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Subseasonal Prediction Performance for Austral Summer South American Rainfall
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ABSTRACT: Skillful and reliable predictions of week-to-week rainfall variations in South America, two to three weeks
ahead, are essential to protect lives, livelihoods, and ecosystems. We evaluate forecast performance for weekly rainfall in
extended austral summer (November—March) in four contemporary subseasonal systems, including a new Brazilian model,
at 1-5-week leads for 1999-2010. We measure performance by the correlation coefficient (in time) between predicted and
observed rainfall; we measure skill by the Brier skill score for rainfall terciles against a climatological reference forecast. We
assess unconditional performance (i.e., regardless of initial condition) and conditional performance based on the initial
phase of the Madden-Julian oscillation (MJO) and El Nifio-Southern Oscillation (ENSO). All models display substantial
mean rainfall biases, including dry biases in Amazonia and wet biases near the Andes, which are established by week 1 and
vary little thereafter. Unconditional performance extends to week 2 in all regions except for Amazonia and the Andes, but
to week 3 only over northern, northeastern, and southeastern South America. Skill for upper- and lower-tercile rainfall
extends only to week 1. Conditional performance is not systematically or significantly higher than unconditional perfor-
mance; ENSO and MJO events provide limited ““windows of opportunity” for improved S2S predictions that are region and
model dependent. Conditional performance may be degraded by errors in predicted ENSO and MJO teleconnections to
regional rainfall, even at short lead times.

KEYWORDS: South America; ENSO; Madden-Julian oscillation; Rainfall; Forecast verification/skill; Intraseasonal
variability

1. Introduction utility stemmed from poor S2S performance for weekly aver-
ages required by forecast users and targeted by producing
centers, to fill the lead-time and prediction-scale gap between
NWP and seasonal forecasts. Weekly rainfall variations have
proven difficult to predict at the 2-3-week lead times required
by users (e.g., farmers, hydroelectric dam managers) to mitigate
damage (e.g., Laux et al. 2008; Moron et al. 2009). S2S pre-
diction difficulties have been ascribed to the failure of forecast
models to represent key subseasonal phenomena, such as the
Madden—Julian oscillation (MJO) or the related boreal sum-
mer intraseasonal oscillation (Neena et al. 2014; Lee et al.
2015), and their teleconnections to tropical and midlatitude
rainfall and circulation. However, recent advances in model
resolution, physics and data assimilation have improved S2S
prediction quality, including for the MJO and its global tele-
connections (Vitart 2017; Vitart and Robertson 2018) and for
the onset and cessation of major monsoons (Bombardi et al.
2017), such that many sectors are reconsidering the potential
social and economic benefits of S28S predictions. The successful
application of S2S forecasts requires careful evaluation of
contemporary S2S prediction performance. Such evaluation
includes whether there are ““windows of opportunity’’ for im-
proved S2S performance, based on regional- or large-scale
atmospheric circulations, as in seasonal forecasts during

Subseasonal to seasonal (S2S) variations in local- and
regional-scale rainfall present considerable hazards in the
tropics, through floods and meteorological droughts that re-
duce agricultural yields, limit hydropower generation, and
degrade human and ecosystem health. In monsoonal regions
where the seasonal cycle is strong and assumed to be predict-
able, crop sowing dates are tied to climatological rainfall onset.
Delays to the onset, or “false onsets” in which breaks in the
rains immediately follows onset, cause seeds to fail to germi-
nate and lead to substantial agricultural losses (e.g., Marteau
et al. 2011). Conversely, flooding after planting substantially
reduces yields; heavy rain during harvest can delay harvests
or damage crops (e.g., Coomes et al. 2016).

Historically, S2S forecasts, usually made from two to eight
weeks in advance, were judged to be less useful than numerical
weather predictions (NWP)—which provide shorter-range (1-
15 days) initial-condition driven predictions at daily scales—or
seasonal forecasts—which provide longer-range (3-6 months)
boundary-condition driven predictions at monthly scales (e.g.,
Hudson et al. 2011; Vitart et al. 2012). The perceived lack of
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148 WEATHER AND
El Nifio-Southern Oscillation (ENSO) events (e.g., Goddard
and Dilley 2005).

In South America, rainfall extremes have devastating costs
for human lives and livelihoods. In Brazil alone, extreme
rainfall events in 1979-2013 are estimated to have caused ap-
proximately 5000 deaths and billions of dollars in damage
(Vorosmarty et al. 2013; Hirata and Grimm 2018). In
Amazonia, approximately 70% of annual precipitation falls in
3-5 spells of intense precipitation that last 4-15 days (Rao and
Hada 1990), associated with intense moisture convergence
(de Oliveira Vieira et al. 2013). These heavy rains are linked to
atmospheric convection across scales, but particularly to the
presence, strength and location of the South Atlantic conver-
gence zone (SACZ; Carvalho et al. 2010). In turn, SACZ
variability is linked on decadal scales to Atlantic and Pacific
sea surface temperature variability, modulated by surface—
atmosphere feedbacks (e.g., Robertson and Mechoso 2000;
Grimm et al. 2007; Grimm and Saboia 2015); on interannual
scales to ENSO (e.g., Grimm and Tedeschi 2009); on intra-
seasonal scales to the MJO (e.g., Grimm 2019); and on synoptic
scales to midlatitude Rossby wavetrains (e.g., Hirata and
Grimm 2017), among other phenomena. The number and di-
versity of these relationships illustrate the challenge in un-
derstanding and predicting South American rainfall variability.
Of particular relevance to this study is the ENSO teleconnec-
tion, which typically suppresses rainfall across equatorial South
America in El Nifio years and enhances rainfall in La Nina
years. These signals are often of the opposite sign in subtrop-
ical South America, including heavily populated regions in
southeastern and southern Brazil, Uruguay, and northeastern
Argentina. The ENSO teleconnection is a key source of
seasonal predictability and prediction skill, particularly for
northern and southeastern South America (Bombardi et al.
2018), but its influence on S2S predictions remains unclear.

Subseasonal rainfall variability in South America has been
connected to tropical and midlatitude influences. The MJO
(Madden and Julian 1971; Zhang 2005) is the leading tropical
influence on intraseasonal scales: large-scale (zonal wave-
number 1-3), quasi-periodic (30-70 day) variability in tropical
convection and associated zonally overturning circulation that
propagates east along the equator, typically from the Indian
Ocean through the Pacific to the Western Hemisphere. Active
phases of the MJO over tropical South America cause stronger
and more persistent SACZ rainfall extremes, but also suppress
rainfall over subtropical South America; active MJO phases
over subtropical South America cause opposite-signed signals
(e.g., Carvalho et al. 2004; Grimm 2019). Subseasonal mid-
latitude influences on rainfall come primarily through Rossby
waves that propagate equatorward into tropical South
America, draw moisture from Amazonia and initiate SACZ
convection over land (Grimm and Silva Dias 1995; Liebmann
et al. 1999). The most intense rainfall extremes are linked to
coincidence and superposition of these tropical and midlati-
tude influences (Hirata and Grimm 2017). For example, MJO
convection in the Pacific can initiate an extratropical wave
train that propagates into the midlatitudes, then around South
America, and which eventually triggers heavy SACZ rain-
fall (Grimm 2019). Many of these influences modulate the
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regional-scale meridional overturning circulation connecting
tropical and subtropical South America, creating opposite-
signed rainfall anomalies between these regions (e.g., Gan
et al. 2004; Cavalcanti et al. 2017).

