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Abstract 7 

Ground based thermal cameras are used to observe urban surface temperatures (Ts) with an 8 

unprecedented combination of: temporal and spatial resolution (5 min and ~0.5 m → 2.5 m), spatial 9 

extent (3.9 ha), instrument number (6 static cameras) and surface heterogeneity (mixed high rise and 10 

vegetation). Unsupervised classification of images by geometry and material properties (surface 11 

orientation, albedo, solar irradiance, and shadow history) is facilitated by a detailed three-dimensional 12 

surface model (430 m x 430 m extent) and sensor view modelling. From detailed source area analysis, 13 

9.5 % of the area is observed by the cameras. Across all camera pixels, the 5th - 95th percentile Ts 14 

differences reach 37.5 K around midday. Roofs have the greatest diurnal Ts range (290.6 K → 329.0 15 

K). Ts differences across sunlit sloped roofs reach 23.3 K. Walls of different cardinal orientations 16 

consistently differ by > 10 K between 10:00 and 15:00. Shadow tracking within images is used to 17 

model cooling rates, where recently shaded (< 30 min) ground can be 18.6 K warmer than equivalent 18 

unshaded Ts. West walls remain warm past sunset and are 1.2 K warmer than north walls at 23:00 (~4 19 

hours after sunset). Recently shaded walls cool exponentially to ambient Ts at a similar rate as the 20 

ground, but four times slower than roofs. The observed Ts characteristics are anticipated to have a 21 

wide range of applications (e.g. evaluation of urban surface energy balance models, ground-truthing 22 

of satellite thermal remote sensing). 23 

1. Introduction 24 

Urban surface temperature (Ts) is an important control in the surface energy balance (Krayenhoff and 25 

Voogt, 2007) that has distinct characteristics across cities (Offerle et al., 2006). There is increasing 26 

interest in Ts observations with high temporal and spatial resolution at facet (e.g. roof, wall, ground) 27 

and sub-facet (e.g. materials, shadowing) scales as the degree of urban modelling complexity required 28 

for atmospheric models is unclear (Chen et al., 2011). Numerical weather prediction (NWP) 29 

frequently characterises the urban surface energy balance by facet (e.g. TEB, Masson, 2000; 30 

MORUSES, Porson et al., 2010; SLUCM, Kusaka and Kimura, 2004; BEP, Krayenhoff et al., 2020). 31 

Increasingly complex and realistic sub-facet details within urban areas are resolved by models for: 32 

computational fluid dynamics (CFD) (Toparlar et al., 2017), sub-facet surface energy balance (e.g. 33 

TUF3D, Krayenhoff and Voogt, 2007; THERMORender, Xu and Asawa, 2020), thermal radiation 34 

stress (e.g. SOLWEIG, Lindberg and Grimmond, 2011; RayMan, Fröhlich et al., 2019) and building 35 
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energy (e.g. EnergyPlus, Crawley et al., 2001). Such models may have Ts as a prognostic variable 36 

which requires observational evaluation across the facets resolved by the model processes. 37 

High temporal and facet-scale resolution urban Ts observation for model evaluation faces many 38 

challenges resulting in a general lack of such studies (Toparlar et al., 2017). Exploiting space-borne 39 

data for evaluation (e.g. Alexander et al., 2015 using MODIS; Toparlar et al., 2015 using Landsat) is 40 

constrained by: low revisit times, a view bias of horizontal surfaces (Hu and Wendel, 2019), and low 41 

spatial resolutions such that one pixel may cover the entire model domain (e.g. MODIS, Meteosat 42 

Second Generation). Thermal cameras on airborne platforms (e.g. helicopters Hénon et al., 2012; 43 

Antoniou et al., 2019; drones Gaitani et al., 2017; Naughton and McDonald, 2019) can view the 44 

convoluted urban surface at facet-scale but also have low revisit times and directional view bias 45 

(Lagouarde et al., 2004). These studies typically assume no atmospheric effects (Meier et al., 2011; 46 

Morrison et al., 2020) on observations. From ground-based platforms, thermal cameras have potential 47 

to supersede point-based in-situ sensors (e.g. thermocouples used by e.g. Kanda et al., 2005; Rotach et 48 

al., 2005; Pearlmutter et al., 2006) due to higher temporal and spatial resolutions to observe both 49 

inter- and intra- facet variations (e.g. Alchapar et al., 2014). A few studies (e.g. low-rise suburb, 50 

