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Highlights

Effects of wind power spectrum analysis over resource assessment

C. A. Lopez-Villalobos, O. Rodriguez-Hernandez, O. Mart́ınez-Alvarado, J.
G. Hernandez-Yepes

• The annual power spectrum analysis shows a spectral gap region similar
in amplitude to the microscale region.

• In the seasonal power spectrum analysis, we found a persistent spectral
gap and the semi-diurnal peaks.

• Wind resource assessment using 6-hour or 1-minute mean times does
not represent significant differences in power estimation.

• Wind resource assessment using reanalysis or WRF simulations can
reproduce wind power production
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Abstract

Based on the Van der Hoven’s seminal work, wind power industry has adopted
the 10 minutes mean time as the proper sampling to estimate resource assess-
ment. However, research within the literature questions the generalization
of the 10 minutes as a standard measure of minima dispersion due to the
particular geographic characteristics where the measurements took place. In
this work is analyzed the power spectrum of a high-frequency wind speed
time series and its influence over the resource assessment in the region of
La Ventosa, Oaxaca, Mexico. Power spectrum analysis from a monthly, sea-
sonal, and annual time series results show a defined synoptic-scale, diurnal,
and semi-diurnal variations, which changes in amplitude throughout the year.
To study the influence of power spectrum in wind resource assessment were
estimated and compared the capacity factors of a typical 2MW wind tur-
bine against measured wind speed with 1, 5, 10, 60, and 360 minutes mean
times, we found that a maximum difference of 1.4 %. Resource assessment
was also estimated using reanalysis data and WRF results, finding similar to
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high-resolution estimations, highlighting bias-corrected WRF performance,
offering reliable results to model power performance after a statistical cor-
rection.

Keywords: Wind Resource Assessment, Wind Power Spectrum, WRF,
MERRA-2, ERA5

1. Introduction

Wind power has become a crucial source of electricity generation in en-
ergy systems, and it will have an essential role in the future of global clean
energy supply [1]. Mexico is the second-largest wind power producer in Latin
America with a total installed capacity of 6,215 MW at the end of 2019. The5

state of Oaxaca, in the south of the country, concentrates 44% of the total
installed capacity of the country [2]. Given the large installed capacity in
the region, understanding the region’s wind characteristics has important so-
cioeconomic implications. Within Oaxaca, the region of La Ventosa has been
the subject of several studies to determine the region’s wind characteristics10

[3, 4, 5].
The wind in the region exhibits a bimodal annual distribution which

makes the typical Weibull fit an unreliable representation [4]. Furthermore,
the reliability of the Normal Turbulence Model (NTM), a fatigue load design
parameter, of the IEC61400 standard [6, 7] has been shown to be unsuitable15

for the location [5].
Even though these are examples of the efforts to broaden wind energy

knowledge in Mexico, there is no work related to wind speed power spectrum
analysis, and specifically in La Ventosa, Oaxaca. The importance of the
spectral gap relies in the fact that a mean time within this region is expected20

to have smaller variability than other regions, which could be assumed as a
steady statistical sample. We can expect that any random sample averaged
during such periods (for example, 3 h at 20 min) will have a relatively narrow
probability density function when compared to a set of similarly sampled
random values using, for example, average speeds of one minute. Significant25

differences in wind resource assessment due to the selection of different mean
times has been documented in the literature by Rodriguez-Hernandez et al.
[8] and Tabrizi et al. [9]. They suggest that urban environments may have an
influence in turbulence intensity and energy present in gusts. These effects
may be studied analyzing both the wind power spectrum of the time series,30
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for specific mean times, and the behavior of the dispersion.
Power spectrum applications on wind power are based on Van der Hoven’s

seminal work [10], whose main result consisted of characterizing the horizon-
tal wind power spectrum. Van der Hoven analyzed the wind spectrum in a
wide range of frequencies, and it has a recognized impact in the wind indus-35

try as it constitutes the basis to set 10 min averages as the main input to
characterize important parameters such as turbulence intensity, to develop
reliable wind resource assessment, including turbulence intensity analysis.
Van der Hoven wind spectrum used wind speed data obtained at three dif-
ferent levels of the 125 m meteorological tower of the Brookhaven National40

Laboratory located in Upton, New York, USA. The author reported a set of
average wind speed time series from 5-day to 2-sec. However, the data were
not available at one height level. Van der Hoven used wind measurements
recorded during the passage of hurricane Connie to describe and to clearly
define the peak at the microscale region, i.e., to guarantee a high level of dis-45

persion. Hurricane Connie came ashore near Cherry Point, North Carolina
on 12 August 1955 (summer season) as a category 2 hurricane. On cross-
ing the coastline, Connie weakened to tropical storm strength but remained
an intense storm as it continued generally northward to near the latitude of
Washington, D.C [11]. During the pass of the hurricane at Brookhaven Na-50

tional Laboratory, the mean wind speed was 13 m/s, with a peak mean wind
speed of 20 m/s on 13 August 1955. Van der Hoven showed that assuming
wind speed as a stationary random process, i.e., a random process whose
statistical properties do not change with time, the wind spectrum presents
two characteristic peaks, at the synoptic and microscale regions (Figure 1).55