Despite much research into mechanisms of South American
subseasonal rainfall variability with observations, reanalysis
data and model simulations, few studies have evaluated con-
temporary S2S forecasts of South American weekly rainfall
and its variability, or the teleconnections from major large-
scale phenomena such as the MJO. In a global-scale analysis,
Li and Robertson (2015) found that the European Centre for
Medium-range Weather Forecasts (ECMWF) S2S model
showed high performance—measured by correlation coeffi-
cients with observed rainfall above 0.2—for forecasts 1-
3 weeks ahead over northeastern Brazil. Coelho et al. (2018)
evaluated forecasts of autumn rainfall and proposed a verifi-
cation framework for South American precipitation sub-
seasonal predictions, finding that ECMWF performed well
over northeastern Brazil. de Andrade et al. (2018) evaluated
the ability of all S2S project models to reproduce global
austral summer subseasonal rainfall variability and identified
biases associated with model deficiencies in representing atmo-
spheric teleconnections. Hirata and Grimm (2017) estimated
that the U.S. National Centers for Environmental Prediction
(NCEP) model could represent rainfall extremes up to two
weeks ahead, but this result was based on only a handful of
case studies in 2010-11, and achieving useful skill required
statistical calibration.

We investigate S2S prediction quality for South American
weekly rainfall in four recent forecast models, including con-
ditional performance evaluation based on MJO and ENSO
phases to understand whether large-scale variability improves
S2S forecasts. Our conditional evaluation is distinct from
de Andrade et al. (2018), as we evaluate total forecast rainfall
in ENSO and MJO phases, rather than removing the linear
effect of those phenomena first. Our regional focus on South
America, our focus on austral summer, the major wet season in
most of South America, and our inclusion of a new Brazilian
model distinguish our study from previous studies that evalu-
ated S2S forecasts for austral autumn (Coelho et al. 2018), or
for all seasons (Pegion et al. 2019), or at global scales at which
regional features are difficult to distinguish (Li and Robertson
2015; de Andrade et al. 2018). We describe the S2S models,
verifying rainfall dataset and analysis techniques (section 2);
assess unconditional and conditional performance (section 3);
discuss the broader context and limitations of our findings
(section 4); and summarize our conclusions (section 5).

2. Data and methods
a. Subseasonal reforecasts

We use subseasonal reforecasts from the S2S Prediction
Project database (Vitart et al. 2017), as well as from the
Brazilian Global Atmospheric Model version 1.2 (BAM-1.2;
Guimaraes et al. 2020) developed at the Centre for Weather
Forecast and Climate Studies (CPTEC). As the S2S database
comprises models with various reforecast start dates, lengths,
ensemble sizes and periods, we focus on three models to reduce
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TABLE 1. For each model analyzed, the reforecast period, reforecast ensemble size, and reforecast initialization frequency. A list of
BAM initialization dates can be found in Table 1 of Guimaraes et al. (2020).

Model Period Original ensemble Frequency
ECMWF 1997-2016° or 1998-2017° 11 members Every Monday and Thursday
NCEP 1999-2010 4 members Daily
UKMO 1993-2015 7 members 1st, 9th, 17th, and 25th of month
BAM 1999-2010 11 members On the ECMWEF initial date closest to the

1st and 15th of the month

@ For reforecasts performed in 2017.
® For reforecasts performed in 2018.

the effects of these variations on our results: ECMWF (Vitart
2014), the Met Office (UKMO; MacLachlan et al. 2015), and
NCEP (Saha et al. 2014). ECMWF and UKMO perform re-
forecasts ““on the fly” (i.e., in near—real time, alongside the
operational forecasts). We use reforecasts performed during
May 2017-April 2018, which corresponds to ECMWF Cycles
43r1 and 43r3 and the UKMO Global Coupled 2.0 configura-
tion. NCEP and BAM perform a “fixed” (frozen) reforecast
set. We use NCEP reforecasts from the Climate Forecast
System, version 2; we use BAM reforecasts from BAM-1.2
(Guimarées et al. 2020). We analyze reforecasts valid during
extended austral summer, November—-March (NDJFM), for
November 1999-March 2010. We use only this common pe-
riod, even though some models have longer reforecasts avail-
able (see below and Table 1).

Each modeling center employs a different strategy for its
reforecast ensemble (Table 1). For example, NCEP has more
frequent initializations (daily) but a smaller ensemble (four
members), whereas UKMO has fewer initializations (every
6-8 days) but a larger ensemble (seven members). There are
two main approaches to compare models with variations in
ensemble size and initialization frequency; neither approach is
perfect or fair. The first is to evaluate each model for its own
initialization dates. For models with frequent initializations,
but small ensembles, this approach produces a larger sample of
forecasts but smaller ensembles, which may reduce determin-
istic or probabilistic forecast performance (e.g., de Andrade
et al. 2018). The second approach is to create lagged ensem-
bles, by combining, for a model with more frequent initializa-
tions, some or all reforecasts made between the dates of a
model with less frequent initializations. For instance, to create
an NCEP lagged ensemble corresponding to the UKMO en-
semble initialized on 9 November, we would combine the
NCEP reforecasts initialized 2-9 November, to create a
32-member ensemble (8 initializations X 4 members per ini-
tialization). We would then evaluate the NCEP lagged en-
semble and the UKMO ensemble from 9 November onward.
Relative to the first approach, using lagged ensembles grows
the NCEP ensemble considerably (from 4 to 32 members), but
at the potential cost of performance, because “‘day 1” corre-
sponds to leads of 1-8 days in the lagged ensemble.

We create ECMWF and NCEP lagged ensembles that cor-
respond to the UKMO initialization dates, by combining
reforecasts made between the UKMO initialization dates
(e.g., between 2 and 9 November for the 9 November UKMO

initialization). We use the UKMO dates, rather than the less-
frequent BAM dates, because the ~15-day spacing of the
BAM dates would cause ECMWF and NCEP to lose up to two
weeks’ lead time, a considerable disadvantage for S2S refor-
ecasts. UKMO and BAM are analyzed with respect to their
own initialization dates. Thus, ECMWF, NCEP and UKMO
are analyzed for common validity periods (as weekly means),
while BAM is not. This results in a different verification sample
size for BAM (88-110 samples, depending on lead time) than
the other three models (220 samples). We discuss this issue
further in section 4. We create the ECMWF and NCEP lagged
ensembles using an 8-day window prior to and including the
UKMO initialization date—rather than, for example, using a
range of dates centered on the UKMO initialization date—to
mimic a real-time operational procedure. For ECMWF, we use
the last three initializations on or before the UKMO date to
form a 33-member lagged ensemble; for NCEP, we use the last
eight initializations on or before the UKMO date to form a
32-member lagged ensemble.

Our four ensembles have different sizes: UKMO (seven
members), ECMWEF (33 members), NCEP (32 members) and
BAM (11 members). The optimum size of lagged ensembles is
an area of active research (e.g., DelSole et al. 2017; Trenary
et al. 2017, 2018). At short leads (e.g., 1-2 weeks) when the
signal-to-noise ratio is high and predictability arises from initial
conditions, ensembles lagged over shorter windows may out-
perform those lagged over longer windows. Conversely, at long
leads (e.g., >2 weeks) when the signal-to-noise ratio is low and
predictability arises from slowly evolving atmospheric or oce-
anic conditions, ensembles lagged over longer windows (and
hence with more members) may outperform those lagged
over shorter windows (and hence with fewer members). S2S
requires a balance between short- and long-term performance.
Our 8-day window for ECMWF and NCEP mimics the strategy
used for NCEP in the operational North American Multimodel
Ensemble (Kirtman et al. 2014). Similarly, the Subseasonal
Experiment (SubX) project compared models by lagging en-
sembles over a 7-day window (Pegion et al. 2019). Trenary
et al. (2017) and Trenary et al. (2018) found that NCEP S2S
ensembles lagged over a 5-10-day window showed optimium
performance for MJO and ENSO, respectively.

We test the sensitivity to our lagged-ensemble strategy by
building alternative NCEP and ECMWF ensembles, using for
ECMWEF only the initialization closest to (but not later than)
the UKMO date, while for NCEP we use a 2-day window to
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create an eight-member lagged ensemble. This produces more
similarly sized ensembles for UKMO (seven members), NCEP
(eight members) and ECMWEF (11 members). The verification
methods for these alternative ensembles are identical to those
described below for the primary NCEP (32 members) and
ECMWF (33 members) lagged ensembles. Unless otherwise
mentioned, all analysis uses the primary, larger lagged ensembles.

