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ABSTRACT 1 

A novel technique is developed to identify equatorial waves in analyses and forecasts. In 2 

a real-time operational context, it is not possible to apply a frequency filter based on a wide 3 

centred time-window due to the lack of future data. Therefore, equatorial wave identification 4 

is performed based primarily on spatial projection onto wave mode horizontal structures. 5 

Spatial projection alone cannot distinguish eastward from westward-moving waves, so a 6 

broad-band frequency filter is also applied. The novelty in the real-time technique is to off-7 

centre the time-window needed for frequency filtering, using forecasts to extend the window 8 

beyond the current analysis. The quality of this equatorial wave diagnosis is evaluated. 9 

Firstly, the “edge effect” arising because the analysis is near the end of the filter time-window 10 

is assessed. Secondly, the impact of using forecasts to extend the window beyond the current 11 

date is quantified. Both impacts are shown to be small referenced to wave diagnosis based on 12 

a centred time-window of re-analysis data. The technique is used to evaluate the skill of the 13 

Met Office forecast system in 2015-2018. Global forecasts exhibit substantial skill 14 

(correlation > 0.6) in equatorial waves, to at least day 4 for Kelvin waves and day 6 for 15 

Westward Mixed Rossby-Gravity (WMRG), and meridional mode number n=1 and n=2 16 

Rossby waves. A local wave phase diagram is introduced that is useful to visualise and 17 

validate wave forecasts. It shows that in the model Kelvin waves systematically propagate too 18 

fast and there is a 25% underestimate of amplitude in Kelvin and WMRG waves over the 19 

Central Pacific. 20 

 21 

 22 

 23 

 24 

 25 
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1. Introduction 26 

Equatorial waves are fundamental components of the tropical atmosphere and are 27 

important for understanding its behaviour.  A number of observational studies have shown 28 

that active deep convection and the location of convective systems are frequently observed to 29 

be associated with equatorial wave modes (e.g., Gruber 1974, Zangvil 1975;  Zangvil and 30 

Yanai 1980, 1981; Liebmann and Hendon 1990; Hendon and Liebmann 1991l Takayabu and 31 

Nitta 1993; Takayabu 1994a, b; Redelsperger et al. 1998; Wheeler and Kiladis 1999; Wheeler 32 

et al. 2000; Straub and Kiladis 2002; Roundy and Frank 2004; Yang et al. 2007a, b, c; 33 

Roundy 2008;  Kiladis et al. 2009).  Understanding equatorial waves and their connection 34 

with tropical convective activity is important for the improvement of weather forecasting in 35 

the Tropics on time-scales beyond a few days, and is also likely to be crucial for climate 36 

prediction (e.g. Lin et al. 2006; Ringer et al.2006; Yang et al. 2009). However, global models 37 

used for numerical weather and climate prediction have difficulty in representing  38 

equatorially trapped waves with errors in phase speed, amplitude and structure (e.g. Slingo et 39 

al, 2003; Yang et al, 2009; Straub et al., 2010; Huang et al. 2013). These problems limit the 40 

ability to predict tropical wave activity and hence any modulation of high impact weather 41 

associated with them. Recently Ferrett et al. (2020) have shown that increases in the amount 42 

of precipitation and the likelihood of extreme precipitation are linked to Kelvin, westward-43 

moving mixed Rossby-gravity (WMRG) and meridional wave number  n=1 Rossby (R1) 44 

waves. Heavy precipitation can be up to four times more likely to occur during a period with 45 

high amplitude waves in Southeast Asia, indicating that the probability of extreme 46 

precipitation is highly dependent on equatorial wave activity. This suggests that these 47 

equatorial waves provide a potentially important source of predictability for tropical 48 

precipitation and high impact weather (HIW). Therefore, it is crucial to evaluate and improve 49 
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model ability in representing and forecasting equatorial wave modes and their associated 50 

precipitation.  51 

The importance of convectively coupled equatorial waves has recently drawn extensive 52 

attention and motivated a number of studies on the equatorial wave forecasting in operational 53 

models  (e.g., Dias et al 2018; Janiga et al. 2018; Bengtsson  et al 2019), and on equatorial 54 

wave predictability (e.g.,Ying and Zhang 2017;  Judt 2020;  Li and Stechmann 2020). 55 

However, since most of these studies focus on OLR or precipitation signals, they are not able 56 

to characterize the relationship between convection and the wind structures within waves 57 

(Yang et al. 2007a, b). The coherent circulation structures associated with equatorial waves 58 

are a are a major organising influence on tropical precipitation (Ferrett et al. 2020) and a 59 

potentially important source of predictability. Such analysis requires a methodology for 60 

identifying equatorial waves in analyses and forecasts in real-time. 61 

Following the discovery of equatorial waves in the equatorial stratosphere (Yanai and 62 

Maruyama 1966; Wallace and Kousky 1968), the subsequent two decades of observational 63 

studies of equatorial waves in 1970-1990s mainly used time and/or space power spectral 64 

analysis to diagnose equatorial wave modes (e.g.,  Gruber 1974; Zangvil 1975; Zangvil and 65 

Yanai 1980, 1981; Liebmann and Hendon 1990; Hendon and Liebmann 1991; Takayabu 66 

1994a, b; Magaña and Yanai 1995; Pires et al. 1997).  67 

Since the late 1990s, there have been two main methods of identifying equatorial waves 68 

in observational data. In the first, following Wheeler and Kiladis (1999) which built on 69 

Takayabu (1994a, b), equatorial waves are isolated based on the Fourier transform of 70 

observed data (usually OLR) into zonal wavenumber and frequency space, isolating sectors 71 

of phase space defined about the dispersion curves from equatorial wave theory (on a resting 72 

basic state) and then transforming the data back to physical space (longitude-time) from the 73 

Fourier coefficients only within each sector.  74 
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The second method, following Yang et al. (2003), is to project global wind and 75 

geopotential height data onto an orthogonal basis defined by the horizontal equatorial wave 76 

structures obtained from the theory of disturbances to a resting atmosphere on the equatorial 77 

E-plane (Matsuno 1966). These structures are defined by sinusoidal waves in the zonal 78 

direction and parabolic cylinder functions in the meridional direction. The method does not 79 

assume that the dispersion relation and vertical structure from this theory apply to the real 80 

situation where these aspects would be sensitive to any background zonal flow that varies 81 

with height and time.  Moreover, there is not a complete theory for equatorial waves in shear 82 

parallel flow, so the untilted modes on a resting atmosphere are used as basis structures, but 83 

are not expected to be exactly the same as normal modes of the real flow.   84 

In addition to the two main methodologies mentioned above, there are some more recent 85 

techniques used for isolation of equatorial waves, such as those associated with spatial 86 

projection or 3-D normal mode projection (e.g,  Gehne and Kleeman 2012;  Žagar 2009 and  87 

Žagar et al et al. 2016; Castanheira and Marques 2015 and  Marques and Castanheira2018),   88 

extended EOF projection (e.g., Roundy 2012) and wavelet-based filtering (e.g, Kikuchi 2014; 89 

Kikuchi et al. 2018). 90 

It is possible to apply the spatial projection method of Yang et al (2003) without any time 91 

filter on the data. However, because the projection is done independently on three pressure-92 

level variables, obtained from combination of the horizontal velocity components and 93 

geopotential height, some structure functions are not unique to one wave mode, appearing in 94 

both an eastward and westward mode from the theory. Also, it is found that there is often a 95 

strong projection of stationary features in the fields onto the structure functions. So better 96 

results have been obtained in examination of re-analysis and climate model data by applying 97 

a broad frequency filter using a wide time-window (e.g., Yang et al 2009, 2012). The purpose 98 

of this filter is to cut out the stationary features and to distinguish eastward and westward 99 
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moving disturbances. The combination of spatial projection with this broad frequency filter 100 

does yield a unique attribution between projected fields and wave modes. 101 

The challenge is that wave mode identification methods based on frequency filtering, 102 

combined with wavenumber filtering, require a wide time-window of data (usually much 103 

longer than 30 days to distinguish slower disturbances) but in a real-time operational context 104 

only forecast data is available beyond the current analysis and forecast data quality degrades 105 

quickly over the first week. The purpose of this research is to obtain an accurate method of 106 

equatorial wave identification that works for the current analysis and forecast data. 107 

