

 177 



Figure 1. A paper microfluidic assay for studying root development in heterogeneous 178 

water availability distributions. A) Schematic representation of the experimental setup; 179 

B) Schematic of the control of water availability to the root by the local coating of the 180 

growth sheet with wax; C) Schematic and cross-sectional micrograph of wax deposition 181 

and diffusion in the paper upon autoclaving; D) Graph of the width of printed line of wax 182 

after autoclaving as a function of its width before autoclaving (red dotted line is where 183 

the line would be if autoclaving caused no change in the line width); E-F) A square 184 

pattern of autoclaved wax on paper before and after being put in contact with red-185 

colored water; G) Comparison of the capillary rise of red-colored water from an 186 

unprinted area and a printed area.  187 

The gradient of the liquid WP is assumed to be negligible in the pores and across pores (i.e., nutrient 188 

concentration is constant, and the paper is homogeneous in porosity and composition). The liquid WP is 189 

also assumed to be negligible across the wax-printed areas as well, where water can exist as an 190 

adsorbed interfacial layer (surfaces are coated in a nanoscale layer of water at atmospheric pressure 191 

and RH>0, regardless of composition).  192 

Constant humidity across the root system. The availability of liquid water in this system is binary. 193 

Therefore, in order to find a pore by sensing water at a distance, a root tip could only follow a gradient 194 

of water vapor concentration. Therefore, the gradient of RH across the growth sheet had to be as small 195 

as possible (the habitat is outside of thermodynamic equilibrium, so time-averaged gradients in gas 196 

concentration cannot be reduced to 0 M/m). The sources and sinks of water vapor in the system are as 197 

follows (Figure 2A): the supersaturated salt solution is a sink (75% RH at the liquid/air interface), while 198 

the active aeration with saturated air, the evaporation from the paper, and the transpiration from the 199 

plant are sources (~100% RH). The humidity between sources and sinks depend on the dominant 200 

mechanism of mass transport (convection or diffusion).  Our system is actively aerated and 201 



inhomogeneous in temperature (the system is outside of equilibrium so temperature gradients cannot 202 

be ruled out) so diffusion only dominates in the boundary layers (i.e., the layer of gas or liquid in contact 203 

with a hard surface where convection is negligible). Aeration is very slow (~0.12 m/s) and the Reynolds 204 

number is ~24. The Blausius solution for the flow-governing equation(45) predicts a thickness for the 205 

boundary layer of ~6 cm, which is much larger than the thickness of the roots (0.2 mm). Therefore, to 206 

summarize, the transport of water vapor around the roots in our system is governed by diffusion.  207 

Under these conditions, if the growth sheet contains dry and wet regions, a gradient of water vapor, 208 

albeit minuscule, should form across the paper surface: while the air/water interface in the pores is in 209 

contact with the root, it is instead recessed by a distance equal to the thickness of the growth sheet in 210 

the dry regions (180 μm). This difference in the height of the water/air interface necessarily causes the 211 

formation of a gradient in the concentration of water vapor along the growth sheet.  212 

We measured (Figure 2B and Figure S14) the RH above the top surface of the growth sheet (3 mm, the 213 

smallest distance we could place our hygrometers from the paper). The lines indicate the increase in RH 214 

with time above an unprinted growth sheet (i.e., fully wet, red curve) and a fully printed growth sheet 215 

(i.e., fully dry, black curve). The instrumental results show that the RH at steady state is 100% whether 216 

the topmost sheet of paper is covered in wax or not. Hence, the gradient in water vapor is much smaller 217 

than the precision of our hygrometer. 218 

We therefore conducted a finite-difference time domain (FDTD) simulation to estimate the water vapor 219 

concentration in the boundary layer (Figure 2C) with the following assumptions: (i) the problem can be 220 

reduced to a 2D diffusion problem, (ii) the distance between the wet paper (source) and the salt 221 

solution (sink) is 10 cm, (iii) the wax-coated paper does not limit diffusion of water vapor from the 222 

underlying reservoir (supported by the data in Figure 2B), (iv) pores were 0.4 mm2 in area (to maximize 223 

the observed gradients).  224 



The simulation (cf. Supporting Information) captures the decrease in water vapor concentration from 225 

the source to the sink (Figure 2C). The concentration profile of water vapor experienced by the root (0.2 226 

mm above the growth sheet) shows peaks in water vapor concentration caused by the pores (Figure 2D, 227 

blue trace). The amplitude of the peaks is 1.85 μM and their full width at half maximum (FWHM) is 228 

