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Abstract: 

Targeting drug delivery to hair follicles is valuable to treat conditions such as 

alopecia’s and acne, and this shunt route may also allow drug delivery to deeper 

skin layers and the systemic circulation by avoiding the intact stratum corneum. 

Here, we investigated the effects of nanoparticle surface chemistry on their 

delivery into hair follicles by synthesizing fluorescent thiolated silica nanoparticles 

and functionalizing with 750 Da and 5000 Da methoxypolyethylene glycol 

maleimide (PEG). The stability of the nanoparticles in skin homogenate was 

verified before tape stripping of porcine-dosed tissue showed the distribution of 

the free fluorescent dye and different nanoparticles in the skin. Analysis of 

microscopic images of the skin sections revealed penetration of nanoparticles 

functionalized with PEG into the appendages whereas thiolated nanoparticles 

stayed on the surface of the skin and were removed by tape stripping. 

Nanoparticles functionalized with PEG 5000 Da penetrated deeper into the hair 

follicles compared to counterparts functionalized with PEG 750 Da. PEGylation 

can thus enhance targeted delivery of nanoparticulates into hair follicles. 
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1 Introduction: 

 

The remarkable barrier properties of human skin are largely attributed to the 

outermost layer of the epidermis, the stratum corneum (Brown and Williams, 2019; 

Labouta and Schneider, 2013). Appendages including the hair follicles and eccrine 

glands cross the epidermis and originate in the underlying dermis. Given the 

stratum corneum barrier, it is well established that typically only relatively small 

molecular weight and lipophilic drugs are able to be delivered effectively via the 

transdermal route to clinically efficacious levels, though some recent studies have 

shown that macromolecules such as aptamers may be able to enter the tissue 

(Lenn et al., 2018). However, the use of nanoparticles for drug delivery into or 

through the skin has also been studied using quantum dots, carbon nanotubes, 

metal and metal oxide nanoparticles, dendrimers, and lipid based nanoparticles 

(Jensen et al., 2011; Kraeling et al., 2018; Küchler et al., 2009). 

 
Nanoparticulate dosing of skin tends to focus on two mechanisms of delivery. 

Firstly, the potential delivery of the nanosystem into intact stratum corneum (and 

deeper epidermal layers) with studies exploring the effects of physicochemical 

properties of the nanosystems including their size, shape, charges and surface 

properties (Labouta et al., 2011a; Labouta and Schneider, 2013; Lademann et al., 

2011). Other factors considered include the nanoparticle vehicle and the disease 

state of the skin or stratum corneum barrier impairment (for example during wound 

healing) (Brown and Williams, 2019; Larese et al., 2009; Vogt et al., 2016; Wu et 

al., 2009). Secondly, the nanoparticles may be delivered into the appendages 

(pilosebaceous unit and eccrine and apocrine ducts). Though varying from site to 

site (Otberg et al., 2004) the appendage openings represent approximately 0.1% 

of the skin surface area and provides a shunt route to the lower layers of the skin 

by circumventing the intact surface stratum corneum (Brown and Williams, 2019; 

Raber et al., 2014). The follicles have been targeted with nanoparticles to treat 

conditions such as alopecia and acne, and alternatively to deposit a reservoir of a 

drug to permeate into deeper skin layers or the systemic circulation. 

 
Particle deposition into a hair follicle is usually stimulated in vivo by hair movement 

and (as with in vitro studies) by massage. Further, the cuticles on the surface of 

the hair shaft form a zigzag structure which acts as a geared pump that, with hair 

movement, can push nanoparticles deeper into the hair follicles. Clearance of 

nanoparticles from the follicle depends primarily on sebum production and hair 

growth, both relatively slow processes allowing the follicle to serve as a reservoir; 

when particles were applied, their clearance from the hair follicle was over a period 

of 10 days (Knorr et al., 2009; Lademann et al., 2009; Raber et al., 2014). More 

specifically within the hair follicle, the infundibulum generally provides the reservoir 

compartment whereas sebaceous glands are associated with acne and 

androgenetic alopecia and the bulge region holds a reservoir for keratinocyte stem 

cells (Knorr et al., 2009; Patzelt et al., 2011).  