Wheeler and Weickmann (2001) adapted the wavenumber-frequency filtering method for 108 

real-time monitoring of equatorial waves by using the same time-window approach for the 109 

frequency filter, but filling unknown future values, at time-points in the window beyond the 110 

current analysis, with zeros (padding). The resulting anomalies can be used for monitoring 111 

wave modes up to the current day and can provide a “statistical” prediction of the evolution 112 

of these modes several days into the future. This methodology shows some predictive skill 113 

for the MJO and various equatorial waves, but the “padding method” results in rapid decay of 114 

amplitude near the end of the record and into the forecast. Patching real-time forecasts to 115 

analysis is also used by Gottschalk et al. (2010) for prediction of MJO in real-time forecast. 116 

Recently Carl Schreck extended the wavenumber-frequency filtering method for real-time 117 

applications (https://ncics.org/portfolio/monitor/mjo/) to include a rescaling of total variance 118 

to maintain the amplitude, or inclusion of 45-day OLR forecasts from the subseasonal-to-119 

seasonal NCEP Climate Forecast System (CFS). These wavenumber-frequency methods 120 

show some skill in predicting tropical synoptic convective activity related to the preferred 121 

equatorially trapped modes.  However, the methodology has two potential limitations. First, 122 

the pre-specified segments of wave-number frequency space used to partition “wave-modes” 123 

can be susceptible to errors induced by changes in wave frequency due to Doppler shifting by 124 
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the background flow or effects of shear; or due to time-window edge effects introduced in the 125 

real-time filter methodology using padding. Secondly, the reliance on identifying the OLR 126 

signal can lead to the failure to identify equatorial modes in regions which may not be 127 

convectively active, and because they are identified from an OLR signal they cannot easily be 128 

used to relate the precipitation signal to the wave structure independently.   129 

It is evident that a new methodology for real-time identification of equatorial wave modes 130 

that does not depend strongly on a time-window and frequency filtering approach could be 131 

very beneficial to identify equatorial waves and their associated tropical precipitation and 132 

HIW.  The main aim of this study is to extend the methodology of Yang et al. (2003) by 133 

adapting the time-windowing approach for the broad frequency filter to provide a novel real-134 

time technique for identification of equatorial waves in current analyses and forecasts. The 135 

methodology is used to identify horizontal winds, geopotential height and hence divergence 136 

and vorticity structures associated with distinct equatorial wave types.   137 

 This paper is organized as follows. Section 2 details the data used, briefly introduces the 138 

equatorial wave theory that is the basis for the diagnostic technique, and describes the spatial 139 

projection methodology used to identify equatorial waves. Section 3 presents the new time-140 

window technique, combined with the spatial projection method, to identify equatorial waves 141 

in real-time and operational forecasts, and the evaluation of the methodology in terms of 142 

wave amplitude in horizontal wind using a 4-year UK Met Office operational global forecast 143 

dataset. A case study is given in Section 4 illustrating the identification of equatorial waves in 144 

real-time applications. Section 5 presents an evaluation of the skill of the forecast model in 145 

predicting wave behaviours, especially the phase and amplitude.  Conclusions are made in 146 

Section 6 147 

 148 
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2. Equatorial wave theory and spatial projection of data onto a wave 149 

structure basis 150 

a. Dataset 151 

Operational global 6-hourly analysis and forecast data from the UK Met Office are used 152 

from the years 2015-2018.  These forecasts use the Unified Model Global Atmosphere GA6.0 153 

configuration (Walters et al. 2017) which was implemented operationally during 2014. The 154 

GA6.0 configuration includes the ENDGame dynamical core (Wood et al. 2014) which in 155 

climate simulations was shown to lead to a significant improvement in the representation of 156 

equatorial Kelvin waves (Walters et al. 2017).  Whilst the atmospheric model version is 157 

consistent during this period there was a change from N768 (~17km) resolution to N1280 158 

(~10km) resolution in mid-2017; an upgrade to the land-surface model in late 2018; and a 159 

number of changes to both the data-assimilation system and assimilated observations during 160 

the period.  The horizontal wind components and geopotential height data are re-gridded onto 161 

a regular 1q u 1q degree grid before being projected onto equatorial wave structure functions. 162 

As a proxy for convection, use is made of NOAA interpolated daily Outgoing Longwave 163 

Radiation (OLR) on a 2.5q u2.5° grid (Liebmann and Smith 1996). 164 

b. Basic equatorial wave theory and methodology to identify equatorial waves 165 

Equatorially trapped waves are obtained as solutions to the adiabatic, frictionless 166 

equations of motion on an equatorial β-plane, linearized about a state of rest. The solutions 167 

are separable in terms of vertical and horizontal structure functions (Matsuno 1966; Gill 168 

1980). The horizontal and temporal behaviours of horizontal winds (u, v) and geopotential 169 

height (Z) are described by the linearized shallow water equations with gravity wave speed ce, 170 

the separation constant from the vertical structure equation that must also satisfy relevant 171 

surface and upper boundary conditions. This is possible only for discrete values of the 172 
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separation constant, ce.. In an atmosphere with a constant buoyancy frequency with a rigid lid 173 

upper boundary condition, the vertical modes are sinusoidal in height, with corrections for the 174 

density variation.  175 

For the horizontal equations, u, v and Z fields are taken to be of the form:  176 

             {u, v, Z }={U(y), V(y), Z(y)} exp[i(kx- ωt)]                                  (1)  177 

where k is the zonal wavenumber and ω is the frequency. As in Gill (1980) the equatorial wave 178 

solutions are most easily formulated in terms of new variables, q, r and v where: 179 

                           𝑞 = 𝑢 + 𝑔𝑍/𝑐𝑒, 𝑟 = 𝑢 − 𝑔𝑍/𝑐𝑒  ,                                         (2) 180 

and the structures of equatorial waves in the meridional coordinate, y, can be described by 181 

parabolic cylinder functions:          182 
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where                         𝑦0 = ( 𝑐𝑒
2𝛽

)1/2                                   (4)                                       184 

is the meridional scale and Pn is proportional to a Hermite polynomial of order n.  In this 185 

analysis y0 =6o is used, which is deduced from a best fit to data in observations, and the 186 

corresponding ce is about 20 m s-1.Three variables, {q, v, r}, can be projected onto the 187 

parabolic cylinder functions: 188 

                              {𝑞, 𝑣, 𝑟} =  ∑ {𝑞𝑛 ,𝑛=∞
𝑛=0 𝑣𝑛 , 𝑟𝑛 } 𝐷𝑛.                                  (5) 189 

These functions form a complete and orthogonal basis and the projections in Eq. (5) are 190 

quite general. q0D0 describing the Kelvin wave, q1D1 and v0D0 describe n=0 mixed Rossby-191 

gravity (MRG) wave which has both eastward (EMRG) and westward-moving (WMRG) 192 

solutions. qn+1Dn+1, vnDn  and rn-1Dn-1 describe n≥1 equatorial low frequency westward-193 
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moving equatorial Rossby waves,  and both eastward and westward-moving high frequency 194 

gravity waves.  195 

The theoretical horizontal structures of some of the gravest (lowest meridional wave 196 

number) equatorial waves are shown in Fig.1. The Kelvin wave is dominated by divergent 197 

zonal wind, greatest along the equator, and has zero meridional wind. The n=1 and 2 Rossby 198 

