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ABSTRACT

Holmes et al. (2019) have proposed a new theoretical framework for studying ocean heat uptake in po-

tential temperature coordinates. One important step in their derivations requires understanding the temporal

changes of the volume of water V with temperature greater than some value, which they write as the sum of

two terms. The first one is due to the surface freshwater fluxes and is well defined, but the second one—

attributed to the volume fluxes through the lower boundary of the domain—is given no explicit expression.

What the authorsmean exactly is unclear, however, because in the incompressible Boussinesq approximation,

the use of a divergenceless velocity field implies that the sum of the volume fluxes through any kind of control

volumemust integrate to zero at all times. In this comment, we provide two alternative explicit mathematical

expressions linking the volume change of Holmes et al. (2019) to the diabatic sources and sinks of heat that

clarify their result. By contrastingHolmes et al.’s (2019) approachwith that for a fully compressible ocean, it is

concluded that the volume considered byHolmes et al. (2019) is best interpreted as a proxy for the Boussinesq

mass M0 5 r0V, where r0 is the reference Boussinesq density. If V were truly meant to represent volume

rather than a proxy for theBoussinesqmass, the Boussinesq expression for dV/dtwould have to be regarded as

inaccurate because of its neglect of the volume changes resulting from mean density changes.

1. Introduction

Holmes et al. (2019) have recently published an

interesting study of ocean heat uptake in potential

temperature coordinates. A key part of the exercise

involves deriving a theoretical expression for the time

variations of the volume of water associated with dif-

ferent temperature classes. In Holmes et al. (2019), the

issue is addressed in the context of the incompress-

ible Boussinesq primitive equations. As is well known,

such a system of equations conserves volume rather

than mass. Alternatively, such a system can also be

regarded as conserving the Boussinesq mass r0dV,

but not the ‘‘true’’ mass rdV, where r0 and r are

the reference Boussinesq and fluid densities, respec-

tively. As a result, one of its peculiar properties is that

the volume flux integrated over the boundary ›V of

any control volume V vanishes identically at all times,

raising the question of how the control volume V varies

with time. Mathematically,

ð
›V

v � n dS5
ð
V

= � vdV5 0 , (1)

where n is the outward unit normal vector and v the 3D

velocity.

In the particular case where V represents the volume

of all water warmer than a given temperature u, Holmes

et al. (2019) suggest that the time variation of V should

be given by the formula

›V

›t
5G1 J

s
, (2)

[their Eq. (3)]. As shown in Fig. 1, Holmes et al. (2019)

refer toG as ‘‘the volume flux across the Q isotherm, or

the water-mass transformation’’ and to JS as the surfaceCorresponding author: A. Hochet, ahochet@ucsd.edu
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volume flux. They provide the following mathematical

expression for JS:

J
s
(u, t)5

ðð
u0(x,y,0,t).u

PER(x, y, t) dA, (3)

[their Eq. (4)], where PER is described as ‘‘the net

volume flux per unit area (m s21) into the ocean asso-

ciated with precipitation, evaporation, river runoff, and

ice melt.’’ However, they did not provide any explicit

mathematical expression for G.

Based on the fact that they refer to G as being due to

the volume flux across the isotherm,Holmes et al. (2019)

may have originally assumed (as happened to us and a

few other colleagues) that the time variation ofV should

be governed by the following equation:

›V

›t
52

ð
›V

v � n dS (WRONG!) , (4)

only to realize that the constraint (1) would yield the

physically implausible result ›V/›t5 0, in clear contra-

diction with our physical intuition that V should, for

instance, increase in an ocean experiencing net warming

and decrease in an ocean experiencing net cooling.

A survey of the literature reveals that the above

ambiguity can actually be traced back to Walin [1982,

Eq. (2.2)] where, as above, the time variation of the

volume is linked to the volume fluxes through its

boundaries. In this comment, we seek to clarify the

physics of the time variations of V by deriving an ex-

plicit mathematical expression for the term G. In par-

ticular, we aim to show that while JS is indeed related to

the volume flux v � ndS through the ocean surface, this

is not the case of the term G. Indeed, G is found to be

related to the water mass transformation due to the dia-

batic sources and sinks of heat and salt, as expected from

physical intuition, and also stated byHolmes et al. (2019).

The derivation of such an expression is nontrivial, which

might explain why it does not appear to have been pub-

lished in the water-mass conversion literature before.