However, the optimal nanoparticle properties for deposition into hair follicles are 

unclear and variations are also seen with delivery vehicle; Mathes et al. reported 

greater follicular deposition of particles from aqueous dispersions compared to 

when suspended in a hydrogel and that follicular uptake can thus be controlled by 

the choice of vehicle or carrier used to deliver a drug (Mathes et al., 2016). Patzelt 

et al. (2011) compared the depth of penetration into hair follicles of different sizes 

(122, 230, 300, 470, 643, and 860 nm) of two types of nanoparticles, PLGA (poly-

lactide-co-glycolid) and silica. Both types showed similar size-dependent 

penetration, increasing in depth as size rose to 643 nm, but the silica nanoparticles 

penetrated deeper than the PLGA particles. It had been proposed that the geared 

pump effect from hair shaft movement is optimal when the particles are similar 

size to the hair cuticles – in the region of 500 nm (Lademann et al., 2009; Patzelt 

et al., 2011). However, Vogt et al. reported deeper penetration of 40 nm 

nanoparticles along the follicular duct of human vellus hair and through the 

follicular epithelium, whereas 750 and 1500 nm nanoparticles aggregated in the 

infundibulum with no penetration to deeper layers or through viable epidermis 

(Vogt et al., 2006). 

Varied nano-particulate systems have been evaluated for controlled drug delivery 

within hair follicles, ranging from liposomes and polymersomes to solid lipid 

nanoparticles and nano-vesicles. Commonly seeking to treat alopecias, examples 

include oleic acid and phosphatidylcholine nano-vesicles containing minoxidil 

which increased deposition of the drug in the follicles 10-fold compared to a gel 

formulation (Kumar et al., 2018).  Minoxidil has also been incorporated into 

liposomes (e.g. Jain et al., 2010), solid lipid nanoparticles (Padois et al., 2011) and 

into nanoparticles formed from PLGA (Takeuchi et al., 2018) – as has finasteride 

(Roque et al., 2017). The use of nano-sized delivery systems to target hair follicles 

in alopecia, along with consideration of the anatomy and pathophysiology of the 

condition, has recently been reviewed (Salim and Kamalasanan, 2020).  

Nanocarriers have also been used for glucocorticoids such as clobetasol 

propionate for inflammatory scalp conditions. To mitigate both systemic and local 

adverse effects when applied topically, a range of clobetasol-loaded polymeric 

nanocarriers were evaluated (nanospheres, nanocapsules, lipid-core 

nanocapsules) to balance drug release, interfollicular permeation and follicular 

uptake (Schiedel et al., 2015). Significantly greater levels of drug were found in 

the follicles from the nanocarriers compared to application of the free drug and, 

importantly, the study demonstrated that not only was the carrier important but 

also that massaging the tissue resulted in greater follicular uptake, in agreement 

with the above.  

 

PEGylation is widely used to improve stability, tolerance and delivery to various 

tissues including eyes, urinary bladder, and nasal tissue (Porfiryeva et al., 2020). 

We have previously shown that PEGylation of nanoparticles reduces their 

mucoadhesion and improves their diffusivity (Irmukhametova et al., 2011; Mun et 

al., 2014b; Mun et al., 2016; Ways et al., 2018). However, nanoparticles with thiol 

groups on their surface are expected to stay bound to the skin surface and hair as 

they are rich in keratin. Polyacrylic acid was modified with sulfhydryl moieties to 

improve its binding to the skin, resulting in a 15-fold increase in adhesion 

compared to unmodified polymer (Laffleur and Bernkop-Schnürch, 2018). 

Likewise, thiolation of silicone oil enhanced adhesion to skin in comparison to 

commonly used silicone oils (Partenhauser et al., 2016). Here, we used tape 



striping to study the follicular deposition of two types of silica nanoparticles with 

different surface chemistry and sizes, thiolated and PEGylated (750 and 5000 Da) 

silica nanoparticles. The particles were fluorescently labelled with 5-

iodoacetamido fluorescein and follicular uptake was investigated in vitro using pig 

flank skin. 
 

2 Material and methods: 

 

2.1 Materials: 

 

3-mercaptopropyltrimethoxysilane (MPTS 95%), maleimide terminated methoxy 

poly(ethylene glycol) (PEG molecular weight 750 & 5000 Da), sodium phosphate 

dibasic (≥99%), sodium phosphate monobasic dihydrate (≥99%), 5- 

(iodoacetamido)fluorescein, sodium fluorescein, and 5,5′-dithiobis(2- 

nitrobenzoic acid) (DTNB, ≥98% TLC), were purchased from Sigma-Aldrich (UK). 

