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Abstract Optimal transport (OT) is a powerful tool for measuring the distance between two
probability distributions. In this paper, we develop a new manifold named the coupling ma-
trix manifold (CMM), where each point on CMM can be regarded as a transportation plan
of the OT problem. We firstly explore the Riemannian geometry of CMM with the met-
ric expressed by the Fisher information. These geometrical features of CMM have paved
the way for developing numerical Riemannian optimization algorithms such as Riemannian
gradient descent and Riemannian trust region algorithms, forming an essential optimization
method for all types of OT problems. The proposed method is then applied to solve sev-
eral OT problems studied by recent literature. For the classic OT problem and its entropy
regularized variant, the OT solution generated from our method is comparable to that from
the classic algorithms (i.e. Linear programming and Sinkhorn algorithms), while for other
types of non-entropy regularized OT problems our method outperforms other state-of-the-art
algorithms which don’t incorporate the geometric information of the OT feasible space.
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1 Introduction

An Optimal Transport (OT) problem can be briefly described as to find out the optimized
transport plan (defined as transportation polytope) between two or more sets of subjects
with certain constraints (Peyre and Cuturi, 2019). It was firstly formalized by French mathe-
matician Gaspard Monge in 1781 (Monge, 1781), and was generalized by Kantorovich who
provided a solution of Monge’s problem in 1942 (Kantorovich, 1942) and established its
importance to logistics and economics.

As the solution of the OT problem provides the optimized transportation plan between
probability distributions, and the advance in computer science allows us to perform a large
amount of computation in a high dimensional space, the optimized distance, known as the
Wasserstein distance (Panaretos and Zemel, 2019), Monge-Kantorovich distance (Brezis,
2018) and Earth Mover’s distance (Rubner et al., 2000), has been treated as a target being
analyzed in various aspects such as image processing (Rabin and Papadakis, 2015; Ferradans
et al., 2014), pattern analysis (Zhao and Zhou, 2018; Cuturi, 2013; Miller and Lent, 2016)
and domain adaption (Courty et al., 2016; Maman et al., 2019; Yair et al., 2019).

The OT-based method for comparing two probability densities and generative models
are vital in machine learning research where data are often presented in the form of point
clouds, histograms, bags-of-features, or more generally, even manifold-valued data set. In
recent years, there has been an increase in the applications of the OT-based methods in
machine learning. The authors of (Bousquet et al., 2017) approached OT-based genera-
tive modeling, triggering fruitful research under the variational Bayesian concepts, such as
Wassertein GAN (Arjovsky et al., 2017; Gulrajani et al., 2017), Wasserstein Auto-encoders
(Tolstikhin et al., 2018; Zhang et al., 2019), and Wasserstein variational inference (Ambro-
gioni et al., 2018) and their computationally efficient sliced version (Kolouri et al., 2019).
Another reason that OT gains its popularity is convexity. As the classic Kantorovich OT
problem is a constrained linear programming problem or a convex minimization problem
where the minimal value of the transport cost objective function is usually defined as the
divergence/distance between two distributions of loads (Peyre and Cuturi, 2019), or the cost
associated with the transportation between the source subjects and targets. Therefore, the
convex optimization plays an essential role in finding the solutions of OT. The computation
of the OT distance can be approached in principle by interior-point methods, and one of the
best is from (Lee and Sidford, 2014).

Although the methods for finding the solutions of OT have been widely investigated
in the literature, one of the major problems is that these algorithms are excessively slow in
handling large scale OT problems.A great deal of effort have been paid to find more efficient
algorithms under the classic OT problem setting with some specifications. For example, a
better algorithm (Haker et al., 2004) was proposed in the image registration and wrapping.
Under the homogeneous cost assumption, Jacobs and Lèger (2020) proposed a faster back-
and-forth algorithm. Another issue with the classic Kantorovich OT formulation is that its
solution plan merely relies on a few routes as a result of the sparsity of optimal couplings,
and therefore fails to reflect the practical traffic conditions. These issues limit the wider
applicability of OT-based distances for large-scale data within the field of machine learning
until a regularized transportation plan was introduced by Cuturi (Cuturi, 2013) in 2013. By
applying this new method (regularized OT), we are not only able to reduce the sparsity in
the transportation plan, but also speed up the Sinkhorn algorithm with a linear convergence
(Knight, 2008). The new research (Schmitzer, 2019) further improves the stability of the
entropy regularized OT problem.
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By offering a unique solution, better computational stability compared with the previ-
ous algorithms and being underpinned by the Sinkhorn algorithm, the entropy regulariza-
tion method has successfully delivered OT approaches into modern machine learning as-
pects (Villani, 2009), such as unsupervised learning using Restricted Boltzmann Machines
(Montavon et al., 2016), Wasserstein loss function (Frogner et al., 2015), computer graphics
(Solomon et al., 2015) and discriminant analysis (Flamary et al., 2018). Other algorithms
that aim for high calculation speed in the area of big data have also been explored, such as
the stochastic gradient-based algorithms (Genevay et al., 2016) and fast methods to com-
pute Wasserstein barycenters (Cuturi and Doucet, 2014). Altschuler et al. (2017) proposed
the Greenkhorn algorithm, a greedy variant of the Sinkhorn algorithm that updates the rows
and columns which violate most of the constraints.

In order to meet the requirements of various practical situations, many works have been
done to define suitable regularizations. For newly introduced regularizations, Dessein et al.
(2018) extended the regularization in terms of convex functions. To apply OT to power
functions, the Tsallis Regularized Optimal Transport (trot) distance problem was introduced
in (Su and Hua, 2017). Furthermore, in order to involve OT into series data, the order-
preserving Wassertein distance with its regularizor was developed in (Courty et al., 2016).
In addition, to maintain the locality in OT-assisted domain adaption, the Laplacian regular-
ization was also proposed in (Courty et al., 2016). While entropy-based regularizations have
achieved great success in terms of calculation efficiency, those problems without such reg-
ularization are still challenging. For example, to solve a Laplacian regularized OT problem,
Courty et al. proposed a generalized conditional gradient algorithm, which is a variant of
the classic conditional gradient algorithm (Bertsekas, 1999). In this paper, we shall compare
the experimental results of several entropy and non-entropy regularized OT problems based
on previous studies and the new manifold optimization algorithm proposed in Section 4.

Non-entropy regularized OT problems arise the question about the development of a
uniform and generalized method that is capable of efficiently and accurately calculating all
sort of regularized OT problems. To answer this question, we first consider that all OT prob-
lems are constrained optimization problems on the transport plane space, namely the set of
polytope (Peyre and Cuturi, 2019). Such constrained problems can be regarded as the un-
constrained problem on a specific manifold with certain constraints. The well-defined Rie-
mannian optimization can provide better performance than the original constrained problem
with the advantage of treating lower dimensional manifold as a new search space. Conse-
quentially, those fundamental numerical iterative algorithms, such as the Riemannian gradi-
ent descent (RGD) and Riemannian trust region (RTR), can naturally solve the OT problems,
achieving convergence under mild conditions.

