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ABSTRACT: Skillful and reliable predictions of week-to-week rainfall variations in South America, two to three weeks
ahead, are essential to protect lives, livelihoods, and ecosystems. We evaluate forecast performance for weekly rainfall in
extended austral summer (NovemberÐMarch) in four contemporary subseasonal systems, including a new Brazilian model,
at 1Ð5-week leads for 1999Ð2010. We measure performance by the correlation coefÞcient (in time) between predicted and
observed rainfall; we measure skill by the Brier skill score for rainfall terciles against a climatological reference forecast. We
assess unconditional performance (i.e., regardless of initial condition) and conditional performance based on the initial
phase of the MaddenÐJulian oscillation (MJO) and El NiñoÐSouthern Oscillation (ENSO). All models display substantial
mean rainfall biases, including dry biases in Amazonia and wet biases near the Andes, which are established by week 1 and
vary little thereafter. Unconditional performance extends to week 2 in all regions except for Amazonia and the Andes, but
to week 3 only over northern, northeastern, and southeastern South America. Skill for upper- and lower-tercile rainfall
extends only to week 1. Conditional performance is not systematically or signiÞcantly higher than unconditional perfor-
mance; ENSO and MJO events provide limited ÔÔwindows of opportunityÕÕ for improved S2S predictions that are region and
model dependent. Conditional performance may be degraded by errors in predicted ENSO and MJO teleconnections to
regional rainfall, even at short lead times.

KEYWORDS: South America; ENSO; Madden-Julian oscillation; Rainfall; Forecast veriÞcation/skill; Intraseasonal
variability

1. Introduction

Subseasonal to seasonal (S2S) variations in local- and
regional-scale rainfall present considerable hazards in the
tropics, through ßoods and meteorological droughts that re-
duce agricultural yields, limit hydropower generation, and
degrade human and ecosystem health. In monsoonal regions
where the seasonal cycle is strong and assumed to be predict-
able, crop sowing dates are tied to climatological rainfall onset.
Delays to the onset, or ÔÔfalse onsetsÕÕ in which breaks in the
rains immediately follows onset, cause seeds to fail to germi-
nate and lead to substantial agricultural losses (e.g.,Marteau
et al. 2011). Conversely, ßooding after planting substantially
reduces yields; heavy rain during harvest can delay harvests
or damage crops (e.g.,Coomes et al. 2016).

Historically, S2S forecasts, usually made from two to eight
weeks in advance, were judged to be less useful than numerical
weather predictions (NWP)Ñwhich provide shorter-range (1Ð
15 days) initial-condition driven predictions at daily scalesÑor
seasonal forecastsÑwhich provide longer-range (3Ð6 months)
boundary-condition driven predictions at monthly scales (e.g.,
Hudson et al. 2011; Vitart et al. 2012). The perceived lack of

utility stemmed from poor S2S performance for weekly aver-
ages required by forecast users and targeted by producing
centers, to Þll the lead-time and prediction-scale gap between
NWP and seasonal forecasts. Weekly rainfall variations have
proven difÞcult to predict at the 2Ð3-week lead times required
by users (e.g., farmers, hydroelectric dam managers) to mitigate
damage (e.g.,Laux et al. 2008; Moron et al. 2009). S2S pre-
diction difÞculties have been ascribed to the failure of forecast
models to represent key subseasonal phenomena, such as the
MaddenÐJulian oscillation (MJO) or the related boreal sum-
mer intraseasonal oscillation (Neena et al. 2014; Lee et al.
2015), and their teleconnections to tropical and midlatitude
rainfall and circulation. However, recent advances in model
resolution, physics and data assimilation have improved S2S
prediction quality, including for the MJO and its global tele-
connections (Vitart 2017; Vitart and Robertson 2018) and for
the onset and cessation of major monsoons (Bombardi et al.
2017), such that many sectors are reconsidering the potential
social and economic beneÞts of S2S predictions. The successful
application of S2S forecasts requires careful evaluation of
contemporary S2S prediction performance. Such evaluation
includes whether there are ÔÔwindows of opportunityÕÕ for im-
proved S2S performance, based on regional- or large-scale
atmospheric circulations, as in seasonal forecasts during
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El Ni ñoÐSouthern Oscillation (ENSO) events (e.g.,Goddard
and Dilley 2005).

