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ABSTRACT: This paper evaluates subseasonal precipitation forecasts for Africa using hindcasts from three models

(ECMWF, UKMO, and NCEP) participating in the Subseasonal to Seasonal (S2S) prediction project. A variety of veri-

ficationmetrics are employed to assess weekly precipitation forecast quality at lead times of one to four weeks ahead (weeks

1–4) during different seasons. Overall, forecast evaluation indicates more skillful predictions for ECMWF over other

models and for East Africa over other regions. Deterministic forecasts show substantial skill reduction in weeks 3–4 linked

to lower association and larger underestimation of predicted variance compared to weeks 1–2. Tercile-based probabilistic

forecasts reveal similar characteristics for extreme categories and low quality in the near-normal category. Although dis-

crimination is low in weeks 3–4, probabilistic forecasts still have reasonable skill, especially in wet regions during particular

rainy seasons. Forecasts are found to be overconfident for all weeks, indicating the need to apply calibration for more

reliable predictions. Forecast quality within the ECMWF model is also linked to the strength of climate drivers’ tele-

connections, namely, El Niño–SouthernOscillation, IndianOcean dipole, and theMadden–Julian oscillation. The impact of

removing all driver-related precipitation regression patterns from observations and hindcasts shows reduction of forecast

quality compared to including all drivers’ signals, with more robust effects in regions where the driver strongly relates to

precipitation variability. Calibrating forecasts by adding observed regression patterns to hindcasts provides improved

forecast associations particularly linked to the Madden–Julian oscillation. Results from this study can be used to guide

decision-makers and forecasters in disseminating valuable forecasting information for different societal activities in Africa.

KEYWORDS: ENSO; Madden-Julian oscillation; Precipitation; Forecast verification/skill; Hindcasts; Probability

forecasts/models/distribution

1. Introduction

Delivering useful subseasonal forecasts (between 2 weeks

and 2 months ahead) remains a great challenge for operational

forecasting centers, as this time scale is too long to retain much

of the influence of the atmospheric initial conditions and suf-

ficiently short to be dominated by the forced boundary con-

ditions. The lack of subseasonal precipitation forecast quality

over many regions worldwide has been identified by evaluating

near real-time forecasts and hindcasts made available by the

Subseasonal to Seasonal (S2S) prediction project (Vitart et al.

2017). The target goal of the S2S project is to address the

predictability gap between medium-range weather predictions

and seasonal climate predictions to improve forecast quality

on subseasonal time scales for a range of applications, for

instance, agriculture, water resource management, and other

socioeconomic activities.

The S2S database has been used to evaluate subseasonal

precipitation forecasts on a weekly basis (Vigaud et al. 2017a,b;

Coelho et al. 2018; de Andrade et al. 2019; among others). For

example, de Andrade et al. (2019) evaluated weekly precipi-

tation hindcasts from all models participating in the S2S proj-

ect, finding best agreement with precipitation observations

during the first two weeks lead and worst quality in subsequent

weeks, especially over extratropical regions. Weekly precipi-

tation predictions were also verified over summer monsoon

regions of the NorthernHemisphere and the East Africa–West

Asia sector (Vigaud et al. 2017b, 2018), both showing worst

quality for longer lead times (i.e., beyond two weeks lead).

Despite the fact that there is poorer precipitation forecast

quality within S2S models after the first two weeks lead, recent

studies have analyzed the role played by particular sources of

subseasonal predictability, such asElNiño–SouthernOscillation

(ENSO) and the Madden–Julian oscillation (MJO), in modu-

lating the quality of precipitation forecasts. Li and Robertson

(2015) evaluated weekly precipitation forecasts as a function of

ENSO and MJO metrics supporting the concept that particular
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climate drivers’ conditions can promote better subseasonal

predictions. Moreover, de Andrade et al. (2019) found a re-

duction in forecast quality after removing ENSO- and MJO-

related precipitation patterns from weekly forecasts. Other

drivers could also affect the quality of subseasonal precipitation

predictions, for instance, tropical–extratropical interactions

(Vigaud et al. 2019) and stratosphere–troposphere coupling

(Domeisen et al. 2020). For a more comprehensive descrip-

tion of relevant drivers of subseasonal predictability, the

reader is referred to Mariotti et al. (2020).

Among the many efforts to improve understanding of sub-

seasonal forecast skill over the past years, one important aspect

is forecast verification (Coelho et al. 2019). Several studies

have identified areas where precipitation forecast quality of

S2S models could be refined (e.g., Vigaud et al. 2018; de

Andrade et al. 2019). However, only few of those studies have

employed detailed verifications to analyze the attributes of

forecast quality defined in Murphy (1993). Since a single ver-

ification score is unable to evaluate different attributes of

forecast quality, an assessment of a set of metrics is required to

help obtain a fully comprehensive overview of S2S models’

ability to predict subseasonal precipitation (Coelho et al.

2018). Here, weekly precipitation forecast quality from three

S2Smodels is investigated over the African continent assessing

the attributes of deterministic and probabilistic forecast quality

using a variety of metrics. Such a comprehensive exploration of

subseasonal forecast quality not only has the potential to ad-

vance the scientific understanding, but also provide support to

forecasters and decision-makers in different sectors of society,

improving early warning systems and lives and livelihoods of

millions of people in Africa. Furthermore, an evaluation of

howwell models capture the relationships of important climate

drivers with African precipitation and its contribution to the

quality of forecasts also deserves investigation to deepen our

knowledge of the sources of subseasonal predictability. Thus,

this study provides an unprecedented weekly precipitation

forecast evaluation for Africa, examining different ensemble

prediction systems and key drivers modulating high-impact

weather events.

Section 2 outlines the datasets and methods employed to

evaluate the attributes of forecast quality. Section 2 also

provides a description of the methodology used to analyze

particular sources of subseasonal predictability and their links

to African precipitation forecast quality. The results of deter-

ministic and probabilistic forecast verification are presented in

section 3, followed by an assessment of key driver-dependent

forecast quality in section 4. A summary and conclusions are

given in section 5.

2. Data and methods

a. S2S hindcasts

Precipitation hindcasts from the S2S database were eval-

uated for the European Centre for Medium-Range Weather

Forecasts (ECMWF), the Met Office (UKMO), and the

National Centers for Environmental Prediction (NCEP)

models. These hindcasts have different configurations such as

forecast length, spatial resolution, frequency, period, ensemble

size, and coupling effects (Table 1); see Vitart et al. (2017) for

further details. Moreover, ECMWF and UKMO hindcasts are

produced gradually by updating their model versions according

to near real-time forecasts, whereas in the NCEP model hind-

casts have a fixed date for a given model version. We analyzed

ECMWF andUKMOhindcasts corresponding tomodel version

dates of the year 2018.