Adderley et al., 2015; scale model, Morrison et al., 2018) achieve adequate spatial coverage but are 51 

limited to simple surface heterogeneity. Ground- or airborne sub-facet thermal imagery across more 52 

realistic cities is rare, given the challenges with: logistics to obtain adequate camera views of the 53 

convoluted three-dimensional surface and classifying the observations to know what is actually 54 

sampled and therefore can/should be compared to model outputs. Sub-facet resolution sampling is 55 

done on foot at street level (e.g. Lee et al., 2018) or with vehicle traverses to sample more walls and 56 

ground (e.g. Voogt and Oke, 1997; Hilland and Voogt, 2020). Other thermography observations have 57 

increased spatial coverage using Asano and Hoyano's (1998) spherical sampling technique (e.g. 58 

Acuña Paz y Miño et al., 2020), rotating masts (Adderley et al., 2015), or multiple cameras (e.g. 59 

Morrison et al., 2020). Classification methods have used time consuming and subjective techniques 60 

such as manual digitisation (Hartz et al., 2006; Lee et al., 2018; Antoniou et al., 2019) or supervised 61 

clustering (Voogt and Oke, 1997; Hénon et al., 2012). To expand classification possibilities, Hilland 62 

and Voogt (2020) use concurrent visible imagery. 63 

The objectives of this paper are to: (i) outline an unsupervised and objective method to analyse 64 

surface-based thermal remote sensing images and (ii) investigate the drivers of urban Ts variability at 65 

a high level of detail. The Morrison et al. (2020) London network of six ground-based infrared 66 

cameras is used to obtain unprecedented Ts detail (5 min temporal and ~ 1 m spatial resolution) for a 67 

local-scale area, giving unique insight into urban Ts variability. A digital surface model (DSM) is used 68 

with perspective projection and radiative transfer modelling to objectively classify observations by 69 

transient sun-surface geometry effects that would not be possible by manual or supervised means. 70 
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2. Methods 71 

To investigate the drivers of urban Ts variability, ground-based thermal camera observations are 72 

processed to determine the surfaces “seen” across a range of scales, from building scale features 73 

(facet, orientation and bulk material) through to sun-surface geometry and shadow history at the sub-74 

facet scale.  75 

2.1. Study area and observations 76 

Observation sites in the Borough of Islington, London, UK (51°31’35” N, 0°06’19” W) on two high 77 

rise residential tower blocks are identified (ID) as “IMU” and “WCT” (IMU at 74 m agl (above 78 

ground level); WCT 36 m agl) (Fig 1a). The study area covers a real world (RW) area with irregular 79 

street pattern with streets often lined with deciduous trees. There is a mix of residential and 80 

commercial buildings (often four to six storeys tall) arranged in terrace rows or large single units (Fig 81 

1d). 82 
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 83 
Fig 1. Plan view of study area with: (a) height of all surfaces above sea level (asl) with building footprints (black lines, from 84 

Evans et al., 2011), (b) orthorectified RGB image from a mosaic of Google Earth (Google, 2019) images with 85 
locations (symbols) of the study sites, (c) a render of the “model world” (MW) digital surface model (DSM) and 86 
vegetation canopy element (VCE) geometry with DSM (white) and VCE (green) seen by the cameras located (pink 87 
dots) around the observation sites with different view directions (pink arrows) and unique camera identification 88 
(white) numbers (Table 1 gives details), (d) Digital camera image looking southeast and next to camera number 4 89 
(C4) on 25th Oct 2017. (a – c) use Coordinate Reference System WGS84 UTM grid zone 31N. (a-c) are modified 90 
from Morrison et al. (2020). 91 

Optris PI-160 (Optris GmbH, 2018) longwave infrared (LWIR) cameras (Table 1) measure upwelling 92 

longwave radiation from the study area (Fig 1c) for 27th – 28th August 2017 (mainly clear-sky summer 93 

days). The cameras have multiple view angles (Table 2) allowing various facets of the complete 94 

canopy surface to be sampled. Morrison et al. (2020) provide details on the study area and the 95 

observations, including: camera siting, measurement procedure, meteorological conditions, and the 96 

atmospheric and emissivity corrections of observations to estimate Ts from the at-sensor brightness 97 

temperatures. Downwelling shortwave (SW) irradiance (ESW
↓, W m-2) from a Davis Vantage Pro 2 98 

weather station located 114 m agl, 1.1 km southeast of IMU aids the image classification. 99 
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Table 1. Measurement and corrections used to determine surface temperature (Ts) from longwave infrared (LWIR) cameras. 100 