Between them, around a period of 10 min, lies a spectral gap, in which the
time series exhibits minimum dispersion. However, Van der Hoven’s analysis
consisted of piecing together individual spectra over small frequency bands
to infer a general behavior [12, 13, 14]. The wind speed data in Van der
Hoven’s analysis came from different Aerovane wind speed records, making60

results interpretation difficult.
Wind spectrum results are relevant for wind speed forecasting [15] and

for time series reconstruction [16]. This expected power spectrum behavior
can be helpful due to the intermittency of the wind resource, which is still
a challenge to ensure the quality of energy production and for the operation65

and maintenance of wind turbines.
There are some power spectrum analysis reports oriented to determine

the frequency characteristics found by Van der Hoven. For instance, Kaya
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Figure 1: Schematic energy spectrum of near-ground wind speed of Van der Hoven (1957)
[8].

et al. [16] report the power spectrum of surface wind speed (1 minute-
averaged) to evaluate contributions of disturbances at various scales on the70

total spectrum, finding a similar structure to the classic Van der Hoven spec-
trum. Furthermore, using an adaptive spectral analysis method called the
Hilbert-Huang transform, Vincent et al. [17] showed that the spectral gap
depends on the atmosphere’s stability. The implementation of mesoscale
and global atmospheric modeling on wind power research has become a re-75

current alternative to study wind conditions for longer periods of analysis
[18]. A mesoscale model application for offshore wind resource assessment
may be found in Chang et al. [19]. They combined multiple ocean satellite
wind speed data and the Weather Research and Forecasting (WRF) simu-
lations to acquire accurate reconstructed offshore wind speeds. Carvalho et80

al. [20] conducted different WRF simulations using six reanalysis as initial
and boundary conditions. The results were compared to measured wind data
collected at thirteen wind measuring stations located in Portugal in areas of
high wind energy potential. The reanalyses used included ERA-Interim [21],
NASA-MERRA [22] and NCEP-CFSR [23]. They found that ERA-Interim85

was the reanalysis that produced the best estimates of the local wind regimes
and potential wind energy production. However, its time resolution is 6 hour,
whereas the recommended time resolution in the wind energy sector to reli-
ably represent the wind conditions of a site is 10 min.

In this contribution, we perform a power spectrum analysis for the region90
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of La Ventosa, Oaxaca, using high-frequency measurements. We focus on
whether a spectral gap region is present in the measured data set. Further-
more, we explore the influence of the seasonal cycle on the power spectrum.
Then, we estimate the impact of the power spectrum results on wind turbine
power production, and perform a resource assessment analysis to study the95

influence of time resolution on the wind speed time series. Finally, capacity
factor estimations were made with the reanalyses ERA5 [24] and MERRA-
2 [22] and the WRF model. These estimations were then compared with
high-frequency estimations.

The structure of the present contribution is as follows. In section 2, we100

present the description of the measuring site, the characteristics of the me-
teorological equipment, and the measured data. In section 2, we also outline
the theory and methods used to calculate the power density spectrum, wind
power production, and capacity factor. In section 3, we show the following
results: power spectrum of horizontal wind speed at the site, the relation-105

ship between power production and spectral gap, and a comparison of WRF
model and data reanalysis against observations. Finally, in section 4, we
present the conclusions.

2. Theory and methods

This section shows the methods and theory implemented through the110

present contribution. First, we describe the geographic location of the region
of analysis and the characteristic of the high frequency measured data. Then,
we present the numerical mesoscale models selected, the methodology to
calculate the power spectrum of the horizontal wind speed and the procedure
to estimate annual wind turbine power production as well as the capacity115

factor.

2.1. Measurement site and data processing

The measurement site is located in La Ventosa, Oaxaca (16◦32′40.8′′

North, 94◦57′09.0′′ West) in the Tehuantepec Isthmus region (See Figure
2b for the location of the geographical features referred to in the text). This120

region is of special interest given that it concentrates the greatest wind po-
tential in Oaxaca due to the strong mountain gap wind traveling through
the Chivela Pass into the eastern Pacific coast in southern Mexico, most
commonly between October and February [25]. The synoptic condition is
associated with advancing cold fronts over the Gulf of Mexico blocked by the125
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mountain chain known as the Sierra Madre, which results in the development
of a north-south pressure gradient through the Isthmus [26].

Two anemometers WindMaster 3D were installed on an anemometrical
mast at 17.5 and 40 meters above ground level. The anemometers have a
frequency output of 20 Hz for temperature, pressure and the three wind130

(a) Map of the Mexican republic illustrating the location of the state of Oaxaca.