Four start dates per month were chosen based on UKMO

initializations (the 1st, 9th, 17th, and 25th). We selected the

closest start date for certain nonmatching ECMWF initiali-

zations. This discrepancy regarding models’ initialization

restricted a multimodel evaluation. To have a fair intercom-

parison among models, three perturbed members, extracted

from 1-day lag after initializations, were added to the NCEP

ensemble size. This procedure allowed all models having at

least seven ensemble members. Since the subseasonal time

scale is beyond the weather prediction limit, a weekly time

frame was employed for more adequately representing the

subseasonal forecast range. Weekly precipitation was obtained

considering four accumulation lead times: days 5–11 (week 1),

12–18 (week 2), 19–25 (week 3), and 26–32 (week 4).

b. Observational dataset

Hindcasts were verified using data from theGlobal Precipitation

Climatology Project (GPCP), version 1.2 (Huffman et al.

2001). Daily GPCP precipitation is produced by the National

Aeronautics and Space Administration (NASA), by blending

precipitation estimates from gauge stations and satellite

measurements, and sourced from the National Center for

Atmospheric Research (NCAR). GPCP data were linearly

interpolated to the 1.58 spatial resolution to match models

regridded resolution made available in the S2S database and

used to calculate accumulated precipitation for the weekly

periods defined in section 2a.

c. Forecast verification framework

Forecast verification is a process to evaluate the robustness

of an ensemble prediction system, providing a guide for

identifying its strengths and weaknesses when examin-

ing the joint distribution of forecasts and observations. A

common forecast verification practice consists of assessing the

attributes of deterministic and probabilistic forecast quality

by computing metrics depending on forecast type (Coelho

et al. 2019). Deterministic forecast verification metrics com-

pare quantitative forecasts to observations (e.g., rainfall amounts

in millimeters). The evaluation of deterministic forecasts is

most often conducted by analyzing the ensemble mean to

verify the value of using a set of perturbed initial condi-

tions rather than a single unperturbed forecast. Probabilistic

forecast verification metrics compare forecast probabilities

to observations (e.g., probability of above-normal rainfall).

Probabilities are usually examined in different categories

and obtained by taking the proportion of the ensemble

members falling in ranges defined by certain predefined

thresholds (e.g., 33rd or 67th percentiles). Specifically, binary

observations are used to assess probabilistic forecasts of di-

chotomous variables with two possible outcomes (e.g., rain or

no rain events).
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A variety of deterministic and probabilistic forecast verifi-

cation metrics were used to evaluate the attributes of forecast

quality defined in Murphy (1993). Attributes and metrics are

summarized below, with a more detailed description in Coelho

et al. (2019):

d Bias is the mean difference between the deterministic

forecasts and observations. Bias can indicate a model’s

overestimation (bias . 0) or underestimation (bias , 0),

but it does not provide any information on the magnitude of

the absolute error. Bias is assessed by the mean error

[ME; (1)]:

ME5
1

N
�
N

i51

F
i
2O

i
, (1)

where N denotes the sample size, Fi the forecast totals, and

Oi the observation totals.
d Association describes the linear relationship between deter-

ministic forecasts and observations. Forecasts with good

association are highly positively correlated with observa-

tions. The Pearson’s correlation coefficient [R; (2)] is a

common metric of association indicating the direction of

deviations [R close to 1 (21) indicates strong positive (neg-

ative) association]:
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where F 0
i denotes the forecast anomalies andO0

i the observed

anomalies.
d Accuracy is the difference between forecasts and obser-

vations, providing the magnitude of forecast errors. Thus,

the lower the difference, the better the accuracy. The

mean square error [MSE; (3)] assesses deterministic er-

rors, whereas the ranked probability score [RPS; (4)]

evaluates probabilistic errors for more than two probabil-

ity categories:
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where K is the number of categories, Piz is the cumula-

tive forecast probability and Oiz is the cumulative binary

observation for occurrence (Oiz 5 1) and nonoccurrence

(Oiz 5 0) of an event. RPS is a generalized version of the

Brier score (BS) for two categories.
d Skill evaluates the accuracy of forecasts relative to some

reference forecast, such as observed climatology. The skill

score [SS; (5)] indicates forecasts more (less) skillful than the

reference when is positive (negative):

SS5 12
S
f

S
r

, (5)

where Sf is the score for forecasts and Sr the score for the

reference forecast. A perfect SS would be equal to 1. The SS

assesses deterministic and probabilistic skill using the MSE

(3) and the RPS (4), resulting in the mean square skill score

[MSSS; (6)] and ranked probability skill score [RPSS; (7)],

respectively:

MSSS5 12
MSE

f

MSE
r

, (6)

RPSS5 12
RPS

f

RPS
r

, (7)

where MSEf and MSEr are the MSEs for forecasts (3) and

for a reference forecast, respectively. Here, RPSf is the RPS

for forecasts (4) and RPSr the RPS for a reference forecast.

RPSS is sensitive to ensemble size and a negative bias is

introduced for small ensemble sizes (Müller et al. 2005). To
overcome this sensitivity, we use a debiased (discrete) RPSS

[RPSSD; (8)] derived for any ensemble size and probability

category by adding a bias correction term on the reference

forecast (Weigel et al. 2007) rather than including a cor-

rection term by randomly resampling from climatology

(Müller et al. 2005):

RPSS
D
5 12

RPS
f

RPS
r
1D

. (8)

For equiprobable K categories, the correction term

D is defined as D 5 (1/M)[(K2 2 1)/6K], where M is

the ensemble size.
d Discrimination is the ability of forecasts at discerning be-

tween different observed outcomes. For dichotomous fore-

casts, it is the ability of a forecast at distinguishing between

occurrence and nonoccurrence of events, for instance precip-

itation falling in a tercile category. The relative operating

characteristic (ROC) diagram and the area under the curve

(AUC) are metrics adopted for assessing discrimination and

providing useful information for decision-makers. The ROC

TABLE 1. The main features of the three S2S operational models and their hindcasts.

Model Forecast length Spatial resolution Hindcast frequency Hindcast period Ensemble size Ocean coupled Sea ice coupled

ECMWF 46 days Tco639/319L91 Two per week Past 20 years 11 Yes No

UKMO 60 days N216 L85 Four per month 1993–2016 7 Yes Yes

NCEP 44 days T126 L64 Daily 1999–2010 4 1 3a Yes Yes

a Three more perturbed members, extracted from 1-day lag after initializations, were added to the NCEP ensemble size.
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diagram for a given event is obtained by plotting the hit rate

against the false alarm rate computed at different probability

thresholds. The hit rate is the ratio between the number of

correct forecasts of the event and the total number of oc-

currences of the event, whereas the false alarm rate is the

ratio between the number of noncorrect forecasts of the

event and the total number of nonoccurrences of the event.