2. Theory

a. Linking G to water mass transformations

To link G to water mass transformations, and to

evaluate the validity and accuracy of the Boussinesq

form of the results obtained, we seek expressions valid

for a fully compressible ocean first. Thus, the conser-

vation equations for mass and heat that we take as our

starting point are

›r

›t
1= � (rv)5 0, (5)

›

›t
(r c

p
u)1= � (r c

p
uv)52= � (rF

u
) , (6)

where cp is a constant heat capacity and Fu is the heat

flux vector. In keeping with standard modeling practice,

Eq. (6) assumes our definition of heat (cpu) to be exactly

conservative. Alternative and more accurate treatments

would either entail the use of the McDougall (2003)

Conservative Temperature or retaining the nonconser-

vative production/destruction of u as proposed by

Tailleux (2015). Note that Eq. (6) implies for the La-

grangian derivative of u:

Du

Dt
5 _u52

1

r c
p

= � (rF
u
) . (7)

FIG. 1. (left) Schematic showing the volume of water V(u, t) with temperature larger than u, the surface volume

flux Js, and the boundary volume flux G. The surface boundary of volume V is decomposed into two parts: Su and

Au. Here, Su is where u5 constant and is shown in blue, whileAu is at the ocean surface and is shown in red. (right)

Adiabatic rearrangement of all parcels in the physical space so that u surfaces in the reference space are flat. The

reference depth zr is the depth associated with every u value so that V(u, t)5 V̂(zr). The term u can be written as a

function of zr and t: u(x, y, z, t)5 ur(zr , t). Thus, in the physical space, iso-u surfaces are iso-zr surfaces.
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To obtain results pertaining to the incompressible

Boussinesq approximation, one may simply replace

r by the reference Boussinesq density r0 in any ex-

pression obtained from Eqs. (5) or (6).

To address the problem for a fully compressible

ocean, we find it necessary to consider the mass

M(u, t) of the water masses of potential temperature

greater than u in addition to their volume V(u, t). At

the top, these water masses are bounded by the ocean

free surface of equation z5h(x, y, t) and at the bot-

tom, by the isothermal surface u5 constant of equation

z52h(x, y, u, t), denoted by Su in the following. As a

result, the unit normal vectors at the top and bottom

are respectively given by

n5
k2=

z
hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11 j=
z
hj2

q , at z5h(x, y, t), and (8)

n52
=u

j=uj52
k1=

z
hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11 j=
z
hj2

q , at z52h(x, y, u, t),

(9)

where =z denotes the horizontal gradient. At the ocean

surface, the boundary conditions for mass and heat are

r
s

�
›h

›t
1 u

s
� =

z
h2w

s

�
5 r

f
(P2E1R), and (10)

2r
s
F
u
� n dS5Q

net
dx dy , (11)

where rs 5 r(T, S, pa) is the surface density of seawater,

rf 5 r(T, 0, pa) is the density of freswhater, Qnet is the

net heat flux entering the ocean, while vs 5 (us, ys, ws)

denotes the surface value of the velocity field. At the

bottom, differentiating z52h(x, y, u, t) yields

›h

›t
1 u

b
� =

z
h1w

b
52

›h

›u

Du

Dt
5

�
›u

›z

�21
Du

Dt
, (12)

where vb 5 (ub, yb, wb) is the value of the velocity field

along the isothermal surface u5 constant.

By definition, the volume and mass of the water

masses of potential temperature greater than u can be

written as

V(u, t)5

ðð
Au

ðh(x,y,t)
2h(x,y,u,t)

dz dx dy , and (13)

M(u, t)5

ðð
Au

ðh(x,y,t)
2h(x,y,u,t)

r dz dx dy , (14)

where Au denotes the part of the ocean surface area

capping V(u, t) at its top. Taking the time derivative of

Eq. (14), making use of Eqs. (5), (10), and (12), yields

after some manipulation:

›M

›t
5

ðð
Au

�
r
s

›h

›t
1 r

b

›h

›t

�
dx dy2

ð
›V

rv � n dS

5

ðð
Au

r
s

�
›h

›t
1 u

s
� =

z
h2w

s

�
dx dy

1

ðð
Au

r
b

�
›h

›t
1u

b
� =

z
h1w

b

�
dx dy

5

ðð
Au

r
f
(P2E1R) dx dy1

ðð
Au

r
b

�
›u

›z

�21

_udx dy .