Table 2. Siting properties of the ground based LWIR cameras installed on two high-rise residential towers named “IMU” and 101 
“WCT” within the study area (Fig 1).  102 

2.2. Image classification 103 

To facilitate image classification, the RW study area and instrumentation are represented in a “model 104 

world” (MW). The MW uses a vector-based 3D DSM with a 3D mesh of triangles and a voxelated 105 

representation of vegetation covering the RW study area (Fig 1). The DSM extends 430 m x 430 m 106 

horizontally to cover the camera source areas. The MW also uses sensor view modelling to replicate 107 

the RW camera perspectives (hereafter “MW cameras”), whereby the DSM is projected on to the MW 108 

camera image plane, using a pinhole camera projection (Hartley and Zisserman, 2004).  109 

Modelled camera perspectives determine various surface types “seen” by each camera pixel (x, y). 110 

Types of surface are differentiated by class (i) at timestep t for each pixel [i(x, y, t)]. Within class i, 111 

three surface properties are defined (Table 3): orientation and material (Σ), sun-surface geometry 112 

(bidirectional reflectance factor, BRF) and shadow history (time in shade, tshd, min). Thus i principally 113 

describes sun-surface geometry which is a key driver of Ts variability (Krayenhoff and Voogt, 2016; 114 

Morrison et al., 2018). 115 

Many features of the MW are created and managed by the Discrete Anisotropic Radiative Transfer 116 

(DART) model (Gastellu-Etchegorry et al., 2012). DART allows 3D radiative transfer (RT) processes 117 

to be simulated in both natural and urban landscapes in the visible to LWIR regions of the 118 

Property Description 

Platform Static ground-based 

Sample rate 1 min 

Temporal resolution  5 min (median of samples at end of interval) 

Image resolution 160 x 120 pixels 

Temperature resolution 0.1 K 

Number of cameras 6 

Observation campaign period 7th July – 10th Nov 2017 (here 27th – 28th August) 

Enclosure Custom built enclosures (Morrison et al., 2020) 

Radiometric calibration Manufacturer calibrated 2 months prior to study 

Accuracy ± 2 K 

Spectral range 7 – 14 μm, see Morrison et al. (2020) 

Image distortion correction Rectilinear correction; see Morrison et al. (2018) 

Atmosphere correction Multi line of sight; see Morrison et al. (2020) 

Emissivity correction Corrected for multiple scattering with anisothermal 

surface emission; see Morrison et al. (2020) 

Camera 

ID 

Location 

Site ID 

Field of View (°) 

horizontal x vertical 

Cardinal  

Facing 

Viewing 

 Zenith Angle (Θ, °) 

Median Path 

Length (m) 

C1 IMU 68.6 x 54.2 E 46.5 88.8 

C2 IMU 62.6 x 49.1 NE 51.7 97.9 

C3 IMU 62.8 x 49.2 NWW 52.9 106.6 

C4 IMU 37.3 x 28.4 SE 56.7 122.7 

C5 WCT 38.4 x 29.3 SW 66.6 79.0 

C6 WCT 62.4 x 48.9 W 61.7 67.5 
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electromagnetic spectrum using a ray tracing approach. Here DART is used to simulate the BRF 119 

“seen” by each MW camera pixel, shown by Morrison et al. (2018) for simple building geometry to 120 

differentiate sunlit and shaded areas. For a full description of DART see Gastellu-Etchegorry et al. 121 

(2015). 122 

Orientation and material (Table 3) for each camera pixel [Σ(x, y), Fig 2b] is obtained using Blender 123 

rendering software (Blender, 2018), where DSM triangle colours are rendered for each MW camera 124 

image perspective (Morrison et al., 2018 for details). A pixel is Σmixed(x, y) (dark grey, Fig 2b) if it (a) 125 

has more than one surface and orientation property rendered or (b) views surfaces beyond the MW 126 

extent (e.g. Fig 2b C2, top of image). Pixels manually masked [Σmasked(x,y)] from further analysis 127 

include near-field IMU and WCT roofs which are challenging to align, a low emissivity metal roof 128 