The diagonal line in the ROC diagram is where the hit rate

equals the false alarm rate and indicates no discrimination.

Better discrimination is found when the ROC curve is

above the diagonal line and close to the upper-left corner,

indicating the hit rate exceeds the false alarm rate. The

AUC is computed from the ROC diagram joining the

points associated with each threshold to form a series of

trapezoids and adding their areas. The AUC is interpreted

as a score, indicating no (perfect) discrimination when

equal to 0.5 (1) (Kharin and Zwiers 2003a).
d Reliability measures the conditional bias in forecast proba-

bilities, indicating the extent of their over or underconfi-

dence. A reliable forecasting system is identified for all

probability thresholds when the probabilistic outcomes are

equal to the observed frequencies. For example, if a system

is reliable, we should expect an event to occur 60% of the

times the system issues a 60% probability of occurrence.

Resolution assesses the degree of variability in the observed

frequencies at different forecast probabilities. Sharpness

evaluates the ability of forecasts to predict extreme proba-

bilities. The attributes diagram (AD) is a useful way to

verify probabilistic forecasts by summarizing the ability of

ensemble prediction systems to represent the attributes

of reliability, resolution, and sharpness. The AD is con-

structed by plotting the observed frequency for different

forecast probabilities. Stratification is done by binning data

into different probability thresholds. The diagonal line in

the AD indicates perfect reliability in which the forecast

probabilities are equal to the observed frequency. The

horizontal line represents the observed climatological fre-

quency, indicating no resolution. The line of no-skill can be

found at the midpoint between the perfect reliability and

observed frequency climatology. Probabilities falling into

the area between the no-skill line and the vertical line

replicating the horizontal line contribute to increase skill

as demonstrated by the decomposition of the RPS/BS

(Murphy 1972, 1973). Histograms provide information on

the frequency of forecasts in each bin and the degree of

sharpness.

Evaluation was performed over the African continent and

adjacent regions to explore forecasting quality not only over

land, but also oceanic areas where important atmospheric

systems, such as the intertropical convergence zone (ITCZ),

are located. To analyze the regional performance of the

models, verification metrics were computed over four geo-

graphically selected African regions (Fig. 1), referred to as

West African Monsoon (WAM), Equatorial West Africa

(EWA), Equatorial East Africa (EEA), and Southern Africa

(SA). These locations were chosen to represent different

climate regions with particular rainy seasons (Zaitchik 2017).

For deterministic forecasts, ensemble mean anomalies were

obtained after subtracting the ensemble mean climatology

computed through a leave-one-out cross-validation method

without considering the verified year. Such an approach has

been applied to ensure that no information from a given

forecast is used in the verification procedure of the same

forecast (e.g., Vitart 2017). This should provide independence

between forecasts and the verification subset to avoid unfair

evaluation and minimize potential skill overestimation (Wilks

2006). For probabilistic forecasts, tercile categories (below-

normal, near-normal, and above-normal) were analyzed as

they are frequently used in forecasting and provide a useful

way to assess the model’s ability to distinguish between dry,

normal, and wet weeks. Tercile categories were defined using

precipitation totals for each model ensemble member and

employing a cross-validation method leaving one year out. The

lower and upper terciles were estimated after pooling all model

ensemble members together. Probabilities were obtained by

computing the fraction of ensemble members in each tercile

category. Ensemble mean anomalies and tercile probabili-

ties were calculated depending on the start date and lead

time. Observed anomalies and binaries were calculated in

the same way.

Verification metrics were calculated for each model and

lead time using forecasts where the start date falls within the

following seasons over the common period of 1999–2010:

FIG. 1. African regions analyzed in the present study. Black boxes

approximately denote the African regions reviewed by Zaitchik

(2017): West African Monsoon region (WAM; 4.58–19.58N,

16.58W–218E), Equatorial West Africa (EWA; 10.58S–10.58N,

7.58–25.58E), Equatorial East Africa (EEA; 10.58S–10.58N,

278–458E), and Southern Africa (SA; 34.58–128S, 128–40.58E).
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December–January–February (DJF), March–April–May (MAM),

June–July–August (JJA), and September–October–November

(SON). While these seasons may differ slightly from localized

rainy seasons, they represent the main wet seasons found

across Africa and are suitable for an overall evaluation. For

each model, 144 forecasts (12 starts per season over 12 years)

were examined using the available ensemble members shown

in Table 1. Statistical significance of the correlations different

from zero was analyzed using a two-sided Student’s t test

(Wilks 2006) with 95% significance level. The effective sample

size was calculated based on lag-1 autocorrelation (Livezey

and Chen 1983).

d. Sources of subseasonal predictability

ENSO, the Indian Ocean dipole (IOD), and the MJO are

important modes of S2S variability influencing African pre-

cipitation (e.g., Behera et al. 2005; Ratnam et al. 2014; Sossa

et al. 2017). Thus, their contribution to forecast quality was also

evaluated. For the sake of brevity, we have analyzed the driver-

dependent forecast quality using the ECMWF 11-member

ensemble mean only. We have considered a longer period

(1997–2014) and all available model version dates of the year

2017. Using more initializations provides larger sample sizes,

enhancing the statistical robustness. The datasets and meth-

odologies are described below.

1) DRIVERS’ INDICES

ENSO and IOD indices were obtained, respectively, by

averaging sea surface temperature (SST) anomalies in the

Niño-3.4 region (58S–58N, 1208–1708W) (Bamston et al. 1997)

and computing the dipole mode index (DMI) as the difference

of area-averaged SST anomalies between the west (108S–108N,

508–708E) and southeastern (108S–08, 908–1108E) tropical

Indian Ocean (Saji et al. 1999). The daily optimum interpo-

lation SST version 2 (OISST.v2) of the National Oceanic

and Atmospheric Administration [NOAA; Reynolds et al.

(2007)] was used as observational reference and SST hind-

casts from S2S database as predicting fields. Observed and

forecasted weekly SST was obtained by averaging daily

values over the four weeks defined in section 2a. SST anom-

alies were computed by removing the climatology from the

total field considering a cross-validation approach. Weekly

ENSO and IOD indices were normalized by the corre-

sponding standard deviation.

The real-time multivariate MJO [RMM; Wheeler and

Hendon (2004)] index was calculated as in Gottschalck et al.