(15)

Equation (15) is a key result stating that only two physical

processes can change M(u, t) with time, namely, surface

freshwater fluxes or diabatic modifications of u along the

isothermal lower surface Su. To derive an expression for

the temporal evolution of V(u, t), it is useful to define

the volume mean density r(u, t)5M(u, t)/V(u, t),

which upon time differentiation can be shown to imply

›V

›t
5

1

r

›M

›t
2

V

r

›r

›t
. (16)

Equation (16) states that in a fully compressible ocean,

the volumeV can change either as the result of an addition/

subtraction of mass or due to a change in the mean

density r. In the context of sea level change arising

from global warming, the first effect is generally asso-

ciated with land ice melting and the second effect to

thermal expansion, both being known to contribute

O(1) mmyr21 to the globally averaged sea level. This

means that the two terms in Eq. (16) are often of

comparable importance, and hence that it is in general

not possible to justify neglecting the second term.

Now, replacing r by r0 in the above expressions yields

the following Boussinesq limits:

›M

›t
/

›M

›t

����
Boussinesq

5 r
0

2
666664JS 1

ðð
Au

�
›u

›z

�21

_udx dy

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
G

3
777775, and (17)

›V

›t
/

1

r
0

›M

›t

����
Boussinesq

5 J
S
1

ðð
Au

�
›u

›z

�21

_udx dy

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
G

,

(18)
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where JS is defined as in Holmes et al. (2019). Based on

the above considerations, it is clear that only Eq. (17)

remains accurate in the Boussinesq limit, since it is,

in general, inaccurate to neglect volume changes due to

mean density changes. In fact, it is well accepted

that Boussinesq ocean models that aim to predict sea

level change must somehow account for the latter ef-

fect, often using a procedure based on that proposed by

Greatbatch (1994), for instance. At this stage, it is im-

portant to point out that although Holmes et al. (2019)

interpret their equation for ›V/›t as pertaining to the

volume V(u, t), it is equally possible to interpret it

as an equation pertaining to the Boussinesq mass r0V

instead. Doing so seems more logical, since it seems

obvious that Holmes et al.’s (2019) framework physi-

cally relies on combining the mass and heat budgets,

rather than the volume and heat budgets. It is such an

interpretation that is assumed in the following, which

allows us to stop worrying about the possible impacts of

neglecting the volume changes due to mean density

changes on ocean heat uptake. As a result, the ex-

pression for G in either Eq. (17) or (18) represents the

desired expression explicitly linking G to water mass

transformations, as postulated but not demonstrated

by Holmes et al. (2019).

b. Link to volume-integrated diabatic processes

Although Eq. (18) explicitly links G to water mass

transformations, it is arguably impractical for diagnos-

ing G from ocean model outputs owing to its depen-

dence on the boundary values of Du/Dt along the

isothermal surface u5 constant. This is why in the fol-

lowing we seek a more practical alternative expression

linking G to volume-integrated diabatic effects instead.

For simplicity, we restrict our discussion to the case of

an incompressible Boussinesq ocean, as in Holmes et al.

(2019). To that end, we use a pdf approach that physi-

cally amounts to sorting the ocean according to potential

temperature. The underlying idea is to define a refer-

ence potential temperature profile ur(z, t) and reference

depth zr 5 zr(u, t) through the following relations:

V(u, t)5

ðð
Au

ðh(x,y,t)
2h(x,y,u,t)

dz dx dy5

ð0
zr(u,t)

A(z) dz, and

(19)

ðð
Au

ðh(x,y,t)
2h(x,y,u,t)

u(x, y, z, t) dz dx dy5

ð0
zr(u,t)

A(z)u
r
(z, t) dz ,

(20)

where A(z) denotes the area of the ocean at the depth z.

By construction, ur(z, t) and zr(u, t) satisfy ur(zr, t)5 u at

all times. Such a property defines a one-to-one relation

betweenu and zr, allowing one to regardany functionF(u, t)

of u and time t alternatively as a function of zr and t through

the identity F(u, t)5F(ur(zr, t), t)5 F̂(zr, t). For in-

stance, V(u, t)5 V̂(zr) or h(x, y, u, t)5 ĥ(x, y, zr, t),

with the hat being used to denote the zr-based repre-

sentation. An advantage of the zr representation is that

V̂(zr) is independent of time at fixed zr, which implies

›V̂

›t

����
zr

5
›V

›u

›u
r

›t
(z

r
, t)1

›V

›t
5 0, (21)

or alternatively,

›V

›t

����
u

52
›V

›u

›u
r

›t
(z

r
, t). (22)