Note that our NDJFM analysis period refers to the validity
time of the forecasts, not the initialization time. All model data
are provided and analyzed on a common 1.5° X 1.5° horizontal
grid, although the original resolutions differ considerably.
Many diagnostics and metrics are computed as a function of
forecast lead time, expressed in weeks. For the ECMWF and
NCEP lagged ensembles, lead time refers to the time since the
UKMO initialization date to which the lagged ensemble
is referenced (e.g., to days since 9 November for the 2-
9 November lagged example, using the example above).
“Week 17 refers to lead times 1-7 days, “‘week 2" to lead times
8-14 days, and so on.

b. Indices

To analyze conditional performance based on ENSO phase,
we divide the 1999-2010 period into quartiles based on the
monthly oceanic Niflo index from the NCEP Climate
Prediction Center (https://origin.cpc.ncep.noaa.gov/products/
analysis_monitoring/ensostuff/ONI_v5.php). We use the up-
per quartile (14 months) for El Nifio, the middle two quartiles
(28 months) for Neutral and the lower quartile (14 months) for
La Nifla. We refer to El Nifio and La Nifia together as “‘strong
ENSO.” This differs from the “official” NOAA definition, by
which 16 months in our period were classified as El Nifio, 24 as
La Nifia and 15 as Neutral. We use our quartile-based defini-
tion to ensure equally sized strong and neutral ENSO samples.

To analyze conditional performance based on MJO phase,
we use the real-time multivariate MJO (RMM) indices from
Wheeler and Hendon (2004), which are derived from projec-
tions onto a pair of empirical orthogonal functions (EOFs)
of intraseasonal anomalies in latitude-averaged (15°S-15°N)
outgoing longwave radiation (OLR) and zonal winds at 850 and
200 hPa. We use observed RMM indices to compute performance
conditioned on the MJO phase on the reforecast initialization
date. The observed RMM indices are calculated from National
Oceanic and Atmospheric Administration (NOAA) OLR data
and NCEP/National Center for Atmospheric Research (NCAR)
reanalysis winds; data are available from http://www.bom.gov.au/
climate/mjo/graphics/rmm.74toRealtime.txt. We use RMM indi-
ces computed from the reforecast OLR and zonal winds to
evaluate variations with lead time in the MJO teleconnection
to South American rainfall. RMM indices for all reforecasts
were computed following Gottschalck et al. (2010), which is a
modified form of the original Wheeler and Hendon (2004)
procedure. There are eight RMM phases. We pair MJO phases
to increase sample size: phases 8 + 1,2 + 3,4 + 5,and 6 + 7.
Phases 8 + 1 combine the wettest two phases over tropical South
Anmerica, whereas phases 4 + 5 are the driest (Gottschalck et al.
2010; Grimm 2019). For these phases, we include only days with
RMM amplitude = 1; we refer to days with RMM amplitude < 1,
regardless of phase, as ‘“‘weak MJO.”
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TABLE 2. For each model, the number of reforecast initializa-
tions in each ENSO and MJO category considered. The number of
initialization is the same in ECMWF, NCEP, and UKMO, since we
use lagged ensembles for ECMWF and NCEP referenced to the
UKMO dates. The number of El Nifio and La Nifa initializations
is exactly one-half the number of ‘‘strong ENSO” initializations,
by definition.

Condition ECMWF, UKMO, and NCEP BAM
Neutral ENSO 108 54
Strong ENSO 112 56
Weak MJO 72 38
MJO phases 8 + 1 26 14
MJO phases 4 + 5 38 22

Table 2 shows the reforecast sample sizes for each ENSO
and MJO category in our conditional performance analysis.

¢. Rainfall data

We validate reforecast rainfall against land-only rainfall esti-
mates from the Climate Hazards Group InfraRed Precipitation
with Stations (CHIRPS; Funk et al. 2015) dataset. CHIRPS
blends station observations of rainfall with infrared-based
satellite estimates that uses cold-cloud duration as a proxy
for rainfall. Most of our analyses are performed on weekly
average rainfall, following similar studies (Li and Robertson
2015; de Andrade et al. 2018), for which we average daily
CHIRPS values. Certain analyses are performed on daily
rainfall, which use the CHIRPS daily data directly; these are
noted in the text. Several recent studies have found that
CHIRPS compares well to gauge estimates of South American
rainfall, particularly in the northeast and southeast (e.g.,
Paredes-Trejo et al. 2017; Nogueira et al. 2018). CHIRPS data
are spatially interpolated to the models’ 1.5° X 1.5° grid.

d. Diagnostics and metrics

We evaluate reforecasts at lead times of 1-5 weeks. We
compute biases in the mean reforecast rainfall, including biases
conditioned on MJO and ENSO phases, as a function of lead
time. We compute root-mean-squared errors (RMSE) by
comparing weekly rainfall anomalies from each ensemble
member (i.e., of the lagged ensembles for ECMWF and
NCEP) to CHIRPS weekly rainfall anomalies, then computing
the RMSE across all ensemble members (i.e., this is the RMSE
of all members, not the RMSE of the ensemble mean). This
provides a less biased comparison of model ensembles of dif-
ferent sizes, as used here. Using the RMSE of the anomalies,
rather than of the total value, excludes the RMSE contribution
from the lead-time-dependent systematic model bias. This
mimics an operational procedure, in which the systematic bias
in the real-time forecasts is removed using the reforecast cli-
matology. For each year in 1999-2010, we compute anomalies
relative to the weekly 1999-2010 climatology, excluding the
year for which the anomaly is computed; again, this mimics a
real-time procedure.

We measure model performance by the correlation coeffi-
cient (in time, hereafter “CC’’) between the reforecast and
CHIRPS anomalies; we measure skill by the Brier skill score
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(BSS). CC and BSS are computed using on the models’ 1.5° X
1.5° grid. To determine if CCs are statistically significant, we
compute the critical CC value at the 5% significance level using
an effective sample size, which accounts for the lag-1 auto-
correlation between consecutive forecast initializations at the
same lead time (e.g., the lag-1 autocorrelation of week-1
rainfall at a given grid point), following Zwiers and von
Storch (1995).
BSSs are computed for terciles of weekly mean rainfall:

BS
1
L M

ref

BSS=1-

where BS is the Brier score of the reforecast and BS,¢ is the
Brier score of the reference forecast: a climatological forecast
in which the probability of each tercile is always 1/3. The Brier
score for a given tercile, at a given grid point, is

1Y )
BS :NFZI(f[ -0)’, ()

where N is the number of forecasts (i.e., the sample size in
section a); f; is the probability that the weekly rainfall forecast
lies within this tercile of the reforecast distribution for this grid
point and this week of the year (i.e., number of forecast en-
semble members in this tercile, divided by ensemble size); and
o, 1s 0 if the observed rainfall was not in this tercile of the ob-
served rainfall distribution for this week of the year, at this grid
point, and 1 if it was. BSS > 0 indicates skill above the cli-
matological reforecast. Tercile boundaries are computed
separately for CHIRPS and the reforecasts; for the latter,
tercile boundaries are computed separately for each week of
lead time, using 1999-2010 data, excluding the year for
which probabilities are computed (as for the rainfall cli-
matology above).

To measure conditional performance by MJO or ENSO
phase, we compute the difference in CC between reforecasts
initialized in a strong phase and those initialized in a neutral or
weak phase (e.g., in MJO phases 4 + 5 relative to weak MJO).
MJO phase and amplitude are determined from the observed
RMM indices; these may differ slightly in models not initialized
the NCEP/NCAR product used for the observed RMM indices
(e.g., ECMWF is initialized from ERA-Interim), but we do not
account for this. For ECMWF and NCEP, we use the observed
MJO amplitude and phase on the UKMO initialization date,
since this the date to which the lagged ensembles are refer-
enced. This may bias the results, because members of the lag-
ged ensemble may have been initialized in a different phase or
with a different amplitude. The evaluation for UKMO and
BAM uses the RMM amplitude and phase on the respective
initialization dates for those models. To estimate the signifi-
cance of the conditional performance results, we randomly
resample (with replacement) from the distributions of avail-
able reforecasts 1000 times, for both the strong phase (e.g.,
phases 4 + 5) and the weak phase. We declare the difference to
be statistically significant if the CC for 70% of the distributions
for the strong phase lie outside the 90% confidence interval for
the CC value of the weak phase. This is equivalent to stating
that we are 70% confident that the strong phase has a skill that
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is distinct from the weak phase (itself known with 90%
confidence).