(2010) and Vitart (2017), which follows the same approach

employed for obtaining this index made available in the S2S

database. The RMM index components (RMM1 and RMM2)

were computed by projecting latitudinally averaged daily

anomalies of zonal wind (850 and 200 hPa) and outgoing

longwave radiation (OLR) at the top of the atmosphere onto

the two dominant observed eigenvectors associated with the

MJO. Zonal wind at 0000 UTC from ERA-Interim reanalysis

(Dee et al. 2011) and daily interpolated OLR from NOAA

(Liebmann and Smith 1996) were used for calculating the

observed index. Zonal wind and OLR from S2S hindcasts

were selected as corresponding forecasts. Reanalysis and

hindcasts were linearly interpolated from a horizontal reso-

lution of 1.58–2.58, matching the same 144 longitudinal grid

points of observed OLR and eigenvectors. Zonal wind and

OLR anomalies were calculated by subtracting the clima-

tology from the total field considering a cross-validation ap-

proach. Low-frequency signals within verifying datasets were

filtered by removing the 120-day mean of the previous

120 days from each day. The 120-day mean was subtracted

from forecasts using a combination of observations and

hindcasts, filling with observed data the missing days pre-

ceding model’s initializations. Then, anomalies were nor-

malized by its respective observed normalization factor as in

Gottschalck et al. (2010). Last, anomalies were projected

onto the two leading eigenvectors and divided by the corre-

sponding observed standard deviation calculated by Wheeler

and Hendon (2004), generating RMM1 and RMM2 time se-

ries. Observed and forecasted weekly RMM components

were computed following a similar approach applied for ob-

taining weekly SST.

2) QUALITY OF FORECASTS RELATIVE TO DRIVERS’
SIGNAL

To explore the ability of forecasts to capture the relationship

between precipitation variability and different drivers, a simple

linear regression analysis between weekly precipitation and

drivers’ indices was performed using observations and hind-

casts in weeks 1–4 for initializations within DJF, MAM, JJA,

and SON. Over 18 years, 450 forecasts were used in DJF

(25 starts), 468 in MAM/SON (26 starts), and 486 in JJA

(27 starts). Modeled (observed) regression coefficients

were obtained by regressing out hindcast (GPCP) pre-

cipitation anomalies with forecasted (observed) drivers’

indices. Precipitation anomalies were computed as in

section 2c. Since significant associations can exist between

ENSO and IOD (e.g., Zhang et al. 2015), a multiple linear

regression approach was also employed to examine ENSO-

and IOD-related rainfall variability simultaneously. Regression

coefficients were scaled to one standard deviation of the in-

dex following Lo and Hendon (2000). A two-sided Student’s

t test (Allen 1997) was applied with 95% significance level

for evaluating statistical significance of regression slopes

different from zero. Effective sample size was determined as

in section 2c.

Forecast quality was initially analyzed through the absolute

difference between forecasted and observed regression coef-

ficients to determine model’s ability in representing drivers’

teleconnections to African rainfall. Next, observed and mod-

eled rainfall variations linearly dependent on drivers were,

respectively, removed from observed and predicted fields to

evaluate the association between observations and hindcasts

after subtracting ENSO-, IOD-, and MJO-related rainfall

patterns. After removing the modeled precipitation variability

associated with the drivers from hindcasts, the effect of adding

observed regression patterns, i.e., obtained by regressing

GPCP precipitation anomalies with observed drivers’ indices,

to the hindcasts was also examined to verify the quality of

calibrated forecasts. The regional average of the absolute dif-

ference and correlation between observations and forecasts
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was analyzed over the four regions shown in Fig. 1. Significant

correlations were obtained as in section 2c.

3. Forecast quality assessment

In this section, a subseasonal African precipitation forecast

quality assessment for three S2S models (ECMWF, UKMO, and

NCEP) is conducted for lead times from one to four weeks ahead

considering start dates in DJF, MAM, JJA, and SON during

1999–2010. For consistency between models, only results using

seven ensemble members of each model are shown as findings

indicated a slight improvement when examining the full ensemble

size of ECMWF. Although the first seven ensemble members of

ECMWF have been selected for evaluation, results are similar

if chosen at random. The below-normal category assessment

overall shows similar performance to the above-normal category,

whereas the assessment for the near-normal category indicates

unskillful forecasts. For this reason, probabilistic evaluation is

focused on results for the above-normal category, with results for

the other categories mentioned when necessary and made avail-

able in the online supplemental material.

a. Deterministic verification

Figure 2 shows the mean error between hindcast and ob-

served precipitation totals. Biases differ among seasons and in

FIG. 2. Mean error (ME) between the hindcast ensemble mean and observed precipitation totals for ECMWF, UKMO, and NCEP

models in weeks 1–4 for initializations during (a) DJF, (b)MAM, (c) JJA, and (d) SON over the 1999–2010 period. Units are accumulated

millimeters per week. Gray shading denotes a dry mask applied over regions where the observed weekly precipitation climatology is less

than 1mm for more than 50% of start dates within a season.
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ECMWF and NCEP are approximately constant throughout

the weeks over most regions; however, UKMO shows a drying

trend with lead time, particularly in DJF and JJA. In general,

ECMWF has the lowest biases over land compared to other

models, with roughly similar spatial patterns to UKMO,

except in DJF and SONwhen strong negative biases develop

over EWA coastal regions in UKMO (Figs. 2a,d). NCEP

generally has the opposite sign to ECMWF and UKMO over

East and south-southeastern Africa, with overestimation

(underestimation) for ECMWF and UKMO (NCEP) in

these regions notable during their wet seasons (SON and

DJF, respectively). Models have deficiencies in representing

precipitation near Mozambique and Madagascar in DJF,

which could affect subseasonal prediction of tropical cyclones

across the region (Kolstad 2019). Large positive biases seen on

the equatorial Atlantic and Indian Oceans in MAM (Fig. 2b)

are likely related to shortcomings in predicting the seasonal

migration of the ITCZ (e.g., Shonk et al. 2019). All models

show similar biases at weeks 1–2 over the Sahel in JJA (Fig. 2c),

with some evidence of a meridional tripole structure, which is

particularly zonally uniform in NCEP. The drying trend in

UKMO leads to strong negative biases in the core of theWAM

by weeks 3–4.

Linear correlation is used to evaluate association between

hindcasts and observed precipitation anomalies (Fig. 3).

Positive correlations are strongest for week 1 and reduce with

increasing lead time, with significant correlations mainly con-

centrated near the equator after two weeks lead, corroborating

FIG. 3. As in Fig. 2, but for the Pearson’s correlation coefficient (R) between the hindcast ensemble mean and observed precipitation

anomalies. Stipples indicate correlations statistically significant at the 95% level.
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with previous assessments (e.g., Li and Robertson 2015).Weak

associations are highlighted in weeks 3–4 over SA and adjacent

oceans, probably due to the natural unpredictability of the

extratropical fluctuations as suggested in de Andrade et al.