The main purpose of this paper are to propose a manifold based framework for optimiz-
ing the transportation polytope for which the related Riemannian geometry will be explored.
The “Coupling Matrix Manifold” provides an innovative method for solving OT problems
under the framework of manifold optimization. The research on the coupling matrix man-
ifold has rooted in our earlier paper (Sun et al., 2016) in which the so-called multinomial
manifold was explored in the context of tensor clustering. The optimization on multinomial
manifolds has successfully been applied to several density learning tasks (Hong and Gao,
2015; Hong et al., 2015; Hong and Gao, 2018). More recently, Douik and Hassibi (Douik
and Hassibi, 2018) explored the manifold geometrical structure and the related convex op-
timization algorithms on three types of manifolds constructed by three types of matrices,
namely the doubly stochastic matrices, symmetric stochastic matrices and positive stochas-
tic matrices. The CMM introduced in this paper can be regarded as the generalization of
their doubly positive stochastic manifolds. According to the mathematical and experimental
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results, our CMM paves the way to solve all types of OT problems including regularized
(commonly solved by using the famous Sinkhorn algorithm) and non-regularized (previ-
ously solved by using the classic linear programming algorithm) under the manifold opti-
mization framework (Absil et al., 2008), thus providing a form of unconstrained optimiza-
tion on manifold to exploit geometry information with higher efficiency.

In summary, the main contribution of this paper are three fold.

1. We define the Coupling Matrix Manifold. We explore the geometric properties of this
manifold, including its tangent space, the projection mapping onto the tangent space, a
numerically efficient retraction mapping and the calculation of Riemann gradient and
Riemann Hessian on the manifold.

2. Following the framework of optimization on manifolds, we formulate the Riemann opti-
mization algorithm on the Coupling Matrix Manifold, so that most OT related optimiza-
tion problems can be solved in a consistent way.

3. We compare the newly presented algorithm with the existing algorithms in literature for
several state-of-the-art OT models.

The remainder of the paper is organized as follows. Section 2 introduces CMM and
its Riemannian geometry,including the tangent space, Riemannian gradient, Riemannian
Hessian, and Retraction operator, all the ingredients for the Riemannian optimization al-
gorithms. In Section 3, we review several OT problems with different regularizations from
other studies. These regularization problems will be then converted into the optimization
problem on CMM so that the Riemannian version of optimization algorithms (RGD and
RTR) can be applied. In Section 4, we will conduct several numerical experiments to demon-
strate the performance of the new Riemannian algorithms and compare the results with clas-
sic algorithms (i.e. Sinkhorn algorithm). Finally Section 5 concludes the paper with several
recommendations for future research and applications.

2 Coupling Matrix Manifolds–CMM

In this section, we introduce the CMM and Riemannian geometry of this manifold in order
to solve any generic OT problems (Peyre and Cuturi, 2019) under the framework of CMM
optimization (Absil et al., 2008).

Throughout this paper, we use a bold lower case letter for a vector x ∈ Rd , a bold upper
case letter for a matrix X ∈Rn×m, and a calligraphy letter for a manifold M . The embedded
matrix manifold M is a smooth subset of vector space E embedded in the matrix space
Rn×m. For any X ∈M , TXM is the tangent space of the manifold M at X (Absil et al.,
2008). 0d and 1d ∈ Rd are the d-dimensional vectors of zeros and ones, respectively, and
Rn×m
+ is the set of all n×m matrices with real and positive elements.

2.1 The Definition of a Manifold

Definition 1 Two vectors p ∈ Rn
+ and q ∈ Rm

+ are coupled if pT 1n = qT 1m. A matrix X ∈
Rn×m
+ of positive entries is called a coupling matrix for the coupled vectors p and q if X1m =

p and XT 1n = q. The set of all the coupling matrices for the given coupled p and q is denoted
by

Cm
n (p,q) = {X ∈ Rn×m

+ : X1m = p and XT 1n = q}. (1)
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The open subset defined in (1) is indeed a linear manifold. We will introduce an appropriate
new metric to make it a Riemannian manifold in the following for the purpose of manifold
optimization.

Remark 1 The coupling condition

pT 1n = qT 1m (2)

is vital in this paper as this condition ensures a non-empty transportation polytope so that
the manifold optimization process can be naturally employed. This condition is checked
in Lemma 2.2 of (De Loera and Kim, 2014), and the proof of this lemma is based on the
north-west corner rule algorithm described in (Queyranne and Spieksma, 2009).

Remark 2 The defined space Cm
n (p,q) of positive plans is a subset of the classic transport

plan space (or polytope)

Pm
n (p,q) = {X ∈ Rn×m

0 : X1m = p and XT 1n = q},

where each entry of a plan X in Pm
n (p,q) is non-negative. In practice, this constraint on

Cm
n (p,q) may pull the solution plan from being sparsity while the classic linear program-

ming algorithm for the OT problem restricts the entries of a plan to be non-negative, result-
ing in zero entries, i.e., sparsity. Given the practical requirement of non-sparsity, the entropy
regularization is used to enforce such non-sparsity.

Proposition 1 The subset Cm
n (p,q) forms a smooth manifold of dimension (n− 1)(m− 1)

in its embedding space Rn×m
+ , named as the Coupling Matrix Manifold.

Proof Define a mapping F : Rn×m
+ → Rn+m by

F(X) =

[
X1m−p
XT 1n−q

]
.

Hence
Cm

n (p,q) = F−1(0n+m).

Clearly DF(X) is a linear mapping from Rn×m
+ to Rn+m with

DF(X)[∆X] =

[
∆X1m
∆XT 1n

]
.

Hence the null space of DF(X) is

K = {∆X : ∆X1m = 0n,∆XT 1n = 0m}.

As there are only n+m−1 linearly independent constraints among ∆X1m = 0n, and ∆XT 1n =
0m, the rank of the null space is nm−n−m+1 = (n−1)(m−1). Hence the dimension of
the range will be n+m−1. According to the sub-immersion theorem (Proposition 3.3.4 in
(Absil et al., 2008)), the dimension of the manifold Cm

n (p,q) is (n−1)(m−1).
This completes the proof.

Several special cases of the coupling matrix manifolds that have been explored recently are
as follows:
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Remark 3 When both p and q are discrete distributions, i.e., pT 1n = qT 1m = 1 which are
naturally coupled. In this case, we call Cm

n (p,q) the double probabilistic manifold, denoted
by

DPm
n (p,q) = {X ∈ Rn×m

+ :X1m = p,XT 1n = q

and pT 1n = qT 1m = 1}

and the coupling condition becomes:

pT 1n = qT 1m = 1

Remark 4 The doubly stochastic multinomial manifold (Douik and Hassibi, 2018): This
manifold is the special case of Cm

n (p,q) with n = m and p = q = 1n, e.g.

DPn = {X ∈ Rn×n
+ : X1n = 1n,XT 1n = 1n}.