In South America, rainfall extremes have devastating costs
for human lives and livelihoods. In Brazil alone, extreme
rainfall events in 1979Ð2013 are estimated to have caused ap-
proximately 5000 deaths and billions of dollars in damage
(Vörösmarty et al. 2013; Hirata and Grimm 2018). In
Amazonia, approximately 70% of annual precipitation falls in
3Ð5 spells of intense precipitation that last 4Ð15 days (Rao and
Hada 1990), associated with intense moisture convergence
(de Oliveira Vieira et al. 2013). These heavy rains are linked to
atmospheric convection across scales, but particularly to the
presence, strength and location of the South Atlantic conver-
gence zone (SACZ; Carvalho et al. 2010). In turn, SACZ
variability is linked on decadal scales to Atlantic and PaciÞc
sea surface temperature variability, modulated by surfaceÐ
atmosphere feedbacks (e.g.,Robertson and Mechoso 2000;
Grimm et al. 2007; Grimm and Saboia 2015); on interannual
scales to ENSO (e.g.,Grimm and Tedeschi 2009); on intra-
seasonal scales to the MJO (e.g.,Grimm 2019); and on synoptic
scales to midlatitude Rossby wavetrains (e.g.,Hirata and
Grimm 2017), among other phenomena. The number and di-
versity of these relationships illustrate the challenge in un-
derstanding and predicting South American rainfall variability.
Of particular relevance to this study is the ENSO teleconnec-
tion, which typically suppresses rainfall across equatorial South
America in El Ni ño years and enhances rainfall in La Niña
years. These signals are often of the opposite sign in subtrop-
ical South America, including heavily populated regions in
southeastern and southern Brazil, Uruguay, and northeastern
Argentina. The ENSO teleconnection is a key source of
seasonal predictability and prediction skill, particularly for
northern and southeastern South America (Bombardi et al.
2018), but its inßuence on S2S predictions remains unclear.

Subseasonal rainfall variability in South America has been
connected to tropical and midlatitude inßuences. The MJO
(Madden and Julian 1971; Zhang 2005) is the leading tropical
inßuence on intraseasonal scales: large-scale (zonal wave-
number 1Ð3), quasi-periodic (30Ð70 day) variability in tropical
convection and associated zonally overturning circulation that
propagates east along the equator, typically from the Indian
Ocean through the PaciÞc to the Western Hemisphere. Active
phases of the MJO over tropical South America cause stronger
and more persistent SACZ rainfall extremes, but also suppress
rainfall over subtropical South America; active MJO phases
over subtropical South America cause opposite-signed signals
(e.g., Carvalho et al. 2004; Grimm 2019). Subseasonal mid-
latitude inßuences on rainfall come primarily through Rossby
waves that propagate equatorward into tropical South
America, draw moisture from Amazonia and initiate SACZ
convection over land (Grimm and Silva Dias 1995; Liebmann
et al. 1999). The most intense rainfall extremes are linked to
coincidence and superposition of these tropical and midlati-
tude inßuences (Hirata and Grimm 2017). For example, MJO
convection in the PaciÞc can initiate an extratropical wave
train that propagates into the midlatitudes, then around South
America, and which eventually triggers heavy SACZ rain-
fall ( Grimm 2019). Many of these inßuences modulate the

regional-scale meridional overturning circulation connecting
tropical and subtropical South America, creating opposite-
signed rainfall anomalies between these regions (e.g.,Gan
et al. 2004; Cavalcanti et al. 2017).

Despite much research into mechanisms of South American
subseasonal rainfall variability with observations, reanalysis
data and model simulations, few studies have evaluated con-
temporary S2S forecasts of South American weekly rainfall
and its variability, or the teleconnections from major large-
scale phenomena such as the MJO. In a global-scale analysis,
Li and Robertson (2015) found that the European Centre for
Medium-range Weather Forecasts (ECMWF) S2S model
showed high performanceÑmeasured by correlation coefÞ-
cients with observed rainfall above 0.2Ñfor forecasts 1Ð
3 weeks ahead over northeastern Brazil.Coelho et al. (2018)
evaluated forecasts of autumn rainfall and proposed a veriÞ-
cation framework for South American precipitation sub-
seasonal predictions, Þnding that ECMWF performed well
over northeastern Brazil. de Andrade et al. (2018) evaluated
the ability of all S2S project models to reproduce global
austral summer subseasonal rainfall variability and identiÞed
biases associated with model deÞciencies in representing atmo-
spheric teleconnections.Hirata and Grimm (2017) estimated
that the U.S. National Centers for Environmental Prediction
(NCEP) model could represent rainfall extremes up to two
weeks ahead, but this result was based on only a handful of
case studies in 2010Ð11, and achieving useful skill required
statistical calibration.