0.926±0.004 mm. The largest gradient in water vapor concentration (Figure 2D, red trace) is 3.05 229 

mM·m-1 located 35 μm from the edge of the pores. In between the pores (i.e., where the root tips 230 

conduct most of their growth) the gradients are in the order of 10-4 mMm-1. The difference in water 231 

vapor concentration across the root tip in such minuscule gradients is ~10-11 M. By comparison, the 232 

common assay for the study of hydrotropism using salt solutions exposes the root tip to gradients in 233 

water concentration that are ten thousand times larger (~1 mM·m-1, and differences in concentrations 234 

across the root tip of the order of 10-7 M). 235 

Furthermore, to reduce the possibility of “false negatives” in the simulations, we conducted them by 236 

using boundary conditions that could only overestimate the gradients of RH. Most notably, we neglected 237 

the presence of the aluminum enclosure. Condensation formed on the surface of the aluminum sheet 238 

facing the root during the experiments. The condensed water is a new source of water vapor. Therefore 239 

the roots are located between two sources of water vapor, which reduce the gradients of RH within the 240 

root volume. Nonetheless, even if the simulations would be incorrect by an order of magnitude, the 241 

conclusions of this work would be unaffected.   242 



 243 

Figure 2. Control and assessment of water vapor gradients. A) Schematic of the setup, 244 

highlighting the sources and sinks of water vapor and the directional flows (J) of water 245 

vapor at steady state; B) Graph of relative humidity (RH) above a printed (black) and 246 

unprinted (red) growth sheet as a function of time, showing the equally fast rise in 247 

humidity and saturation at 100% in 1hr; C-D) Simulation of steady state RH above a 248 

growth sheet featuring six equally spaced pores. For simplicity, the three-dimensional 249 

problem is reduced to two dimensions (a dimension across the growth sheet, and a 250 

dimension above the growth sheet). Panel C shows the RH value (vertical axis) as a 251 

function of height above the growth sheet (horizontal axis) and the position along the 252 

growth sheet (oblique axis), in the presence of printed and unprinted areas. Panel D 253 

shows the concentration (in mM, blue) and concentration gradient (in mMm-1, red) of 254 

water vapor 0.2 mm above the growth sheet. The horizontal axis indicates the position 255 

along the growth sheet. 256 

Results and Discussion  257 

 258 

Reducing the wet area reduces the plant biomass. A key requirement for our study was for the 259 

water availability in the wax-printed regions to be sufficiently low to limit plant growth. Since the size of 260 



the pores do not influence the local availability of water, we quantified the global water availability by 261 

the “relative wet area” (RWA), defined as the fraction of the growth sheet surface that was wet.  262 

In a square array of square pores, two independent parameters can be used to control the RWA: 263 

the printed line width and the printed pore width, as indicated in Figure 1C. The RWA and the area of 264 

individual pores as a function of the printed line width and printed pore width were quantified by image 265 

analysis (cf. Supporting Information). 266 

Plants of Brassica rapa were germinated in a system previously described(41) for 5 days (cf. 267 

Supporting Information), after which they were transplanted to the setup shown in Figure 1A. There, 268 

they were grown at 24-26°C under ~140 PAR ± 10 PAR of illumination for 24 hours/day for 10 days from 269 

germination. Plants were grown on growth sheets with 1%, 3%, 6%, 11%, 19% RWA (n = 8, 11, 13, 12, 270 

10, respectively, Figure 3A). A 100% RWA treatment (i.e., unprinted growth sheets) was used as a 271 

control (n = 20) while the 0% RWA treatment (fully printed growth sheets) led to the nearly complete 272 

loss of the plants and could not be considered. The RWA was controlled by the autoclaved pore width 273 

(from 0.4 mm for 1% RWA, to 25 mm for 19% RWA, cf. table S1), while the autoclaved line width (ALW) 274 

was kept constant (6 mm) so that (i) roots had to cross the same distance of dry surface to reach a new 275 

source of water and nutrients regardless of the RWA value, and (ii) the vanishingly small gradient in WP 276 

between the pores would be as similar as possible across treatments. The tap roots of the transplanted 277 

seedlings were arranged into a “starter” pore (a square of 25 mm2 in area that was included in all 278 

treatments) to ensure high rates of survival for the plants.  279 

Root system characterization was conducted at the end of the experiment after excising the stem 280 