DMSO, sodium hydroxide pellets and Slide-A-Lyzer minidialysis devices, 3.5kDa 

MWCO, were purchased from Fisher Scientific (UK). L-Cysteine hydrochloride 

anhydrous (98%) was purchased from Alfa Aesar (UK). Dialysis membrane with 

a molecular weight cut-off 12–14 kDa was purchased from Medicell International 

Ltd. (UK). D-Squame Standard Sampling Discs and D- Squame® disc applicator 

was purchased from Clinical and Derm (USA). All materials were used as 

received. Fresh newborn (<1 month old) pig flank skin was obtained from the 

Pirbright Institute (UK) and was frozen immediately after collection until use. 

 

2.2 Synthesis and characterization of thiolated silica nanoparticles: 

 
Thiolated silica nanoparticles were synthesised according to a previously 

published method (Irmukhametova et al., 2011). Briefly, 20 mL DMSO and 0.5 

mL of 0.5 M NaOH solution were added to 0.75 mL MPTS. The mixture was 

stirred continuously with air bubbling for 24 h at room temperature. The 

nanoparticles were purified by dialysis against deionized water (5 L, eight 

changes of water) using dialysis membrane. The purified aqueous dispersions of 

the nanoparticles were stored at 4 °C. 

 

2.3 Synthesis of fluorescently-labelled thiolated silica nanoparticles: 

 
Thiolated silica nanoparticles were labelled with 5-(iodoacetamido) fluorescein 

(5-IAF) by adding 3 mg of 5-IAF to 12 mL aqueous dispersions of thiolated 

nanoparticles. The amount of fluorophore used was calculated with respect to 

molar ratio so that 5 µmol of fluorophore is added to 50 µmol of sulfhydryl groups 

of nanoparticles. The reaction mixture was stirred for 16 h at room temperature 

protected from light. Fluorescently-labelled nanoparticles were then purified by 

dialysis against deionized water in the dark (5 L, eight changes of water), 

according to the above protocol (Irmukhametova et al., 2011). 

 

2.4 PEGylation of fluorescently-labelled nanoparticles: 

 
5 mL aqueous dispersions of fluorescently-labelled nanoparticles were mixed 



with 100 mg of methoxypolyethylene glycol maleimide of two molecular weights 

(750 or 5000 Da). The reaction mixture was stirred for 16 h at room temperature 

protected from light, resulting in the formation of PEGylated silica nanoparticles. 

PEGylated nanoparticles were purified by dialysis in the dark as above (Mun et 

al., 2014b). 

 

2.5 Characterization of nanoparticles 

 

DLS and ᶚ-potential measurements were conducted with dilute dispersions of 

nanoparticles at 25 °C using a Nano-S Zetasizer (Malvern Instruments, UK). 

Each batch of nanoparticles was synthesized in triplicate, and the analysis was 

carried out three times for each sample. The mean and standard deviation of 

particle size, polydispersity, and ᶚ-potential were calculated. The thiol group 

content in nanoparticles was determined by Ellman’s assay according to a 

previously published method (Al Mahrooqi et al., 2018). 

 

 
2.6 Stability study 

 
The stability of the fluorescent label on the nanoparticles for use in skin studies 

was evaluated by adding the nanoparticles to skin homogenate and dialysing 

against phosphate buffered saline (PBS) to assess the release of free dye. 

Briefly, 2 g of pig skin was cut into small pieces and homogenised in 15 mL of 

PBS at 6500 rpm for 1 minute in an ice bath using an Ultra Turrax T18 high speed 

homogenizer (Lau et al., 2013). Four different samples were prepared by mixing 

1.5 mL of the labelled nanoparticles, unlabelled nanoparticles, sodium 

fluorescein and homogenate respectively with 1.5 mL of homogenate (total 3 mL) 

and dialysed against PBS. The samples were placed on a rolling plate with 

continuous shaking at 37 ⁰C to ensure continuous mixing and movement of the 

dialysate. The fluorescence intensity of the dialysate was assessed using a 

fluorescent spectrophotometer after 1, 6, 24, 48, and 72 hours of incubation. The 

experiment was performed in triplicate and data were analysed using GraphPad 

Prism 8 software. 