(2019). Low correlation over Central Africa, near Democratic

Republic of the Congo (DRC), suggests models’ failure in rep-

resenting variations on the meridional migration of tropical

convection throughout the year. However, the observationsmay

also be uncertain here due to low numbers of rain gauges

(Washington et al. 2013). Significant correlations are found over

East Africa up to week 4 for starts in DJF, MAM, and SON

(Figs. 3a,b,d), particularly for ECMWF. In JJA, high association

is shownoverWestAfrica near theGulf ofGuinea (GoG) for all

models, with significant correlations up to week 4 (Fig. 3c).

Maps of MSSS obtained by relating the MSE between

hindcasts and observed precipitation anomalies to the refer-

ence MSE are shown in Fig. 4. Skill substantially decreases

over most regions from week 1 to subsequent weeks. Skill is

more pronounced over East Africa in DJF, MAM, and SON

(Figs. 4a,b,d), showing, for example, positive scores up to week

4 during DJF for ECMWF. Skill in JJA is restricted to a region

of West Africa near the equatorial Atlantic (Fig. 4c). Despite

presenting large areas of positive correlation (Fig. 3), models

show negative MSSS as a remarkable characteristic in all

seasons, suggesting large errors at predicting precipitation

anomalies, especially UKMO and NCEP. This can be inves-

tigated by decomposing the MSSS into three squared com-

ponents (Murphy 1988).

FIG. 4. As in Fig. 2, but for themean square skill score (MSSS) between the hindcast ensemblemean and observed precipitation anomalies.

A zero anomaly forecast was adopted for representing the reference forecast.
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The first term is R (2), the second is the conditional bias

providing the forecast amplitude errors, and the third is the

unconditional bias (1), which is zero when considering anom-

alies. The conditional bias is computed as [R2 (Sf /So)]
2, where

Sf and So are the standard deviations of the forecasts and ob-

servations, respectively. By expanding the conditional bias, the

MSSS can be evaluated from [2R(Sf /So)] 2 (Sf /So)
2. When

either the correlation or the ratio of the standard deviations is

null, there is no skill improvement compared to the reference

forecast. This also holds true for negative correlations. The

ratio of the standard deviations indicates that models have

stronger underestimation (Sf /So , 1) for longer leads com-

pared to weeks 1–2 (Fig. 5b). Since the MSSS measures both

the linear association and the relationship between the

magnitude of the forecasted and observed anomalies, weak

positive correlations in many regions (Fig. 5a) and/or un-

derestimation of the magnitude of the anomalies leads to

large negative MSSS.

b. Probabilistic verification

Probabilistic skill is assessed through the RPSSD displayed

in Fig. 6. When not accounting for the small ensemble size,

RPSS is negative in most regions (Fig. S1 in the online sup-

plemental material). Negative RPSSD over climatologically

dry regions indicates that tercile distribution can be skewed

when the lower boundary is not well defined. RPSSD is positive

in most regions and lead times for ECMWF, whereas the other

models have a more mixed signal, with particularly strong

negative RPSSD over some regions. While ECMWF shows

positive skill over wide regions at all lead times, UKMO and

NCEP generally have limited skill beyond week 1, but UKMO

maintains relatively high skill over East Africa for starts in

MAM and SON (Figs. 6b,d) and NCEP over West Africa in

JJA (Fig. 6c). Counterintuitively, UKMO has poorest skill

near DRC during weeks 1–2 compared to subsequent weeks,

which is also evident to some extent in the MSSS assessment

(Fig. 4), and deserves additional investigation.

The ability of probabilistic forecasts to discriminate heavier

precipitation events is shown in Fig. 7 through ROC dia-

grams for the above-normal category using grid points over

different African regions. Good discrimination is found

when there is high hit rate combined with low false alarm

rate. For example, when above-normal rainfall over EEA in

SON is forecast with 60% of probability (square marker in

Fig. 7), forecasts of above-normal rainfall for week 1 result

in a 40%, 53%, and 48% hit rate against a 16%, 20%, and

23% false alarm rate for ECMWF, UKMO, and NCEP,

respectively. In contrast, little differences between hit and

false alarm rates for the same threshold indicate forecasts

with limited value in week 4. Thus, ROC diagrams can

provide support to forecast users to trigger advisory action

in the decision-making process.

The reduction in discrimination from weeks 1–2 to the fol-

lowing weeks (Fig. 7) is consistent with the reduction of fore-

cast quality seen in other metrics. Discrimination is slightly

better for ECMWF/UKMO over NCEP and EEA over other

regions, particularly in weeks 1–2, with AUC showing scores

around 0.7 in week 1. A ROC score of 0.7, for instance, indicates

that 70% of forecasts have higher probabilities of falling in the

above-normal category when above-normal precipitation occurs

compared towhen it does not occur. ROC scores near 0.5 indicate

the model cannot adequately distinguish between different out-

comes. This provides worthless random classifications after two

weeks lead for most regions.

Figure 8 shows the AD for the above-normal category using

grid points over the same regions analyzed in Fig. 7. Models

have better reliability and resolution in weeks 1–2 than weeks

3–4, as shown by colored lines closer to the solid diagonal line

and farther from the horizontal line. Indeed, only ECMWF

forecasts for week 1 fall into the zone of enhanced skill,

notably in EEA and SA. In general, ECMWF has slightly

better reliability and resolution than UKMO and NCEP in

the two highest bins at weeks 1–2. For weeks 3–4, models

show roughly similar features, though such comparable re-

sults are less apparent in the below-normal category for

EEA and EWA (Fig. S4). Probabilistic forecasts can be

marginally useful up to week 3 for most regions and even

week 4 in the below-normal category. Such forecasts may

have usefulness for decision-making as they are close to the no-

skill line and the slope of the colored lines is still positive

(Weisheimer and Palmer 2014).

Overconfidence is a noticeable feature in all weeks confining

higher (lower) probability below (above) the perfect reliabil-

ity, which means that an event conditioned on a forecast

probability of 70% is verified only about 50% of the time, but

an event conditioned on a forecast probability of 10% is veri-

fied about 20% of the time, for example. Mean forecast

probabilities are slightly higher than the mean observed fre-

quency for extreme tercile categories in the ECMWF and

UKMO models (not shown). This difference is more pro-

nounced for NCEP and it corroborates the lowest reliability

found among models (Fig. 8, Fig. S4). The reliability could be

improved by employing calibration, especially after week 2

when the reliability is reduced. For the near-normal cate-

gory, all models have lower mean forecast probabilities than

the mean observed frequency (not shown), and have no

resolution (Fig. S5). The histograms present sharper fore-

casts in weeks 1–2 compared to longer leads, with some cases

showing a U-shaped pattern concentrating high frequencies

close to the highest and lowest bins. Sharpness drops with

increasing lead time with maximum frequencies appearing

around climatological frequency (0.2–0.4).

4. Drivers modulation of forecast quality

The previous two sections show that models have best

subseasonal forecasting performance for 1–2 weeks ahead,

with ECMWF overall more skillful than UKMO and NCEP.