Some diagnostics and metrics are averaged across six
relatively homogeneous rainfall regions (shown in Fig. 1a):
southern Amazonia (AMZ; 5°-15°S, 67°-47°W), Andes (AND;
15°-40°S, 75°-67°W), northeastern South America (NDE;
5°-15°S, 47°-34°W), northern South America (NSA; 0°-12°,
80°-50°W), Patagonia (PAT; 40°-50°S, 75°-60°W), and south-
eastern South America (SESA; 22°-35°S, 60°—48°W). Regions
are adapted from de Souza Custodio et al. (2017); we added
NSA to cover South America more completely. The relative
importance of austral summer precipitation in the annual cycle
for each region can be seen in Fig. 1 of Grimm (2011). All
statistics are computed on the original 1.5° X 1.5° model grid
and then averaged (i.e., these are the area-average statistics,
not the statistics of the area-average rainfall). To determine
the statistical significance of the regionally averaged CC, we
compare it to the regionally averaged critical correlation value,
adjusted for effective sample size.

3. Results

First, we examine S2S rainfall biases and RMSEs to
characterize the representation of climatological rainfall in
extended austral summer (section 3a). We then analyze
unconditional performance and skill for weekly rainfall using
CC and BSS, respectively (section 3b). To understand the
potential for conditional prediction of rainfall based on large-
scale tropical variability, we compute mean biases, errors and
performance conditioned on the phases of ENSO (section 3c)
and the MJO (section 3d). All analysis uses the larger lagged
ensembles for ECMWF (33 members) and NCEP (32 mem-
bers), except for the sensitivity test in section 3b.

a. Mean biases

Extended austral summer (NDJFM) climatological rainfall
in CHIRPS shows maxima in Amazonia and along the eastern
slopes of the Andes, with a northwest-southeast-oriented band
of high rainfall extending to the Atlantic coast of Brazil
(Fig. 1a). There are local minima over the northern coast of
South America, northeastern Brazil and the western slopes of
the Andes. The four S2S models develop mean rainfall biases
by week 1 (Figs. 1b—e). All models underpredict mean rainfall
near the CHIRPS maximum over Amazonia, with biases
largest in NCEP (Fig. 1c) and smallest in ECMWEF (Fig. 1b).
All models also overpredict rainfall near the Andes, with bia-
ses higher in NCEP and UKMO (Fig. 1d) and smaller in
ECMWF and BAM (Fig. le). Mean rainfall drifts remarkably
little with lead time: week 5 (Figs. 1f-i) biases are highly similar
to those in week 1. Notable exceptions include the growth of
the BAM Amazonian dry bias (Fig. 1i) and of the UKMO
wet bias near the Andes (Fig. 1f). Overall, biases are lowest
in ECMWEF, moderate in UKMO and strongest in NCEP
and BAM.

We compare RMSEs of ensemble-member weekly rainfall
anomalies against CHIRPS to the standard deviation of weekly
anomalies from CHIRPS (Fig. 2a). The latter is equivalent to
the RMSE of a climatological reference forecast; it is fairly
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FIG. 1. NDJFM (a) mean rainfall (mm day ') from CHIRPS and biases in mean rainfall (mm day ') with respect to CHIRPS from S2S
reforecasts from (b),(f) ECMWFEF; (c),(g) NCEP; (d),(h) UKMO; and (e),(i) BAM at week-1 lead time in (b)—(e) and week-5 lead time in
(f)-(i). Note that (a) uses a separate colorbar, to the right of the panel. Panel (a) identifies the six regions used elsewhere in the manuscript.

spatially uniform, though higher near the mouth of the
Amazon River. RMSEs of model anomalies represent the
“random” component of model error, separate from the mean
bias; both bias and RMSE vary with lead time. All models show

RMSEs much larger than the CHIRPS standard deviation
nearly everywhere (Figs. 2b-m), with higher RMSEs in
southern and eastern Brazil, particularly in NCEP (Figs.
2¢,g,k) and UKMO (Figs. 2d,h,l). These errors are striking
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given that climatological rainfall is moderate and CHIRPS
variance is similar to elsewhere. Week-1 RMSEs are highest
in NCEP (Fig. 2c) and lowest in BAM (Fig. 2e). RMSEs
grow substantially with lead time in all models (Figs. 2b-m),
particularly in the south and southeast. By week 3, models
show a similar pattern of RMSEs that are slightly lower in
ECMWEF (Fig. 2j) and BAM (Fig. 2m) and higher and more
biased toward southeast Brazil in NCEP (Fig. 2k) and
UKMO (Fig. 21). Regional-scale RMSEs are similar in AMZ
(Fig. 3a), NDE (Fig. 3c), NSA (Fig. 3d) and SESA (Fig. 3f)
despite substantial differences in mean rainfall (Fig. 1):
AMZ has relatively high mean rainfall; SESA has moderate
mean rainfall and NSA and NDE have lower mean rainfall.
This demonstrates that models have as much difficulty, if not
more, predicting rainfall variations in wet regions as in dry
regions. High RMSEs in densely populated SESA are par-
ticularly concerning. Regional-mean RMSEs are generally
highest for NCEP and lowest for BAM and ECMWF.

b. Unconditional performance assessment

At week 1, all models have statistically significant CCs (at
5% level) across most of South America (Figs. 4a—d). CCs are
highest in northeastern Brazil, where mean rainfall is relatively
low, and in southeastern South America; CCs are lowest over
southern Amazonia and across central-eastern Brazil, near the
climatological SACZ position, where mean rainfall is relatively
high. CCs decrease with lead time, as expected. At week 2, CCs
decline most strongly in NCEP (Fig. 4f) and BAM (Fig. 4h),
particularly in central-eastern Brazil, such that significant CCs
are limited to northern, northeastern, and southeastern South
America; CCs are near zero in southern Amazonia and
Argentina. ECMWF (Fig. 4¢) and UKMO (Fig. 4g) maintain
significant CCs across most of South America. At week 3, in all
models CCs are significant only in northern South America,
northeastern Brazil, and a small region of southeastern South
America (Figs. 4i-1). At weeks 4 and 5, only isolated regions of
significant CCs remain in northeastern Brazil (not shown).

Regional-mean CCs suggest similar performance, with the
highest CCs in the climatologically drier NDE (Fig. 3i) and in
SESA (Fig. 31) and lowest CCs in extratropical PAT (Fig. 3k)
and the climatologically wetter tropical AMZ (Fig. 3g). The
four models perform similarly, although CCs are slightly higher
in ECMWF and UKMO and slightly lower in NCEP and BAM.
Statistically significant CCs in most models extend to week 1 in
PAT, to week 2 in AMZ and AND, to week 3 in NSA and
SESA, and to week 4 in NDE.

To explore the relationship between CCs and climatolog-
ical rainfall, for each model and lead time we produce dis-
tributions of gridpoint CCs binned by CHIRPS NDJFM
mean rainfall (Figs. Sa—c). We use values at all grid points in
in the domain (shown in Fig. 4), regardless of whether the CC
is statistically significant. CCs are higher at grid points with
low or moderate mean rainfall and lower at grid points with
high mean rainfall, for weeks 1-3 and for all models. A similar
analysis for CCs binned by the standard deviation of weekly
CHIRPS rainfall for NDJFM (shown in Fig. 2a) shows that all
models show higher CCs at points with low or moderate
subseasonal variability and lower CCs in regions of high
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subseasonal variability (Figs. 5d-f). We return to these results
in section 4.