(b) Location of the site measurement, La Ventosa in the state of
Oaxaca

Figure 2: Geo-localization of the site measurement implemented at La Ventosa, the Isth-
mus of Tehuantepec, Oaxaca, Mexico ( 16◦32′40.8′′ North, 94◦57′09.0′′ West)
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components. Wind speed is measured in a range between 0 and 50 m/s is
measured with a resolution of 0.01 m/s; wind direction is measured in a
range from 0 to 359◦ with a resolution of 0.01◦. In both cases, the data
is measured using digital and analogical outputs. The data was saved at a
frequency of 1 Hz to characterize the wind turbulent kinetic energy within135

the period of August 2017 to July 2018. In the present study, we only use
the 40-m anemometer dataset for the power spectrum study, wind resource
assessment, and the comparison with meteorological models. However the
power spectrum analysis of the 17.5-m anemometer yielded similar results.

2.2. Numerical meteorological models140

We selected the wind speed time series at 1 hour mean time of the me-
teorological model, WRF, and two reanalyses, namely MERRA-2 [22] and
ERA5 [24]. Reanalysis is the process whereby a fixed version of a numerical
weather prediction model, equipped with a data assimilation system, is used
to reprocess available meteorological observations and provide a consistent145

set of gridded meteorological fields, typically spanning an extended segment
of the historical data record [27]. The horizontal grid spacing of MERRA-2
is 0.5◦ latitude and 0.625◦ longitude, and ERA5 is 0.5625◦.

The WRF model is a numerical weather prediction model which supports
both atmospheric research and weather prediction. The simulation is cen-150

tered on the location of the measurement site. We employ 4 one-way nested
domains, shown in Figure 3. The horizontal spacing from the outermost
(Domain 1: D01) to the innermost (Domain 4: D04) domains are 75 km, 15,
3,1 km, respectively, with the NCEP-FNL analysis [28] as input for initial
and boundary conditions, and the set of parameterizations listed in table 1.155

The corresponding numbers of grid points are 56× 56, 81× 81, 96× 96, and
178 × 163. The innermost domain is employed to extract a time series to
compare with the measured data.

To estimate wind speed at the particular location of the anemometric
tower, the horizontal wind components at 10 m and at 50 m (MERRA-2)160

and 100 m (ERA5 and WRF) are first bilinearly interpolated to the position
of the tower. Using the wind components at the altitudes above ground level
indicated above, wind speed is computed and then vertically interpolated to
the position of the instrument at 40 m, assuming a logarithmic profile. The
application of this methodology results in a wind speed time series corre-165

sponding to the observed period between August 2017 and July 2018. The

7



Table 1: WRF parameterizations used in the present work

Physics options Scheme used
Radiation-shortwave Dudhia (1989)
Radiation-longwave RRTM

Microphysics Lin et al. scheme (1983, JCAM)
Cumulus Kain-Fritsch Kain (2004, JAM)

Boundary layer YSU Hong, Noh and Dudhia (2006, MWR)
Surface layer (MM5 similarity)
Land surface Noah Land Surface Model

Figure 3: Domains used in the WRF model centered in La Ventosa, Oaxaca, Mexico.
Domain dimensions: 4200 km × 4200 km (domain D01), 1215 km × 1215 km (domain
D02), 288 km × 288 km (domain D03) and 178 km × 163 km (domain D04)
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time series is bias-corrected by means of the quantile mapping biased cor-
rection method [29] to ensure a realistic daily and inter-annual variability of
the three different models when compared with the measured data.

2.3. Power spectrum estimation method170

The discrete Fourier transform Fu(n) is computed according to

Fu(n) =
N−1∑
k=0

[
u(k)

N

]
e−i2πnk/N , (1)

where n is the frequency and u(k) is the original time series with N data
points. After the calculation of the Fourier transform, the spectrum is
smoothed to reduced the overlap of the spectral estimations of any frequency
and noise [30]. Following [30], a multitaper spectral methodology is imple-175

mented in the present work. The difficulties and comparisons of different
methods for spectral analysis is beyond the scope of this paper, but more
information can be found in [31, 32, 33]. Based on the above research work,
here, we employed an adaptive sine multitaper method made available by
[34]. This is a multitaper method which in principle is not different from180

other non-parametric direct spectral estimates. This method consists in re-
ducing the effects of the spectral leakage and to apply a multitaper method
to the time series, by multiplying u(t) by a carefully selected multitaper
function φk(t) before the Fourier transform calculations. This method result
in a spectrum, which is a convolution of the periodogram, with |Φk(f)|2,185

where Φk(f) is the Fourier transform of φk. In conclusion, this multitaper
method works averaging multiple single-taper spectra that are calculated
from a set of special orthogonal tapers to achieve maximum suppression of
random variability. In traditional methods the same is accomplished by a
frequency domain smoothing [35].190

2.4. Wind power production and capacity factor calculations

In wind power projects, it is essential to determine the wind energy po-
tential of a specific site. Regarding this analysis, it is recommended to have
ten-minute wind speed time series and the wind turbine power curve of the
technology to assess for determining the viability of a site. In the present195

contribution, we propose the wind turbine power curve of Vestas V90-2MW,
which is a three-bladed upwind horizontal-axis. Vestas V90 has a rotor di-
ameter of 90 meters, with rotor blades of 44 meters long, and a hub-height
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of 80 meters above surface level. The wind turbine starts to produce electric
power at a wind speed of 3 m/s, reaching its nominal power output of 2 MW200

at 13.5 m/s, and the survival wind speed is 25 m/s, cutting off the power
production (pitch power control).