DPn can be regarded as the two-dimensional extension of the multinomial manifold intro-
duced in (Sun et al., 2016), defined as

Pm
n = {X ∈ Rn×m

+ : X1m = 1n}.

2.2 The Tangent Space and Its Metric

From now on, we only consider the coupling matrix manifold Cm
n (p,q) where p and q are a

pair of coupled vectors. For any coupling matrix X∈Cm
n (p,q), the tangent space TXCm

n (p,q)
is given by the following proposition.

Proposition 2 The tangent space TXCm
n (p,q) can be calculated as

TXCm
n (p,q) = {Y ∈ Rn×m : Y1m = 0n, YT 1n = 0m} (3)

and its dimension is (n−1)(m−1).

Proof It is easy to prove Proposition 2 by differentiating the constraint conditions. We omit
this.

Also it is clear that Y1m = 0n and YT 1n = 0m consist of m+ n equations where only
m+ n− 1 conditions are in general independent because ∑i j Yi j = 1T

n Y1m = 0. Hence the
dimension of the tangent space is nm−n−m+1 = (n−1)(m−1). The proof is completed.

Following (Sun et al., 2016; Douik and Hassibi, 2018), we still use the Fisher infor-
mation as the Riemannian metric g on the tangent space TXCm

n (p,q). The motivation for
using the Fisher information metric is the characteristic of X in definition (1): {X ∈ Rn×m

+ :
X1m = p and XT 1n = q} that the set consists of discrete distributions with fixed marginal
source and target distributions (vectors) and the Fisher information metric is a widely used
metric (i.e. Riemannian metric) on the manifold of the probability distributions (Amari and
Nagaoka, 2000, 2007). Hence, for any two tangent vectors ξX,ηX ∈ TXCm

n (p,q), the Fisher
information metric is defined as

g(ξX,ηX) = ∑
i j

(ξX)i j(ηX)i j

Xi j
= Tr((ξX�X)(ηX)

T ) (4)

where the operator � means the element-wise division of two matrices in the same size.
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Remark 5 Equivalently we may use the normalized Riemannian metric as follows

g(ξX,ηX) = (pT 1n)∑
i j

(ξX)i j(ηX)i j

Xi j

As one of building blocks for the optimization algorithms on manifolds, we consider
how a matrix of size n×m can be orthogonally projected onto the tangent space TXCm

n (p,q)
under its Riemannian metric g.

Theorem 1 The orthogonal projection from Rn×m to TXCm
n (p,q) takes the following form

ΠX(Y) = Y− (α1T
m +1nβ

T )�X, (5)

where the symbol � denotes the Hadamard product, and α and β are given by

α = (P−XQ−1X)−1(Y1m−XQ−1YT 1n) ∈ Rn (6)

β = Q−1(YT 1n−XT
α) ∈ Rm (7)

where P = diag(p) and Q = diag(q).

Proof We only present a simple sketch of the proof here. First, it is easy to verify that for
any vectors α ∈ Rn and β ∈ Rm, N = (α1T

m +1nβ T )�X is orthogonal to the tangent space
TXCm

n (p,q). This is because for any S ∈ TXCm
n (p,q), we have the following inner product

induced by g,

〈N,S〉X = Tr((N�X)ST ) = Tr((α1T
m +1nβ

T )ST )

= α
T S1m +β

T ST 1n = 0.

By counting the dimension of the tangent space, we conclude that, for any Y ∈ Rn×m

and X ∈ Cm
n (p,q), there exist α and β such that the following orthogonal decomposition is

valid
Y = ΠX(Y)+(α1T

m +1nβ
T )�X

Hence
Y1m = ((α1T

m +1nβ
T )�X)1m

By direct element manipulation, we have

Y1m = Pα +Xβ .

Similarly
YT 1n = XT

α +Qβ .

From the second equation we can express β in terms of α as

β = Q−1(YT 1n−XT
α)

Taking this equation into the first equation gives

Y1m = (P−XQ−1XT )α +XQ−1YT 1n

This gives both (6) and (7). The proof is completed.

Remark 6 For numerical stability, we can replace the inverse (P−XQ−1X)−1 in (6) with
its pseudo-inverse (P−XQ−1X)+.
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2.3 Riemannian Gradient and Retraction

The classical gradient descent method can be extended to the case of optimization on man-
ifold with the aid of the so-called Riemannian gradient. As the coupling matrix manifold is
embedded in the Enclidean space, the Riemannian gradient can be calculated via projecting
the Euclidean gradient onto its tangent space. Given the Riemannian metric which is defined
in (4), we can immediately formulate the following lemma, see (Sun et al., 2016; Douik and
Hassibi, 2018),

Lemma 1 Suppose that f (X) is a real-valued smooth function defined on Cm
n (p,q) with its

Euclidean gradient Grad f (X), then the Riemannian gradient grad f (X) can be calculated
as

grad f (X) = ΠX(Grad f (X)�X). (8)

Proof As D f (X)[ξX], the directional derivative of f along any tangent vector ξX, according
to the definition of Riemannian gradient, for the metric g(·, ·) in (4) we have:

g(grad f (X),ξX) = D f (X)[ξX] = 〈Grad f (X),ξX〉 (9)

where the right equality comes from the definition of Euclidean gradient Grad f (X) with the
classic Euclidean metric 〈·, ·〉. Clearly we have

〈Grad f (X),ξX〉= g(Grad f (X)�X,ξX) (10)

where g(Grad f (X)�X,ξX) can be simply calculated according to the formula in (4), al-
though Grad f (X)�X is not in the tangent space TXCm

n (p,q). Considering its orthogonal
decomposition according to the tangent space, we shall have

Grad f (X)�X = ΠX(Grad f (X)�X)+Q (11)

where Q is the orthogonal complement satisfying g(Q,ξX) = 0 for any tangent vector ξX.
Taking (11) into (10) and combining it with (9) gives

D f (X)[ξX] = g(ΠX(Grad f (X)�X),ξX).

Hence
grad f (X) = ΠX(Grad f (X)�X).

This completes the proof.

As an important part of the manifold gradient descent process, retraction function re-
tracts a tangent vector back to the manifold (Absil et al., 2008). For Euclidean submanifolds,
the simplest way to define a retraction is

RX(ξX) = X+ξX

In our case, to ensure RX(ξX) ∈ Cm
n (p,q), ξX should be in the smaller neighbourhood of 0

particularly when X has smaller entries. This will result an inefficient descent optimization
process. To provide a new retraction with high efficiency, following (Sun et al., 2016; Douik
and Hassibi, 2018), we define P as the projection from the set of element-wise positive
matrices Rn×m

+ onto the manifold Cm
n (p,q) under the Euclidean metric, that is,

P(M) = argmin
P∈Cm

n (p,q)
‖P−M‖2

F .