(R1 and R2) waves, are dominated by rotational flows, strongest off the equator. The 199 

westward mixed Rossby gravity (WMRG) wave has mixed rotational and divergent flow and 200 

has a dominant signature in meridional wind across the equator. If the low-level convergence 201 

provides the organization for convection, then we would expect this convection to occur in 202 

the blue shaded regions. If the low level cyclonic circulation is important for convection, then 203 

we would expect this convection to occur in the blue contour line regions, especially for R1 204 

and R2. This relationship has been revealed in observational studies (e.g. Yang et al. 2007a, b 205 

and Ferrett et al. 2020).The key points of the analysis method developed in Yang et al. (2003) 206 

are summarised as follows:  207 

1) FILTER DATA SPECTRALLY IN A BROAD WAVENUMBER AND FREQUENCY 208 

DOMAIN 209 

Separate the equatorial wave solutions v, q and r (Eq.2) in the tropical belt (24oN and 210 

24oS) into eastward and westward-moving components using a space-time spectral analysis 211 

which transforms data from the x-t domain into the k-ω domain by performing 2-D FFT in 212 

the zonal and time direction (Hayashi 1982). The data are filtered using a broad-band spectral 213 

domain with k=2-40 and period of 2-30 days which includes all equatorial waves except high 214 

frequency gravity waves. For analysis of historical data a taper is applied to the two ends of 215 

the time series. However, this taper is not applied in the real-time technique as the data of 216 

primary interest is at the end of the time record.  217 
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2) PROJECT FILTERED COMPONENTS ONTO THE HORIZONTAL STRUCTURES OF 218 

EQUATORIAL WAVES 219 

On each pressure level, the Fourier coefficients (e.g., V(y) for each k and ω) of eastward 220 

or westward-moving v, q and r are separately projected onto the meridional structures of the 221 

equatorial waves as described below Eq. (5) to obtain the equatorial wave modes.  222 

3) TRANSFORM THE FOURIER COEFFICIENTS FOR EACH WAVE MODE BACK 223 

INTO PHYSICAL SPACE 224 

The projected v, q and r Fourier components for each wave mode are transformed back 225 

into physical space, and then u and Z are deduced for each wave mode from the projected q 226 

and r using Eq. (2). 227 

3. Methodology for real-time identification of equatorial waves 228 

As described in the Introduction, the key challenge is to develop a method which enables 229 

real-time identification of equatorial waves in current analyses and forecasts, using an off-230 

centred time-window of data for frequency filtering without a strong dependence on future 231 

data. The sensitivity of the method is explored by using different sets of data in the “future 232 

window” beyond the current analysis time. 233 

a. Real-time approach to frequency filter 234 

Since the Met Office operational global NWP forecasts extended to a 7-day lead time 235 

over the years 2015-2018, for input to the real-time frequency filter a 90-day time-series is 236 

constructed from 83 days of analysis data and 7 days of global forecast data (see Fig.2a). A 237 

90-day time window is chosen as it is three times the longest period (30 days) in the 238 

frequency filter for equatorial waves and it also corresponds to one season. We also explored 239 

the sensitivity to using 120,180, 360 day windows and found very little difference.  240 
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To evaluate the real-time analysis and forecast methodology we create several wave 241 

datasets each dealing differently with the data beyond the “current analysis” (T+0). To mimic 242 

the real-time methodology, all aspects of the method are the same, including the time-243 

window length of 90 days, and only the data beyond T+0 differs (see Fig. 2). We label the 244 

days prior to the current analysis as T-1 day, T-2 days, … and days following the current 245 

analysis as T+1, T+2, …., T+7 days. 246 

1) REAL-TIME ANALYSIS AND FORECAST WAVE DATASET  247 

The REAL-TIME wave dataset is created using a sliding 90-day window. At each 248 

verification date, the current analysis is defined as T+0 and 83 days of analysis data before 249 

this date are concatenated with 7 days of forecast data initialised on this date. The frequency 250 

and zonal wavenumber filters are applied to the global data in this time window and the 251 

resulting filtered data is then projected onto the equatorial wave basis structures at the time of 252 

current analysis, but also at T-7, T-6 through T+0 to T+6 and T+7. The T+0 result is called 253 

the REAL-TIME ANALYSIS and for T > 0 the REAL-TIME FORECAST.   254 

2) DIAGNOSTIC ANALYSISWAVE DATASE  255 

 This dataset is obtained using a 90-day time-window centred on the current analysis in 256 

the frequency filter (Fig.2b). Only analysis data is used in the window, which could not be 257 

achieved in near-real-time since it requires 45 days of analysis after the “current analysis”. 258 

This is used as the best estimate available for equatorial wave amplitude and phase, against 259 

which the other wave datasets will be evaluated. 260 

3) PERFECT FORECAST WAVE DATASET 261 

To isolate the impact of the edge effect associated with off-centering the time-window 262 

used for the frequency filter so that there is far less “future data” in the real-time 263 
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methodology, we construct this wave dataset, by repeating the REAL-TIME methodology, 264 

but replacing the 7-day forecasts with analysis data (mimicking a perfect forecast, Fig.2a).  265 

The difference between the PERFECT FORECAST and the DIAGNOSTIC ANALYSIS 266 

identifies the influence of the off-centered time window, and the difference between the 267 

PERFECT FORECAST and the REAL-TIME FORECAST wave dataset isolates the impact 268 

of forecast errors on the REAL-TIME ANALYSIS and the skill in NWP forecasts of the 269 

waves.  270 

4) PADDED WAVE DATASET 271 

 To explore the value of using the forecast data in the REAL-TIME ANALYSIS of 272 

equatorial waves, we create one more additional wave dataset by repeating the REAL-TIME 273 

methodology but replacing the forecast data with zeros (see Figure 2a), referred to as the 274 

PADDED wave dataset following Wheeler and Weickman (2001). 275 

b. Evaluation of amplitude and zonal propagation of equatorial waves in terms of horizontal 276 

winds 277 

To examine the impact of the real-time filtering methodology we compare the waves 278 

identified from the PERFECT FORECAST dataset and from the REAL-TIME FORECAST 279 

dataset with those from the DIAGNOSTIC ANALYSIS. The amplitude and phase 280 

propagation of waves can be clearly demonstrated in a longitude-time Hovmöller diagram. A 281 

wind component is chosen to characterise the meridional structure of each wave type at a 282 

latitude where its amplitude is a maximum: Kelvin wave u on the equator, WMRG v on the 283 

equator, R1 v at 8q N and R2 v at 13q N. Since the meridional structure of each wave type is 284 

given by theory and therefore fixed (for the chosen equatorial trapping scale) we would 285 

obtain the same time series by showing the amplitude of projected wave components at any 286 
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latitude (apart from differing magnitude by a constant factor).  Results presented in this 287 

section will be illustrated on one year, 2016 (the other three years give very similar features).  288 

Figures 3 a,b show Hovmöller diagrams of the Kevin wave u at 850hPa from the 289 

DIAGNOSTIC ANALYSIS (Fig.3a) and PERFECT FORECAST dataset at day T+2 290 

(Fig.3b). By eye, the wave amplitude and zonal phase behaviours look very similar in the 291 

DIAGNOSTIC ANALYSIS and PERFECT FORECAST. This is confirmed by the difference 292 

between them shown in Fig.3d, being less than 0.5 m s-1 in most of the time and space 293 

domain.  It is expected that the differences appear to be mainly on low frequencies, indicating 294 

the edge effect is small at high frequency. To examine the wave behaviours in the REAL-295 

TIME FORECAST, the Kevin wave identified from the REAL-TIME FORECAST dataset at 296 

day T+2 (Fig.3c) shows that the NWP forecasts can capture strong waves reasonably well, 297 

for example, waves around the middle of April and the middle of June. However, it is clear 298 

that there are systematic  errors which seem to be associated with the two highlands around 299 