 

2.7 Tape stripping study 

 
Pig flank skin was thawed at room temperature and hair was carefully shaved to 

avoid damaging the stratum corneum before use. Test areas were demarked 

using a permanent marker around a 2.5  2.5 cm polyethylene template. A finite 

dose of fluorescently labelled nanoparticles (50 µL, so 8 µL cm-2) was applied 

and the area gently massaged in a circular movement for one minute using a 

gloved fingertip. The dosed tissue was then left for 2 hours at room temperature, 

protected from light. D-Squame® adhesive discs were used for tape stripping; 

each disc was pressed firmly against the skin using a D- Squame® disc 

applicator with a constant pressure of 225 g/cm2 for 5 sec. The marked area was 

stripped sequentially twenty times with the direction of stripping alternating for 

each strip. After each strip, both the adhesive disc containing the removed layer 

of stratum corneum and the remaining skin sample were analysed using a Leica 

MZ10 F stereomicroscope (Leica Microsystems, UK) with an ET-GFP filter to 



quantify the presence of fluorescent nanoparticles and show their distribution. All 

images were taken with an exposure time of 80 mS, gain 2, gamma 1 and 

wavelength 520 nm. Images were further analysed using ImageJ software 

(National Institutes of Health, USA) and normalised with the following equation: 
 

         Fluorescence intensity =
𝐼− 𝐼𝑏

𝐼0− 𝐼𝑏
× 100    equation 1  

where I is the fluorescence intensity of the nanoparticle-dosed skin sample or 

disc after each tape stripping and Io is the initial fluorescence intensity of the 

sample following dosing, massage and incubation but prior to any tape stripping. 

Ib is the background fluorescence intensity of the disc or skin; to allow each 

individual tissue sample to act as its own background fluorescence control (Ways 

et al., 2018), and recognising that this may change the sequential removal of the 

stratum corneum, background fluorescence was measured after each tape 

stripping of non-dosed skin samples using the same protocol as above. 

 
In addition, each adhesive disc was weighed before and after tape stripping in 

order to determine the fraction of the barrier removed or relative depth (x/L); 

where x is the thickness removed divided by the total stratum corneum thickness 

(L) and so relative depth within the stratum corneum varies between 0 (at the 

skin surface) to 1 at the interface with the viable epidermis (Russell and Guy, 

2012). Each disc was then centrifuged in 5 mL PBS at 3500 rpm for 10 minutes 

before the fluorescence intensity of the extract was assayed using a fluorescence 

spectrophotometer (Cary Eclipse, Varian Inc., US) at 494 nm excitation and an 

emission spectral range of 500 - 600 nm. 

 
The tape stripped skin area was then excised and placed on a weighing boat with 

the epidermis facing upwards and fully covered with OCT embedding medium 

and placed in dry ice. The frozen sample was stored at -80 ⁰C before tissue cross 

sectioning at -20 ⁰C using a Bright 5040 cryostat microtome (Bright Instruments 

Ltd., Luton, UK). Tissue was placed perpendicularly to the cutting blade (i.e. 

tissue cut from dermis to outer surface) to avoid dislocation of the nanoparticles 

from outside into deeper skin layer (Labouta et al., 2011a, 2011b). Cross-

sections (10 µm) were placed on microscopic slides and imaged using a Zeiss 

Axio Imager fluorescence microscope (Carl Zeiss, Jena, Germany). The samples 

were excited with a 488 nm filter in order to locate the labelled nanoparticles and 

with a DAPI filter to view the tissue. The two images were merged using Carl 

Zeiss software and analysed by ImageJ software. 

 
 

3 Results and discussion: 

 

3.1 Synthesis and characterization: 

 

Thiolated silica nanoparticle were synthesized by hydrolysis and self- 

condensation of 3-mercaptopropyltrimethoxysilane (MPTS) in the aprotic solvent 

dimethyl sulfoxide (DMSO) in contact with air, with NaOH as the catalyst. Sub-

100 nm cross-linked nanoparticles are formed through Si-O-Si and disulfide 

bonds. The nanoparticles were labelled with 5-IAF, where the iodoacetamide 

moiety of the fluorophore reacts with the sulfhydryl group in the nanoparticles. 



Fluorescently labelled nanoparticles were then PEGylated and both labelled 

thiolated and PEGylated silica nanoparticles were used in all experiments. It has 

been reported that a high grafting density of lower molecular weight PEG and 

decorating particles with PEG 5000 Da provide rapid mucus penetrating 

properties, whereas, nanoparticles became mucoadhesive when coated with 

PEG 10000 Da (Wang et al., 2008). Therefore, PEG 750 and 5000 Da were 

chosen for our experiments. 