For regional-mean CCs and RMSEs, we assess the sensi-
tivity of forecast performance to our lagged-ensemble strategy
for NCEP (32 members) and ECMWEF (33 members) using an
8-day window (section 2a). Figure 6 compares CCs and RMSEs
for these ensembles to CCs and RMSEs for alternative smaller
NCEP (8 members, 2-day lagged ensemble) and ECMWF
(11 members, one initialization) ensembles similar in size to
UKMO (7 members) and BAM (11 members). Variations in
CC and RMSE between the two sets of ensembles are generally
small, but for some regions and lead times they are meaningful.
At weeks 1 and 2, the larger ensembles perform slightly worse
than the smaller ensembles, with higher RMSEs in NDE
(Fig. 6¢) and SESA (Fig. 6f) but similar CCs. Using a longer
window to create the lagged ensembles degrades performance
most at short leads, when predictability arises mainly from initial
conditions. Beyond week 2, the larger ensembles slightly out-
perform the smaller ensembles, with higher CCs for NDE
(weeks 4 and 5), SESA (weeks 3-5), and AMZ (Fig. 6a; weeks 4
and 5). This is likely because using larger ensembles improves
the signal-to-noise ratio at longer leads. There is little change in
performance in AND, NSA, or PAT (Figs. 6b,d,e, respectively).
Since S2S forecasts are used mostly for lead times of two weeks
and beyond, we continue to use the larger NCEP and ECMWF
ensembles that perform slightly better at these lead times.

BSSs for upper-tercile rainfall demonstrate that all models
show poor skill beyond week 1, across most of South America
(Fig. 7). At week 1, ECMWF outperforms a climatological
forecast in eastern Brazil, southern Brazil, and northern
Amazonia (Fig. 7a). By week 2, however, BSSs are only slightly
above zero (Fig. 7e); by week 3 the model performs similarly to
or worse than the climatological forecast (Fig. 7i). NCEP shows
similar skill in eastern and southern Brazil at week 1 (Fig. 7b),
but fails to maintain skill at week 2 (Fig. 7f). NCEP also shows
negative BSS in Amazonia and near the Andes, even at week 1.
UKMO and BAM fail to outperform a climatological forecast
across most of South America even at week 1 (Figs. 7c,d, re-
spectively), with only isolated areas of positive BSS in eastern
and southern Brazil. Lower performance for BSS than for CC
suggests that while the ensemble-mean may capture the sign of
week-to-week rainfall variations at 1-2 weeks ahead, the en-
semble members struggle to capture shifts in the distributions
of the anomalies.

Regional-mean BSSs (Fig. 8) confirm that ECMWF consis-
tently outperforms a climatological forecast at week 1 for most
regions, with skill extending to week 2 over NDE (Fig. 8c) and
SESA (Fig. 8f). NCEP exhibits skill above a climatological
forecast in NDE at weeks 1 and 2, but shows little useful skill
elsewhere. UKMO and BAM show useful skill only in NDE at
week 1. Results for both gridscale and regional-mean BSSs are
similar for lower-tercile weekly rainfall (not shown). For nor-
mal (middle-tercile) rainfall, no model outperforms the cli-
matological forecast at any lead.

c. Conditional biases and performance based on ENSO

Before examining conditional performance by ENSO phase,
we first verify the predicted ENSO-rainfall relationship by
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FIG. 3. Regional-mean (a)—(f) root-mean-squared errors (RMSE; mm day ') and (g)—(1) correlation coefficients (CC)
between reforecast and observed (CHIRPS) anomalies for NDJFM weekly mean rainfall as a function of lead time from
all models, compared to CHIRPS. Regions are Amazonia (AMZ) in (a) and (g); Andes (AND) in (b) and (h); north-
eastern South America (NDE) in (c) and (i); northern South America (NSA) in (d) and (j); Patagonia (PAT) in (e) and
(k); and southeastern South America (SESA) in (f) and (). Metrics are computed on the original 1.5° grid, then averaged
over the region. The regions are shown in Fig. 1a. In (g)—(1), filled symbols show statistically significant CCs at the
5% level, based on the regionally averaged critical CC threshold, adjusted for effective sample size.
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FI1G. 4. Correlation coefficients (CCs) between the reforecast and observed (CHIRPS) anomalies for NDJFM weekly mean rainfall for
(a),(e),(i) ECMWEF; (b),(f),(j) NCEP; (c),(g),(k) UKMO; and (d),(h),(1) BAM at (top) week-1, (middle) week-2, and (bottom) week-3
lead times. Only statistically significant CCs at the 5% level (adjusted for effective sample size) are shown.

compositing NDJFM rainfall anomalies by ENSO phase. A
realistic representation of the ENSO-rainfall teleconnection,
and hence also of the large-scale ENSO-driven seasonal cir-
culation, may be necessary for ENSO conditional performance
to exceed unconditional performance, particularly if models
can persist the initialized seasonal-scale ENSO-associated
circulation throughout the S2S forecast. To fairly compare S2S
and CHIRPS El Nifio rainfall anomalies, we create a separate
CHIRPS composite for each week of S2S lead time, because
the forecast validity period shifts with lead time (i.e., the val-
idity period for week 3 differs from that for week 1). We
composite CHIRPS weekly mean rainfall for the same period
over which the S2S reforecasts are valid. We show the

CHIRPS composites for the validity windows common to UKMO,
ECMWF and NCEP. The validity windows differ for BAM,
but the CHIRPS composites are qualitatively similar (not shown).

In EI Nifio, CHIRPS shows the expected pattern of lower
rainfall over Amazonia, northern South America, and north-
eastern Brazil, with enhanced rainfall over southern Brazil,
Uruguay and northeastern Argentina (Figs. 9a—c). The
CHIRPS “week 57 (Fig. 9c) and “week 17 (Fig. 9a) composites
differ somewhat, particularly in northeastern Brazil, due to
sampling a different set of weekly rainfall data, but the broad
pattern remains similar. At week 1, all S2S models reproduce
this broad pattern (Figs. 9d—g), but with variations in ampli-
tude: ECMWEF shows weaker anomalies over land than
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FI1G. 5. Box-and-whisker diagrams of the distribution of the CCs shown in Fig. 4, binned by either (a)—(c) the NDJFM mean CHIRPS
rainfall from Fig. 1a or (d)—(f) the standard deviation of weekly CHIRPS NDJFM rainfall from Fig. 2a. The diagrams each show CCs from
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model (see legend). For each distribution, the yellow line shows the median, the box shows the interquartile range and the whiskers show
the range between the Sth and 95th percentiles of the distribution. The bins were chosen to give approximately equal sample sizes of grid

points.

CHIRPS in both northern and southern Brazil (Fig. 9d); NCEP
shows weaker anomalies in southern Brazil and Uruguay, with
dry anomalies that extend too far south from northern Brazil
(Fig. 9¢); UKMO is similar to NCEP in northern South
America, but with stronger positive anomalies in the south,
similar to CHIRPS (Fig. 9f); BAM overestimates the reduced
rainfall in northern Brazil (Fig. 9g).

Unlike the unconditional rainfall biases in Fig. 1, which
changed very little with lead time, the ENSO-rainfall tele-
connection drifts moderately by week 3 (Figs. 9h-k) and sub-
stantially by week 5 (Figs. 91-0). In all models, by week 3 the
enhanced rainfall in southeastern South America weakens
substantially. In NCEP (Fig. 9i) and UKMO (Fig. 9j), en-
hanced rainfall stretches into central-eastern Brazil and en-
croaches into the region of dry anomalies in CHIRPS. These
results suggest that as these models drift from their initial
conditions, the region of anomalous subtropical ascent
stretches meridionally across the continent. The dry anomalies
in near-equatorial South America remain fixed spatially at
week 5, relative to week 3, but weaken considerably in BAM

(Fig. 90)—reducing the dry bias from week 1—and weaken
slightly in UKMO (Fig. 9n), but are maintained in ECMWF
(Fig. 91) and NCEP (Fig. 9m). BAM provides the best spatial
pattern of El Nifio anomalies at week 5. In La Nifia phases,
the anomalies are slightly weaker than, and opposite in sign
to, the El Nifio anomalies in CHIRPS and the S2S models
(not shown).