The energy production of a wind turbine per unit of area, EW/A, for a
given time series with N data points with a time interval, ∆t, is defined as205

follows [36]:

EW
A

=
N−1∑
i=0

PW (Vi)∆t, (2)

where PW is the wind turbine power production as a function of the wind
speed, Vi ≥ 0.

The capacity factor is defined as a dimensionless ratio of the real power210

output and the nominal power output of a wind turbine in a giving period
(usually annual). It is computed as [37]

CF =
EW

PR × yh
, (3)

where PR is the nominal power output of a wind turbine and yh is the number
of hours in the period of time to evaluate. This is a valuable measure of the
annual wind power production compared to its operation at full potential or215

rated capacity in a period of interest.

3. Results

In the present section, we introduce a seasonal power spectrum analysis
of the 1-s horizontal wind speed time series. As a first approach, we per-
form monthly analysis of the wind speed measured data and a comparison220

against the 39 years of the bias-corrected reanalysis data to determine pos-
sible atypical behavior in the measured data. Furthermore, we implement
an annual and seasonal power spectrum analysis, and we also conduct a sea-
sonal analysis of the wind speed measured data. Then, we proceed to find
a relation between power production and the microscale-spectral gap region.225

Finally, we perform a comparison of the WRF model results and reanalysis
data against observations.
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3.1. Comparison of the measured and reanalysis data

In Figure 4, the lowest dispersion corresponds to August (Summer) and
the greatest to March (Spring). Considerable high dispersion occurs in Octo-230

ber, November, December, January, and February, which correspond to the
high wind speed seasons, namely fall and winter. August has both the lowest
dispersion and lowest monthly maximum wind speed values. The monthly
maximum wind speed values are around 30 m s−1 from October to April
with a clear exception in January, which exhibits a peak around 40 m s−1.235

Within this period the median value starts increasing reaching a maximum
in January.

To place the wind speed during the observation period in the context of
the local climatology, we compare this against long-term bias-corrected time
series derived from MERRA-2 and ERA5, for the 38-year period between240

1980 and 2018. The bias correction was trained using the measured data
from August 2017 to July 2018. A comparison between the observations
and the bias-corrected reanalyses data for the same period is shown in figure
5. The correlation coefficient between observations and ERA5 is r = 0.81

Figure 4: Box plot of the monthly wind speed variation from August 2017 to July 2018
at La Ventosa, Oaxaca, Mexico (40 m high). The symbol

⊕
represents the monthly

maximum value of the data. The interquartile region is used to represent the dispersion
of the monthly data. Maximum values are for the months of October to February, with
wind speeds from 15 to 42 m s−1. During January appears the maximum wind speed of
the year.
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(figure 5a), while the corresponding coefficient for MERRA-2 is r = 0.76245

(figure 5b). The Q-Q plot constructed using the raw reanalysis data is also
shown. As the wind speed increases the Q-Q difference also increases under
the identity line, which can be interpreted as an underestimation of the wind
speed, which directly influences the quality of adjustment with the data.

Figures 6a and 6b show the boxplot of the 39 years of bias-corrected250

ERA5 and MERRA-2, respectively. Both reanalyses showed similar behavior,
exhibiting a higher median and dispersion values in the winter season, with
a maximum in January, and reaching the lower wind speed values in the
summer season, with a minimum in June, and starting to increase towards
winter again, December. In the figures, the red triangles represent the median255

value of the 40-m measured wind speed, and the blue triangle represents the
median values in ERA5 and MERRA-2. While the reanalyses track the
observations throughout the year, both reanalyses tend to overestimate the
monthly median values for the observation period. One notable exception
is July, in which the observations lie above both reanalyses’ interquartile260

0.000

0.003

0.006

0.009

0.012

Density

0 5 10 15 20 25
0

5

10

15

20

25 _
_
_

y = 1. 64 + 0. 80x, r= 0. 81
Q−Q
y=x (identity)

 Wind speed (Measured) [m/s]

W
in

d 
sp

ee
d 

(E
R

A
) [

m
s]

(a) ERA 5

0.000

0.003

0.006

0.009

0.012

Density

0 5 10 15 20 25
0

5

10

15

20

25 _
_
_

y = 2. 0 + 0. 76x, r= 0. 76
Q−Q
y=x (identity)

 Wind speed (Measured) [m/s]

W
in

d 
sp

ee
d 

(M
E

R
R

A
) [

m
s]

(b) MERRA-2

Figure 5: Comparison between measured data and reanalyses models. The linear regres-
sion for bias (purple straight line) correction has a correlation coefficient r above 0.75 for
both reanalyses data, which can be considered as a good approximation. The color map-
ping corresponds to the probabilistic density of the wind speed which shows a bi-modal
behavior. It is also presented the identity line (dark-red line).
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ranges. The corresponding reanalysis-derived medians do lie between the
second and third quartiles still highlighting strong wind speeds during that
month.