The resulting nanoparticles significantly (P < 0.05) increased in size in the order 

thiolated < PEGylated 750 Da < PEGylated 5000 Da and they all had a narrow 

polydispersity index (PDI; Table 1 and Figure S1) and negative ᶚ- potential 

values due to the presence of thiol groups at their surface. Following PEGylation, 

the nanoparticles’ ᶚ- potential values reduced due to the polymer coupling with 

some of the free thiol on the surface of the nanoparticles, with the greater 

decrease seen for the larger molecular weight PEG also partially attributed to 

some charge shielding effects. Indeed, the Ellman’s assay showed a statistically 

significant (P<0.005) difference in free thiol content between thiolated and the 

PEGylated nanoparticles, and no significant difference between PEGylated 750 

and 5000 Da particles. The reduction in thiol content and increase in particle size 

indicates successful PEGylation of the nanoparticles (Table 1), but clearly these 

particles retain some free thiol groups at their surface – approximately 50% of 

those seen in the parent thiolated material. Nanoparticle concentrations were 

determined by freeze-drying 1 mL of nanoparticle suspensions and determining 

the weight of the solid residue. This concentration was used to calculate free thiol 

content before and after PEGylation. 

 

Nanoparticle Size 

 (nm) 

PDI ᶚ- potential 

(mV) 

Concentration 

(mg/mL) 

Free thiol content 

(µmol/g)* 

Thiolated 62 ± 3 0.207 ± 0.015 -47 ± 3 15 ± 1 289 ± 14 

PEGylated 750 Da 79 ± 1 0.214 ± 0.011 -42 ± 3 12 ± 1 144 ± 21 

PEGylated 5000 Da 89 ± 1 0.169 ± 0.010 -30 ± 2 20 ± 2 142 ± 2 

 
Table 1: Characterization of thiolated and PEGylated silica nanoparticles, n=3, values presented as 
mean ± standard deviation.  *The calibration curve used to calculate free thiol content is shown in Figure 

S2 

 

 

3.2 Stability of nanoparticles in skin homogenate: 

 

The skin possesses both enzymatic and non-enzymatic detoxification systems 

including glutathione (GSH) as an antioxidant (Connor and Wheeler, 1987) which 

acts as a direct free radical scavenger and quenches radicals by hydrogen atom 

donation resulting in the formation of glutathione disulphide (GSSG). However, as 

the reduced form of GSH is essential for cutaneous photo-protection, GSSG is 

recycled to GSH by GSH-reductase with hydrogen donation by nicotinamide 

adenine dinucleotide phosphate (NADPH). This process is extremely fast due to 

the high activity of the enzyme and it takes less than one minute to restore all 

cutaneous GSH (Connor and Wheeler, 1987). It was anticipated that nanomaterials 

with disulfide bonds are susceptible to degradation by GSH (Cui et al., 2012; 

Hayashi et al., 2016; Prasetyanto et al., 2016; Yang et al., 2016; Zhang et al., 2012; 

Zhou et al., 2017), and so the stability of the fluorescent label attached to the 

nanoparticle core before further decoration with PEG was investigated in skin 



homogenate.  The release of fluorescent dye from the fluorescent thiolated silica 

nanoparticles was examined in the phosphate buffer (“labelled TSNP’s”) and in 

skin homogenate, alongside assays of sodium fluorescein with skin homogenate 

as a positive control and the homogenate alone to detect auto-fluorescence; the 

homogenate showed no detectable auto- fluorescence during the study. The 

release of the fluorophore was measured over time (Figure 1) and sodium 

fluorescein was detected in the dialysate at 6 hours (4%) and reached (11%) at 72 

hours. The labelled particles showed a similar release profile when incubated in 

either buffer of skin homogenate with very low fluorescence first detected after 24 

hours and no significant differences in release in these two media (p > 0.05). 

Release of sodium fluorescein across the dialysis membrane from the positive 

control was significantly greater than release from the nanoparticles (p < 0.05). 
 

 
 

Figure 1: The release of fluorescent dye across the dialysis membrane. Labelled TSNP = 
fluorophore release from labelled silica nanoparticles in buffer; Homogenate = homogenate alone 
to test for autofluorescence; Homogenate/TSNP’s = fluorophore release from labelled silica 
nanoparticles in skin homogenate; Homogenate/Sodium fluorescein is the positive control of the 
fluorescent dye with homogenate. Study at 37 ⁰C, samples taken at 1, 6, 24, 48, 72 hours, n=3, 
values are presented as mean± standard error of mean. 