Next, we assess conditional performance for reforecasts
started in strong ENSO phases—either El Nifio or La
Nifila—relative to performance for reforecasts started in neu-
tral ENSO phases (see section 2d for method and Table 2
for sample sizes). We evaluate conditional performance only
until week 3, as this is the limit of both conditional and
unconditional (Fig. 4) performance. In most regions, per-
formance in strong ENSO does not significantly differ from
performance in neutral ENSO (Fig. 10). However, ECMWF,
NCEP, and UKMO show significantly lower performance in
parts of central and eastern Brazil, where the models struggle
to capture the sign of the observed ENSO rainfall anomaly
(Fig. 9). BAM is the only model to develop a coherent region
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FIG. 6. Differences in regional-mean CCs (solid lines; left-hand vertical axis) and RMSEs (dotted lines; right-hand vertical axis) between
two sets of NCEP (blue) and ECMWF (green) ensembles: the larger lagged ensembles constructed using an 8-day window, to produce a
32-member NCEP ensemble and a 33-member ECMWF ensemble; and the smaller ensembles that are more similar in size to the
7-member UKMO ensemble, with an 8-member NCEP ensemble (two initialization dates) and an 11-member ECMWF ensemble (one
initialization date). Differences are taken as the CC or RMSE for the larger ensemble minus that for the smaller ensemble, for each model.
Note that the right-hand axis for RMSE is inverted so that degradations in CC (lower) or RMSE (higher) in the larger ensembles lie below
the dashed black line (at zero difference) and that improvements in CC (higher) or RMSE (lower) in the larger ensembles lie above the

dashed black line.

of higher performance in strong ENSO, at weeks 2 and 3 in
northeastern Brazil (Figs. 10h,]) where the model also captures
the sign and magnitude of the ENSO-related anomalous
rainfall (Fig. 9k).

Differences in regional-mean CC between strong ENSO and
neutral ENSO phases confirm that there are few statistically
significant differences in prediction performance at regional
scale (Fig. 11). Thus, ENSO events provide only limited
“windows of opportunity”” for improved S2S rainfall predic-
tions over South America, which are region and model
dependent.

d. Conditional biases and performance based on MJO

Before examining conditional performance based on the
MJO, we first analyze the MJO-rainfall teleconnection in
CHIRPS and the S2S models (Fig. 12). We composite daily
rainfall during strong (RMM amplitude = 1) MJO days in two
phase pairs: phases 8 and 1 (8 + 1), when MJO convection is
enhanced over the tropical Western Hemisphere; and phases 4
and 5 (4 + 5), when MJO convection is enhanced over the
Maritime Continent and suppressed in the tropical Western
Hemisphere. We then average rainfall over all days in each
week of lead time in each pair of MJO phases, using the MJO
phase and amplitude on the validity date, to examine the in-
stantaneous MJO-rainfall teleconnection as a function of lead
time. We composite CHIRPS rainfall based on the observed
RMM indices, but composite the S2S models based on their

predicted RMM indices, as the aim is to study the simulated
MJO-rainfall teleconnection, not to evaluate RMM predic-
tions. We composite CHIRPS daily rainfall, using all days in
each pair of MJO phases during the S2S validity window for a
given week of lead time. This produces a separate CHIRPS
MJO composite for each week of S2S lead time. As for the
ENSO analysis in section 3¢, we show the CHIRPS composites
for the ECMWF, UKMO and NCEP validity window; the
composites for the BAM validity window (not shown) are
qualitatively similar.

In CHIRPS, phases 8 + 1 have enhanced rainfall across
northern South America, particularly in Peru and northeastern
and central Brazil, with reduced rainfall in southeastern South
Anmerica, including southern Brazil, Uruguay and northeastern
Argentina (Fig. 12a). The magnitudes of these anomalies
change with the shift in validity period from week 1 to week
5 (Fig. 12b), due to sampling a different validity period and
hence a different set of MJO events, but the spatial pattern
remains similar. Phases 4 + 5 display the opposite pattern
(Figs. 12c,d). The CHIRPS composites differ from the
gauge-based MJO rainfall composites in (Grimm 2019),
particularly over northwest Brazil and parts of Peru and
Bolivia. We attribute these to differences in observation
density between datasets and in the compositing method, for
example Grimm (2019) uses bandpass filtering to isolate the
MJO signal, while we do not, due to the short length of the
S2S forecasts; Grimm (2019) also analyses a different period
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FIG. 7. Brier skill scores for NDJFM weekly mean rainfall above the upper tercile of each model’s reforecast distribution, computed
relative to a climatological forecast, for (a),(e),(i) ECMWF; (b),(f),(j) NCEP; (c),(g),(k) UKMO; and (d),(h),(1) BAM at lead times of
(top) week 1, (middle) week 2, and (bottom) week 3. BSS values above zero indicate skill above a climatological forecast. BSS is not

shown where CHIRPS rainfall is less than 1 mm day ..

(December-February, 1979-2009) than ours (November—
March, 1999-2010).

All models show substantial errors in location and amplitude
of the MJO-rainfall teleconnection, which grow with lead time.
Atweek 1in phases 8 + 1, all models show the band of maximum
anomalous rainfall farther south and east than in CHIRPS, toward
southern Amazonia and central-eastern Brazil rather than over
the Amazon River (Figs. 12e,,m,q), where predicted rainfall
anomalies are weak or near-zero. The area of observed reduced
rainfall in southeastern and southern Brazil and northeastern
Argentina is weak in ECMWF and NCEP and almost absent in

BAM, perhaps linked to the southward contraction of the en-
hanced convection away from the equator. Only UKMO captures
the dry anomalies. At week 5, the MJO-rainfall teleconnection
weakens in ECMWF (Fig. 12f), NCEP (Fig. 12j) and BAM
(Fig. 12q). In UKMO, the region of enhanced rainfall intensifies
and shifts north, while the area of reduced rainfall disappears
(Fig. 12n). NCEP develops a dry anomaly near the equator, op-
posite to the observed positive anomaly, which suggests an off-
equatorial shift in MJO convection.

All models show similar biases in phases 4 + 5 at week 1,
with southward (away from the equator) contractions in the
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FIG. 8. Regional-mean Brier skill scores for NDJFM weekly mean rainfall above the upper tercile of each model’s reforecast distri-

bution, computed relative to a climatological forecast, for (a) Amazonia (AMZ), (b) Andes (AND), (c) northeastern South America
(NDE), (d) northern South America (NSA), (e) Patagonia (PAT), and (f) southeastern South America (SESA). Metrics are computed on

the original 1.5° grid, then averaged over the region. The regions are shown in Fig. la.

regions of suppressed rainfall in the deep tropics. ECMWF
(Fig. 12g), UKMO (Fig. 120) and BAM (Fig. 12s) produce
weak positive or near-zero anomalies over the Amazon River,
opposite to the observed negative anomalies. ECMWF and
NCEP (Fig. 12k) underestimate the positive anomalies in
southeastern South America, while UKMO overestimates
them; only BAM captures the amplitude. The rainfall tele-
connection weakens considerably by week 5, particularly in
ECMWEF (Fig. 12h) and NCEP (Fig. 121). UKMO (Fig. 12p)
exhibits the same northward shift of the main band of rainfall
anomalies seen for phases 8 + 1 at week 5 (Fig. 12n). BAM also
shows much weaker anomalies at week 5 than at week 1, par-
ticularly over southeastern South America (Fig. 12t).

The week-1 results demonstrate that even when initialized
with a strong MJO circulation, all models quickly develop
strong biases in the spatial rainfall pattern, particularly over
the deep tropics. UKMO performs best for southeastern South
America, particularly at week 1, but worst for near-equatorial
rainfall. All models except UKMO strongly damp MJO-
associated anomalies with lead time and erroneously contract
the MJO-associated convection south of the equator.