Here, the link between weekly African precipitation fore-

cast quality and important large-scale drivers, such as ENSO,

IOD, and the MJO is investigated using ECMWF hindcasts

during 1997–2014. The observed characteristics of weekly

African precipitation variability linearly associated with

those drivers are illustrated by regressing out observed rain-

fall anomalies with weekly mean of observed drivers’ indices.

Only regression coefficients for week 1 based on starts inDJF,
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FIG. 5. Regional average of the (a) correlation (R) between the hindcast ensemble mean and observed precip-

itation anomalies and (b) ratio of the standard deviations of the hindcast ensemble mean and observations (SF/SO)

over African regions (Fig. 1) for ECMWF (green line), UKMO (red line), and NCEP (black line) models in weeks

1–4 for initializations during DJF, MAM, JJA, and SON over the 1999–2010 period. Circle markers in (a) denote

correlation coefficients statistically significant at the 95% level.
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MAM, JJA, and SON are shown in Fig. 9, as they are roughly

similar in subsequent weeks.

Weekly ENSO-related rainfall variability is more pro-

nounced over East/Southeastern Africa in DJF compared to

other seasons (Fig. 9), with positive (negative) anomalies over

East (Southeastern) Africa. Additionally, negative (positive)

anomalies in West Africa/Sahel (East Africa) are associated

with El Niño influence during JJA (SON). IOD generally starts

developing in JJA and reaches its maturity in SON before

dissipating around December (Cai et al. 2018). Therefore, the

weak regression coefficients in DJF and MAM are likely not

related to this driver. A positive relationship is verified between

IOD and rainfall over Sahel in JJA and East Africa in SON. The

latter shows themost striking relations between IODand rainfall,

with increasing (decreasing) East African precipitation during

positive (negative) phases of the driver. Because there is signifi-

cant correlation between ENSO and IOD indices (Table 2), it is

likely that the regression patterns for these drivers include some

signal from the other driver, and when accounting for their

combined effects in the subsequent analysis, a multiple linear

regression is used. Differences between simple and multiple

regression patterns are most noticeable in SON, with the latter

showing in particular a weaker positive precipitation signal

associated with ENSO over East Africa (not shown).

FIG. 6. Discrete ranked probability skill score (RPSSD) between hindcast probabilities and binary observation obtained from precip-

itation totals in the tercile categories for ECMWF, UKMO, and NCEPmodels in weeks 1–4 for initializations during (a) DJF, (b) MAM,

(c) JJA, and (d) SON over the 1999–2010 period. Gray shading as described in Fig. 2. A climatological probability of 1/3 was used as the

reference forecast.
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FIG. 7. Relative operating characteristic (ROC) diagram between hit and false alarm rates computed using hindcast probabilities and

binary observation obtained fromprecipitation totals in the above-normal category overAfrican regions (Fig. 1) for ECMWF(green line),

UKMO (red line), and NCEP (black line) models in weeks 1–4 for initializations during DJF, MAM, JJA, and SON over the 1999–2010

period. The diagonal line is the line of no discrimination. Circle markers indicate the probability thresholds (0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3,

0.2, and 0.1) varying from higher values at bottom to lower values at top. Square markers for SON-EEA in week 1 represent the cor-

responding 0.6 threshold for each model (see text for details). Colored numbers denote the area under the curve (AUC) for each model.
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FIG. 8. Attributes diagram (AD) between forecast probability and observed frequency computed using hindcast probabilities and binary

observation of precipitation totals in the above-normal category over African regions (Fig. 1) for ECMWF (green line), UKMO (red line), and

NCEP (black line) models in weeks 1–4 for initializations during DJF, MAM, JJA, and SON over the 1999–2010 period. The diagonal (hori-

zontal) line indicates perfect reliability (no resolution) and the dashed line is the no-skill line. The vertical line replicates the horizontal line.

Histograms are divided into five probability bins (0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, and 0.8–1) plotted in ascending order from the left to the right

side against the frequency that each forecast probability was issued [ordinate; interval (horizontal grid lines) is the same as for the observed

frequency]. Error bars denote the 95% confidence intervals estimated from 1000 bootstrap samples obtained from the available samples.
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In DJF, RMM1/RMM2 are related to large precipitation

variations over Southeastern Africa (Fig. 9). In MAM, large

regression coefficients are slightly displaced to the north

compared to DJF, showing significant associations between

rainfall and different MJO phases in EWA (RMM1) and

during the East African long rains (RMM2). The boreal sum-

mer (JJA) is characterized by the MJO influence on WAM,

highlighting strong rainfall variability near the GoG and on

FIG. 9. Simple linear regression between observed weekly precipitation anomalies and weekly mean of Niño-3.4, DMI, and RMM

(RMM1 and RMM2 components) observed indices in week 1 for start dates in DJF, MAM, JJA, and SON over the 1997–2014 period.

Regression coefficients statistically significant at the 95% level are stippled. Units are accumulated millimeters per week. Indices are

normalized by their corresponding standard deviations. Gray shading as described in Fig. 2.
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westernmost countries, particularly for RMM1. The MJO-

related rainfall variations on the East African short rains are

verified over central-southern (easternmost) region when re-

gressing RMM2 (RMM1) with precipitation in SON.

Figure 10 shows the regional average of the absolute dif-

ference between regression coefficients of hindcast precipi-

tation anomalies with forecasted drivers’ indices and the

corresponding observed regression coefficients over African

regions (Fig. 1) during weeks 1–4. Largest differences are

linked to the RMM2 for most regions, except over SA in DJF.

These differences are more pronounced in EEA and WAM,

where precipitation variability is more closely related to

RMM2 compared to other regions (Fig. 9). Larger discrep-

ancies are also verified either for RMM1 or DMI over the

same regions compared to Niño-3.4. Notwithstanding, rain-

fall anomalies over EEA in MAM are only weakly associated

with RMM1 (Fig. 9) and IOD is usually inactive. Overall,

ENSO signal is not well captured over SA compared to other

relevant drivers in DJF, especially after week 1. Moreover,

absolute differences increase with lead time in EEA during

SON, which may affect subseasonal short-rains predictions.

When considering errors relative to the observed regression

patterns, i.e., dividing the absolute differences by the corre-

sponding observed rainfall response to the driver, the errors

are more balanced, except for DMI over EEA in DJF and

RMM2 over EWA in MAM (not shown). Forecasted re-

gression patterns suggest that largest errors in Fig. 10 are

related to model’s shortcomings in representing both the lo-

cation and amplitude of particular driver-related rainfall

anomalies (Figs. S6 and S7).