(C2, Fig 2b) and the corner of the C1 enclosure (Fig 2b, top left). Compared to prior studies that 129 

manually classify images, our classification is objective and automated but typically has fewer 130 

classes. Christen et al.'s (2012) images classified by manual inspection and digitisation (see their Fig 131 

1d) include e.g. brick/painted walls and tile/gravel roofs by manual inspection and digitisation. 132 

Inclusion of such classes here - in Σ and across Fig 2b - would require a similarly classified DSM 133 

which was not available in this study. 134 

To determine the sun-surface geometry characteristics (Table 3), all MW surfaces, including 135 

vegetation canopy elements, are defined in DART as opaque Lambertian reflectors. Direct 136 

downwelling spectral irradiance (Eλ
↓,dir, W m-2 μm-1) is simulated by DART at 0.5 μm wavelength (λ, 137 

bandwidth Δλ = 0.01 μm). Rays originate from a horizontal layer just above the tallest building (625 138 

rays m-2) and are tracked downward with spectral radiant flux density Eλ(θ, ϕ, Ω, t) (W m-2 μm-1) 139 

along solid angle Ω (sr) and direction (θ, ϕ) at timestep t. Eλ(θ, ϕ, Ω, t) intercepted by the MW surface 140 

is scattered for all possible scattering directions, according to the surface position and orientation. 141 

Scattered rays that intercept the image plane of a MW camera are used by DART to calculate at-142 

sensor spectral radiance [Lλ
cam(x, y, t), W m-2 sr-1 μm-1].  143 

The BRF across the camera images is calculated as: 144 

For a shaded surface BRF is zero. BRF = 1 for sunlit horizontal surfaces (i.e. surfaces plane-parallel 145 

to the ground) regardless of daytime sun angle and camera view angle, as Eλ
↓,dir is referenced to a 146 

horizontal layer. The BRF of a non-flat surface departs from unity. BRF increases as the sun angle 147 

becomes perpendicular to the surface, and vice versa. For example, in the northern hemisphere, east 148 

facing walls have the highest BRF in the early morning, decreasing through the morning as the sun-149 

surface angle becomes more oblique. 150 

BRF(x, y, t) =
πLλ

cam(x, y, t, Ω) 

Eλ
↓,dir(t)

 . Eqn. 1 
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A low density of rays incident on a surface can occur if the direct-beam solar radiation is near-151 

perpendicular to a surface and/or when the sun angle is low relative to the surface. This can cause 152 

inaccuracies and erroneous patterns in BRF(x, y) and isolated “sunlit” pixels [BRF(x, y) > 0] (i.e. 153 

none of the surrounding 8 pixels have BRF(x, y) > 0). To resolve this, in this study we reassign these 154 

pixels to Σmixed(x, y). Where BRF(x, y, t) has a continuous scale, the final surface property for analysis 155 

is BRF̅̅ ̅̅ ̅̅ (x, y, t), which is BRF(x, y, t) binned (indicated by overbar) between 0 → 2 using a bin width 156 

of 0.25. The bins are centre labelled. The first bin is 0 and is for values between 0 and 0.125 e.g. 157 

BRF(x, y, t) = 0.10 is assigned to BRF̅̅ ̅̅ ̅̅ (x, y, t) = 0; the second bin is 0.25 and has values between 158 

0.125 and 0.375 e.g. BRF(x, y, t) = 0.13 is assigned BRF̅̅ ̅̅ ̅̅ (x, y, t) = 0.25; etc. To differentiate shaded 159 

pixels [BRF(x, y, t) = 0] from the lowest BRF̅̅ ̅̅ ̅̅  bin (BRF̅̅ ̅̅ ̅̅ (x, y, t) = 0), pixels with BRF(x, y, t) < 0.05 160 

on timesteps with no direct solar radiation are assigned to a separate bin, BRF̅̅ ̅̅ ̅̅ (x, y, t) = -1 for analysis. 161 