We investigate S2S prediction quality for South American
weekly rainfall in four recent forecast models, including con-
ditional performance evaluation based on MJO and ENSO
phases to understand whether large-scale variability improves
S2S forecasts. Our conditional evaluation is distinct from
de Andrade et al. (2018), as we evaluate total forecast rainfall
in ENSO and MJO phases, rather than removing the linear
effect of those phenomena Þrst. Our regional focus onSouth
America, our focus on austral summer, the major wet season in
most of South America, and our inclusion of a new Brazilian
model distinguish our study from previous studies that evalu-
ated S2S forecasts for austral autumn (Coelho et al. 2018), or
for all seasons (Pegion et al. 2019), or at global scales at which
regional features are difÞcult to distinguish (Li and Robertson
2015; de Andrade et al. 2018). We describe the S2S models,
verifying rainfall dataset and analysis techniques (section 2);
assess unconditional and conditional performance (section 3);
discuss the broader context and limitations of our Þndings
(section 4); and summarize our conclusions (section 5).

2. Data and methods

a. Subseasonal reforecasts

We use subseasonal reforecasts from the S2S Prediction
Project database (Vitart et al. 2017), as well as from the
Brazilian Global Atmospheric Model version 1.2 (BAM-1.2;
Guimarães et al. 2020) developed at the Centre for Weather
Forecast and Climate Studies (CPTEC). As the S2S database
comprises models with various reforecast start dates, lengths,
ensemble sizes and periods, we focus on three models to reduce
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the effects of these variations on our results: ECMWF (Vitart
2014), the Met OfÞce (UKMO; MacLachlan et al. 2015), and
NCEP (Saha et al. 2014). ECMWF and UKMO perform re-
forecasts ÔÔon the ßyÕÕ (i.e., in nearÐreal time, alongside the
operational forecasts). We use reforecasts performed during
May 2017ÐApril 2018, which corresponds to ECMWF Cycles
43r1 and 43r3 and the UKMO Global Coupled 2.0 conÞgura-
tion. NCEP and BAM perform a ÔÔÞxedÕÕ (frozen) reforecast
set. We use NCEP reforecasts from the Climate Forecast
System, version 2; we use BAM reforecasts from BAM-1.2
(Guimarães et al. 2020). We analyze reforecasts valid during
extended austral summer, NovemberÐMarch (NDJFM), for
November 1999ÐMarch 2010. We use only this common pe-
riod, even though some models have longer reforecasts avail-
able (see below andTable 1).

Each modeling center employs a different strategy for its
reforecast ensemble (Table 1). For example, NCEP has more
frequent initializations (daily) but a smaller ensemble (four
members), whereas UKMO has fewer initializations (every
6Ð8 days) but a larger ensemble (seven members). There are
two main approaches to compare models with variations in
ensemble size and initialization frequency; neither approach is
perfect or fair. The Þrst is to evaluate each model for its own
initialization dates. For models with frequent initializations,
but small ensembles, this approach produces a larger sample of
forecasts but smaller ensembles, which may reduce determin-
istic or probabilistic forecast performance (e.g., de Andrade
et al. 2018). The second approach is to create lagged ensem-
bles, by combining, for a model with more frequent initializa-
tions, some or all reforecasts made between the dates of a
model with less frequent initializations. For instance, to create
an NCEP lagged ensemble corresponding to the UKMO en-
semble initialized on 9 November, we would combine the
NCEP reforecasts initialized 2Ð9 November, to create a
32-member ensemble (8 initializations3 4 members per ini-
tialization). We would then evaluate the NCEP lagged en-
semble and the UKMO ensemble from 9 November onward.
Relative to the Þrst approach, using lagged ensembles grows
the NCEP ensemble considerably (from 4 to 32 members), but
at the potential cost of performance, because ÔÔday 1ÕÕ corre-
sponds to leads of 1Ð8 days in the lagged ensemble.

We create ECMWF and NCEP lagged ensembles that cor-
respond to the UKMO initialization dates, by combining
reforecasts made between the UKMO initialization dates
(e.g., between 2 and 9 November for the 9 November UKMO

initialization). We use the UKMO dates, rather than the less-
frequent BAM dates, because the ’ 15-day spacing of the
BAM dates would cause ECMWF and NCEP to lose up to two
weeksÕ lead time, a considerable disadvantage for S2S refor-
ecasts. UKMO and BAM are analyzed with respect to their
own initialization dates. Thus, ECMWF, NCEP and UKMO
are analyzed for common validity periods (as weekly means),
while BAM is not. This results in a different veriÞcation sample
size for BAM (88Ð110 samples, depending on lead time) than
the other three models (220 samples). We discuss this issue
further in section 4. We create the ECMWF and NCEP lagged
ensembles using an 8-day window prior to and including the
UKMO initialization dateÑrather than, for example, using a
range of dates centered on the UKMO initialization dateÑto
mimic a real-time operational procedure. For ECMWF, we use
the last three initializations on or before the UKMO date to
form a 33-member lagged ensemble; for NCEP, we use the last
eight initializations on or before the UKMO date to form a
32-member lagged ensemble.