35qE and 280qE: over the East Africa and the Andes, respectively (Figs.3c, e). It should be 300 

noted that the difference between the REAL-TIME FORECAST and the DIAGNOSTIC 301 

ANALYSIS (Fig.3e) includes the impact of both the time-window methodology and the 302 

forecast skill. 303 

Figure 4 shows Hovmöller diagrams for the WMRG wave v at 850hPa. As with the 304 

Kelvin wave, the WMRG wave amplitude and zonal propagation behaviours in the 305 

PERFECT FORECAST dataset (Fig.4b) are very similar to those of DIAGNOSTIC 306 

ANALYSIS (Fig.4a), with very small differences between them (Fig.4d).  The REAL-TIME 307 

FORECAST wave dataset (Fig.4c) captures the WMRG waves well at T+2 day, especially 308 

high amplitude wave packets. However, there is also an orography-related bias (Fig.4e) 309 

though weaker than that for the Kelvin wave.    310 



 
 

15 
 

Similar analysis is also performed for R1 and R2 waves. It indicates that the two waves 311 

are well simulated by the Real-time methodology and their orography-related errors are 312 

smaller (Hovmöller plots not shown). 313 

Since there is a strong  orography-related component to the bias, the 12-month mean 314 

amplitudes are calculated for the Kelvin wave zonal wind, and for the WMRG, R1 and R2 315 

meridional winds at the latitudes of their maxima. The results for the Kelvin waves are shown 316 

in Figure 5 for the PERFECT FORECAST wave dataset (Fig.5a) and REAL-TIME 317 

FORECAST wave dataset (Fig.5b) for a selection of lead times. For comparison, the 12-318 

month mean of the waves in the DIAGNOSTIC ANALYSIS (black solid) is also shown in 319 

each panel. The blue lines are for T-2 and T+0 (current analysis), and three red lines for T+2, 320 

T+4 and T+6. It is seen that the time-mean zonal wind of the Kelvin wave is close to zero in 321 

the DIAGNOSTIC ANALYSIS (black line). For the PERFECT FORECAST wave dataset, 322 

the mean amplitudes of the Kelvin wave at T-2 and T+0 (blue) are close to that in the 323 

DIAGNOSTIC ANALYSIS, whereas the mean amplitude beyond day 0 (red) differs from 324 

zero mainly near 35qE and 280qE, close to the high orography.  325 

On the other hand, time-mean Kelvin wave zonal wind amplitudes for the REAL-TIME 326 

FORECAST wave dataset (Fig.5b) have much larger departures, especially around the 327 

Andes, with an easterly bias to the west and westerly bias to the east. On close inspection, it 328 

is interesting to see that peaks of the wind bias shift eastward with lead time which may be an 329 

indication of spurious wave generation by processes in the vicinity of the orography. Errors 330 

in the three westward-moving wave fields are much smaller, especially for the R1 and R2 331 

waves (not shown).  332 

To remove the bias in the REAL-TIME FORECAST, for each lead time (T+L), the mean 333 

of the previous 30 days wave data (already obtained following the filtering and projection 334 

steps above) is subtracted. We choose a 30-day running mean for this bias correction because 335 
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it matches the longest period retained by the pre-processing filter and minimizes the amount 336 

of rolling forecast data which needs to be stored to calculate the bias. Figure 5c shows the 12-337 

month mean for REAL-TIME FORECAST Kelvin wave u after the 30-day time-mean bias 338 

correction. It is clear that the bias has been greatly reduced. From now all results for the 339 

REAL-TIME FORECAST are with bias corrected.  340 

Figures 5 d, e show Hovmöller diagrams of the Kelvin waves and WMRG waves in the 341 

REAL-TIME FORECAST wave dataset with the lead-time dependent bias removed. It is 342 

seen that the forecast waves more closely resemble those of DIAGNOSTIC ANALYSIS 343 

(Fig.3a and Fig.4a) than those before the bias is removed (Fig. 3c and Fig.4c). The 344 

differences between the T+2 forecast and DIAGNOSTIC ANALYSIS for the Kevin wave 345 

and WMRG are much reduced and dominated by errors with spatial and temporal 346 

characteristics of the observed wave fields.  An example for the WMRG wave being shown 347 

in Fig.5f. 348 

After showing the wave behaviours for the PERFECT FORECAST and REAL-TIME 349 

FORECAST wave-datasets, it is of interest to evaluate the benefit of including the forecast 350 

data in the real-time methodology by examining the waves in the PADDED wave dataset. 351 

The result for the PADDED dataset is shown in Fig.6. It is seen that wave analysis (T+0) 352 

from the PADDED dataset differs greatly from that in the DIAGNOSTIC ANALYSIS, with 353 

little skill in capturing wave behaviours (Figs.6b,d), and at day 2 there are only some low 354 

frequency wave signals  (Figs.6c,e).  This suggests that the forecast data is indeed useful not 355 

only in providing future information about the equatorial waves, but also in an accurate 356 

REAL-TIME ANALYSIS.  357 

c. Validation of wave variance, error and correlation 358 

To examine the variability of equatorial waves, Figure 7 shows the standard deviation of 359 

the wind strength in the four wave components in the PERFECT FORECAST dataset (left),   360 
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FORECAST dataset without removing previous 30-day mean (middle) and REAL-TIME 361 

FORECAST dataset with the 30-day mean removed for T+0 to T+7 (right). It is seen that for 362 

all waves in the PERFECT FORECAST, and R1 and R2 in the REAL-TIME FORECAST 363 

dataset, their standard deviation at all lead times is very close to those in the DIAGNOSTIC 364 

ANALYSIS (black), except for the westward moving waves at T+6 around 40qE where there 365 

is a spike. For Kelvin and WMRG waves in the REAL-TIME FORECAST dataset, their 366 

standard deviations are also close to those in DIAGNOSTIC ANALYSIS at days T-2 and 367 

T+0, but from day T+2 their variability is weaker than those in DIAGNOSTIC ANALYSIS. 368 

The REAL-TIME FORECAST dataset with 30-day mean removed (right) has very similar 369 

variability to that before the removal of the 30-day mean indicating that the 30-day time-370 

mean is appropriate for removing the orography-related anomalies, without removing 371 

variability in wave field. 372 

The root mean square errors (RMSE) relative to the DIAGNOSTIC ANALYSIS and 373 

correlations of each wave in the different datasets with those in DIAGNOSTIC ANALYSIS 374 

are shown in Fig.8. RMSEs for the four waves identified with different procedures are 375 

standardised by the standard deviation of the wave mode in the DIAGNOSTIC ANALYSIS. 376 

The correlations are calculated with samples at all longitudes and time (360 longitudes*366 377 

days). For the PERFECT FORECAST (solid lines), the normalised RMSE for each wave is 378 

less than 0.2 at day -4 on both the 850 and 200 hPa levels, with the error at 850hPa being 379 

slightly smaller than that at 200hPa for all wave modes. It increases slowly with the lead 380 

time, to about 0.3 at day 4.  After day 4 the errors increase faster but are still less than 0.5 at 381 

day 6. At the end of the time window used by the frequency filter (T+7) the errors jump to 382 

0.75~ 0.95 due to the large edge effect of the filter. For the REAL-TIME FORECAST dataset 383 

(dashed lines) before day 0 the RMSEs are comparable to those in the PERFECT 384 

FORECAST dataset but increase more rapidly from day 0, reaching around 0.7 at day 4,  0.8 385 
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at day 5 and 1.0 at day 7. The REAL-TIME FORECAST RMSEs for WMRG and R1 waves 386 

at 200 hPa are larger than those at 850 hPa, as is the case for the PERFECT FORECAST. As 387 

expected, the errors in the PADDED dataset (dotted) are much larger than those of either of 388 

the other methods at all lead times, indicating that the forecast data is useful even in 389 

improving the Real-time analysis of equatorial waves.  390 

The correlations (Figure 8, bottom two rows) convey similar information to the 391 

normalised RMSEs. The PERFECT FORECAST dataset (solid) correlations are quite high 392 

and drop slowly with lead time, remaining larger than 0.9 up to day 6. For the REAL-TIME 393 