This projection may not be unique because of the openness of Cm
n (p,q). Here the following

lemma offers one such projection through an algorithm.
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Lemma 2 For any matrix M ∈ Rn×m
+ , there exist two diagonal scaling matrices D1 =

diag(d1) ∈ Rn×n
+ and D2 = diag(d2) ∈ Rm×m

+ such that

P(M) = D1MD2 ∈ Cm
n (p,q)

where both D1 and D2 can be determined by the extended Sinkhorn-Knopp algorithm (Peyre
and Cuturi, 2019).

The Sinkhorn-Knopp algorithm is specified in Algorithm 1 below, which implements
the projection P in Lemma 2.

Algorithm 1 The Sinkhorn-Knopp Algorithm

Input: M ∈ Rn×m
+ , p ∈ Rn

+ and q ∈ Rm
+, a tolerance ε = 1e−10 and the number of maximal iteration T

Output: D1 and D2
1: Initializing

d1 = q� (MT 1m); d2 = p� (Md1);
2: while the iteration is less than T do
3: d1 = q� (MT d2); d2 = p� (Md1);
4: D1 = diag(d1) and D2 = diag(d2);
5: if ‖D1Md2−p‖< ε and ‖D2MT d1−q‖< ε then
6: break while;
7: end if
8: end while

Based on the projection P, a simple retraction can be defined as

RX(ξX) = P(X+ξX).

However it may cause numerical uncertainty in the optimization process when both X and
ξX contains smaller entries. Instead we define the following retraction mapping for Cm

n (p,q)

Lemma 3 Let P be the projection defined in Lemma 2, the mapping RX : TXCm
n (p,q)→

Cm
n (p,q) given by

RX(ξX) = P(X� exp(ξX�X))

is a valid retraction on Cm
n (p,q). Here exp(·) is the element-wise exponential function and

ξX is any tangent vector at X.

Proof We only present a sketch of the proof here. First we need to prove that (i) RX(0) = X

and (ii) γξX(τ) = RX(τξX) satisfies
dγξX

(τ)

dτ

∣∣∣∣
τ=0

= ξX.

For (i), it is obvious that RX(0) = X as P(X) = X for any X ∈ Cm
n (p,q).

For (ii),

dγξX(τ)

dτ

∣∣∣∣
τ=0

= lim
τ→0

γξX(τ)− γξX(0)
τ

= lim
τ→0

P(X� exp(τξX�X))−X
τ
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As all exp(·), � and � are element-wise operations, the first order approximation of the
exponential function gives

P(X� exp(τξX�X)) = P(X+ τξX)+o(τ)

where limτ→0
o(τ)

τ
= 0. The next step is to show that P(X+ τξX)≈ X+ τξX when τ is very

small. For this purpose, consider a smaller tangent vector ∆X such that X+∆X ∈ Rn×m
+ .

There exist two smaller diagonal matrices ∆D1 ∈ Rn×n
+ and ∆D2 ∈ Rm×m

+ that satisfy

P(X+∆X) = (In +∆D1)(X+∆X)(Im +∆D2)

where I are identity matrices. By ignoring higher order small quantity, we have

P(X+∆X)≈ X+∆X+∆D1X+X∆D2.

As both P(X+∆X) and X are on the coupling matrix manifold and ∆X is a tangent vector,
we have

p =P(X+∆X)1m ≈ (X+∆X+∆D1X+X∆D2)1m

≈p+0+∆D1p+X∆D21m = p+PδD1 +XδD2

where δD = diag(∆D) and P = diag(p)1. Hence,

PδD1 +XδD2 ≈ 0.

Similarly,

XT
δD1 +QδD2 ≈ 0.

That is [
P X

XT Q

][
δD1
δD2

]
≈ 0.

Hence [δDT
1 ,δDT

2 ]
T is in the null space of the above matrix which contains [1T

n ,−1T
m]

T . In
general, there exists a constant c such that δD1 = c1n and δD2 =−c1m and this gives

∆D1X+X∆D2 = 0.

Combining all results obtained above, we have P(X+ τξX) ≈ X+ τξX as τ is sufficiently
smaller. Hence, this completes the proof.

1 For a matrix M, diag(M) is the vector formed by M’s diagonal elements. For a vector v, the result of
diag(v) is the matrix whose diagonal elements come from v.
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2.4 The Riemannian Hessian

Theorem 2 Let Grad f (X) and Hess f (X)[ξX] be the Euclidean gradient and Euclidean
Hessian, respectively. The Riemennian Hessian hess f (X)[ξX] can be expressed as

hess f (X)[ξX] = ΠX

(
γ̇− 1

2
(γ�ξX)�X

)
with

µ =(P−XQ−1Xt)+

η =Grad f (X)�X

α =µ(η1m−XQ−1
η

T 1n)

β =Q−1(ηT 1n−XT
α)

γ =η− (α1T
m +1nβ

T )�X

µ̇ =µ(XQ−1
ξ

T
X +ξXQ−1XT )µ

η̇ =Hess f (X)[ξX]�X+Grad f (X)�ξX

α̇ =µ̇(η1m−XQ−1
η

T 1n)

+µ(η̇1m−ξXQ−1
η

T 1n−XQ−1
η̇

T 1n)

β̇ =Q−1(η̇T 1n−ξ
T
X α−XT

α̇)

γ̇ =η̇− (α̇1T
m +1nβ̇

T )�X− (α1T
m +1nβ

T )�ξX.

Proof It is well known (Absil et al., 2008) that the Riemannian Hessian can be calculated
from the Riemannian connection ∇ and Riemannian gradient via

hess f (X)[ξX] = ∇ξX grad f (X).

Furthermore the connection ∇ξX ηX on the submanifold can be given by the projection of the
Levi-Civita connection ∇ξX ηX, i.e., ∇ξX ηX = ΠX(∇ξX ηX). For the Euclidean space Rn×m

endowed with the Fisher information, with the same approach used in (Sun et al., 2016), it
can be shown that the Levi-Civita connection is given by

∇ξX ηX = D(ηX)[ξX]−
1
2
(ξX�ηX)�X.

Hence,

hess f (X)[ξX] = ΠX(∇ξX grad f (X))

=ΠX

(
D(grad f (X))[ξX]−

1
2
(ξX�grad f (X))�X

)
According to Lemma 1, the directional derivative can be expressed as

D(grad f (X))[ξX] = D(ΠX(η))[ξX]

=D(η− (α1T
m +1nβ

T )�X)[ξX]

=D(η)[ξX]− (D(α)[ξX]1T
m +1nD(β )[ξX]

T )�X

− (α1T
m +1nβ

T )�ξX.

Taking in the expressions for η ,α,β and directly computing directional derivatives give
all formulae in the theorem.
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3 Riemannian Optimization Applied to OT Problems

In this section, we illustrate the Riemannian optimization in solving various OT problems,
starting by reviewing the framework of the optimization on Riemannian manifolds.