Our four ensembles have different sizes: UKMO (seven
members), ECMWF (33 members), NCEP (32 members) and
BAM (11 members). The optimum size of lagged ensembles is
an area of active research (e.g.,DelSole et al. 2017; Trenary
et al. 2017, 2018). At short leads (e.g., 1Ð2 weeks) when the
signal-to-noise ratio is high and predictability arises from initial
conditions, ensembles lagged over shorter windows may out-
perform those lagged over longer windows. Conversely, at long
leads (e.g.,. 2 weeks) when the signal-to-noise ratio is low and
predictability arises from slowly evolving atmospheric or oce-
anic conditions, ensembles lagged over longer windows (and
hence with more members) may outperform those lagged
over shorter windows (and hence with fewer members). S2S
requires a balance between short- and long-term performance.
Our 8-day window for ECMWF and NCEP mimics the strategy
used for NCEP in the operational North American Multimodel
Ensemble (Kirtman et al. 2014). Similarly, the Subseasonal
Experiment (SubX) project compared models by lagging en-
sembles over a 7-day window (Pegion et al. 2019). Trenary
et al. (2017) and Trenary et al. (2018) found that NCEP S2S
ensembles lagged over a 5Ð10-day window showed optimium
performance for MJO and ENSO, respectively.

We test the sensitivity to our lagged-ensemble strategy by
building alternative NCEP and ECMWF ensembles, using for
ECMWF only the initialization closest to (but not later than)
the UKMO date, while for NCEP we use a 2-day window to

TABLE 1. For each model analyzed, the reforecast period, reforecast ensemble size, and reforecast initialization frequency. A list of
BAM initialization dates can be found in Table 1 of Guimarães et al. (2020).

Model Period Original ensemble Frequency

ECMWF 1997Ð2016a or 1998Ð2017b 11 members Every Monday and Thursday
NCEP 1999Ð2010 4 members Daily
UKMO 1993Ð2015 7 members 1st, 9th, 17th, and 25th of month
BAM 1999Ð2010 11 members On the ECMWF initial date closest to the

1st and 15th of the month

a For reforecasts performed in 2017.
b For reforecasts performed in 2018.
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create an eight-member lagged ensemble. This produces more
similarly sized ensembles for UKMO (seven members), NCEP
(eight members) and ECMWF (11 members). The veriÞcation
methods for these alternative ensembles are identical to those
described below for the primary NCEP (32 members) and
ECMWF (33 members) lagged ensembles. Unless otherwise
mentioned, all analysis uses the primary, larger lagged ensembles.

Note that our NDJFM analysis period refers to the validity
time of the forecasts, not the initialization time. All model data
are provided and analyzed on a common 1.58 3 1.58horizontal
grid, although the original resolutions differ considerably.
Many diagnostics and metrics are computed as a function of
forecast lead time, expressed in weeks. For the ECMWF and
NCEP lagged ensembles, lead time refers to the time since the
UKMO initialization date to which the lagged ensemble
is referenced (e.g., to days since 9 November for the 2Ð
9 November lagged example, using the example above).
ÔÔWeek 1ÕÕ refers to lead times 1Ð7 days, ÔÔweek 2ÕÕ to lead times
8Ð14 days, and so on.

b. Indices

To analyze conditional performance based on ENSO phase,
we divide the 1999Ð2010 period into quartiles based on the
monthly oceanic Niño index from the NCEP Climate
Prediction Center (https://origin.cpc.ncep.noaa.gov/products/
analysis_monitoring/ensostuff/ONI_v5.php). We use the up-
per quartile (14 months) for El Ni ño, the middle two quartiles
(28 months) for Neutral and the lower quartile (14 months) for
La Ni ña. We refer to El Ni ño and La Niña together as ÔÔstrong
ENSO.ÕÕ This differs from the ÔÔofÞcialÕÕ NOAA deÞnition, by
which 16 months in our period were classiÞed as El Niño, 24 as
La Ni ña and 15 as Neutral. We use our quartile-based deÞni-
tion to ensure equally sized strong and neutral ENSO samples.

To analyze conditional performance based on MJO phase,
we use the real-time multivariate MJO (RMM) indices from
Wheeler and Hendon (2004), which are derived from projec-
tions onto a pair of empirical orthogonal functions (EOFs)
of intraseasonal anomalies in latitude-averaged (158SÐ158N)
outgoing longwave radiation (OLR) and zonal winds at 850 and
200 hPa. We use observed RMM indices to compute performance
conditioned on the MJO phase on the reforecast initialization
date. The observed RMM indices are calculated from National
Oceanic and Atmospheric Administration (NOAA) OLR data
and NCEP/National Center for Atmospheric Research (NCAR)
reanalysis winds; data are available fromhttp://www.bom.gov.au/
climate/mjo/graphics/rmm.74toRealtime.txt. We use RMM indi-
ces computed from the reforecast OLR and zonal winds to
evaluate variations with lead time in the MJO teleconnection
to South American rainfall. RMM indices for all reforecasts
were computed following Gottschalck et al. (2010), which is a
modiÞed form of the original Wheeler and Hendon (2004)
procedure. There are eight RMM phases. We pair MJO phases
to increase sample size: phases 81 1, 21 3, 41 5, and 61 7.
Phases 81 1 combine the wettest two phases over tropical South
America, whereas phases 41 5 are the driest (Gottschalck et al.
2010; Grimm 2019). For these phases, we include only days with
RMM amplitude $ 1; we refer to days with RMM amplitude , 1,
regardless of phase, asÔÔweak MJO.ÕÕ