ESW
↓ observations (Section 2.1) are considered to have no direct solar radiation if they fall below a 162 

threshold of modelled clear-sky direct and diffuse insolation (Bird and Hulstrom, 1981, model 163 

implemented in solaR software, Perpiñán, 2012). 164 

Shadow history is defined for the time a surface has spent in shade (tshd, min) (Table 3) and is 165 

determined by comparison of BRF̅̅ ̅̅ ̅̅ (x, y, t) to the prior timestep [BRF̅̅ ̅̅ ̅̅ (x, y, t - 5min)]. If a surface 166 

becomes shaded at time t, it has spent tshd(x, y, t) = 5 min in shade. For the timestep prior to this (t - 5 167 

min), the surface has spent zero minutes in shade and has tshd(x, y, t - 5min) = 0 min. A surface that 168 

continues to be in shade [i.e. BRF̅̅ ̅̅ ̅̅ (x, y, t + 5min) = -1] has tshd(x, y, t + 5 min) = 10 min at the next 169 

timestep, etc. As a pixel can view a surface that is part sunlit and part shaded across multiple 170 

timesteps, these pixels are designated fully sunlit or fully shaded based on the 10-timestep (50 min) 171 

window around each timestep. If a pixel has BRF̅̅ ̅̅ ̅̅ (x, y, t) > -1, is sunlit at t - 25 min and shaded at t + 172 

25 min, then it is considered partially sunlit at t. In these cases, the following threshold is used to 173 

determine if the observed surface is more shaded than sunlit and tshd(x, y, t) is updated accordingly: 174 

If tshd(x, y, t) = 0, pixels are allocated the maximum BRF̅̅ ̅̅ ̅̅ (x, y) that occurred up to 5 timesteps prior 175 

(i.e. max{BRF̅̅ ̅̅ ̅̅ (x, y, t - 25 min → 0)}) to assign partially shaded pixels with a fully sunlit status. 176 

tshd(x, y, t)= {
0       if BRF(x, y, t) < [0.75 · BRF(x, y, t - 25 min)]

5       otherwise
. Eqn. 2 



8 

 

 177 
Fig 2. (a) Optris PI longwave infrared (LWIR) camera observations for 27th August 2017 12:00 UTC and (b – d) 178 
simulated surface properties projected onto the image plane of “model world” (MW) cameras that simulate the 179 
perspective of (a). Surface properties are: (b) orientation and material (Σ), (c) shortwave bidirectional reflectance 180 
factor (BRF) to determine sun-surface geometry assuming Lambertian reflecting surfaces, and (d) time surfaces 181 
have spent in shade (tshd, white → blue) or sun (white → red). The cameras (Table 2) are indicated to the left of 182 
each image. (a-b) are modified from Morrison et al. (2020). 183 

 184 
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Table 3. Surface properties of orientation and material (Σ), bidirectional reflectance factor (BRF) and shadow history (tshd) 185 
used for per-pixel classification of LWIR camera observations (Fig 2). A surface class (i) has three surface 186 
properties: Σ, 𝐵𝑅𝐹̅̅ ̅̅ ̅̅ , tshd. 187 

 Property Method Description Values Example  

Σ Orientation and 

material 

Blender 3D modelling  

Land cover map  

Airborne hyperspectral 

(Morrison et al., 2020) 

Cardinal 

orientation 

and material 

Roof[dark] 

Roof[light] 

Ground[imp.] 

Ground[grass] 

North 

East 

South 

West 

Down 

Mixed 

Masked  

Fig 2b 

Fig 3 

BRF̅̅ ̅̅ ̅̅  Sun-surface 

geometry 

DART simulation DART 

bidirectional 

reflectance 

factor (BRF) 

simulation 

BRF binned (BRF̅̅ ̅̅ ̅̅ ) as 0 → 2 

at Δ0.25 (unitless). Shaded 

surfaces (BRF < 0.05) are 

assigned to bin BRF̅̅ ̅̅ ̅̅  = -1  

Fig 2c 

tshd Shadow history DART simulation Time in shade 0 → 2τ Δ5 (min) Fig 2d 
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 188 
Fig 3. Vector digital surface model (DSM) and vegetation canopy elements (VCE) for the study area created from Google 189 

Earth (Google, 2019; Morrison et al., 2020) imagery with (colours) orientation and material surface properties (Σ) 190 
rendered in Blender (Blender, 2018) for off-nadir view directions facing: (a) north, (b) east, (c) south, (d) west and (e) 191 
northeast with focus on the study sites and surface geometry, rendered without Σ. VCE covers a slightly larger area 192 
than the DSM. 193 