 
 

 

Doura et al. (2019) demonstrated that MPTS nanoparticles were resistant to GSH-

induced degradation and retained their spherical shape. In their experiments, they 

prepared various hybrid thiol-organosilica nanoparticles from different proportions 

of 3-mercaptopropyltrimethoxysilane (MPTS) and 3- 

mercaptopropyldimethoxymethylsilane (MPDMS) and detected the ratio of 

disulphide bonds to thiol groups in each sample by Raman spectroscopy. They 

investigated the degradability of the nanoparticles in 10 and 40 mM of GSH, 

compared with nanoparticles prepared from MPTS or MPDMS alone. They found 

that increasing the ratio of MPDMS increased the susceptibility to degradation by 

GSH. They also found that the introduction of MPDMS into nanoparticles prepared 

from MPTS induced the formation of disulfide bonds which was proportional to the 

ratio of MPDMS constituent (Doura et al., 2019). In our study, the particles 

produced from MPTS likewise showed no significant degradation in the skin 

homogenate. Further, both labeled and unlabeled nanoparticles were stored for up 

to 6 months and no flocculation or aggregation was observed, again in agreement 

with previous studies using similar nanoparticles (Ways et al., 2018). 



 

 
3.3 Tape stripping study: 

 

Equation 1 was used to quantify the fluorescence intensity of the skin and tape 

strips, and relies on subtraction of background fluorescence (Ib). Prior to dosing, 

we investigated the effects or tape stripping skin on the background fluorescence 

of the tissue. The experiments (in triplicate) showed a gradual reduction in the 

background intensity with tape stripping such that after 20 strips, the background 

intensity had fallen by a mean of 12%. These values were used for the background 

intensities in subsequent dosed studies. 

Tape stripping is increasingly used for bioavailability and bioequivalence studies 

(Herkenne et al., 2008; Pensado et al., 2019). However, specific study protocols 

vary, for example in cutting or shortening the hair prior to experimentation (Jensen 

et al., 2011; Klang et al., 2011; Nagelreiter et al., 2015; Patzelt et al., 2011). Here, 

the hair was shaved since preliminary studies showed that our nanoparticles bound 

strongly to shortened hair bristles even after 20 tape stripping (Figure S3 a) but 

binding was reduced with PEGylated nanoparticles (Figure S3 b &c). Keratin is rich 

in disulfide bonds and thiolated silica nanoparticles interact covalently with hair 

keratin (Bragulla and Homberger, 2009; Cruz et al., 2017; Gniadecka et al., 1998; 

Williams et al., 1994). PEGylation of the thiolated particles reduces the free thiol 

groups in the particle shell by about 50% (Table1) and may also screen remaining 

thiol groups on the particle surface. A similar trend with mucoadhesion to different 

tissues was reported where mucoadhesive properties of the thiolated silica 

nanoparticles were significantly decreased by PEGylation and penetration was 

improved (Irmukhametova et al., 2011; Mun et al., 2014b; Ways et al., 2018). 

Significant reductions (P<0.05) in fluorescence intensity of all tested nanoparticles 

and sodium fluorescein was evident after 2 hours of incubation on the skin surface 

and prior to tape stripping. The fluorescence intensity reduced to 12, 52, 7 and 10% 

for sodium fluorescein, TSNPs, PEGylated 750 Da and PEGylated 5000 Da TSNPs 

respectively which could be attributed to quenching of fluorescein (Glasgow, 2016; 

Song et al., 1995) and penetration into the follicles. Teichmann et al. reported 

recovery of 95% of sodium fluorescein dye from stratum corneum and 5% from 

follicular infundibula after differential stripping (Teichmann et al., 2005). The 

penetration of sodium fluorescein solution into stratum corneum has also been 

compared with that when loaded into PEGylated lipid nanocarriers (Rangsimawong 

et al., 2016). In another study, Zhang et. al. used transmission electron microscopy 

to study PEG-coated quantum dots applied to skin and reported localization within 

the lipid bilayers of the stratum corneum. This was attributed to the soft coating of 

PEG which enabled the quantum dots to enter the intercellular lipid matrix of the 

stratum corneum although this is unlikely the case for our larger PEGylated 

nanoparticles (Zhang et al., 2008). It is notable that a far larger proportion of the 

fluorescence remained at the skin surface 2 hours post-dosing of the thiolated silica 

nanoparticles (prior to tape stripping). Fourier transform Raman and infrared 

vibrational analysis of the stratum corneum demonstrated the presence of 

disulphide bonds in proteins (Barry et al., 1992; Gniadecka et al., 1998) and the 

keratins that form the stratum corneum are relatively soft and contain little cysteine 

compared to hair (Williams et al., 1994). Retention of the thiolated silica 

nanoparticles on the skin surface is thus likely attributable to the formation of 



disulphide bonds with the outer hair shaft and, to a lesser extent, stratum corneum 

keratins. 