Table 2 shows the reforecast sample sizes for each ENSO
and MJO category in our conditional performance analysis.

c. Rainfall data

We validate reforecast rainfall against land-only rainfall esti-
mates from the Climate Hazards Group InfraRed Precipitation
with Stations (CHIRPS; Funk et al. 2015) dataset. CHIRPS
blends station observations of rainfall with infrared-based
satellite estimates that uses cold-cloud duration as a proxy
for rainfall. Most of our analyses are performed on weekly
average rainfall, following similar studies (Li and Robertson
2015; de Andrade et al. 2018), for which we average daily
CHIRPS values. Certain analyses are performed on daily
rainfall, which use the CHIRPS daily data directly; these are
noted in the text. Several recent studies have found that
CHIRPS compares well to gauge estimates of South American
rainfall, particularly in the northeast and southeast (e.g.,
Paredes-Trejo et al. 2017; Nogueira et al. 2018). CHIRPS data
are spatially interpolated to the modelsÕ 1.58 3 1.58grid.

d. Diagnostics and metrics

We evaluate reforecasts at lead times of 1Ð5 weeks. We
compute biases in the mean reforecast rainfall, including biases
conditioned on MJO and ENSO phases, as a function of lead
time. We compute root-mean-squared errors (RMSE) by
comparing weekly rainfall anomalies from each ensemble
member (i.e., of the lagged ensembles for ECMWF and
NCEP) to CHIRPS weekly rainfall anomalies, then computing
the RMSE across all ensemble members (i.e., this is the RMSE
of all members, not the RMSE of the ensemble mean). This
provides a less biased comparison of model ensembles of dif-
ferent sizes, as used here. Using the RMSE of the anomalies,
rather than of the total value, excludes the RMSE contribution
from the lead-time-dependent systematic model bias. This
mimics an operational procedure, in which the systematic bias
in the real-time forecasts is removed using the reforecast cli-
matology. For each year in 1999Ð2010, we compute anomalies
relative to the weekly 1999Ð2010 climatology, excluding the
year for which the anomaly is computed; again, this mimics a
real-time procedure.

We measure model performance by the correlation coefÞ-
cient (in time, hereafter ÔÔCCÕÕ) between the reforecast and
CHIRPS anomalies; we measure skill by the Brier skill score

TABLE 2. For each model, the number of reforecast initializa-
tions in each ENSO and MJO category considered. The number of
initialization is the same in ECMWF, NCEP, and UKMO, since we
use lagged ensembles for ECMWF and NCEP referenced to the
UKMO dates. The number of El Ni ño and La Niña initializations
is exactly one-half the number of ÔÔstrong ENSOÕÕ initializations,
by deÞnition.

Condition ECMWF, UKMO, and NCEP BAM

Neutral ENSO 108 54
Strong ENSO 112 56
Weak MJO 72 38
MJO phases 81 1 26 14
MJO phases 41 5 38 22
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(BSS). CC and BSS are computed using on the modelsÕ 1.58 3
1.58grid. To determine if CCs are statistically signiÞcant, we
compute the critical CC value at the 5% signiÞcance level using
an effective sample size, which accounts for the lag-1 auto-
correlation between consecutive forecast initializations at the
same lead time (e.g., the lag-1 autocorrelation of week-1
rainfall at a given grid point), following Zwiers and von
Storch (1995).

BSSs are computed for terciles of weekly mean rainfall:

BSS5 12
BS

BSref

, (1)

where BS is the Brier score of the reforecast and BSref is the
Brier score of the reference forecast: a climatological forecast
in which the probability of each tercile is always 1/3. The Brier
score for a given tercile, at a given grid point, is

BS5
1
N

�
N

t5 1
( ft 2 ot)

2 , (2)

where N is the number of forecasts (i.e., the sample size in
section a); ft is the probability that the weekly rainfall forecast
lies within this tercile of the reforecast distribution for this grid
point and this week of the year (i.e., number of forecast en-
semble members in this tercile, divided by ensemble size); and
ot is 0 if the observed rainfall was not in this tercile of the ob-
served rainfall distribution for this week of the year, at this grid
point, and 1 if it was. BSS. 0 indicates skill above the cli-
matological reforecast. Tercile boundaries are computed
separately for CHIRPS and the reforecasts; for the latter,
tercile boundaries are computed separately for each week of
lead time, using 1999Ð2010 data, excluding the year for
which probabilities are computed (as for the rainfall cli-
matology above).