3.2. Power spectrum estimations of the horizontal wind speed

Figure 7 shows the power spectrum of the data set for the whole observing265

period with the microscale region and the energy gap clearly defined, and
the semidiurnal and diurnal effects, 12-h and 24-h periods, respectively. The
horizontal axis represent the period on a logarithmic scale and the vertical
axis represent the product of the frequency and energy spectrum, fS(f).
There are two other clearly defined peaks at 29 and 5 days. The presence of270

peaks at 5 days might be due to the increase of cyclonic activity [38]. We can
relate this to the strong north winds in La Ventosa, which are a consequence
of a low-rise corridor created by the Sierra de Chiapas and the Sierra Norte
de Oaxaca, driven by tropical–mid-latitude interactions. The spectral gap is
between 12 minutes and 2 hours and appear to be centered at a period of 0.5275

h with an amplitude around 0.3 m2 s−2.
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(a) ERA5 wind speed time series data
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(b) MERRA-2 wind speed time series data

Figure 6: A comparison of the monthly mean wind speed from ERA5 and MERRA-2
bias-corrected at La Ventosa, Oaxaca, Mexico (40 m high) from 1980 to 2018 (box plots),
and real wind speed data from August of 2017 to July of 2018 (red triangle). The blue
triangle is the time series for the same period but from the reanalysis models.
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From the power spectrum results, we found similar low dispersion be-
tween the spectral gap and microscale region. This behavior is a persistent
wind condition with similar dispersion no matter the mean time used. To
analyze the power density spectrum of the wind resources of a specific site,280

the recommended 10-minute average period from the Van der Hoven spec-
trum is usually used. However, in the present work, a completely different
power spectrum is found for La Ventosa: it has a microscale region not so
different in amplitude compared to the minimum energy region. The power
spectrum results suggest that a mean time within this region is expected285

to have smaller variability than other regions, which could be assumed as a
steady statistical sample. There are some works in the mid-latitudes where
it was found a spectral gap and semi-diurnal, diurnal, and synoptic peaks
[39, 40, 41]. However, at high-latitudes a lack of the spectral gap has also
been reported [42].290

Now, to know if the spectral gap depends on the annual cycle, we conduct
a power spectrum analysis by season (figure 8). However, due to the charac-
teristic of the available data time series, we define the seasons as follows: 1)

Figure 7: Power spectrum of the horizontal wind speed at La Ventosa, Oaxaca, Mexico
for 40 m high anemometer from August, 2017 to July, 2018. The microscale region and
energy gap are clearly defined, as well as the diurnal effects at 12 hours and the peak
corresponding to synoptic scale at 5.2 days and in a peak at 29.1 days. The red vertical
lines correspond to the mean times (1, 5, 10, 60, and 360 minutes) used in the analysis
(see text).
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(a) Winter season (b) Spring season

(c) Summer Season (d) Fall season

Figure 8: Seasonal behavior of the power spectrum of the horizontal wind speed from
August of 2017 to July of 2018. We define the seasons as follows: Winter (December
2017, January 2018, and February 2018), Spring (March 2018, April 2018, and May 2018),
Summer(June 2018, July 2018, and August 2017), and Fall (September 2017, October
2017, and November 2017)

winter (December 2017, January 2018, and February 2018), 2) Spring (March
2018, April 2018, and May 2018), 3) Summer(June 2018, July 2018, and Au-295

gust 2017), and 4) Fall (September 2017, October 2017, and November 2017).
Figures 8a to 8d show the winter, spring, summer, and fall seasons, respec-
tively. In all season power-spectrum results three main regions are identified
(from right to left): microscale, spectral gap, and macroscale. The latter
includes diurnal and synoptic scales. The spectral gap is centered around300

the period of 0.5 hour and separates the microscale and macroscale regions.
Figure 8a shows the power spectrum of the winter season with the max-

imum peak around the 8 m2 s−2 near the 100 hours and has the highest
microscale region of all seasons. It also presents a 24-hour peak, but it does

15



not have a clear 12-hour peak. Figure 8b shows the Spring power spectrum305

with a maximum peak around 6.5 m2 s−2 at a period of 100 hour. There is a
peak around the 24-hour and smaller clear peak at 12-hour. Figure 8c shows
the Summer power spectrum with a peak around 5 m2s−2 at 200-hour. Sum-
mer presents a peak at 24 hours and there is no a clear peak around the 12
hours, however shows a relatively flat microscale behaviour. Figure 8d shows310

the Fall power spectrum with a peak at a period of 100 h around 3.5 m2s−2.
There is a smaller peak at 24 hour and it also has a no so clear peak around
the 12 hours and also it shows a relatively flat microscale behaviour. For all
seasons, the spectral gap region is between 2 and 0.2 hours and center at 0.5
hour with an amplitude between 0.2 to 0.4 m2s−2. Summarizing, the am-315

plitude of the 100-hour wave period of the power spectrum starts increasing
in Fall, reaches its maximum in Winter, and continues to decrease in Spring
and Summer.