We used spectroscopic and gravimetric analysis to generate nanoparticle 

distribution profiles as a function of stratum corneum depth (Figure S4). By 

assuming that the density of stratum corneum and area stripped are constant and 

knowing the weight of stratum corneum removed, the mass of sample removed 

can be related to tissue depth (Higo et al., 1993). The distribution profiles only 

showed significant differences between thiolated silica nanoparticles and sodium 

fluorescein (p < 0.05) and no significant differences between either of the 

PEGylated particles or the thiolated material (Figure 2). Sodium fluorescein has 

been reported to readily penetrate into the stratum corneum but less well into the 

deeper layers of the epidermis (Rangsimawong et al., 2016). Here, we see a 

reproducible penetration gradient down to approximately 60% of the stratum 

corneum thickness for the free dye (Figure 2). In contrast, there is no strong 

evidence for penetration of any of the nanoparticles into the intact stratum corneum 

with almost all particles removed by the second tape strip. Some fluorescence was 

seen but is attributed to particles remaining bound to the surface of the skin, held 

in skin furrows or adhered to the upper hair follicle and so were not removed by 

tape strips (Figure S4). 

 
 

 
 

Figure 2: Penetration depth of sodium fluorescein, TSNPs, PEGylated (750 & 5000 Da) TSNPs into the 
removed stratum corneum layers, n=3, P < 0.05, values are presented mean ±standard error of mean 
calculated using one-way ANOVA and Bonferroni post-hoc tests 

 

Fluorescent microscope images of skin sections were taken to visualize the location 



of nanoparticles and clearly demonstrated their binding to hair follicles (Figure 3). The 

thiolated silica nanoparticles (Figure 3a) can be seen to adhere to the skin surface and 

external surface of the hair follicle as well as reside in a skin furrow. The images show 

no evidence for penetration into the deeper skin layers, in agreement with the results 

obtained from the tape strips. Sodium fluorescein penetrated into the hair follicles and 

analysis of the skin section images revealed a mean maximal penetration depth of 700 

µm (Figure 3b). PEGylated nanoparticles penetrated into the hair follicles to a mean 

maximal depth of 450 µm and 1400 µm for PEGylated 750 Da (Figure 3c) and 5000 

Da (Figure 3d) nanoparticles respectively. 

 

 

 
 

 
Figure 3: Exemplar fluorescence microscope images of tape stripped pig skin sections (10 µm thick) after 
application of thiolated nanoparticles (a), sodium fluorescein (b), PEGylated 750 Da nanoparticles (c) and 
PEGylated 5000 Da nanoparticles (d). For each set, the first image uses an Alexa 488 nm (green) filter to 
show only the nanoparticles and the second image merges this with a DAPI (blue) filter to visualise the 
nanoparticles with the skin background. Scale bar 100 µm. 

 

 

Analysis of the images (12 images for each sample with three measurements for each 

image) revealed significant differences in particle penetration into the hair follicles with 

PEGylated 5000 Da nanoparticles penetrating deepest followed by sodium 

fluorescein, PEGylated 750 Da nanoparticles and the fully thiolated materials 

penetrated least into the follicle (p < 0.0005) (Figure 4). 
 
 
 
 
 



 
 

 
 

Figure 4: Depth of penetration into the hair follicles, n=12, all results are significantly different from each 
other (P <0.0005), values are presented mean ±standard error of mean calculated using one-way ANOVA 
and Bonferroni post-hoc tests. 

 

Sodium fluorescein is a low molecular weight compound (376 Da) that was shown 

above to penetrate into the stratum corneum, in accord with literature reports. This 

water-soluble dye was also reproducibly seen at a depth of 700 µm within the follicles, 

in the infundibulum and in the region of the sebaceous gland; Knorr et al. and Patzelt 

et. al. reported that the sebaceous gland is located ~ 600 µm to 900 µm deep within 

the terminal hair follicle (Knorr et al., 2009; Patzelt et al., 2011). As expected, the 

thiolated particles penetrated least well into the follicles, again attributed to their 

binding to keratin of the hair. PEGylation of these particles enhanced their deposition 

into the follicles compared to the parent thiolated materials with the PEG 750 

nanoparticles penetrating to a mean maximal depth of 450 µm, again in the 

infundibulum above the sebaceous gland. However, the particles decorated with larger 

molecular weight PEG penetrated deeper, to 1400 µm and close to the bulge region 

of the hair follicle (Vogt et al., 2007). 