Equation (22) shows that an alternative approach to

deriving an expression for ›V/›t is via deriving an ex-

pression for ›ur/›t. This is achieved here by differenti-

ating Eq. (20) with time at fixed zr; after making use of

the Green theorem and of the boundary conditions for

heat and mass, one eventually arrives atð0
zr

A(z)
›u

r

›t
(z, t) dz5

›

›t

ðð
Au

ðh(x,y,t)
2ĥ(x,y,zr ,t)

udz dx dy

52

ðð
Au

u
s
(E2P2R) dx dy

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Pr(zr ,t)

2 u

ð
Su

v � n dS

1

ðð
Au

Q
net

r
0
c
p

dx dy

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
H (zr ,t)

2

ð
Su

F
u

c
p

� n dS , (23)

where us 5 u(x, y, z5h, t) is the surface value of u. As

stated in the introduction, the use of divergenceless ve-

locity field = � v5 0 imposes at each timeð
Su

v � ndS2 J
S
(u, t)5 0: (24)

In Eq. (20), the last term represents the diathermal heat

flux due to the parameterized mixing processes through

the isothermal surface Su. Similarly as in Hochet et al.

(2019), we find it useful to represent it as downgradient

diffusion in terms of an effective diffusivityKeff such thatð
Su

F
u
� n dS5K

eff
c
p
A(z

r
)
›u

r

›z
. (25)

By making use of Eqs. (24) and (25), Eq. (23) may thus

be rewritten asð0
zr

A(z)
›u

r

›t
(z, t) dz52P

r
2 uJ

S
1H 2K

eff
A(z

r
)
›u

r

›z
.

(26)
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Our sought-for evolution equation for ur is then simply

obtaining by differentiating Eq. (26) with respect to zr.

After some rearrangement, this yields

›u
r

›t
52

1

A(z
r
)

›
�
H 2P

r
2 uJ

S

�
›z

r

1
1

A(z
r
)

›

›z
r

	
K

eff
A(z

r
)
›u

r

›z
r



. (27)

Interestingly, note that Eq. (27) can be written as a

classical vertical advection diffusion equation,

›u
r

›t
1w

eff

›u
r

›z
5

1

A(z
r
)

›

›z
r

	
K

eff
A(z

r
)
›u

r

›z
r



, (28)

by introducing the pseudo effective vertical velocity weff

as follows:

w
eff
(z

r
, t)5

1

A(z
r
)

›
�
H 2P

r
2 uJ

S

�
›u

. (29)

To make the connection with Holmes et al. (2019) re-

sults, we may use the fact that

A(z
r
)52

›V

›z
r

52
›V

›u

›u
r

›z
r

, (30)

combined with Eqs. (27) and (22) to show that

›V

›t

����
u

52
›
�
H 2P

r
2 uJ

S

�
›u

1
›

›u

�
K

eff
A
›u

r

›z
r

�
, (31)

thus implying for G,

G5
›V

›t

����
u

2 J
S
52

›H
›u

1
›

›u

�
K

eff
A
›u

r

›z
r

�

1

	
›(P

r
1 uJ

S
)

›u
2 J

S



|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

50

. (32)

Now, Eq. (32) is directly comparable with Eq. (14) of

Holmes et al. (2019), namely,

G
Holmes

52
1

r
0
c
p

	
›F

›u
1
›M

›u
1

›I

›u



. (33)

InHolmes et al. (2019), the termF in Eq. (33) is linked to

the total surface flux, which in our expression is linked to

H , while bothM and I are related to the parameterized

and numerical mixing, which in our expression appears

as an effective diffusive flux. The main advantage of

Eq. (32) is that all of its terms are arguablymore familiar

and easier to diagnose from numerical model outputs

than local values of _u along isothermal surfaces Su for

which we have less physical intuition.

3. Conclusions

In this comment, we derived two mathematically

equivalent expressions [Eqs. (18) and (32)] for the term

G entering Eq. (3) of Holmes et al. (2019) governing the

time variations of V(u, t), which hopefully can help

clarify a confusion in the theory of water masses dating

back to Walin (1982). However, from the consideration

of the fully compressible case, we believe that the evo-

lution equation for V is best interpreted as pertaining

to the Boussinesq mass M0 5 r0V rather than the vol-

ume V itself, since the boundary conditions that enter

the problem belong to themass budget. If the expression

for ›V/›t discussed byHolmes et al. (2019) were truly for

the volume itself, it would be arguably inaccurate owing

to its neglect of the volume changes due to mean density

changes, which is often of comparable importance to

that due to mass changes.
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