FORECAST dataset (dashed), although the correlations for WMRG and Rossby waves drop 394 

steadily after day 1, they are still larger than 0.6 at day 6. The correlations for the Kelvin 395 

waves fall faster with lead time, reaching 0.6 at day 5 and 0.5 by day 6.  396 

The correlations at the “current analysis time” T+0 for the PADDED dataset (dotted 397 

lines) are much lower (~0.75) than in REAL-TIME ANALYSIS at T+0 and decrease rapidly 398 

with lead time to 0.4 at T+1 showing that there is limited skill in the statistical interpolation 399 

associated with the wavenumber-frequency filter.   400 

4. A case study illustrating real-time analysis of equatorial waves in 401 

January 2016 402 

a. Hovmöller diagrams of wave propagation 403 

As an example, the utility of real-time analysis of equatorial waves is illustrated in a case 404 

study. Figure 9 shows Hovmöller diagrams of horizontal wind components projected onto the 405 

different equatorial wave structures, averaged over 10qN-10qS. The REAL-TIME 406 

FORECAST initialised on 17 January 2016 (left) is compared with the PERFECT 407 

FORECAST (right) where analyses have been substituted for forecast fields in the diagnostic 408 
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procedure. To examine the potential connection of waves with deep convection, NOAA OLR 409 

averaged over 10qN-10qS is also shown in each panel (colour shading).  410 

Also to illustrate robustness of the spatial projection technique and attribution to different 411 

wave modes, the forecast winds projected onto the wave structures are contrasted with the 412 

winds that are subject only to the wavenumber-frequency filter (with the same off-centered 413 

time-window) but without the spatial projection step. Zonal wind (Fig.9a) is shown for the 414 

eastward-moving component (i.e., filtered winds for eastward-moving wavenumber –415 

frequency domain) to be compared with the Kelvin wave (Fig.9b); and meridional wind 416 

(Fig.9c) is shown for the westward-moving component (filtered for westward-moving 417 

domain), to be compared with the WMRG waves (Fig. 9d), and the antisymmetric component 418 

of the meridional wind (Fig.9e) is to be compared with the R1 wave (Fig.9f). 419 

Kelvin waves (Fig. 9b) dominate the eastward moving u (Fig. 9a) in both analyses and 420 

forecasts (T > 0). In the PERFECT FORECAST, there is a strong Kelvin wave signature to 421 

the east of the dateline which develops after the initialization of the forecast and is closely 422 

coupled to an eastward moving convection signal moving with the westerly flow. The 423 

forecasts certainly develop a signature of this propagating Kelvin wave, even though 424 

propagation only begins after the analysis time (T+0). However, the forecast amplitude is 425 

clearly too weak beyond T+2, consistent with the reduction in wave variance for Kelvin 426 

Waves seen in Figure 7. Strong Kelvin wave activity is also seen in the 60°E-140qE region in 427 

analyses before T+0, which is coupled with the convective activity there. However, after 428 

T+0, the forecast wave shows a weaker signal than that in the PERFECT FORECAST 429 

In contrast, the forecasts seem to capture well the phase and amplitude of the westward 430 

moving waves since the REAL-TIME FORECAST resemble closely the PERFECT 431 

FORECAST out to lead times of 6 days. In this case a strong wave packet over the 40°E-432 

120°E sector is well simulated in the forecast. The packet projects onto the WMRG and R1 433 
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wave components (Figs.9c-f). The phase propagation is westwards with the WMRG waves 434 

moving slightly faster than the R1 waves. The group speed appears to be eastward in both the 435 

WMRG and R1 waves, as anticipated from the theoretical dispersion relation (for WMRG 436 

and short wavelength R1 waves). Note that Yang et al. (2018) showed that WMRG and R1 437 

waves frequently propagate westwards together over the Atlantic from West Africa. 438 

However, they established from composites of many events that the wave components do 439 

propagate at different speeds and have different group speeds, consistent with independent 440 

wave modes from linear theory, after accounting for the Doppler shift of frequencies by the 441 

background zonal flow.  442 

In DJF, convection over the 40E-120E sector is biased to the Southern Hemisphere and is 443 

expected to dominate the average OLR signal from 10°S to 10°N. Fig. 9d indicates that low 444 

OLR (a proxy for deep convection) is coincident with v < 0 in the WMRG component in the 445 

centre of the wave packet (60-80E). Figure 1 shows that northerly winds across the equator in 446 

the WMRG wave are in phase with convergence in the Southern Hemisphere where the deep 447 

convection is occurring. In contrast, the same minimum in OLR is coincident with the phase 448 

of cyclonic circulation in the R1 wave component (on both sides of the equator). These wave-449 

convection relations are consistent with those in previous observational studies (e. g., 450 

Wheeler and Kiladis 1999; Wheeler et al. 2000; Yang et al.2003, 2007a, b and Ferrett et al. 451 

2020). 452 

This case study demonstrates that another useful utility of real-time analysis of equatorial 453 

waves in operational forecasting is to use maps of the wave components overlain on satellite 454 

observations of convective activity (OLR or precipitation estimates). In this way, the complex 455 

structure in the OLR field could be interpreted as a superposition of different equatorial wave 456 

activity. This could help forecasters explore continuity within forecasts and between forecasts 457 

with updated lead times, given the anticipated propagation of the different wave modes.  458 
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b. Identification of wave amplitude and phase 459 

Given the close relationship between precipitation and wave phase (e.g. Ferrett et al. 460 

2020), for forecasting applications it can be useful to define a local wave phase and 461 

amplitude. Also, because the spatial projection onto equatorial wave structures is performed 462 

independently for each variable (v, q, r of Eqn. 2), it is important to consider temporal 463 

coherence of the variables when diagnosing propagation rate, phase and amplitude. For each 464 

wave type we define a local phase space diagram based on variables which from the 465 

theoretical horizontal structures we would expect to be in quadrature (Fig. 1).  In contrast to 466 

the familiar RMM Phase Diagrams for the MJO (Wheeler and Hendon, 2004), where the 467 

phase refers to the longitude where the convection is most active, these wave phase diagrams 468 

refer to the passage of a wave over a fixed longitude. Some studies also use a local phase 469 

diagram on CloudSat data to study its relationship with the MJO or on the filtered 470 

precipitation to examine convectively couple equatorial waves (Riley 2011 and Yasunaga and 471 

Mapes 2012). We choose to define our wave phase diagrams such that in the mode structure 472 

(Fig. 1) variable-2 (W2) has a positive maximum one quarter of a wavelength to the west of 473 

variable-1 (W1). Consequently, from the perspective of an observer at a fixed longitude, W1 474 

is positive before W2 for the eastward moving Kelvin wave and the propagation around the 475 

phase diagram is anti-clockwise (consistent with the eastward moving MJO in the Wheeler-476 

Hendon Diagrams). The phase propagation is clockwise for the westward moving WMRG 477 

and R1 waves.  For the Kelvin wave, which is dominated by divergent winds and has zero 478 

meridional wind, the two variables used are u and wu/wx on the equator. For WMRG and R1 479 

waves, which are dominated by rotational flows, the two variables are -u and v at specified 480 

latitudes, these are in phase with vorticity and divergence, respectively. These variables and 481 

their latitudes are summarised in Table 1. Positive values of the first variable, W1, combined 482 

with zero in the second variable, W2, is used to define the zero phase angle.  483 
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Each variable is normalised by its standard deviation and averaged over a 5o longitude 484 

range. The wave amplitude, A(t), is then defined as 485 

 A =√𝑊1
2 + 𝑊2

2,         486 

Phase angle (φ) is given by  487 

𝜑 = arg(𝑊1 + 𝑖𝑊2)  488 

where φ=0 corresponds to the positive x-axis and increases anti-clockwise.  489 

Figure 10 gives examples of phase-amplitude diagrams for Kelvin wave at 200°E, and 490 

WMRG and R1 waves at 90° E in the period of the case discussed in Section 4a with the 491 

forecast initialised on 17 January. It is seen that the Kelvin wave moves anticlockwise and 492 