3.1 Optimization on Manifolds

Early attempts to adapt standard manifold optimization methods were presented by (Gabay,
1982) in which steepest descent, Newton and qusasi-Newtwon methods were introduced.
The second-order geometry related optimization algorithm such as the Riemannian trust
region algorithm was proposed in (Absil et al., 2008), where the algorithm was applied on
some specific manifolds such as the Stiefel and Grassman manifolds.

This paper focuses only on the gradient descent method which is the most widely used
optimization method in machine learning.

Suppose that M is a D-dimensional Riemannian manifold. Let f : M→ R be a real-
valued function defined on M. Then, the optimization problem on M has the form

min
X∈M

f (X).

For any X ∈M and ξX ∈ TXM, there always exists a geodesic starting at X with initial
velocity ξX, denoted by γξX . With this geodesic the so-called exponential mapping expX :
TXM→M is defined as

expX(ξX) = γξX(1), for any ξX ∈ TXM.

Thus the simplest Riemannian gradient descent (RGD) consists of the following two main
steps:

1. Compute the Riemannian gradient of f at the current position X(t), i.e. ξX(t) = grad f (X(t));
2. Move in the direction ξX(t) according to X(t+1) = expX(t)(−αξX(t)) with a step-size α >

0.

Step 1) is straightforward as the Riemannian gradient can be calculated from the Eu-
clidean gradient according to (8) in Lemma 1. However, it is generally difficult to compute
the exponential map effectively as the computational processes require some second-order
Riemannian geometrical elements to construct the geodesic, which sometimes is not unique
on a manifold point.Therefore, instead of using the exponential map in RGD, an approxi-
mated method, namely the retraction map RX is commonly adopted to replace the exponen-
tial mapping expX in Step 2).

For coupling matrix manifold Cm
n (p,q), a retraction mapping has been calculated in

Lemma 3. Hence Step 2) in the RGD can be modified by using the computable retraction
mapping as follows,

X(t+1) = RX(t)(−αξX(t)).

Hence for any given OT-based optimization problem

min
X∈Cm

n (p,q)
f (X),

conducting the RGD algorithm comes down to computing the Euclidean gradient Grad f (X).
Similarly, formulating the second-order Riemannian optimization algorithms based on Rie-
mannian Hessian, such as Riemannian Newton method and Riemannian trust region method,
boils down to calculating the Euclidean Hessian. See Theorem 2.
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3.2 Computational Complexity of Coupling Matrix Manifold Optimization

In this section we give a simple complexity analysis on optimizing a function defined on
the coupling matrix manifold by taking the RGD algorithm as an example. Suppose that
we minimize a given objective function f (X) defined on Cm

n . For the sake of simplicity, we
consider the case of m = n.

In each step of RGD, we first suppose we need the number of flops Et(n) to calculate
the Euclidean gradient Grad f (X(t)). In most cases shown in the next subsection, we have
Et(n) = O(n2). Before applying the RGD step, we shall calculate the Riemannian gradient
grad f (X(t)) by the projection according to Lemma 3 which is implemented by the Sinkhorn-
Knopp algorithm in Algorithm 1. The complexity of Sinkhorn-Knopp algorithm to have an
ε-approximate solution is O(n log(n)ε−3) = O(n log(n)) (Altschuler et al., 2017).

If RGD is coducted T iterations, the overall computational complexity will be

O(n log(n)T )+T Et(n) = O(n log(n)T )+O(T n2) = O(T n2).

Remark 7 This complexity is comparable to other optimization algorithms for most OT
problems, for example, equivalent to the complexity of the Order-Preserving OT problem
(Su and Hua, 2017), see Section 3.3.4 below. However as our optimization algorithm has
sufficiently exploited the geometry of the manifold, the experimental results are much better
than other algorithms, as demonstrated in Section 4.

Remark 8 Although the Sinkhorn-Knopp algorithm has a complexity of O(n log(n)), it can
only be directly applied to solve the entropy regularized OT problem,, see Application Ex-
ample 2) in Section 3.3 below.

3.3 Application Examples

As mentioned before, basic Riemannain optimization algorithms are constructed on the Eu-
clidean gradient and Hessian of the objective function. In the first part of our application
example, some classic OT problems are presented to illustrate the calculation process for
their Riemannian gradient and Hessian.

3.3.1 The Classic OT Problem

The objective function of the classic OT problem (Peyré et al., 2019) is

min
X∈Cm

n (p,q)
f (X) = Tr(XT C) (12)

where C = [Ci j] ∈ Rn×m is the given cost matrix and f (X) gives the overall cost under the
transport plan X. The solution X∗ to this optimization problem is called the transport plan
which induces the lowest overall cost f (X∗). When the cost C is defined by the distance be-
tween the source objects and the target objects, the best transport plan X∗ assists in defining
the so-called Wasserstein distance between the source distribution p and the target distribu-
tion q by

d(p,q) = Tr(X∗T C).
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Given that problem (12) is indeed a linear programming problem, it is straightforward
to solve the problem by the linear programming algorithms. In this paper, we solve the OT
problem under the Riemannian optimization framework. Thus, for the classic OT, obviously
the Euclidean gradient and Hessian can be easily computed as:

Grad f (X) = C

and

Hess f (X)[ξ ] = 0.

3.3.2 The Entropy Regularized OT Problem

It is obvious that this classic OT problem defined in the above section can be generalized
to the manifold optimization process within our defined coupling matrix manifold Cm

n (p,q)
where pT 1n = qT 1m is not necessarily equal to 1, and the number of rows and the number
of columns can be unequal. To improve the efficiency of the algorithm, we add an entropy
regularization term. Hence, the OT problem becomes

min
X∈Cm

n (p,q)
f (X) = Tr(XT C)−λH(X),

where H(X) is the discrete entropy of the coupling matrix and is defined by:

H(X),−∑
i j

Xi j(log(Xi j)).

In terms of matrix operation, H(X) has the form

H(X) =−1T
n (X� log(X))1m

where log applies to each element of the matrix. The minimization is a strictly convex opti-
mization process, and for λ > 0 the solution X∗ is unique and has the form:

X∗ = diag(µ)Kdiag(ν)

where K= e
−C
λ is computed entry-wisely (Peyre and Cuturi, 2019), and µ and ν are obtained

by the Sinkhorn-Knopp algorithm.
Now, for objective function

f (X) = Tr(XT C)−λH(X),

one can easily check that the Euclidean gradient is

Grad f (X) = C+λ (I+ log(X)),

where I is a matrix of all 1s in size n×m, and the Euclidean Hessian is, in terms of mapping
differential, given by

Hess f (X)[ξ ] = λ (ξ �X).
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3.3.3 The Power Regularization for OT Problem

Dessein et al. (2018) further extended the regularization to

min
X∈Cn

n(p,q)
Tr(XT C)+λφ(X)

where φ is an appropriate convex function. As an example, we consider the squared regu-
larization proposed by Essid and Solomon (2018)

min
X∈Cn

n(p,q)
f (X) = Tr(XT C)+λ ∑

i j
X2

i j

and we apply a zero truncated operator in the manifold algorithm. It is then straightforward
to prove that

Grad f (X) = C+2λX

and
Hess f (X)[ξ ] = 2λξ .