(Figure 3B). Photographs of the root systems were analyzed to characterize structural root 281 

characteristics both in the dry areas as well as in the wet areas (Figure 3C). In summary: (step 1) the 282 

background outside of the root system was removed (Figure 3C, panel 1 to 2); (step 2) the pores were 283 

cut out of the image due to their different background color and the remaining image was thresholded 284 



to yield a binary image of all the roots lying on the wax-coated areas (Figure 3C, panel 2 to 3); (step 3) 285 

the roots in the pores were thresholded separately with manual curation, and reinserted in the final 286 

image to obtain to complete root system (Figure 3C, panel 3 to 4). 287 

 Compared to the control treatment (100% RWA), the biomass of both roots and shoots decreased 288 

with the RWA (separate control experiments using deionized water as nutrient solution show the 289 

biomass to be unaffected, probably due to the young age of the plants, cf. Supporting Information) , 290 

while following an exponential trend of the type  291 

biomass(RWA) = biomass(RWA=100%)+A·erate*RWA  292 

with a rate equal to -0.062±0.039 (Figure 3D, R2=0.817). This trend in biomass and the extreme 293 

mortality of plants grown at 0% RWA demonstrates that the limitation over HC in the wax-printed areas 294 

is sufficient to limit plant growth.  295 

A similar trend is observed in the dependence of the root surface area on the RWA (Figure 3E, same 296 

exponential trend with a similar rate of -0.055±0.05, R2=0.817). The root surface area was found to be 297 

approximately proportional to the total biomass (Figure 3F, R2=0.988), suggesting that the average root 298 

diameter is similar in all treatments. The convex area of the root system (i.e., defined as the smallest 299 

area that is convex and contains the root, Figure 3G, p-value>0.05), and the root surface density (Figure 300 

3H, i.e., the ratio between the total surface area of the roots and the convex area of the root system) 301 

were not significantly different across treatments.  302 

Changes in the architecture of the root system only became apparent after we analyzed where the 303 

roots were in relation to the pores. 304 

Roots show a preference for wet regions that increases with their scarcity. The most relevant 305 

characteristic, which we call “water preference ratio” (WPR) and define as  306 



𝑊𝑃𝑅 =
(

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑟𝑜𝑜𝑡𝑠 𝑜𝑛 𝑝𝑜𝑟𝑒𝑠
𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑟𝑜𝑜𝑡𝑠 𝑜𝑛 𝑤𝑎𝑥

)

(
𝑝𝑜𝑟𝑒 𝑎𝑟𝑒𝑎
𝑤𝑎𝑥 𝑎𝑟𝑒𝑎

)
=

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑜𝑟𝑒 𝑎𝑟𝑒𝑎 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑟𝑜𝑜𝑡𝑠

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑤𝑎𝑥 𝑎𝑟𝑒𝑎 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑟𝑜𝑜𝑡𝑠
 307 

 quantifies the ratio of the probabilities of finding a root on a pore and on a dry region. Therefore, if 308 

WPR is equal to 1, the probability of finding a root anywhere on the growth sheet is independent of 309 

whether that point is wet or dry. If WPR is equal to 2, a wet spot is twice more likely to be covered by a 310 

root than a dry spot.  311 

Figure 3I shows the WPR as a function of RWA. Two different curves are shown. The blue scatters 312 

show the WPR calculated by considering all pores (i.e., including the starter pore), while the green 313 

scatters show the WPR calculated by excluding the starter pore. In both cases the WPR is inversely 314 

proportional to the RWA, i.e., WPR = a + b/RWA (a=1.26±0.44 and b=3.36±1.16 for the green data set; 315 

a=0.62±0.44 and b=19.10±1.16 for the blue data set – in both cases the error indicates the 95% 316 

confidence interval assuming normally distributed data). The data indicate that, in the absence of water 317 

scarcity (i.e., RWA=20%; WPR cannot be calculated for RWA=100%), the roots indicate a weak 318 

preference for pores (WPR ≅ 1), but this rapidly changes as water becomes more scarce, with the WPR 319 

ratio increasing up to ~3.5 or ~15 for RWA=1%, depending on whether the “starter” pore is considered 320 

or not.  321 

If we assume that the gradient in WP is too small for the root to detect, the increase in the WPR 322 

could be explained by hydropatterning(9, 11, 46): additional branching of the root system on the pores 323 