WMRG and R1 clockwise. Consistent with Fig.9, in this period the Kevin wave develops 493 

around T=0 (17 January) and propagates coherently eastward in the PERFECT FORECAST 494 

(black line), whereas the Kelvin wave in the REAL-TIME FORECAST (blue line) fails to 495 

grow after T=+ 2 (19 January) and moves too fast, with its phase on 20 January being ahead 496 

of that in the PERFECT FORECAST. On the other hand, WMRG and R1 waves over the east 497 

Indian Ocean  show strong signals and propagate westward coherently both in the PERFECT 498 

FORECAST  and the REAL-TIME FORECAST. However, it is seen that their amplitudes 499 

after T=+3 (20 January) are weaker than those in the PERFECT FORECAST, especially for 500 

the WMRG wave. This case indicates that the difference between the forecast (blue) and 501 

PERFECT FORECAST (black) at each day can be demonstrated clearly. The phase-502 

amplitude indices will be used in the next section to evaluate forecast skill for equatorial 503 

waves. 504 

5. Evaluation of forecast skill for equatorial waves  505 

The analysis in section 3 focuses on the evaluation of the real-time technique. Errors are 506 

compared to the DIAGNOSTIC ANALYSIS, which includes errors due to both the off centred 507 
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window and due to errors in the forecast waves. Here we use the PERFECT FORECAST 508 

dataset to evaluate the skill of the Met Office prediction system in forecasting equatorial wave 509 

modes. 510 

a. Evaluation of combined errors in phase and amplitude 511 

To isolate the effects of forecast error on equatorial wave identification and evolution we 512 

calculate the normalised RMSE and correlation of the REAL-TIME FORECAST compared 513 

with the PERFECT FORECAST dataset. The result is shown in Fig.11 (solid lines).  For 514 

comparison, the corresponding RMSE and correlation of the REAL-TIME FORECAST with 515 

the DIAGNOSTIC ANALYSIS are repeated in Fig.11 (dashed lines). The RMSE relative to 516 

the PERFECT FORECAST is a measure of NWP forecast error alone whereas the RMSE 517 

relative to the DIAGNOSTIC ANALYSIS also includes errors due to the off-centered time-518 

window used in the real-time wave identification method. For all waves, errors relative to 519 

PERFECT FORECAST (solid) increase slowly before day -1 where analysis data is used, then 520 

increase faster with lead time, to about 0.5~0.7 at day 4, depending on the wave type. A 521 

relatively larger difference between 850hPa and 200Pa is shown for the Kelvin wave beyond 522 

day 1, with the error at low level being larger and increasing more rapidly than that of the upper 523 

level. The RMSEs relative to the PERFECT FORECAST (solid) are smaller than those relative 524 

to the DIAGNOSTIC ANALYSIS (dashed), consistent with the fact that the latter also includes 525 

errors due to the time-window edge effect.  526 

The correlations with the PERFECT FORECAST dataset are larger than those with the 527 

DIAGNOSTIC ANALYSIS (Fig.11, bottom two rows). Correlations with the PERFECT 528 

FORECAST before day T+0 have a very high value (larger than 0.95). This drops with lead 529 

time but still has a value of 0.8 around day 4 and 0.6-0.7 at day 6, except the Kelvin wave in 530 

the lower troposphere where correlation falls faster, consistent with the greater error at this 531 

level.  It is clear from the separation of the solid and dashed curves that the effect of the off-532 
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centred time-window on real-time forecast error increases as the end of the window is 533 

approached (at T+7) but that this is a much smaller effect than the growth of NWP forecast 534 

error with lead time. 535 

b. Evaluation of phase and amplitude errors of equatorial waves in forecasts 536 

To separate the errors in phase and amplitude, the technique described in Section 4 is 537 

used to create a dataset of wave phase and amplitude for the PERFECT FORECAST and 538 

REAL-TIME FORECAST (2015-2018) for the wave types, at each date, longitude and lead 539 

time.   540 

We calculate a phase difference (∆𝜑 =  𝜑𝑓 −  𝜑𝑝𝑓) between the forecast phase (𝜑𝑓) and 541 

the PERFECT FORECAST phase(𝜑𝑝𝑓), which due to the periodic nature of the phase 542 

diagram can be wrapped into the range of –π to π. 543 

RMSEs of wave phase and amplitude in the forecast relative to the PERFECT 544 

FORECAST in 2015-2018 are shown in Figs.12 a, b.  As expected, errors in phase and 545 

amplitude increase with lead time. The phase error has a typical magnitude of 0.1π (18o) at 546 

day 0, increasing to 0.3 π at day 6 for the westward waves and the larger error of 0.4 π for the 547 

Kelvin waves. Error in amplitude is about 0.2 at day 0, increasing to 0.6 at day 6 for the 548 

Rossby R1 wave, while Kelvin waves reach this high level of amplitude error in only 2.5 549 

days and WMRG waves in 5 days. Note that as mentioned in Section 4, each variable is 550 

normalised by its standard deviation, so that amplitude of 1 corresponds to the amplitude 551 

error in that wave mode matching the RMS (root mean square) amplitude of that wave mode. 552 

It is also informative to characterize the mean forecast bias in phase and amplitude 553 

(Figure 12 c, d). The forecast Kelvin wave shows large positive departures in phase and a 554 

much weaker amplitude (a bias of almost 20% of the RMS magnitude). Since Kelvin waves 555 

propagate anticlockwise in the phase diagram, the mean positive phase difference indicates 556 

that the forecast Kelvin wave is to the east of that in the PERFECT FORECAST, and hence 557 
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implies a faster phase speed. It is noted that the phase departure does not always increase 558 

with lead time, with the largest systematic departure in phase occurring at day 2.  The 559 

westward-moving WMRG and R1 waves show much smaller phase errors, but the amplitude 560 

of the WMRG is also weaker in the forecast (by 10% of average amplitude). 561 

Figure 13 shows that the average phase and amplitude forecast errors depend strongly on 562 

longitude. For the Kelvin wave, forecasts at day 2, 4 and 6 consistently show the large 563 

positive phase difference (eastward shift of forecast waves) over the Maritime Continent and 564 

West Pacific regions and the error develops in the first 2 days of the forecast. On the other 565 

hand, the forecast shows weaker Kelvin wave amplitudes over the central and eastern Pacific. 566 

In contrast to the Kelvin wave, the WMRG wave does not show a systematic phase 567 

difference. However, forecasts have too weak amplitude over the central and eastern Pacific, 568 

similar to the Kelvin wave forecasts. Among the three waves, the R1 wave has smallest errors 569 

in both phase and amplitude. The inherent forecast errors in Kelvin wave phase speed and 570 

Kelvin and WMRG amplitude in these regions imply that understanding the cause of these 571 

errors would be crucial for improving the model’s ability to predict the equatorial waves, and 572 

their associated HIW.   573 

A possible cause of the Kelvin wave errors may be that the model fails to simulate 574 

observed tropical eastward-moving convective activity coupled with Kelvin waves, as found 575 

in an earlier version of the MetUM by Ringer et al. (2006) and Yang et al. (2009). The latter 576 

shows that observed equatorial convection tends to appear in the region of low-level wave-577 

enhanced near-surface westerlies in Kelvin waves crossing the eastern hemisphere warm 578 

water region (where there is westerly ambient flow), while the older versions of  MetUM 579 