The Tsallis Regularized Optimal Transport is used in (Muzellec et al., 2017) to define
trot distance which comes with the following regularization problem

min
X∈Cn

n(p,q)
f (X) = Tr(XT C)−λ

1
1−q ∑

i j
(Xq

i j−Xi j).

For the sake of convenience, we denote Xq := [Xq
i j]

n,m
i=1, j=1 for any given constant q> 0. Then

we have

Grad f (X) = C− λ

1−q
(qXq−1− I)

and
Hess f (X)[ξ ] = qλ

[
Xq−2�ξ

]
.

3.3.4 The Order-Preserving OT Problem

The order-preserving OT problem is proposed in (Su and Hua, 2017) and is adopted by
(Su and Wu, 2019) for learning distance between sequences. This learning process takes
the local order of temporal sequences and the learned transport defines a flexible alignment
between two sequences. Thus, the optimal transport plan only assigns large loads to the most
similar instance pairs of the two sequences.

For sequences U = (u1, ...,un) and V = (v1, ...,vm) in the respective given orders, the
distance matrix between them is

C = [d(ui,v j)
2]n,mi=1, j=1.

Define an n×m matrix (distance between orders)

D =

 1(
i
n −

j
m

)2
+1


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and the (exponential) similarity matrix

P =
1

σ
√

2π

[
exp
{
− l(i, j)2

2σ2

}]
where σ > 0 is the scaling factor and

l(i, j) =

∣∣∣∣∣∣
i
n −

j
m√

1
n2 +

1
m2

∣∣∣∣∣∣ .
The (squared) distance between sequences U and V is given by

d2(U,V) = Tr(CT X∗) (13)

where the optimal transport plan X∗ is the solution to the following order-preserving regu-
larized OT problem

X∗ = argmin
X∈Cm

n (p,q)
f (X) = Tr(XT (C−λ1D))+λ2KL(X||P)

where the KL-divergence is defined as

KL(X||P) = ∑
i j

Xi j(log(Xi j)− log(Pi j))

and specially p = 1
n 1n and q = 1

m 1m are uniform distributions. Hence

Grad f (X) = (C−λ1D)+λ2(I+ log(X)− log(P))

and
Hess f (X)[ξ ] = λ2(ξ �X).

3.3.5 The OT Domain Adaption Problem

OT has also been widely used for solving the domain adaption problems. In this subsection,
the authors of (Courty et al., 2016) formalized two class-based regularized OT problems,
namely the group-induced OT (OT-GL) and the Laplacian regularized OT (OT-Laplace). As
the OT-Laplace is found to be the best performer for domain adaption, we only apply our
coupling matrix manifold optimization to it and thus we summarize its objective function
here.

As pointed out in (Courty et al., 2016), this regularization aims at preserving the data
graph structure during transport. Consider Ps = [ps

1,p
s
2, ...,p

s
n] to be the n source data points

and Pt = [pt
1,p

t
2, ...,p

t
m] the m target data points, both are defined in Rd . Obviously, Ps ∈

Rd×n and Pt ∈ Rd×m. The purpose of domain adaption is to transport the source Ps towards
the target Pt so that the transported source P̂s = [p̂s

1, p̂
s
2, ..., p̂

s
n] and the target Pt can be jointly

used for other learning tasks.
Now suppose that for the source data we have extra label information Ys = [ys

1,y
s
2, ...,y

s
n].

With this label information we sparsify similarities Ss = [Ss(i, j)]ni, j=1 ∈ Rn×n
+ among the

source data such that Ss(i, j)= 0 if ys
i 6= ys

j for i, j = 1,2, ...,n. That is, we define a 0 similarity
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between two source data points if they do not belong to the same class or do not have the
same labels. Then the following regularization is proposed

Ω
s
c(X) =

1
n2

n

∑
i, j=1

Ss(i, j)‖p̂s
i − p̂s

j‖2
2.

With a given transport plan X, we can use the barycentric mapping in the target as the
transported point for each source point (Courty et al., 2016). When we use the uniform
marginals for both source and target and the `2 cost, the transported source is expressed as

P̂s = nXPt . (14)

It is easy to verify that

Ω
s
c(X) = Tr(PT

t XT LsXPt), (15)

where Ls = diag(Ss1n)−Ss is the Laplacian of the graph Ss and the regularizer Ωc(X) is
therefore quadratic with respect to X. Similarly when the Laplacian Lt in the target domain
is available, the following symmetric Laplacian regularization is proposed

Ωc(X) = (1−α)Tr(PT
t XT LsXPt)+αTr(PT

s XLtXT Ps)

= (1−α)Ω s
c(X)+αΩ

t
c(X).

When α = 0, this goes back to the regularizer Ω s
c(X) in (15).

Finally the OT domain adaption is defined by the following Laplacian regularized OT
problem

min
X∈Cm

n (1n,1m)
f (X) = Tr(XT C)−λH(X)+

1
2

ηΩc(X) (16)

Hence the Euclidean gradient and uclidean Hessian are given by

Grad f (X) =C+λ (I+ log(X))

+η((1−α)LsXPtPT
t +αPsPT

s XLt).

and
Hess f (X)[ξ ] = λ (ξ �X)+η((1−α)Lsξ PtPT

t +αPsPT
s ξ Lt),

respectively.

4 Experimental Results and Comparisons

In this section, we investigate the performance of our proposed methods. The implementa-
tion of the coupling matrix manifold follows the framework of ManOpt Matlab toolbox in
http://www.manopt.org from which we call the conjugate gradient descent algorithm as
our Riemannian optimization solver in experiments. All experiments are carried out on a
laptop computer running on a 64-bit operating system with Intel Core i5-8350U 1.90GHz
CPU and 16G RAM with MATLAB 2019a version.

http://www.manopt.org
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4.1 Synthetic Data for the Classic OT Problem

First of all, we conduct a numerical experiment on a classic OT problem with synthetic data
and the performance of the proposed optimization algorithms are demonstrated.

Consider the following source load p and target load q, and their per unit cost matrix C:

p =



3
3
3
4
2
2
2
1


, q =


4
2
6
4
4

 , C =



0 0 1.2 2 2
2 4 4 4 0
1 0 0 0 3
0 1 2 1 3
1 1 0 1 2
2 1 2 0.8 3
4 0 0 1 1
0 1 0 1 3


.

For this setting, we solve the classic OT problem using the coupling matrix manifold op-
timization (CMM) and the standard linear programming (LinProg) algorithm, respectively.
We visualize the learned transport plan matrices from both algorithms in Fig. 1. The re-

1 2 3 4 5

2

4

6

8

(a) LinProg
1 2 3 4 5

2

4

6

8

(b) CMM

Fig. 1: Two transport plan matrices via: (a) Linear Programming and (b) Coupling Matrix
Manifold Optimization.

sults reveal that the linear programming algorithm is constrained by a non-negative condi-
tions for the entries of transport plan and hence the output transportation plan demonstrates
the sparse pattern. While our coupling matrix manifold imposes the positivity constraints,
resulting in an relatively denser transportation plan which is preferable to many practical
problems, i.e., within the practical business transactions, the market prefers to use all the
possible routes from multiple suppliers to retailers rather than to congest on several routes.
The proposed manifold optimization perform well in this illustrative example.