Extreme wind speed in the region is the combination of complex large
scale meteorological and local topographic conditions around Chivela Pass.320

Winds have strong seasonal signal, with maximum values during December
to January, and minimum during May to June, and a relative maximum in
July [43, 44, 45]. Strong wind speeds occurs mainly in winter months due to
cold air damming in the wake of cold fronts that reach as far south as the
Bay of Campeche. This highly turbulent phenomena is consistent with the325

power spectrum analysis presented.
Finally, from the seasonal power spectrum results, it is clear that there are

marked differences in the amplitude of the diurnal and semi-diurnal behav-
ior. Therefore, it is convenient to analyze the wind speed behavior through
seasons, clustering by hours to reproduce a typical day. The objective is to330

identify seasonal wind speed patterns that can be related to the dispersions
found in the seasonal wind spectrum. Figure 9 shows the daily wind speed
density probability distribution clustered by season as follows: Winter (De-
cember 2017, January 2018, and February 2018), Spring (March 2018, April
2018, and May 2018), Summer(June 2018, July 2018, and August 2017),335

and Fall (September 2017, October 2017, and November 2017). The white
diamonds are the mean, and the error bars are the mean ± one standard
deviation of the hourly values of the period. In all seasons, the mean wind
speed shows the same tendency: after midnight, the mean is nearly constant,
then after sunrise, there is an increase in the mean wind speed, and finally,340

after sundown, the mean wind speed tends to decrease. We observe almost
constant error bars length, with an increase of wind speed dispersion around
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10 to 12 hours. In table 2 a summary of the mean and standard deviation of
the hourly values by the season of the year is shown, which we can identify
with the semi-diurnal and diurnal cycle of the seasons that we just described.345

Figure 9a shows the Winter season density probability of wind speed. We
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(d) Fall season

Figure 9: Seasonal behaviour of horizontal wind speed from August of 2017 to July of
2018. We grouped the seasons as Winter (December 2017, January 2018, and February
2018), Spring (March 2018, April 2018, and May 2018), Summer(June 2018, July 2018,
July 2018, and August 2017), and Fall (September 2017, October 2017, and November
2017). The color mapping corresponds to the probabilistic density of the wind speed and
the white diamonds are the mean wind speed
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observe a strong 24-hour behavior that masked the 12-hour. This might be
the reason for the clear 24-hour peak in the power spectrum results, and the
absence of the 12-hour peak. The fall (figure 9d) has a similar behavior top
the winter. However, the major difference between these two seasons is the350

higher variance due to higher wind speed exhibited by the winter season.
That could be the reason of the higher amplitude in the peak at 24-hour.
Figure 9b shows the Spring season density probability of wind speed. It
is visible that the season has a 24-hour behavior, however, it also has a
semi-diurnal component, where it has higher density probability values for 4355

hours passing midnight and 5 hours passing 18:00, which it is also identified
in table 2. Figure 9c shows the Summer season density probability of wind
speed. It has a strong 24-hour behavior, but due to the narrow wind speed
dispersion( in table 2 it exhibits the lowest standard deviation), i.e. higher
density probability distribution concentrated between 2 and 6 ms−1. This360

translates into a lower 24-hour peak amplitude in the spectrum.

Table 2: Mean and standard deviation for each hour during a day grouped by the season
of the year: Winter (December 2017, January 2018, and February 2018), Spring (March
2018, April 2018, and May 2018), Summer(June 2018, July 2018, July 2018, and August
2017), and Fall (September 2017, October 2017, and November 2017).

Hour during a day
0 2 4 6 8 10 12 14 16 18 20 22

Winter season
Mean(m/s) 10.7 10.6 10.5 10.5 10.7 12.0 12.4 12.5 12.5 11.8 11.3 10.9

Standard Deviation(m/s) 4.6 4.5 4.5 4.2 4.3 5.0 5.9 4.6 4.4 4.6 5.0 4.9
Spring season

Mean(m/s) 6.1 6.2 6.3 6.5 6.6 7.8 8.1 8.7 8.8 7.6 6.3 6.2
Standard Deviation(m/s) 3.8 3.5 3.5 3.6 4.1 4.3 4.3 3.9 3.5 3.8 4.3 3.9

Summer season
Mean(m/s) 5.2 5.2 5.4 5.3 5.7 6.6 7.1 7.1 6.9 6.2 5.6 5.6

Standard Deviation(m/s) 3.4 3.5 3.7 3.8 4.2 4.5 4.2 3.6 3.4 3.5 4.0 3.9
Fall season

Mean(m/s) 7.4 6.9 6.8 7.0 7.0 8.1 8.8 8.4 8.3 7.8 7.4 7.5
Standard Deviation(m/s) 3.7 3.5 3.6 3.7 3.8 4.2 4.4 3.9 3.6 4.0 4.0 3.5