(HadAM3 and HaGAM1) tends to place convection closer to the maximum in the low level 580 

convergence. This suggests that wind-dependent energy fluxes may play an important role in 581 

triggering/organising equatorial convection, which can then modify and possibly amplify the 582 
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Kelvin waves. The models also do not capture the observed vertical tilt structure and 583 

signatures of energy conversion in the Kelvin waves. It is worth investigating if these issues 584 

have been improved in the current version of the model.  585 

6. Summary and discussion 586 

In this study a novel technique for real-time identification of equatorial wave modes in 587 

analysis and forecast data has been developed. Most existing methods for identifying 588 

equatorial waves from global analysis data rely on the application of a frequency, as well as a 589 

wavenumber filter, followed by different approaches to partitioning into different wave 590 

modes. In the context of historical data or climate model analysis, a much longer time-591 

window (one year or more) is used as input to the frequency filter. However, in an 592 

operational forecasting context, the time-window cannot extend far into the future beyond the 593 

current date due to lack of data. Therefore, the key challenge that has been addressed here is 594 

to identify equatorial waves objectively at the current date and in near-range forecasts 595 

without a strong dependence on future data. 596 

The method relies on identifying equatorial waves through the spatial projection of global 597 

data onto the horizontal structures of equatorial waves derived from theory (Yang et al. 598 

2003). A broad-band frequency filter is nevertheless required to filter out stationary 599 

disturbances and to partition eastward-moving and westward-moving disturbances. In our 600 

approach, the phase speed of the waves identified is not tightly constrained by the spectral 601 

filter. The Fourier transform is conducted across a broad range in zonal wavenumber (2 ≤ k ≤ 602 

40) and frequency (with periods in the range 2 < W < 30 days). This means that features with 603 

different characteristic scales, such as dispersive wave packets, can be represented well. The 604 

technique has been evaluated using four-years of Met Office operational global analysis and 605 

forecast data (2015-18).  606 
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The new methodology where the time-window used in the frequency filter is off-centred, 607 

with 83 days before the current analysis and 7 days after, was first evaluated using analysis 608 

data only. The PERFECT FORECAST dataset, created using the off-centered time-window 609 

method, is compared against the DIAGNOSTIC ANALYSIS dataset which uses the same 610 

methodology except that the time-window is centred on the current analysis (with knowledge 611 

of the atmospheric state 45 days into the future). RMSE shows the impact of the time-612 

window and frequency filtering procedure to be small at the current analysis time (T+0) with 613 

error growing only slowly to T+6. The final day of the PERFECT FORECAST (T+7 days in 614 

this case) should not be used due to large errors from the edge effects of the time-window on 615 

the frequency filtered data.  616 

A REAL-TIME FORECAST dataset is then constructed using the same off-centred time-617 

window technique, but with 83 days of analyses before the current analysis (T+0) 618 

concatenated with 7 days of global forecasts initialised from the analysis at T+0. In a real-619 

time forecasting context, the T+0 analysis would be the latest available. The DIAGNOSTIC 620 

ANALYSIS is used as a reference for truth, assumed to be the best estimate of observed 621 

wave amplitude and phase. However, the effect of forecast error can be partitioned from the 622 

effects of the off-centered time-window by comparing the REAL-TIME FORECAST with 623 

the PERFECT FORECAST. 624 

Forecast skill in wave amplitude and phase is appreciable to day T+6. The forecast error 625 

is much larger than the diagnostic error associated with the off-centered time-window 626 

technique (excluding the last day in the window, T+7, which suffers from the edge effect of 627 

the diagnostic method). The correlation between the REAL-TIME FORECAST and the 628 

DIAGNOSTIC ANALYSIS exceeds 0.6 for the Rossby and WMRG waves out to day T+6. 629 

The skill in Kelvin wave forecasts is lower, with the correlation dropping below 0.6 on 630 

average by day T+5. These results are encouraging, indicating that the real-time technique is 631 
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able to identify the waves in the operational forecasting context and furthermore that the Met 632 

Office prediction system (the global high resolution “deterministic” forecast) has 633 

demonstrable skill in forecasting the equatorial waves.  634 

For comparison, the real-time technique is modified with the data in the 7 days beyond 635 

the current analysis T+0 being over-written with zeros. This PADDED wave dataset shows 636 

that even the representation of the current analysis (T+0) is affected detrimentally by this 637 

padding approach – the correlation with the DIAGNOSTIC ANALYSIS fields dropping to 638 

0.75. Moreover, moving into the forecast window the skill drops rapidly with the correlation 639 

falling below 0.5 at T+1 and below 0.3 at T+2. The existence of skill in this range arises as a 640 

form of statistical forecast propagating wave information forward from the preceding 83 days 641 

of analysis as a result of the wavenumber-frequency filter. However, the correlations are 642 

much lower than the REAL-TIME FORECAST dataset, even at T+0, demonstrating the 643 

value of NWP forecast information. 644 

Local wave phase diagrams are constructed using two variables that are known to be in 645 

quadrature for each wave mode structure (a fundamental property of the propagation 646 

mechanism). The variables are chosen so that variable-2 (W2) has a maximum one quarter of 647 

a wavelength to the west of the maximum in variable-1 (W1). The local wave phase diagram 648 

constructed using W1(X, t) and W2(X, t) as its axes then relates to the wave amplitude and 649 

phase that would be seen by an observer at a fixed longitude, X. In this way eastward-moving 650 

waves progress anti-clockwise in the phase diagram and westward moving waves progress 651 

clockwise. The trajectories of forecasts can be compared quantitatively with the sequence of 652 

analysis states in the local wave phase space (e.g., Fig.10).  653 

The local wave phase space is used to quantify both systematic forecast bias and RMS 654 

forecast error. The characteristic features identified are: 655 

x RMS error grows steadily with lead time for the WMRG and R1 waves to T+6. 656 
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x RMS error grows much faster for Kelvin waves reaching a similar level of amplitude 657 

error (0.6 of the RMS wave amplitude) by day T+2. 658 

x There is a systematic eastward shift in wave phase for the Kelvin wave associated 659 

with too fast propagation in the model.  660 

x The Kelvin wave phase error is greatest from the Indian Ocean, across the Maritime 661 

Continent to the Dateline. 662 

x There is not a large systematic phase error for the WMRG and R1 waves. 663 

x Kelvin and WMRG wave amplitude decays over the first 4 days of the forecast. 664 

Systematic bias is 20% of wave RMS amplitude for Kelvin waves, 10% for WMRG waves. 665 

x This amplitude under-estimate is dominated by the contribution from waves across 666 

the Pacific east of 150qE where the bias is 25% for Kelvin and WMRG waves. 667 

The inherent phase speed error for the Kelvin waves over the Maritime Continent to 668 

central Pacific and also the under-estimate of the Kelvin wave and WMRG activity in the 669 

central and eastern Pacific merit further investigation since these systematic errors can have a 670 

major impact on forecast skill in the Tropics.  In addition to the possible error in modelling 671 

the coupling between convection and the dynamical structure of the waves as discussed in the 672 

last section, another possible cause of phase speed error could be due to the basic zonal flow 673 

error in the model. The basic flow results in a Doppler shift of equatorial wave frequencies 674 

(e.g, Yang et al 2011, 2012, 2018 and Dias and Kiladis 2014) and zonal variation of the zonal 675 

flow would also affect the energy dispersion of equatorial waves (e.g., Hoskins and Yang 676 

2016).   677 

The new diagnostic technique will enable more detailed investigation of the 678 

representation of equatorial wave structure and evolution by forecast models, and comparison 679 

with observed behaviour as represented in global analyses. The case study shown here 680 

(Section 4) illustrates application of the diagnostics in an operational forecast context. The 681 
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continuity of equatorial waves from the recent history of analyses into the forecasts is 682 

immediately apparent in a Hovmöller plot over a two-week window (centred at the current 683 

analysis). The systematic tendency for the model to decay amplitude in the eastward-moving 684 

disturbances, and also to propagate too quickly, is important information for forecasters – 685 

especially in Southeast Asia where the systematic model errors have been shown to be 686 

largest. Forecasters could construct their advice taking into account the systematic error.  687 

Equatorial waves are central to the occurrence of HIW associated with widespread heavy 688 

precipitation. There are major ramifications from errors in equatorial wave forecasts for 689 

severe weather warnings and advice to emergency responders, even on the short-range from 690 

lead times of one day to a week. On the positive side, there is appreciable skill in forecasts of 691 

equatorial wave structures (in the wind field) out to day 6, offering much higher predictability 692 

than associated with isolated convective systems. Because forecasting HIW associated with 693 

equatorial waves depends not only the ability to forecast the waves, but also on the ability of 694 

the model to capture the correct relationship between the waves and HIW, if improvements 695 

can be made in the relationship between equatorial waves, deep convection and precipitation 696 

rate, there is great scope for capitalising on this potential predictability. 697 
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Table 1. The two variables used to define the local wave phase diagrams. In each wave 

structure, variable-2 has a positive maximum one quarter of a wavelength to the west of 

the location where variable-1 is positive (see Fig.1).  