would increase the WPR. We examined the branching points located on pores and found that they only 324 

account for ~4% of the total root surface area on the pores: branching on the pores is not responsible 325 

for the observed trend in WPR. To confirm this conclusion we looked at the distance between the 326 

branching points and the closest pores and found that branching is not overrepresented in the pores nor 327 



in their proximity, even for RWA=1% (see Supporting Information S10 and S11). In conclusion, sudden 328 

changes in HC do not seem to induce branching in B. rapa. 329 

The difference in the magnitude of the WPR depending on whether the starter pore is considered 330 

or not suggest that water-stressed plants might invest a larger portion of their photosynthate in roots 331 

located on known water sources close to the stem and less on roots “scouting” for new water sources. 332 

Nonetheless, Figure 3G shows that the convex area was not significantly different among treatments. As 333 

a whole, our observations suggest that plants under this kind of water scarcity create a smaller number 334 

of “water-scouting” roots, whose length is though unaffected. 335 



 336 



Figure 3 Root and shoot analysis. Representative top-view photographs of plants grown 337 

in different relative wet areas (RWA), before (A) and after (B) excising the stem C) 338 

Strategy used to extract binary image of the root in 3 steps; D) dry biomass of root (black) 339 

and shoot (red) as a function of RWA together with the associated exponential trends 340 

(lines). Error bars=95%CI; E) Root surface area as a function of RWA with the associated 341 

exponential trend (line). Error bars=95%CI; F) Root surface area as a function of root 342 

biomass, showing a straight linear dependence; G) Convex area. Error bars=95%CI. and 343 

(H) root surface density as a function of RWA showing lack of significant correlation; Error 344 

bars=95%CI. I) Water preference ratio as a function of RWA, calculated by accounting 345 

(green squares) or not accounting (blue circles) for the starter pore. Lines indicate 346 

reciprocal fits of the data. Error bars=95%CI. Asterisks (*) represent p-value<0.05 while 347 

(t) represents a tendency for significance where the p-value<0.08.  348 

 349 

  350 

The architecture of the whole root system adapts to the position of the water sources.  351 

If the roots seek wet regions, then the overall architecture of the root system should adapt to the 352 

distribution of water sources. Furthermore, if the root system architecture is significantly modified by a 353 

different spatial distribution of the same amount of water sources, then the position of the water 354 

sources must affect the direction in which the roots grow. 355 

We tested this hypothesis by exposing Brassica rapa plants (10 days) to two different water 356 

distributions (Figure 4A). All treatments consisted of a circular pattern of 8 identical pores surrounding 357 

the starter pore (RWA = 0.75 ± 0.04% for both water distributions to ensure water scarcity and a high 358 

WPR). However, the distance between the pores and the starter pore was different between treatments 359 

(23 mm and 40 mm, n=15 and 19, respectively). We dubbed the two treatments “near” and “far”, 360 

respectively. As a control, we conducted the “near” treatment using deionized water as a nutrient 361 

medium to infer the potential influence of nutrients and a possible chemotropic explanation for our 362 

results. The total root surface area, the root surface area on the pores, root and shoot biomasses were 363 

not significantly different for the three treatments (Figure 4B, Table S4). Nonetheless, the convex area in 364 

the “far” treatment was 60% larger than for both of the “near” treatments (0.5 MS and DI water; p-365 

value=0.004 and 0.015, Figure 4C), showing that (i) water supplies closer to the stem limited the spread 366 



of the root system, and (ii) that nutrient concentrations do not seem to affect the confining effect of a 367 

close water supply. 368 

Given the susceptibility of root convex area to outliers, we confirmed our observations by 369 

calculating the surface density of the roots as a function of the distance from the starter pore as 370 

determined by the following equation, 371 

𝑟𝑜𝑜𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑟)  =
(

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑜𝑜𝑡𝑠 (𝑟)
2𝜋𝑟

)

𝑡𝑜𝑡𝑎𝑙 𝑟𝑜𝑜𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎
  

372 

 373 

, where r is the distance from the starter pore (Figure 4D). The plot confirms that the root in the 374 

“near” treatments is more concentrated near the stem than in the far treatment. 375 

Rather than the values for individual distances (cf. Supporting Information), it is more informative 376 

to look at the whole distribution. In all treatments the radial root surface density (RSD) can be fitted 377 

with a power law (RSD(r) = A*(r0-r)P, where r0 is the furthest reach of the roots, A is the root surface 378 

density at r0, and P is the exponent that quantifies how rapidly the RSD decreases with r) shown in 379 