The modulation of subseasonal African precipitation fore-

cast quality by the strength of the drivers’ teleconnections

within the ECMWF model is investigated in Fig. 11. This

association is assessed by the regional average of the corre-

lation between observations and forecasts after removing the

observed and modeled regression patterns, computed be-

tween the corresponding precipitation anomalies and drivers’

indices, from observed and predicted fields, respectively.

TABLE 2. Correlations between the observed ENSO, IOD, and

MJO indices (Niño-3.4, DMI, RMM1, and RMM2) in week 1 for

start dates in DJF, MAM, JJA, and SON over the 1997–2014 pe-

riod. Correlations are roughly similar to the ones found in weeks 2–

4. Correlation coefficients statistically significant determined from

a two-sided Student’s t test at the 95% level are shown in bold.

Effective sample size was estimated as in section 2c.

DJF MAM JJA SON

Niño-3.4 3 DMI 0.17 20.06 0.23 0.60

Niño-3.4 3 RMM1 20.03 20.02 20.02 20.41

Niño-3.4 3 RMM2 20.06 20.20 0.22 20.35
DMI 3 RMM1 0.08 20.03 20.11 20.38

DMI 3 RMM2 20.03 0.06 20.12 20.22

RMM1 3 RMM2 20.11 20.12 0.15 0.25

FIG. 10. Regional average of the absolute difference between the linear regression of the ECMWF hindcast ensemble mean precipi-

tation anomalies with forecasted drivers’ indices and the corresponding observed regression coefficients over African regions (Fig. 1)

during weeks 1–4 for initializations in DJF, MAM, JJA, and SON over the 1997–2014 period. Observed (forecasted) regression coeffi-

cients were calculated using observed (forecasted) indices and observed (forecasted) precipitation anomalies. Amultiple linear regression

approach was employed to assess ENSO and IOD signal on rainfall simultaneously (see text for details). Indices were normalized by their

corresponding standard deviations. Units are accumulated millimeters per week.
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Lowest correlations are verified when all driver-related re-

gression patterns are sequentially subtracted compared to

when no removal is considered. This difference is more

pronounced for longer leads and particular regions, such as

EEA in DJF/SON. The impact of removing both ENSO and

IOD signals is more noticeable in DJF and SON over EEA

than in other seasons and regions, with larger ENSO (IOD)-

related effects in the former (latter) season. Intriguingly, the

impact of removing the IOD (or IOD1ENSO) signal in

SON affects forecast association more than the impact of

removing all drivers. This could be related to the fact that all

indices are significantly correlated during the period under

consideration (Table 2), which means may be removing the

same signal in different ways. It is well known that ENSO

and IOD are interannual modes of variability and their

patterns project onto the RMM index, in particular for

ENSO (Wheeler and Hendon 2004). When computing the

RMM index, the methodology subtracting the previous

120 days is supposed to account for removing low-frequency

variations (see section 2d). However, such approach will not

necessarily be effective in the drivers’ developing and de-

caying phases as the last 120 days may not include their

signatures. Thus, the correlations between ENSO/IOD in-

dices and the MJO index are not physically easy to inter-

pretate and it may not be fair to perform a multiple linear

regression including all indices without underlying physical

understanding. Additionally, the correlations between RMM

components are nonzero likely because the two eigenvectors

were calculated over all seasons and the correlations in indi-

vidual seasons might not be null.

Forecast quality in MAM/JJA is more affected by sub-

tracting the MJO-related rainfall variability than other drivers

(Fig. 11). This would be expected since ENSO and IOD are

usually weak or inactive during those seasons. When assessing

the impacts of removing the MJO-related rainfall variability

individually, lowest correlations are found for all weeks after

subtracting RMM2 signal over EEA in MAM and WAM in

JJA (not shown). In contrast, RMM1-related rainfall vari-

ability has a more significant association with forecast quality

in the first two weeks over EWA in MAM (not shown).

Although a different period has been analyzed in section 3a

(1999–2010), correlations for ECMWF in Fig. 3 could be linked

to the sources of subseasonal predictability examined here,

with large associations in regions where those drivers have

strong linear relationships with precipitation (Fig. 9).

To further explore drivers’ signals on forecast quality, Fig. 12

displays the regional average of the correlation between

observations and forecasts after adding the corresponding

observed regression patterns to hindcasts, that is replacing

the modeled linear response to the driver with the observed

response to the driver. The general picture is that a clear

improvement in forecast quality is shown if all observed

driver-related regression patterns are added to hindcasts

and compared to the ‘‘NO ADDITION’’ case (i.e., using

FIG. 11. Regional average of the correlation between the ECMWF hindcast ensemble mean and observed precipitation anomalies over

African regions (Fig. 1) during weeks 1–4 for initializations in DJF, MAM, JJA, and SON over the 1997–2014 period. Correlations were

obtained after removing particular observed and forecasted regression patterns (colored bars), calculated between the corresponding pre-

cipitation anomalies and drivers’ indices, from observations and hindcasts, respectively. Amultiple linear regression approach was employed

to assess ENSO and IOD signal on rainfall simultaneously (see text for details). ‘‘ALL’’ denotes that the correlation was computed after

subtracting sequentially all drivers’ regression patterns. ‘‘NOREMOVAL’’ indicates that the correlationwas obtainedwithout removing any

regression pattern. Hatches over the bars denote correlation coefficients are not statistically significant at the 95% level.
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uncalibrated forecasts), especially in weeks 3–4. These en-

hanced associations mostly respond to the MJO-related rain-

fall variability, in particular owing to RMM2 signals (not

shown), but there is also an improvement in association in

response to ENSO and IOD over EEA in SON. This may in-

dicate that better subseasonal predictions of specific MJO

phases and its teleconnections could help improve the quality

of weekly rainfall forecasts over most regions analyzed here.

5. Summary and conclusions

This study has conducted an evaluation of the quality of

subseasonal precipitation forecasts over Africa and examined

its relationships with particular climate drivers. A compre-

hensive assessment of forecasts depends on how well models

represent the attributes of forecast quality defined in Murphy

(1993). We initially investigated weekly accumulated African

precipitation forecast quality using hindcasts provided by three

S2S models (ECMWF, UKMO, and NCEP) and precipitation

from the GPCP dataset. Start dates within DJF, MAM, JJA,

and SON were selected to assess forecasts from one to four

weeks ahead during 1999–2010. Deterministic and probabilis-

tic forecasts were evaluated employing a variety of metrics to

provide a more detailed assessment. Then, weekly precipita-

tion forecast quality was linked to key drivers (ENSO, IOD,

and the MJO) by exploring the ECMWF model’s ability in

representing drivers’ signals on African precipitation and their

contribution to the quality of forecasts during 1997–2014.