 
Others have similarly demonstrated the value of PEGylation for enhancing drug 

delivery. A silica core/PEG shell nanocomposite promoted uptake into MCF-7 breast 

cancer cells (Slowing et al., 2007). Liposomes loaded with calcipotriol were coated 

with variable concentrations of PEG to enhance their stability and increased 

penetration into the skin in comparison to non-PEGylated counterparts. Whilst PEG 

increased hydration of the stratum corneum by binding to water molecules resulting in 



enhanced permeability of the stratum corneum, variability in penetration of PEG 

coated calcipotriol liposomes was also attributed to the PEG conformation on the 

liposome surface (Knudsen et al., 2012). Deposition of gold nanorods decorated with 

PEG has also been studied in skin (Mahmoud et al., 2017) and were shown to 

penetrate into the follicular compartments but to a lesser extent than hydrophobic gold 

nanorods. However, after 24 hours, accumulation of PEGylated gold nanorods in 

deeper skin layers was significantly higher than for other gold nanorod systems with 

the authors suggesting that trans-follicular diffusion was facilitated by the polymers 

hydrophilic properties. 

 
Our results illustrate that deposition into hair follicles is not solely by passive diffusion. 

Both the free dye and the PEGylated particles are hydrophilic and so diffusion theory 

would predict that the small molecular weight free drug would diffuse considerably 

faster than the nanoparticles. Penetration of the particles into the hair follicles is 

stimulated by movement of the hair, achieved by massaging the tissue in this study. 

The geared pump effect from hair shaft movement, described earlier, can carry 

particles deep within the follicle and it is notable that our largest nanoparticles, with 

PEG 5000 (89 nm diameter), penetrated deeper than the smaller PEG 750 material 

(79 nm diameter); it was suggested that particles closest in size to the hair cuticles 

~500 nm) would be driven deepest into the follicles (Lademann et al., 2009; Patzelt et 

al., 2011). Further, upwards flow of sebum secreted from sebaceous gland can act as 

both a physical and chemical barrier for nanoparticle diffusion (Knorr et al., 2009; 

Lademann et al., 2009). Though this study used excised skin, it is likely that residual 

sebum within the follicle provided an additional hydrophobic barrier to penetration of 

the dye and particles. 

 
The significantly different penetration depths of the two PEGylated particles are 

unlikely to result solely from the differences in their sizes. We have previously studied 

the diffusion of these nanoparticles in aqueous polymer solutions and water (Mun et 

al., 2014a). As expected, factors affecting diffusion of the nanoparticles were their size, 

the medium viscosity and the presence of interactions between the nanoparticles and 

the medium components. PEGylating nanoparticles enhanced their diffusivity in pure 

water, despite the size increase caused by functionalization, and this was attributed to 

the lubricating effect of PEG shell. PEGylation also reduced nanoparticle 

mucoadhesion to various tissues including the eye, the urinary bladder and nasal 

mucosa, again due a reduction in the exposed thiol groups on the particle surface 

which reduced binding, as seen here (Irmukhametova et al., 2011; Mun et al., 2014b; 

Ways et al., 2018). With reduced binding capacity, these particles also penetrated 

deeper in tissue. It was reported that PEG < 2000 Da forms short chains with loss of 

flexibility compared to when molecular weight is > 2000 Da (Owens and Peppas, 

2006). In our studies, PEG forms a soft shell on the surface of the nanoparticles which 

reduces the number of thiol groups exposed to bind with keratin and so facilitates 

particle penetration into the hair follicles. Moreover, deeper penetration into the 

follicles of the PEGylated 5000 Da nanoparticles compared to 750 Da PEG particles 

is due to the greater flexibility and length of PEG chains which can further enclose and 

shield the thiol groups of the silica nanoparticles. 

 

 

 

 
 



4 Conclusions: 

 

This study has demonstrated that nanoparticles can be designed to penetrate to 

defined depths within hair follicles. Thiolated nanoparticles bind to keratin and are 

localized on the skin surface and near to the skin surface in the hair follicle. When 

decorated with polyethylene glycol, approximately half the thiol groups are removed 

from the particle surface and so binding to keratin is greatly reduced. Nanoparticles 

functionalized with higher molecular weight PEG (5000 Da) penetrated deeper into the 

follicles, to near the bulge region, than those with lower molecular weight PEG (750 

Da) on their surface. The longer PAG chains are more flexible than their shorter 

counterparts and are better able to shield the remaining thiol groups on the particle 

surface and so allows deeper penetration by reducing particle-tissue binding. By 

manipulating the length of the PEG chain, it is feasible to targeted drug delivery to 

regions of the hair follicle. 
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