Figure 4D as lines.  380 

Importantly, the key exponent P is not statistically different across “near” treatments (1.99 ± 0.29 381 

and 1.96 ± 0.32), but is very significantly different from in the “far” treatment (1.14 ± 0.25). These 382 

results (i) confirm the existence of a root-system-scale adaptation to heterogeneous water availabilities 383 

that occurs even with vanishingly small WP gradients, (ii) confirm that this effect is not influenced by the 384 

concentration of nutrients in the water supply, and (iii) are inconsistent with a “random walk” search 385 

algorithm for root system development (which predicts a gaussianly-distributed root surface density). 386 

 387 



 388 

Figure 4. Distribution of water sources controls root architecture. A) Representative 389 

top-view photographs of root systems grown in two treatments (both 0.5xMS) with 390 

identical relative wet area, but different distance between water sources and the stem 391 

(“near”, on the left, having pores 23 mm away from the stem, while “far”, on the right, 392 

having them 40 mm away). B-C) Root surface area, root surface area on pores and 393 

convex area of the root systems for “near” treatments (0.5xMS, n, and deionized water 394 

media, n*) and “far” treatment (f). The convex area for “near” treatments is significantly 395 

lower than in the “far” treatment, ***p-value<0.01. D) Radial root density of the root 396 

systems in the “near” and “far” treatments, showing how both “near” treatments have 397 

significantly more roots close to the stem than the “far” treatment(*p-value<0.09, **p-398 

value<0.05, ***p-value<0.01). The lines represent power law fits (red solid, red dashed, 399 

and black solid for the n, n* and f treatments respectively). The fits for “near” 400 

treatments are indistinguishable, but are significantly different from the one for the 401 

“far” treatment.  402 

Conclusion  403 

 404 



We aimed to determine whether plant roots require an external water potential gradient in 405 

order to improve their access to water. To this end, we developed a paper microfluidics assay that 406 

allowed us to explore the adaptation of entire root systems to a spatially heterogeneous distribution of 407 

water availability in a spatially uniform distribution of water potential.   408 

Our data show that, in spite of the minuscule gradients of concentration of water vapor  (~10-4 409 

mMm-1, four orders of magnitude smaller than in the other hydrotropism assays), plants increase their 410 

access to water and that their preference for wet regions is inversely proportional to the fraction of the 411 

growth surface that was wet. We further showed that the architecture of the root system adapts to the 412 

spatial distribution of the wet regions, regardless of the concentration of nutrients in the nutrient 413 

solution. 414 

We speculate that these results could be explained in at least two equally remarkable ways. 415 

Either the roots are capable of sensing differences of water vapor concentrations that are about 3 to 5 416 

orders of magnitude smaller than the detection limit of some of our best chemical(47) or optical(48) 417 

sensors of water, or, more intriguingly, roots have additional ways to search for water that are not 418 

based on responding to external gradients in WP. For example, in the absence of WP gradients, a 419 

chemical potential gradient could be formed inside the root system once a root tip that has been busy 420 

responding to other tropism finds water, therefore directing other roots to it. 421 

Our approach is distinctly reductionist and it has similarities and differences with soil. 422 

Importantly, similarly to soil, the RH at the root system is close to saturation, the availability of liquid 423 

water is spatially inhomogeneous, and the roots are kept in the dark. Differently from soil, the roots are 424 

constrained in their vertical development (causing them to bunch together at times), are not exposed to 425 

significant gradients in temperature, composition (solids, liquids, and gases, notably O2 and CO2), and 426 

water potential, and are not exposed to interactions with other organisms. Yet, we do not see how the 427 

results shown here could be an artifact of these limitations. 428 



 We hope that this approach we developed will be useful to other members of the community 429 

for (i) studying responses of branched root systems, (ii) identifying new traits and phenotypes associated 430 

with tolerance of scarce water, and (iii) rigorously and quantitatively comparing responses to water 431 

scarcity in different germplasms.  432 

Materials and Methods 433 

Full details of materials and methods, including the simulation used to assess water vapor gradients, 434 

phenotypic root analysis, and system construction, can be found in the SI Appendix. All datasets and 435 

images can be accessed using DOI 10.17605/OSF.IO/SQAC3 (52). 436 
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