_____________________________________________________ 

Wave type W1 Latitude (W1)      W2      Latitude (W2) 

Kelvin              u           0     du/dx     0 

WMRG -u         10oS        v                 0 

 R1               -u            0        v                8oN 

______________________________________________________ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 1.  The theoretical horizontal structures of some of gravest equatorial wave 
modes in the  resting atmosphere: the Kelvin wave,  the n=0 westward-moving mixed 
Rossby-gravity (WMRG) the  n=1 and 2 westward-moving Rossby (R1 and R2) waves. 
The meridional trapping scale y0 has been taken to be 6q and the zonal wave number 
k=6. Vectors indicate horizontal wind. Colours shadings indicate divergence (10-6 s-1) 
with convergence set to be positive. Colour contours lines are vorticity  (10-6 s-1 ) with 
blue lines for positive vorticity and red lines for negative vorticity: the contour interval 
is 0.6 starting from +/- 0.2 for Kelvin, WMRG and R1, and the contour interval for R2 
is doubled. The amplitude of the wave is determined by setting the appropriate 
(𝑞0, 𝑣0, 𝑣1, 𝑣2) to 1.

Kelvin WMRG

R1 R2
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Figure 2. Schematic of procedures to create different wave datasets for developing 
and testing the real-time analysis technique. (a) Three 90-day time series used as 
input to the frequency filter. The REAL-TIME FORECAST data consists of 83 
analyses and 7 days of forecast data. In the PERFECT FORECAST data, the last 7 
days are replaced by analysis data. In the PADDED series the last 7 days are replaced 
by zeros. (b) The DIAGNOSTIC ANALYSIS uses data from a 90-day time-window, 
centred on each date, as input to the frequency filter.
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(a) Diagnostic analysis (c) Real-time Forecast day 2 (b) Perfect Forecast day 2

(d) Perfect Fore.- Diagnos (e) Real-time Fore. - Diagnos

Figure 3 Longitude-time diagrams of 850-hPa Kelvin wave equatorial u (m s-1) in 2016 
identified from Met Office analysis data for (a) DIAGNOSTIC ANALYSIS, (b) PERFECT 
FORECAST dataset day T+2, (c) REAL-TIME FORECAST dataset day T+2, (d) difference 
(b minus a) between PERFECT FORECAST day T+2 and DIAGNOSTIC ANALYSIS. (e) 
Difference (c minus a) between REAL-TIME FORECAST day T+2 and DIAGNOSTIC 
ANALYSIS.
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Fig.4 As for Fig.3 but for 850-hPa WMRG equatorial v. 

(a) Diagnostic analysis (c) Real-time Forecast day 2 (b) Perfect Forecast day 2

(d) Perfect Forecast - Diagnos (e) Real-time Fore. - Diagnos
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Figure 5 Top row: 12-month mean winds for Kelvin wave in 2016, in (a) PERFECT 
FORECAST dataset, (b) Real-time Forecast dataset and (c) REAL-TIME FORECAST 
dataset with previous 30-day mean removed for day T+0 to T+7. Black solid line in each 
panel is 12-month mean of DIAGNOSTIC ANALYSIS shown for comparison. (d)- (e) 
REAL-TIME FORECAST Kelvin wave u and WMRG v at day 2 with the bias correction.  
(f) Difference of WMRG v between REAL-TIME FORECAST day 2 and DIAGNOSTIC 
ANALYSIS. The label ‘day’ refers to lead time.

(f) WMRG v Fore. day 2 - Diagnos

(a) Perfect Forecast (b) Real-time Forecast (c) Forecast bias removed

(d) Kelvin u Forecast day 2 (e) WMRG v Forecast day 2 
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(a) Diagnostic analysis (c) Padded day 2 (b) Padded day 0

(d) Padded day 0 - Diagnos (e) Padded day 2 - Diagnos

Fig.6. As for Fig.3 but for Kelvin wave identified from PADDED dataset at day 0 and day 2.  
(a) DIAGNOSTIC ANALYSIS, (b) PADDED at day 0, (c) PADDED at day 2, (d) Difference 
between PADDED day 0 and DIAGNOSTIC ANALYSIS. (e) Difference between PADDED 
day 2 and DIAGNOSTIC ANALYSIS.
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(b) WMRG 

Perfect Forecast Real-time Forecast Real-time Forecast bias removed
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(a) Kelvin 
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Fig.7 Standard deviations of winds at 850 hPa with respect to the 2016 time-mean for (a) 
Kelvin wave, (b) WMRG, (c) R1 and (d) R2, in (left) PERFECT FORECAST dataset, 
(middle) REAL-TIME FORECAST dataset and (right) REAL-TIME FORECAST dataset 
with previous 30-day mean removed. Black solid line in each panel is standard deviation of 
DIAGNOSTIC ANALYSIS shown for comparison. The label ‘day’ refers to lead time.
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Perfect Forecast

Figure 8 RMSEs normalised by the standard deviations from the DIAGNOSTIC 
ANALYSIS (top two rows) and correlations (bottom two rows) of waves at 850 hPa 
(red) and 200 hPa (blue) in 2016.  PERFECT FORECAST dataset (solid), REAL-
TIME FORECAST dataset (dashed) and PADDED dataset (dotted) all referenced to 
the DIAGNOSTIC ANALYSIS. 
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Figure 9 Waves forecast on 17 Jan 2016, indicated as ‘day 0’ for (left) REAL-TIME 
FORECAST and  (right) PERFECT FORECAST, for NOAA OLR (colour) and various 
winds (contours) averaged over 10q N-10q S. (a) eastward-moving u, (b) Kelvin wave u, 
(c) westward-moving v symmetric about the equator. (d) WMRG v, (e) westward-
moving v antisymmetric about the equator and (f) R1 v antisymmetric about the equator. 
The contour interval is 0.8 m s-1 for u and 1.0 m s-1 for v.
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Figure 10 Phase and amplitude diagrams for Kelvin wave at 200q E, WMRG and R1 
waves at 90q E. The latitude of the variables is indicated in Table 1. Blue lines are for 
the Met Office operational REAL_TIME FORECAST and black lines are for the 
PERFECT FORECAST. Forecast start date is 17th January 2016. The previous 4 days 
of REAL-TME FORECAST are also shown for the operational forecast. Quadrants 1-4 
of wave phase are labelled in direction of propagation for each wave.
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Figure 11 Normalised RMSEs (top two rows) and correlations (bottom two rows) of waves 
in REAL-TIME FORECAST, relative to PERFECT FORECAST dataset (solid), and 
relative to DIAGNOSTIC ANALYSIS (dashed) at 850 hPa (red) and 200 hPa (blue) in 
2016.
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Figure 12 Forecast RMSEs in (a) phase and (b) amplitude at 850 
hPa, relative to PERFECT FORECAST in 2015-2018. Mean 
difference of phase (c) and amplitude (d) between the REAL-
TIME FORECAST and PERFECT FORECAST. Phase units are 
π radians.
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Figure 13 Difference in phase (left) and amplitude (right) between REAL-TIME 
FORECAST and PERFECT FORECAST in 2015-2018. For eastward-moving Kelvin 
wave, positive difference indicates faster phase speed, for westward-moving WMRG and 
R1 waves, positive difference indicates slower phase speed. The ‘day’ refers to lead time 
here.
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