To measure conditional performance by MJO or ENSO
phase, we compute the difference in CC between reforecasts
initialized in a strong phase and those initialized in a neutral or
weak phase (e.g., in MJO phases 41 5 relative to weak MJO).
MJO phase and amplitude are determined from the observed
RMM indices; these may differ slightly in models not initialized
the NCEP/NCAR product used for the observed RMM indices
(e.g., ECMWF is initialized from ERA-Interim), but we do not
account for this. For ECMWF and NCEP, we use the observed
MJO amplitude and phase on the UKMO initialization date,
since this the date to which the lagged ensembles are refer-
enced. This may bias the results, because members of the lag-
ged ensemble may have been initialized in a different phase or
with a different amplitude. The evaluation for UKMO and
BAM uses the RMM amplitude and phase on the respective
initialization dates for those models. To estimate the signiÞ-
cance of the conditional performance results, we randomly
resample (with replacement) from the distributions of avail-
able reforecasts 1000 times, for both the strong phase (e.g.,
phases 41 5) and the weak phase. We declare the difference to
be statistically signiÞcant if the CC for 70% of the distributions
for the strong phase lie outside the 90% conÞdence interval for
the CC value of the weak phase. This is equivalent to stating
that we are 70% conÞdent that the strong phase has a skill that

is distinct from the weak phase (itself known with 90%
conÞdence).

Some diagnostics and metrics are averaged across six
relatively homogeneous rainfall regions (shown inFig. 1a):
southern Amazonia (AMZ; 5 8Ð158S, 678Ð478W), Andes (AND;
158Ð408S, 758Ð678W), northeastern South America (NDE;
58Ð158S, 478Ð348W), northern South America (NSA; 0 8Ð128,
808Ð508W), Patagonia (PAT; 408Ð508S, 758Ð608W), and south-
eastern South America (SESA; 228Ð358S, 608Ð488W). Regions
are adapted from de Souza Custodio et al. (2017); we added
NSA to cover South America more completely. The relative
importance of austral summer precipitation in the annual cycle
for each region can be seen in Fig. 1 ofGrimm (2011). All
statistics are computed on the original 1.58 3 1.58model grid
and then averaged (i.e., these are the area-average statistics,
not the statistics of the area-average rainfall). To determine
the statistical signiÞcance of the regionally averaged CC, we
compare it to the regionally averaged critical correlation value,
adjusted for effective sample size.

3. Results

First, we examine S2S rainfall biases and RMSEs to
characterize the representation of climatological rainfall in
extended austral summer (section 3a). We then analyze
unconditional performance and skill for weekly rainfall using
CC and BSS, respectively (section 3b). To understand the
potential for conditional prediction of rainfall based on large-
scale tropical variability, we compute mean biases, errors and
performance conditioned on the phases of ENSO (section 3c)
and the MJO (section 3d). All analysis uses the larger lagged
ensembles for ECMWF (33 members) and NCEP (32 mem-
bers), except for the sensitivity test in section 3b.

a. Mean biases

Extended austral summer (NDJFM) climatological rainfall
in CHIRPS shows maxima in Amazonia and along the eastern
slopes of the Andes, with a northwestÐsoutheast-oriented band
of high rainfall extending to the Atlantic coast of Brazil
(Fig. 1a). There are local minima over the northern coast of
South America, northeastern Brazil and the western slopes of
the Andes. The four S2S models develop mean rainfall biases
by week 1 (Figs. 1bÐe). All models underpredict mean rainfall
near the CHIRPS maximum over Amazonia, with biases
largest in NCEP (Fig. 1c) and smallest in ECMWF ( Fig. 1b).
All models also overpredict rainfall near the Andes, with bia-
ses higher in NCEP and UKMO ( Fig. 1d) and smaller in
ECMWF and BAM ( Fig. 1e). Mean rainfall drifts remarkably
little with lead time: week 5 ( Figs. 1fÐi) biases are highly similar
to those in week 1. Notable exceptions include the growth of
the BAM Amazonian dry bias ( Fig. 1i) and of the UKMO
wet bias near the Andes (Fig. 1f). Overall, biases are lowest
in ECMWF, moderate in UKMO and strongest in NCEP
and BAM.