Next we consider an entropy regularized OT problem which can be easily solved by
the Sinkhorn algorithm. We test both the Sinkhorn algorithm and the new coupling matrix
manifold optimization on the same synthetic problem over 100 regularizer λ values on a log
scale ranging [−3,2], i.e., λ = 0.001 = 10−3 to 100.0 = 102. Mean squared error (MSE) is
used as a criterion to measure the closeness between transport plan matrices in both algo-
rithms. We run the experiment 10 times each and the mean MSE and the mean time used for
10 runs are reported in Fig. 2.
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Fig. 2: Algorithm Comparison over 100 Regularizer Values at log scale [-3, 2]: (a) The
mean Squared errors between the solutions of CMM and Sinkhorn algorithms and (b) Time
difference (in seconds) between CMM and Sinkhorn algorithms.

In the experiments, we observed that when the Sinkhorn algorithm breaks down for
λ ≤ 0.001 due to computational instability. On the contrary, the manifold-assisted algorithm
generates reasonable results for a wider range of regularizer values. From Fig. 2(a), we
also observe that both algorithms give almost exactly same transport plan matrices when
λ > 0.1668.

In terms of computational complexity, the Sinkhorm algorithm is generally more effi-
cient than the manifold assisted method in the entropy regularized OT problem, given the
information on computational time difference between CMM and Sinkhorn as shown in
Fig. 2(b). This is reasonable as CMM works on manifold optimization where extra compu-
tation is needed to maintain the constrain conditions for the manifold. However we shall note
that when the regularizer is larger, the time difference between two algorithms is negligible.
For the cases of smaller λ values, the CMM is much stable than the Sinkhorn algorithm
although more computational cost is needed, but worthwhile.

4.2 Experiments on the Order-Preserving OT

In this experiment, we demonstrate the performance in calculating the order-preserving
Wasserstein distance (Su and Hua, 2017) using a real dataset. The “Spoken Arabic Digits
(SAD)” dataset, available from the UCI Machine Learning Repository (https://archive.
ics.uci.edu/ml/datasets/Spoken+Arabic+Digit), contains 8,800 vectorial sequences
from ten spoken Arabic digits. The sequences consist of time series of the mel-frequency
cepstrumcoefficients (MFCCs) features extracted from the speech signals. This is a classi-
fication learning task on ten classes. The full set of training data has 660 sequence samples
per digit spoken repeatedly for 10 times by 44 male and 44 female Arabic native speakers.
For each digit, another 220 samples are retained as testing sets.

The experimental setting is similar to that in (Su and Hua, 2017). Based on the order-
preserving Wasserstein distance (OPW) between any two sequence, we directly test the
nearest neighbour (NN) classifier. To define the distance in (13), we use three hyperparam-
eters: the width parameter σ of the radius basis function (RBF), two regularizers λ1 and λ2.
For the comparative purpose, these hyperparameters are chosen to be σ = 1, λ1 = 50 and
λ2 = 0.1, as in (Su and Hua, 2017). Our purpose here is to illustrate that the performance of

https://archive.ics.uci.edu/ml/datasets/Spoken+Arabic+Digit
https://archive.ics.uci.edu/ml/datasets/Spoken+Arabic+Digit
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Algorithms 1NN 3NN 5NN 7NN 13NN 19NN
S-OWP (Su and Hua, 2017) 0.8236 0.8454 0.8454 0.8418 0.8473 0.8290

(std) 0.0357 0.0215 0.0215 0.0220 0.0272 0.0240
CM-OWP 0.8091 0.8309 0.8255 0.8218 0.8109 0.8091

(std) 0.0275 0.0212 0.0194 0.0196 0.0317 0.0315

Table 1: The classification accuracy of the kNN classifiers based on two algorithms for the
order-preserving Wasserstein distance.

the NN classifier based on the coupling matrix manifold optimization algorithm (named as
CM-OPW) is comparable to the NN classification results from Sinkhorn algorithm (named
as S-OPW). We randomly choose 10% training data and 10% testing data for each run in
the experiments. The classification mean accuracy and their standard error are reported in
TABLE 1 based on five runs.

In this experiment, we also observe that the distance calculation fails for some pairs of
training and testing sequences due to numerical instability of the Sinkhorn algorithm. Our
conclusion is that the performance of the manifold-based algorithm is comparable in terms
of similar classification accuracy. When k = 1, the test sequence is also viewed as a query
to retrieve the training sequences, and the mean average precision (MAP) is MAP = 0.1954
for the S-OPW and MAP = 0.3654 for CM-OPW. Theoretically the Sinkhorn algorithm is
super-fast, outperforming all other existing algorithms; however, it is not applicable to those
OT problems with non-entropy regularizations. We demonstrate these problems in the next
subsection.

4.3 Laplacian Regularized OT Problems: Synthetic Domain Adaption

Courty et al. (2016) analyzed two moon datasets and found that the OM domain adaption
method significantly outperformed the subspace alignment method significantly. We use the

(a) rotation = 10◦ (b) rotation = 30◦ (c) rotation = 50◦ (d) rotation = 90◦

Fig. 3: Two moons’ example for increasing rotation angles

same experimental data and protocol as in (Courty et al., 2016) to perform a direct and fair
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Rotate Angle 10◦ 20◦ 30◦ 40◦ 50◦ 70◦ 90◦

SVM (no adapt.) 0 0.104 0.24 0.312 0.4 0.764 0.828
DASVM 0 0 0.259 0.284 0.334 0.747 0.82
PBDA 0 0.094 0.103 0.225 0.412 0.626 0.687

OT-Laplace 0 0 0.004 0.062 0.201 0.402 0.524
CM-OT-Lap (ours) 0.0027 0.0043 0.0014 0.0142 0.0301 0.0446 0.0797

(variance) 0.0000 0.0002 0.0000 0.0007 0.0013 0.0015 0.0057

Table 2: Mean error rate over 10 realizations for the two moons simulated example. DASVM
(Bruzzone and Marconcini, 2010); PBDA (Germain et al., 2013); OT-Laplace (Courty et al.,
2016)

comparison between results2. Each of the two domains represents the source and the target
respectively presenting two moon shapes associated with two specific classes. See Fig. 3.

The source domain contains 150 data points sampled from the two moons. Similarly, the
target domain has the same number of data points, sampled from two moons shapes which
rotated at a given angle from the base moons used in the source domain. A classifier between
the data points from two domains will be trained once transportation process is finished.