2.3. Cooling events 194 

A “cooling event” time window is used to analyse the shadow history (Section 2.2) effect on observed 195 

Ts. This starts when a pixel is sunlit for the last time (tshd(x, y) = 0 min) and ends when it is 196 

substantially cooled (tshd(x, y) > nτ), with time constant τ (min) and multiplicative factor n. A cooling 197 

event can continue after sunset and across days. To determine a representative time window for 198 

cooling events, τ is calculated using an exponential rate of cooling (Vollmer, 2009) for all pixels that 199 

enter shade as: 200 

Ts[a] = Ts[b] + (Ts[c] − Ts[d])e(−
t
τ

)
 Eqn. 3 
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using Ts observation subsets (Table 4). In Eqn. 3, the Ts difference for recently shaded (Ts[a]) and 201 

prolonged shaded (Ts[b], hereafter “ambient” Ts) surfaces throughout the cooling event isolates the 202 

rate of cooling from any ambient variations in surface temperature. The ambient temperature is 203 

included in the cooling event definition as it isolates the direct solar irradiance component of the 204 

surface energy balance from all other energy balance processes. These include variations in sensible 205 

heat exchange (from e.g. wind speed and direction), incoming diffuse radiation (due to e.g. patchy 206 

cloud or day-night transition) and heat storage. After τ minutes, the temperature difference is reduced 207 

to 1/e (~0.368) of the value at tshd = 0 (Vollmer and Möllmann, 2017). 208 

Table 4. Surface temperature sub-classes used to determine exponential cooling (Eqn. 3). See text and Table 3 for 209 
definitions. Cooling event lengths (nτ) have units of minutes 210 

Cooling event lengths (nτ) need to be initially estimated. Using all pixels within a day for a given 211 

surface orientation and material, nτ is set at 15 min and increased incrementally until the majority of 212 

observations are at ambient Ts; i.e. when > 68% of pixels with tshd(x, y) = nτ have an exponentially 213 

cooled Ts (Ts[a]) that is lower than the ambient temperature (Ts[b], median) plus one standard 214 

deviation. Cooling events are only considered if a pixel has a temperature recorded at tshd(x, y) = 0 and 215 

tshd(x, y) = nτ. 216 

To demonstrate cooling events, Ts(x, y) for recently shaded surfaces (Fig 4a, black and grey) and an 217 

aggregated value of all pixels viewing surfaces that have been shaded for an extended (>nτ) period 218 

(“ambient” temperature, Fig 4a, blue) are compared over 1.5 h (Fig 4b is one randomly selected 219 

cooling event). From this, τ(x, y, t) (Eqn. 3) is estimated using a nonlinear least squares (NLS) model 220 

fit for all per-pixel cooling events (Fig 4b, red). Across all pixels during the study date, the NLS fit of 221 

τ(x, y, t) is rejected if (1) it contains less than 5 timesteps, (2) the pixel surface property becomes 222 

“mixed” (Section 2.2) at any point during the event, (3) the NLS fit fails to converge, or (4) τ(x, y, t) > 223 

1000 min. A generalised modelled value of τ uses the median value of τ(x, y, t, Σ) determined from all 224 

eligible cooling events across the study date as one representative time constant for three surface 225 

types: roofs, walls, and ground [τ(Σ)].  226 

 Surface temperature (Ts) description Definition 

Ts[a] Pixel Ts with time in shade no longer than nτ 𝑇s(x, y, 𝛴, BRF̅̅ ̅̅ ̅̅ > −1, tshd > 0 & ≤ nτ, t) 

Ts[b] Ambient Ts at time t, aggregated (median) from pixels in 

shade for more than nτ 
𝑇s(𝛴, BRF̅̅ ̅̅ ̅̅ = −1, tshd > nτ, t) 

Ts[c] Pixel Ts at the timestep prior to shadowing (tshd = 0), i.e. at 

start of the cooling event (t = 0) 
𝑇s(x, y, 𝛴, BRF̅̅ ̅̅ ̅̅ > −1, tshd = 0, t = 0) 