The deterministic evaluation indicated significant correla-

tions greater than 0.4 between hindcasts and observations for

all models in weeks 1–2 over East Africa in DJF/MAM/SON

and near GoG in JJA. This corroborates bestMSSS findings, in

which skill in weeks 1 and 2 was improved up to 70% and 50%

relative to the reference forecast, respectively. Further inves-

tigation of this correspondence was provided by decomposing

the MSSS, revealing unskillful predictions linked to low fore-

cast association and/or large underestimation of predicted

variance. Analysis of bias indicated a large overestimation

(underestimation) in wet regions during particular rainy sea-

sons for ECMWF and UKMO (NCEP), though over WAM in

JJA models showed a similar bias pattern with a meridional

tripole structure.

The evaluation of probabilistic forecasts showed large defi-

ciencies in the near-normal category. Low forecast quality in

this category has been related to the fact that such forecasts

deviate very little from tercile-based climatological probability

(Kharin and Zwiers 2003b). The consequences of issuing poor

forecast quality in the near-normal category can be very

harmful for forecasters and users. Leading, for example, to

increased uncertainty in any tercile-based forecast information

and reduced effectiveness of such information in decision-

making. Thus, some operational forecasting centers assign the

climatological probability to the near-normal category and is-

sue outlooks for the most likely outer tercile category (Peng

et al. 2012). Erroneous forecasts in the near-normal category

indicate the need to review the scientific knowledge and de-

velop improved methods of estimating probabilities (Kharin

and Zwiers 2003b).

One the other hand, more skillful forecasts with roughly

similar characteristics were identified in the outer tercile

FIG. 12. As in Fig. 11, but for correlations obtained after adding particular observed regression patterns (colored bars) to hindcasts

analyzed in Fig. 11. ‘‘ALL’’ denotes that the correlation was computed after adding sequentially all drivers’ regression patterns. Gray bars

are equivalent to those in Fig. 11, with no removal or addition of any regression pattern to observations and hindcasts.
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categories. These forecasts showed better discrimination over

EEA compared to other regions, particularly in weeks 1–2.

AUC could quantitatively summarize models’ performance to

discriminate extreme events. For example, ECMWF correctly

predicted around 70% (65%) of above-normal forecasts when

above-normal rainfall occurred in EEA during the first (sec-

ond) week of forecasts. Nevertheless, this agreement reduced

to less than 60% of forecasts in subsequent weeks, indicating

forecasts with limited value to forecasters and decision-makers.

Despite having found better reliability, resolution, and sharp-

ness in weeks 1–2, with slightly enhanced skill for ECMWF over

EEA/SA in week 1, overconfidence was verified in all weeks,

showing probabilities closer to the climatological distribution for

longer lead times. Since models’ probabilistic skill can be asso-

ciated with other attributes, such as reliability and resolution, it

is suggested that overconfidence has increased forecasting er-

rors, inducing more unskilled forecasts, especially beyond two

weeks lead, as verified in the RPSSD assessments.

One aspect of the forecast verification we have not addressed

is the relation between metrics analyzed and its practical im-

plications for forecasting routines. In terms of deterministic

forecasts, forecasters would judge how skillful forecasts are by

relating the MSSS to correlation and the ratio of the forecasted

to observed variances. Forecast quality would be determined by

assessing the overall balance between those metrics, with high

correlation and small variance errors indicating more skillful

forecasts. For probabilistic forecasts, skillful outcomes could be

identified by relating RPSSD to the overall balance between

reliability and resolution. Forecasters would identify more

skillful forecasts when model’s accuracy is large owing to more

reliable forecasts and improved resolution. AUCwould provide

similar qualitative information as the resolution assessment

(Toth et al. 2003).

When assessing the ability of the ECMWF model in repre-

senting particular climate drivers’ signals on regional African

rainfall, it was found larger errors in capturing rainfall varia-

tions linearly related to the MJO-RMM2 index over most re-

gions compared to other indices (RMM1,DMI, Niño-3.4). This
suggests that themodel does not reproduce the local impacts of

the MJO properly and in particular those phases associated

with RMM2 (i.e., 2 and 3; 6 and 7). Shortcomings in simulating

driver-related rainfall variability could affect subseasonal pre-

dictions of important weather systems influencing African

rainfall, as, for instance, ITCZ and tropical cyclones.

To analyze weekly forecast quality linked to the strength of

drivers’ teleconnections, regional correlations between obser-

vations and hindcasts were calculated after removing the cor-

responding driver-related rainfall regression patterns from

observations and forecasts. When removing all drivers’ signals

sequentially, results showed significant reduction in association

compared to when no subtraction was considered. The removal

of regression patterns individually indicated that the MJO

contribution to forecast quality was more dominant during

seasons when ENSO and IOD are usually inactive, such as

MAM/JJA. Although ENSO is expected to be correlated with

EEA rainfall during the short rains season (e.g., Hoell et al.

2014), enhanced associations were particularly linked to IOD.

A multiple linear regression analysis revealed that a large

portion of the ENSO signal on EEA rainfall during SON can

be attributed to the IOD.

It is worth noting that even verifying forecast quality closely

related to ENSO and IOD during DJF and SON, respectively,

the effect of calibrating forecasts by adding observed re-

gression patterns to hindcast revealed improved forecast as-

sociations especially linked to the MJO. Despite identifying

significant associations, the drivers analyzed could not ac-

count completely for the overall forecast quality. The fact the

significant correlations remained after removing ENSO and

IOD effects indicates that the quality of forecasts does not

depend solely on these interannual modes of variability.

Furthermore, while as significant contributor to the forecast

quality the MJO is not the only important source of sub-

seasonal predictability. This suggests there is a need for

assessing other drivers, including but not limited to, SST

variability over the GoG and soil moisture initializations.

However, our results still support that forecast quality of

weekly rainfall over Africa is regime-dependent, i.e., re-

lated to the major tropical sources of S2S predictability.

Moreover, it is clear that improving the representation of

these drivers—and their regional impacts—within the ECMWF

model has the potential to deliver better subseasonal predictions

for Africa.

This paper investigated single models when developing a

weekly precipitation forecast verification framework for Africa.

Combining forecasts from amultimodel perspectivemay help to

improve resolution and discrimination of predictions (e.g.,

Vigaud et al. 2018). Different calibration methods, such as

model output statistic (e.g., Doss-Gollin et al. 2018), should be

explored to identify which is the best one practice to be em-

ployed for delivering more reliable forecasts to operational

centers and applications communities. Although these afore-

mentioned techniques have not been adopted here, this com-

prehensive verification guide for forecasting weekly rainfall

across Africa provides a valuable tool for forecasters and

decision-makers to better understand the African regions and

seasons with useful subseasonal skill. Furthermore, the results

linking knownS2S driverswith forecast quality in this study have

huge potential to assist forecasters to better interpret regime-

dependent skill, which, if successfully communicated, can in-

crease confidence in its appropriate use in decision-making

across a range of sectors and societal applications.
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