To assess MJO conditional performance, for each MJO
phase pair we compute changes in regional-mean CC between
reforecasts started on days of observed strong MJO amplitude
and reforecasts started on days of observed weak MJO am-
plitude (see section 2d for method and Table 2 for sample
sizes). The interpretation of conditional performance based on
CC may be complicated because (i) CC measures the ability to
predict variations between samples relative to the mean, and so
measures the ability of a model to predict the variation in
rainfall between reforecasts with a given initial MJO phase, not
the mean rainfall in that MJO phase; (ii) although the refor-
ecasts in each sample have the same initial phase, the MJO
phases and amplitudes diverge with lead time, making the
sample less consistent and less distinguishable from the control
set of weak MJO events; (iii) the true initial MJO phases and
amplitudes are not consistent among the ECMWF and NCEP
ensembles, due to the lagged ensemble approach (section 2d).

With a few exceptions, variations in performance with MJO
phase are small and not statistically significant. For phases 8 +
1, performance increases significantly in NDE for all models in
week 1 (Fig. 13c), in NSA for BAM at all lead times except
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FIG. 9. Mean NDJFM rainfall anomaly (mm day ') in El Nifio [upper quartile of the oceanic Nifio index (ONT)]. For CHIRPS, we show
composites for validity windows corresponding to (a) week-1, (b) week-3, and (c) week-5 reforecasts, based on UKMO initialization dates.
For S2S models, we show composites based on the observed ONI at initialization, for (d)—(g) week-1, (h)-(k) week-3, and (1)-(0) week-5
lead times. Anomalies are computed relative to 1999-2010. Note that CHIRPS is available only over land, but model anomalies are shown
also over the ocean, to give larger-scale context.
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FIG. 10. Difference in S28 prediction performance between strong and neutral ENSO phases, defined as the difference in CC (between
CHIRPS and S2S weekly rainfall anomalies) between NDJFM reforecasts started in strong ENSO phases and reforecasts started in
neutral ENSO phases for (a),(e),(i) ECMWEF; (b),(f),(j) NCEP; (¢),(g),(k) UKMO; and (d),(h),(1) BAM at (top) week-1, (middle) week-2,
and (bottom) week-3 lead times. Positive values indicate higher performance in strong ENSO phases than in neutral ENSO phases.
Crosses indicate where 70% of strong ENSO reforecast samples have a CC outside the 90% confidence interval for the CC of neutral

ENSO reforecast samples, based on resampling each dataset 1000 times (with replacement).

week 3 (Fig. 13d) and in SESA for NCEP in weeks 1 and 2 and
for ECMWF in week 1 (Fig. 13f). Performance increases sig-
nificantly for NCEP in NSA in weeks 3 and 4 (Fig. 13d),
despite an incorrect sign of the MJO-associated rainfall anomaly
(Fig. 12j).

For phases 4 + 5, the only notable significant changes are
declines in performance in UKMO in AMZ (Fig. 13g) and
SESA (Fig. 131). In AMZ, UKMO predicts the MJO-
associated reduced rainfall anomalies well at week 1,
whereas in SESA the sign of the rainfall anomaly is correct but
the magnitude is too strong (Fig. 120). NCEP also shows

reduced performance in SESA for week 1, where the MJO-
associated enhanced rainfall is reasonably well predicted
(Fig. 12k). We find little relationship between performance for
the MJO-associated rainfall anomaly and MJO conditional
rainfall prediction performance.

4. Discussion

S28 performance, measured by CC, and skill, measured by
BSS, for weekly extended austral summer rainfall across
South America is modest at best. While CCs are significant
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FIG. 11. Difference in regionally averaged S2S performance between strong and neutral ENSO, defined as the difference in regionally
averaged CCs (between CHIRPS and S2S weekly rainfall anomalies) between NDJFM reforecasts started in strong ENSO phases and
reforecasts started in neutral ENSO phases. Filled symbols show where 70% of strong ENSO reforecast samples have a CC outside the
90% confidence interval for the CC of neutral reforecast samples, based on resampling each dataset 1000 times (with replacement).
Regions are (a) Amazonia (AMZ), (b) Andes (AND), (c) northeastern South America (NDE), (d) northern South America (NSA),

(e) Patagonia (PAT), and (f) southeastern South America (SESA). The regions are shown in Fig. 1a.

(at 5%) in most regions for weeks 1 and 2, by week 3 CCs are
significant only in northern, northeastern, and southeastern
South America. The BSS metric shows that models are unable
to skillfully predict upper-tercile or lower-tercile rainfall be-
yond week 1, except for ECMWF. Encouragingly, the regions
of highest performance by CC in eastern Brazil are reasonably
densely populated and agriculturally productive, such that in
these regions S2S forecasts may be useful for agricultural ap-
plications or dam management (e.g., to manage water for hy-
dropower or human consumption). However, skill, measured
by BSS, is relatively low in the most densely populated and
agriculturally productive regions, for example in the north-
eastern coastal region of Brazil and southern Brazil.

Our performance estimates agree with past assessments for
South America, including Hirata and Grimm (2017), who
found that NCEP could usefully predict extreme rain events in
2010-11 two weeks ahead. Coelho et al. (2018) found useful
S2S prediction performance in austral autumn over north-
eastern Brazil and southeastern South America, three to four

weeks ahead, as did de Andrade et al. (2018) for austral sum-
mer in the ECMWF model three weeks ahead. Pegion et al.
(2019) considered reforecasts from the SubX models initialized
in all months, demonstrating that several models had high CCs
for weekly rainfall over eastern Brazil three weeks ahead.
SubX performance over southeastern South America was
typically lower than that of the S2S models evaluated here,
which may be due to our focus on austral summer or to dif-
ferences in the models considered.

In all models analyzed here, unconditional performance is
highest in relatively dry regions and lowest in relatively wet
regions (Fig. 5). Unconditional performance is also higher in
regions of low to moderate subseasonal variability and lower in
regions of higher subseasonal variability. Models may be better
able to predict rainfall where observed subseasonal variability
is low or moderate (e.g., in northeast Brazil and southeast
South America; Fig. 2a), as models may gain performance by
persisting an initialized circulation anomaly and the associated
rainfall anomaly. Comparing models to a persistence forecast,
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FIG. 12. NDJFM mean rainfall anomaly (mm day ') for each pair of MJO phases, using only strong MJO days.
For CHIRPS, we show composites of strong MJO in phases (a),(b) 8 + 1 and (c),(d) 4 + 5, for validity windows
corresponding to week-1 reforecasts in (a) and (c) and week 5 reforecasts in (b) and (d), based on UKMO
initialization dates. For S2S models, we show composites of strong MJO during week 1 in (c),(g),(k),(0) phases
8 + 1 and (e),(i),(m),(q) phases 4 + 5, as well as during week 5 in (d),(h),(1),(p) phases 8 + 1 and (£),(j),(n),(r)
phases 4 + 5. MJO phases are based on observations for CHIRPS and on model output for the S2S models; the
latter are composited on MJO phase at the validity time, not the initialization time.
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F1G. 13. Difference in regionally averaged S2S performance between strong and weak MJO, defined as the difference in
regionally averaged CCs (between CHIRPS and S2S weekly rainfall anomalies) between NDJFM reforecasts started on strong
MJO days in (a)—(f) phases 8 + 1 and (g)—(1) phases 4 + 5, compared to reforecasts started on weak MJO days in any phase
(phase 0). Filled symbols show where 70% of strong MJO reforecast samples have a CC outside the 90% confidence interval for
the CC of weak MJO reforecast samples, based on resampling each dataset 1000 times (with replacement). Regions are
Amazonia (AMZ) in (a), Andes (AND) in (b), northeastern South America (NDE) in (c), northern South America (NSA) in
(d), Patagonia (PAT) in (e), and southeastern South America (SESA) in (f). The regions are shown in Fig. 1a.
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rather than to a climatological forecast, would test this hy-
pothesis. We chose to use a climatological reference to avoid
altering the reference forecast between models initialized on
different dates (i.e., to use the same reference forecast for all
models). BSSs would almost certainly be even lower if evalu-
ated against a persistence forecast, as persistence is typically
more skillful than climatology. An alternative evaluation
strategy would compare conditional S2S performance by MJO
and ENSO to a conditional climatological forecast, con-
structed using the probabilities of each rainfall category con-
ditional on MJO or ENSO phase. A conditional climatological
forecast would likely be more skillful than an unconditional
climatological forecast, reducing S2S skill estimates. As our
results show mostly insignificant differences between con-
ditionl and unconditional S2S performance, we expect that
using a conditional climatological reference would degrade
conditional performance.