3.3. Relation of power production and the microscale-spectral gap region

In this section, we study the effect of wind speed mean time on the wind
resource assessment at La Ventosa region. We assess, for the whole year,
the influence of using different wind speed mean times in the wind resource365

assessment. This is obtained from the power spectrum analysis in Figure
7, the vertical red lines are the propose mean times: 1, 5, 10, 60, and 360
minutes, which captures the spectral gap and microscale regions. These
mean times are used to calculate the wind power production (equation 2)
and capacity factor (equation 3).370
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Table 3 shows the capacity factor and the power production of the Vestas
90 wind turbine (Figure 10). An important assumption is that the mean
wind speed is normal to the rotor wind turbine. The variation between wind
speed mean time for the capacity factor, and wind turbine power production
is not significant. This could be since the amplitude of the turbulent kinetic375

energy in the microscale region of the spectrum does not have a significant
difference compared to the region of minimum energy, obtaining wind speed
mean time values with a minimum dispersion.

Considering the power produced using 10 min wind speed mean time data
as a reference value, the percentage error,

Vactual−Vreference

Vreference
×100%, has a max-380

imum difference for the 1 minute mean time data of -1.4%. The negative sign
in the difference column means an underestimation of the power production
against the 10-min mean time. Thus, to perform a wind resource assessment
using a 10-min or an hourly wind speed mean time has a good agreement and
mean times must be chosen at least between the spectral gap and microscale385

region.
In terms of determining the annual energy production or capacity factor

of a wind turbine, there is no a marked difference using a time series of 6
hours, 1 hour, or 1 minute. The latter is a consequence of a result that we
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Figure 10: Power curve of the vestas90 and wind speed distribution for the period from
August of 2017 to July of 2018. Nominal power of 2 000 kW, diameter of 90 meters, 3
blades and pitch power control.
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Table 3: Effect of the mean time on the capacity factor and power production of a wind
turbine.

Mean time Capacity Factor (%) Power (kW) Difference (%)
1 minute 48.6 972.4 -1.4
5 minutes 49.2 983.4 -0.2
10 minutes 49.3 985.5 -

1 hour 49.4 988.5 0.2
6 hours 49.5 989.9 0.4

found in a previous section where the annual power spectrum does not have a390

significant amplitude difference in the spectral gap and the microscale region.
Now, the next step is to analyze whether the previous results might be

just valid for the unique case of the annual power spectrum form found. We
use the result shown in Figure 8, four power spectra clustered by season, to
estimate the capacity factor for the same mean times. Each seasonal power395

spectrum shows a different behavior against the annual power spectrum, and
we analyze, each of them, its influence in the wind resource assessment.

Table 4 shows the difference of the capacity factor using 10-minute wind
speed average data as a reference value against 1, 5, 10, 60, and 360 min-
utes wind speed average. Here the sign is used to determine if whether it400

is a sub-estimation or overestimation. We found the maximum difference in
Winter(-1.69 %), and spring (-1.31 %), and the lowest difference in spring
(-0.008 %) and summer (-0.13 %). We can conclude that, at least for wind
resource assessment, there is no a marked difference using a time series of 6
hours, 1 hour, or 1 minute.405

Table 4: Seasonal difference of capacity factor of a wind turbine.

Mean time Winter Fall Summer Spring
D i f f e r e n c e (%)

1 minute -1.69 -1.28 -1.14 -0.79
5 minutes -0.28 -0.24 -0.13 -0.10
10 minutes - - - -

1 hour 0.64 0.21 -0.23 0.008
6 hours 1.44 0.67 -0.26 -1.31

In the next section, we are going to explore the level of correlation of
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the measured data with the results of the numerical meteorological models.
These models are a promising alternative to the complicated and expensive
experimental wind measurement campaigns and to the long time needed to410

obtain a significant data set for analysis.

3.4. A comparison of WRF model and data reanalysis against observations

In this section, we performed a numerical simulation using the WRF
model centered in La Ventosa, Oaxaca, as described in Section 2.2. The
output of this simulation was then used to generate a wind speed time se-415

ries corresponding to the observation period (August 2017-July 2018). We
also used the previously computed time series derived from the reanalyses
MERRA-2 and ERA5.
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Figure 11: Comparison between measured data and WRF model. The linear equation for
bias (purple straight line) correction has a correlation coefficient r of 0.82, which can be
considered as a good approximation. The color mapping corresponds to the probabilistic
density of the wind speed which shows an uni-modal behavior. It is also presented the
identity line (dark-red line).