We compare RMSEs of ensemble-member weekly rainfall
anomalies against CHIRPS to the standard deviation of weekly
anomalies from CHIRPS (Fig. 2a). The latter is equivalent to
the RMSE of a climatological reference forecast; it is fairly
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spatially uniform, though higher near the mouth of the
Amazon River. RMSEs of model anomalies represent the
ÔÔrandomÕÕ component of model error, separate from the mean
bias; both bias and RMSE vary with lead time. All models show

RMSEs much larger than the CHIRPS standard deviation
nearly everywhere (Figs. 2bÐm), with higher RMSEs in
southern and eastern Brazil, particularly in NCEP (Figs.
2c,g,k) and UKMO ( Figs. 2d,h,l). These errors are striking

FIG . 1. NDJFM (a) mean rainfall (mm day 2 1) from CHIRPS and biases in mean rainfall (mm day2 1) with respect to CHIRPS from S2S
reforecasts from (b),(f) ECMWF; (c),(g) NCEP; (d),(h) UKMO; and (e),(i) BAM at week-1 lead time in (b)Ð(e) and week-5 lead time in
(f)Ð(i). Note that (a) uses a separate colorbar, to the right of the panel. Panel (a) identiÞes the six regions used elsewhere in the manuscript.
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FIG . 2. (a) Standard deviation in weekly mean CHIRPS rainfall anomalies for NDJFM, equivalent to the root-mean-squared error
(RMSE) of a climatological reference forecast; RMSEs in reforecast NDJFM weekly mean rainfall anomalies (mm day2 1) against
CHIRPS for (b),(f),(j) ECMWF; (c),(g),(k) NCEP; (d),(h),(l) UKMO; and (e),(i),(m) BAM at lead times of week 1 in (b)Ð(e), week 2 in
(f)Ð(i), and week 3 (j)Ð(m). Note that (a) uses a separate color bar, to the right of the panel.
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given that climatological rainfall is moderate and CHIRPS
variance is similar to elsewhere. Week-1 RMSEs are highest
in NCEP ( Fig. 2c) and lowest in BAM ( Fig. 2e). RMSEs
grow substantially with lead time in all models (Figs. 2bÐm),
particularly in the south and southeast. By week 3, models
show a similar pattern of RMSEs that are slightly lower in
ECMWF ( Fig. 2j) and BAM ( Fig. 2m) and higher and more
biased toward southeast Brazil in NCEP (Fig. 2k) and
UKMO ( Fig. 2l). Regional-scale RMSEs are similar in AMZ
(Fig. 3a), NDE ( Fig. 3c), NSA ( Fig. 3d) and SESA (Fig. 3f)
despite substantial differences in mean rainfall (Fig. 1):
AMZ has relatively high mean rainfall; SESA has moderate
mean rainfall and NSA and NDE have lower mean rainfall.
This demonstrates that models have as much difÞculty, if not
more, predicting rainfall variations in wet regions as in dry
regions. High RMSEs in densely populated SESA are par-
ticularly concerning. Regional-mean RMSEs are generally
highest for NCEP and lowest for BAM and ECMWF.

b. Unconditional performance assessment

At week 1, all models have statistically signiÞcant CCs (at
5% level) across most of South America (Figs. 4aÐd). CCs are
highest in northeastern Brazil, where mean rainfall is relatively
low, and in southeastern South America; CCs are lowest over
southern Amazonia and across central-eastern Brazil, near the
climatological SACZ position, where mean rainfall is relatively
high. CCs decrease with lead time, as expected. At week 2, CCs
decline most strongly in NCEP (Fig. 4f) and BAM ( Fig. 4h),
particularly in central-eastern Brazil, such that signiÞcant CCs
are limited to northern, northeastern, and southeastern South
America; CCs are near zero in southern Amazonia and
Argentina. ECMWF ( Fig. 4e) and UKMO ( Fig. 4g) maintain
signiÞcant CCs across most of South America. At week 3, in all
models CCs are signiÞcant only in northern South America,
northeastern Brazil, and a small region of southeastern South
America ( Figs. 4iÐl). At weeks 4 and 5, only isolated regions of
signiÞcant CCs remain in northeastern Brazil (not shown).

Regional-mean CCs suggest similar performance, with the
highest CCs in the climatologically drier NDE ( Fig. 3i) and in
SESA (Fig. 3l) and lowest CCs in extratropical PAT ( Fig. 3k)
and the climatologically wetter tropical AMZ ( Fig. 3g). The
four models perform similarly, although CCs are slightly higher
in ECMWF and UKMO and slightly lower in NCEP and BAM.
Statistically signiÞcant CCs in most models extend to week 1 in
PAT, to week 2 in AMZ and AND, to week 3 in NSA and
SESA, and to week 4 in NDE.