To test the generalization capability of the classifier based on the manifold optimization
method, we sample a set of 1000 data points according to the distribution of the target
domain and we repeat the experiment for 10 times, each of which is conducted on 9 different
target domains corresponding to 10◦, 20◦, 30◦, 40◦, 50◦, 60◦, 70◦, 80◦ and 90◦ rotations,
respectively. We report the mean classification error and variance as comparison criteria.

We train the SVM classifiers with a Gaussian kernel, whose parameters were automat-
ically set by 5-fold cross-validation. The final results are shown in TABLE 2. For compar-
ative purpose, we also present the results based on the DA-SVM approach (Bruzzone and
Marconcini, 2010) and the PBDA (Germain et al., 2013) from (Courty et al., 2016).

From TABLE 2, we observe that the coupling matrix manifold assisted optimization
algorithm significantly improves the efficiency of the GCG (the generalized conditional gra-
dient) algorithm which ignores the manifold constraints although a weaker Lagrangian con-
dition was imposed in the objective function. This results in a sub-optimal solution to the
transport plan, producing poorer transported source data points.Based on the results on Ta-
ble 2, our coupling manifold optimal transport Laplacian (CM-OT-Lap) algorithm provided
a more stable classification results along with different data structures (from 10◦ to 90◦ ro-
tations) with the highest classification error only 0.0466 at 70◦ rotation. Especially for the
problem with highest difficulty 90◦, the CM-OT-Lap resulted in a mean classification error
as 0.0797 whereas other methods are with the results as 0.82 (DASVM), 0.687 (PBDA) and
0.524 (OT-Lap) respectively, indicating that computing the transportation map between two
data sets can significantly help us to accurately do the classification work. We also provided
the variance of the classification results to show the robustness of our method. Our results
show relatively low variances.

4.4 Laplacian Regularized OT Problems: Image Domain Adaption

We now apply our manifold-based algorithm to solve the Laplician regularized OT problem
for the challenging real-world adaptation tasks. In this experiment, we test the domain adap-

2 We sincerely thanks to the authors of (Courty et al., 2016) for providing us the complete simulated two
moon datasets.
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tion for both handwritten digits images and face images for recognition. We follow the same
setting used in (Courty et al., 2016) for a fair comparison.

4.4.1 Digit recognition

We use the two-digit famous handwritten digit datasets USPS and MNIST as the source and
target domain and verse, respectively, in our experiment3. The datasets share 10 classes of
features (single digits from 0-9). We randomly sampled 1800 images from USPS and 2000
from MNIST. In order to unify the dimensions of two domains, the MNIST images are re-
sized into 16×16 resolution same as USPS. The grey level of all images are then normalized
to produce the final feature space for all domains. For this case, we have two settings U-M
(USPS as source and MNIST as target) and M-U (MNIST as source and USPS as target).

4.4.2 Face Recognition

In the face recognition experiment, we use PIE (“Pose, Illumination, Expression”) dataset
which contain 32× 32 images of 68 individuals with different poses: pose, illuminations
and expression conditions4. In order to make a fair and reasonable comparison with (Courty
et al., 2016), we select PIE05(C05, denoted as P1, left pose), PIE07(C07, denote as P2,
upward pose), PIE09(C09, denoted as P3, downward pose) and PIE29(C29, denoted as P4,
right pose). This four domains induce 12 adaptation problems with increasing difficulty (the
hardest adaptation is from left to the right). Note that large variability between each domain
is due to the illumination and expression.

4.4.3 Experiment Settings and Result Analysis

We generate the experimental results by applying the manifold-based algorithm on two types
of Laplacian regularized problems, namely: Problem (16) with α = 0 (CMM-OT-Lap) and
with α = 0.5 (CMM-OT-symmLap). We follow the same experimental settings in (Courty
et al., 2016). For all methods, the regularization parameter λ was initially set to 0.01 simi-
larly, another parameter, η that controls the performance of Laplacian terms was set to 0.1.

In both Face and digital recognition experiments, 1NN is trained with the adapted source
data and target data, and then we report the overall accuracy (OA) score (in %) calculated on
testing samples from the target domain. We compare OAs between our CMM-OT solutions
to the baseline methods and the results generated by the methods provided in (Courty et al.,
2016) in TABLE 3. Note that, we applied both coupling matrix OT Laplacian and coupling
matrix OT symmetric Laplacian algorithm for all experiments, and due to the high similarity
of the results generated from these two methods, we only list the OA generated from the
non-symmetric CMM-OT-Lap algorithm in table.

As a result, the OA based on the solution generated from CMM based OT Laplician
algorithm over-performs all other methods in both digital and face recognition experiments,
with mean OA = 65.52% and 72.59%, respectively. Averagely, our method is able to increase
4% and 16% of the OA from the previous results. However, in terms of the adaptation
problem with the highest difficulty : P1 to P4, we got similar result compared with previous
results, with the OA = 47.54% from (Courty et al., 2016) and 48.98% from our method
respectively.

3 Both datasets can be found at http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html.
4 http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html

http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html
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Domains 1NN OT-IT OT-Lap CMM-OT-Lap
U-M 39.00 53.66 57.43 60.67
M-U 58.33 64.73 64.72 70.37
mean 48.66 59.20 61.07 65.52
P1-P2 23.79 53.73 58.92 58.08
P1-P3 23.50 57.43 57.62 62.65
P1-P4 15.69 47.21 47.54 48.98
P2-P1 24.27 60.21 62.74 93.10
P2-P3 44.45 63.24 64.29 69.18
P2-P4 25.86 51.48 53.52 65.10
P3-P1 20.95 57.50 57.87 91.70
P3-P2 40.17 63.61 65.75 75.66
P3-P4 26.16 52.33 54.02 87.60
P4-P1 18.14 45.15 45.67 90.30
P4-P2 24.37 50.71 52.50 66.46
P4-P3 27.30 52.10 52.71 62.29
mean 26.22 54.56 56.10 72.59

Table 3: Overall recognition accuracies in % in both digital and face recognition

5 Conclusions

This paper explores the so-called coupling matrix manifolds on which the majority of the
OT objective functions are defined. We formally defined the manifold, explored its tangent
spaces, defined a Riemennian metric based on information measure, proposed all the for-
mulas for the Riemannian gradient, Riemannina Hessian and an appropriate retraction as
the major ingradients for implementation Riemannian optimization on the manifold. We
apply manifold-based optimization algorithms (Riemannian gradient descent and second-
order Riemannian trust region) into several types of OT problems, including the classic
OT problem, the entropy regularized OT problem, the power regularized OT problem, the
state-of-the-art order-preserving Wasserstein distance problems and the OT problem in reg-
ularized domain adaption applications. The results from three sets of numerical experiments
demonstrate that the newly proposed Riemannian optimization algorithms perform as well
as the classic algorithms such as Sinkhorn algorithm. We also find that the new algorithm
overperforms the generalized conditional gradient when solving non-entropy regularized OT
problem where the classic Sinkhorn algorithm is not applicable.
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