Figure 11 shows the linear adjustment lines and the linear equations for
bias (purple straight line) correction with a correlation coefficient of r = 0.82.420
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Figure 12: Comparison of the Power spectrum of the horizontal wind speed at La Ven-
tosa, Oaxaca, Mexico between the 40 meters anemometer measured data set and ERA5,
MERRA-2 and WRF data from August of 2017 to July of 2018. The microscale region
and energy gap are clearly defined, as well as the diurnal effects at 12 hours and the peak
corresponding to synoptic scale at 5.2 days and a peak at 16.7 and 27 days

The color mapping corresponds to the probabilistic density of the wind speed
which shows an bi-modal behavior. The figure also shows the difference in
quantiles-quantiles (Q-Q) of the measured data and the WRF model output.
This Q-Q difference is higher than the MERRA-2 and ERA5 models (figure
5), which means a overstimation of the wind speed by the WRF model.425

All three models, figures 5 and 11, have correlation coefficient up to 0.75,
but the WRF correlation coefficient is higher than the other two models.
The probability density of wind speed of MERRA-2 and ERA5 are similar
between each other than WRF model. As the wind speed increases the Q-Q
difference also increases, which can be interpreted as an overestimation of430

the wind speed.
Now, we determine the power spectrum of the bias-corrected models and

compare at the 1 hour time resolution with the measured data. Figure 12
shows the power spectrum of the global models and measured data set. There
is a peak at 27 days for the measured data, which the ERA5 and WRF models435

also reproduce. The MERRA-2 model reproduced it at 16.7 days. It is easy
to identify the synoptic peak at 5.2 days and the peaks at 24 and 12 hours.
However, towards shorter periods, in the models appears a peak at 8 hours
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and several others. These peaks, at first, have similar amplitude and then
decrease it. These peaks tend to decrease around an hour, and then, around440

20 minutes. This marked behavior is not seen in the measured data.
Examining the reanalysis and WRF models power spectra (Figure 12), we

find that the spectra depart from their expected behavior (measured power
spectrum) at shorter periods. For periods shorter than around 1 day, the
spectra for the numerical models start to deviate from that for measure-445

ments. A similar effect was also reported in [46], where the author reports at
that the highest resolvable frequency MERRA-2 exhibits the largest differ-
ence against measured data. These deviations are the direct consequence of
the model’s resolution capabilities, indicating energy removal by the model’s
dissipation mechanisms, and these spectra can be sensitive to the formulation450

and application of explicit and implicit filters [47]. The WRF model can re-
produce the dynamics up to the 24-hour power spectra of the measurements;
ERA5 and MERRA-2 also reproduce these dynamics. However, there is an
effort to try to improve the dynamics of the spectra in the meteorological
model [48]. However, the latter is out of the scope of the present research.455

To determine the viability of quantifying wind energy resources using
WRF, ERA5 and MERRA-2 models, we calculated the capacity factor, de-
fined in the equation 3 and the energy produced by a wind turbine (Fig-
ure 10) defined in Equation 2. An important assumption is that the mean
wind speed is normal to the rotor wind turbine. Table 5 shows the capacity460

factor and the difference in energy production between measured data and
data calculated by WRF, MERRA-2 and ERA5 models with bias correction.
A constant difference calculated against the measured data is 0.20%, so we
can conclude that using these reanalyses and the WRF model is useful source
of information for wind resource assessment.465

Table 5: Comparison between experimental data and models’ results for the capacity
factor with bias correction (CFbc) of a wind turbine.

Data source (CFbc) (%) DiffCFbc
(%)

Experimental data 49.6 -
WRF 49.5 0.20
ERA5 49.5 0.20

MERRA-2 49.5 0.20
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4. Conclusion

In the present contribution, we implemented a power spectrum analysis
for the region of La Ventosa using high-frequency measurements. From power
spectrum results, we found a minimum variance region named spectral gap
region in the wind power spectrum, which turns to be not so different in470

amplitude to the microscale region. We estimated the impact of the spectral
gap and microscale regions on the wind resource assessment using 1, 5 10,
60, and 360 minutes mean-times, taking as a reference value the 10-minute
mean-time. We found a maximum difference of 1.4 % within 1-minute against
10-minute. One of the main results is that, within 6-hour and 1-minute475

(spectral gap-microscale region), the power estimation differences results are
not so great.

For each seasonal power spectrum analysis, we found a constant spectral
gap region, center at 0.5 with an amplitude between 0.2 to 0.4 m2s−2. The
amplitude of the power spectrum varies through the season and reaching a480

maximum in winter. We conducted a power estimation using this seasonal
power spectrum results to analyze whether the previous results might be just
valid for the unique case of the annual power spectrum form found. We found
that there is no difference using 6 hour or 1 minute mean times, and found
similar results for each seasonal spectra against annual results.485

We implemented WRF model simulations, along with two reanalyses:
MERRA-2 and ERA5. As a first step, We determined the power spectrum
of the numerical models, reproducing the synoptic peak, and the diurnal
peaks at 24 and 12 hours. However, we found that the reanalysis and WRF
model spectra, for periods shorter than around 1-day, started to deviate from490

that for measurements.
To determine the viability of using meteorological data, we calculated the

capacity factor and the energy produced by a wind turbine using a manufac-
turer power curve. The maximum difference calculated against the measured
data was 0.20 % after implemented a bias correction. WRF and ERA5 model495

reports a lower difference capacity factor compared to the measured data.
These might be due to the higher grid resolution dimensions. Thus, for our
geographic region, the WRF model and reanalysis data can reproduce wind
power production.
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