Alternatively, models may perform more poorly in clima-
tologically wetter regions due to the high contributions to
mean rainfall from intense, short-lived events. Southern
Amazonia is a prime example, where up to 70% of annual
rainfall comes from a handful of events that last 4-15 days (e.g.,
Rao and Hada 1990). If these events are unpredictable at S2S
lead times, then S2S forecasts will suffer from the essentially
random nature of these events. Even at week 1, CCs in the
southern Amazonia are below 0.4 (Fig. 4) and BSSs are near
zero (Fig. 7) in all models. Yet another explanation for spatial
variability in performance is the density of verifying obser-
vations. CHIRPS calibrates satellite rainfall against gauge
measurements, but gauge density is much higher in northeastern
and southeastern South America—where performance is
highest—and lowest in southern Amazonia and near the
Andes—where performance is also lowest. Thus, model per-
formance may be artificially degraded by observational un-
certainty, raising the possibility that the relationship between
performance and climatological rainfall is spurious.

Our characterization of model performance is based on a
very limited period: 1999-2010. We chose to verify the four
models over their common period, which is limited by the
NCEP and BAM reforecast periods. This may penalize
ECMWF and UKMO, which have longer reforecasts (Table 1),
but we chose a clean comparison over a larger sample size. A
longer period would allow a more robust performance esti-
mate, particularly for the conditional analysis. The limited
sample size affects BAM most severely (Table 2). Further, we
chose to construct lagged ensembles for ECMWF and NCEP
relative to the UKMO initialization dates, using an 8-day
window. Our sensitivity test in Fig. 6, in which we use only
one ECMWF initialization and only a 2-day window for NCEP,
shows that using larger lagged ensembles penalizes ECMWF
and NCEP at short lead times (i.e., weeks 1 and 2, when the lag
is long compared to the lead time) but benefits those models at
longer lead times through an increased signal-to-noise ratio.
We recommend further, more comprehensive study of the ef-
fects of ensemble size and lagged ensembles on perceptions of
S2S prediction quality. There is likely no optimal method for
comparing models with variations in reforecast period, en-
semble size and initialization frequency, but it is important to
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document the choices made and consider their effect on our
conclusions.

5. Conclusions

South American rainfall variability during the main wet
season (austral summer, November—-March) is driven locally
by the SACZ, modulated by large-scale phenomena such as
ENSO on interannual scales, the MJO on subseasonal scales
and midlatitude Rossby waves on synoptic scales (e.g., Grimm
and Tedeschi 2009; Hirata and Grimm 2017; Grimm 2019).
Despite considerable research into the mechanisms of sub-
seasonal rainfall variability in South America, there are few
comprehensive assessments of contemporary prediction sys-
tems, although S28 forecasts may have useful performance out
to two to four weeks ahead in austral summer (Hirata and
Grimm 2017; de Andrade et al. 2018) and autumn (Coelho
et al. 2018). Successful prediction at these lead times would
allow users, such as farmers and dam managers, to take ef-
fective action to mitigate damage and protect lives, livelihoods
and ecosystems (e.g., Laux et al. 2008; Moron et al. 2009).
Recent advances in S2S prediction suggest such performance
may be possible (Vitart et al. 2016; White et al. 2017). We
evaluate mean biases, errors and prediction quality for weekly
November—March rainfall at 1-5-week lead times, using re-
forecasts of 1999-2010 from four S2S models: ECMWEF,
UKMO, NCEP and BAM. For prediction quality, we evaluate
both unconditional performance and skill (i.e., using all re-
forecast data) and performance conditioned on the phase of
the MJO and ENSO. Conditional evaluations are essential to
identify potential ‘“‘windows of opportunity”: certain condi-
tions, such as local or large-scale circulation regimes, under
which forecast performance increases. We measure perfor-
mance by CC and skill by BSS (against a climatological ref-
erence forecast). “Useful performance” is defined as a CC
statistically significantly different from zero (at 5%); “‘useful
skill” is defined as BSS = 0.

All four models show biases in mean South American
rainfall, most of which are established by week 1 and vary
little thereafter (Fig. 1). All models underestimate mean
Amazonian rainfall, where observed rainfall is high, and
overestimate rainfall near Andean topography. Root-mean-
squared errors grow more strongly with lead time and show
smaller spatial variations than mean biases, suggesting
models benefit from compensating errors in regions of low
bias (Fig. 2). Biases are smallest in ECMWF and largest in
NCEP; errors are smaller in ECMWF and BAM and larger
in NCEP and UKMO.

When measured by CC, performance is useful in most
models and regions at week 1 and week 2, although perfor-
mance is lower over southern Amazonia and near the Andes
(Figs. 4 and 7). By week 3, useful performance remains only
over northern, northeastern, and southeastern South America;
there is no useful performance beyond week 3. Performance is
higher in areas with low to moderate rainfall, or low to mod-
erate subseasonal rainfall variability, than in areas with high
rainfall or high subseasonal variability (Fig. 5). When mea-
sured by BSS, skill declines more quickly: only ECMWF shows
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skill in week 2, and then only for northern, northeastern, and
southeastern South America. Higher CC performance in
eastern South America is encouraging for potential application
of S28 forecasts to the agricultural and hydropower sectors in
those regions, though skill (measured by BSS) is low in many
regions, including those with highest population density and
greatest agricultural production. BSS for upper-tercile rainfall
is higher in ECMWF and NCEP and lower in UKMO and BAM
(Figs. 7 and 8). UKMO and BAM show BSS < 0 at week 1 for
upper-tercile and lower-tercile (not shown) rainfall in almost all
regions, even at week 1. No model has BSS > 0 for middle-tercile
rainfall (not shown). Higher values of CC than BSS suggests
that models capture the variability of weekly rainfall anomalies
better than the intensity distribution of rainfall anomalies.

At week 1, all models represent well the spatial pattern and
magnitude of ENSO-driven rainfall anomalies (Fig. 9). By
week 5, these anomalies weaken substantially, suggesting in-
ability to maintain the ENSO-driven anomalous meridional
overturning circulation. Even at week 1, models struggle to
capture the spatial pattern of MJO-driven rainfall anomalies:
the observed equatorial signal is poorly represented and con-
tracted to the south; the opposite-signed subtropical anomalies
are too weak (Fig. 12). These anomalies weaken further by
week 5, particularly in ECMWF and NCEP. UKMO performs
relatively well over southeastern South America, but poorly
for tropical South America. NCEP generates an equatorial
rainfall signal opposite in sign to observations. BAM and
ECMWEF strongly damp MJO-associated anomalies with lead
time. With few exceptions, conditional performance by ENSO
(Fig. 11) and MJO (Fig. 13) phase does not substantially differ
from unconditional performance, which may be linked to the
errors in associated teleconnections.

Our results may be sensitive to limited common reforecast
period of the S2S models (1999-2010) and limited rainfall ob-
servations in interior South America. The former particularly
affects the conditional performance results; the latter particu-
larly affects the perceived low performance over southern
Amazonia and the Andes. S2S performance may be lower if
assessed against a persistence forecast, or a conditional cli-
matological forecast, rather than an unconditional climato-
logical forecast. Our results may also be affected by our choices
to compare models over their common period, not the full
period of each model. Our results are affected by our choice to
construct larger lagged ensembles for ECMWF and NCEP,
rather than ensembles of similar size to UKMO. This choice
slightly increases NCEP and ECMWF performance for lead
times beyond week 2, but slightly reduces performance for
weeks 1 and 2 (Fig. 6). Further research is needed to under-
stand the effects of analysis choices on comparisons of per-
formance in heterogeneous multimodel databases, such as the
S2S database.
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