To explore the relationship between CCs and climatolog-
ical rainfall, for each model and lead time we produce dis-
tributions of gridpoint CCs binned by CHIRPS NDJFM
mean rainfall (Figs. 5aÐc). We use values at all grid points in
in the domain (shown in Fig. 4), regardless of whether the CC
is statistically signiÞcant. CCs are higher at grid points with
low or moderate mean rainfall and lower at grid points with
high mean rainfall, for weeks 1Ð3 and for all models. A similar
analysis for CCs binned by the standard deviation of weekly
CHIRPS rainfall for NDJFM (shown in Fig. 2a) shows that all
models show higher CCs at points with low or moderate
subseasonal variability and lower CCs in regions of high

subseasonal variability (Figs. 5dÐf). We return to these results
in section 4.

For regional-mean CCs and RMSEs, we assess the sensi-
tivity of forecast performance to our lagged-ensemble strategy
for NCEP (32 members) and ECMWF (33 members) using an
8-day window (section 2a). Figure 6compares CCs and RMSEs
for these ensembles to CCs and RMSEs for alternative smaller
NCEP (8 members, 2-day lagged ensemble) and ECMWF
(11 members, one initialization) ensembles similar in size to
UKMO (7 members) and BAM (11 members). Variations in
CC and RMSE between the two sets of ensembles are generally
small, but for some regions and lead times they are meaningful.
At weeks 1 and 2, the larger ensembles perform slightly worse
than the smaller ensembles, with higher RMSEs in NDE
(Fig. 6c) and SESA (Fig. 6f) but similar CCs. Using a longer
window to create the lagged ensembles degrades performance
most at short leads, when predictability arises mainly from initial
conditions. Beyond week 2, the larger ensembles slightly out-
perform the smaller ensembles, with higher CCs for NDE
(weeks 4 and 5), SESA (weeks 3Ð5), and AMZ (Fig. 6a; weeks 4
and 5). This is likely because using larger ensembles improves
the signal-to-noise ratio at longer leads. There is little change in
performance in AND, NSA, or PAT ( Figs. 6b,d,e, respectively).
Since S2S forecasts are used mostly for lead times of two weeks
and beyond, we continue to use the larger NCEP and ECMWF
ensembles that perform slightly better at these lead times.

BSSs for upper-tercile rainfall demonstrate that all models
show poor skill beyond week 1, across most of South America
(Fig. 7). At week 1, ECMWF outperforms a climatological
forecast in eastern Brazil, southern Brazil, and northern
Amazonia (Fig. 7a). By week 2, however, BSSs are only slightly
above zero (Fig. 7e); by week 3 the model performs similarly to
or worse than the climatological forecast (Fig. 7i). NCEP shows
similar skill in eastern and southern Brazil at week 1 (Fig. 7b),
but fails to maintain skill at week 2 ( Fig. 7f). NCEP also shows
negative BSS in Amazonia and near the Andes, even at week 1.
UKMO and BAM fail to outperform a climatological forecast
across most of South America even at week 1 (Figs. 7c,d, re-
spectively), with only isolated areas of positive BSS in eastern
and southern Brazil. Lower performance for BSS than for CC
suggests that while the ensemble-mean may capture the sign of
week-to-week rainfall variations at 1Ð2 weeks ahead, the en-
semble members struggle to capture shifts in the distributions
of the anomalies.

Regional-mean BSSs (Fig. 8) conÞrm that ECMWF consis-
tently outperforms a climatological forecast at week 1 for most
regions, with skill extending to week 2 over NDE ( Fig. 8c) and
SESA (Fig. 8f). NCEP exhibits skill above a climatological
forecast in NDE at weeks 1 and 2, but shows little useful skill
elsewhere. UKMO and BAM show useful skill only in NDE at
week 1. Results for both gridscale and regional-mean BSSs are
similar for lower-tercile weekly rainfall (not shown). For nor-
mal (middle-tercile) rainfall, no model outperforms the cli-
matological forecast at any lead.

c. Conditional biases and performance based on ENSO

Before examining conditional performance by ENSO phase,
we Þrst verify the predicted ENSOÐrainfall relationship by
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FIG . 3. Regional-mean (a)Ð(f) root-mean-squared errors (RMSE; mm day2 1) and (g)Ð(l) correlation coefÞcients (CC)
between reforecast and observed (CHIRPS) anomalies for NDJFM weekly mean rainfall as a function of lead time from
all models, compared to CHIRPS. Regions are Amazonia (AMZ) in (a) and (g); Andes (AND) in (b) and (h); north-
eastern South America (NDE) in (c) and (i); northern South America (NSA) in (d) and (j); Patagonia (PAT) in (e) and
(k); and southeastern South America (SESA) in (f) and (l). Metrics are computed on the original 1.58grid, then averaged
over the region. The regions are shown inFig. 1a. In (g)Ð(l), Þlled symbols show statistically signiÞcant CCs at the
5% level, based on the regionally averaged critical CC threshold, adjusted for effective sample size.
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