Ts[d] Ambient Ts at the timestep prior to shadowing (t = 0), 

aggregated (median) from pixels in shade for more than nτ 
𝑇s(𝛴, BRF̅̅ ̅̅ ̅̅ = −1, tshd > nτ, t = 0) 



12 

 

 227 
Fig 4. Visual definition and example of “cooling events”. These occur after a surface becomes shaded and are parameterised 228 

by an exponential rate of cooling. Shown here for all C3 camera roof-viewing pixels shaded from t = 0 and t = 90 229 
(min) (10:00 and 11:30 on 27th August 2017) with: (a) all samples (grey lines) and one (random, black) cooling 230 
event with the “ambient” surface temperature (blue) line) (b) modelled with an exponential fit (red, Eqn. 3) for one 231 
(black line from a) cooling event. 232 

3. Observational source area 233 

Of the total model world (MW) surface area (ATOTAL = 4.1 x 105 m2, Fig 5), 88.0 % is composed of 234 

DSM triangles and the remainder (12.0 %) is from the vegetation canopy elements (VCE) plan area. 235 

East and west walls are 23.3 % of ATOTAL compared to 18.3 % for north and south walls. These 236 

numbers are not equal as the MW buildings are not cuboids and some are cut off at the MW edges 237 

(Fig 3). The ground surfaces (30.3 %) (e.g. streets, parks, courtyards) have greater area than the roofs 238 

(15.6 %). Roofs mostly have low albedo (Roof[dark], 12.8 %). 239 

The overall camera source area (ACAM) is 38,950 m2 (9.5 % of ATOTAL), approximated as the summed 240 

area of triangles completely within the field of view of any camera. ACAM excludes VCE directly but 241 

resolves the occlusion of other surfaces by VCE. Where cameras have overlapping source areas (Fig 242 

1c, Fig 2) the overlapping area is allocated arbitrarily to the camera with lowest ID (Table 2). With 243 

ACAM calculated using the DSM triangles (not rendered images), it includes all mixed (“complex” 244 

geometry) and masked (near field objects, e.g. roofs directly beneath cameras, Fig 2b) pixels causing 245 

a small overestimation of ACAM. ACAM may further underestimate the actual source area of classified 246 

pixels, as partially visible triangles (MW camera field of view) are rejected. 247 
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 248 
Fig 5. Total three-dimensional study surface area (ATOTAL) and area seen by the LWIR cameras (ACAM) (Table 2) classified 249 

by surface and orientation properties (colours). 250 

Inter-camera differences in ACAM result from camera siting height, zenith view angle and the 251 

occlusion of far-field surfaces by near-field objects. Located at 75 m agl with an oblique view angle, 252 

camera C2 has the largest source area (2 % of MW area, Fig 5) whereas C5 and C6, mounted at 37 m 253 

agl, have the smallest source areas (~ 1 % of MW each). Roof and ground surfaces are observed by all 254 

cameras. The oblique view angles mean vertical facets substantially contribute to the observational 255 

source area, but the actual vertical facets sampled depends on the camera azimuth. A camera can view 256 

surfaces with opposing directions (e.g. east and west) due to the grouping of the heterogeneous wall 257 

facings into the four cardinal directions. 258 

For pixel-level source areas, the manual approach used to determine ACAM (Fig 5) is too time 259 

consuming to conduct for each of the 1.15 x 105 individual pixels. Variations in surface area coverage 260 

across each camera IFOV (instantaneous field of view) are not accounted for and pixels are assumed 261 

to have equal source areas. The azimuth and zenith of DSM triangles within each camera pixel IFOV 262 

are given in Fig 6. The distribution of surface azimuth angles for the walls is uneven (Fig 6a). Some 263 

angles have many samples (maximum = 2677 pixels, for 342.5° → 347.5°) and others far fewer 264 

(minimum = 130 pixels, for 127.5° → 132.5°) as building walls have a few fixed directions and 265 

sensors have limited views (Table 2). Given the complexity of the study area geometry, the azimuthal 266 

facings are well distributed within each wall orientation bin (Fig 6a, between vertical dashed lines) 267 

except for the ΣSouth where a view bias of southeast facing (θ ≈ 135° → 150°, Fig 6a) surfaces is 268 

found. This is explained by the southwest-to-northeast street orientation sampled by the northward 269 

facing cameras (C2 and C3). 270 

Sloped roofs, chimneys, balconies and other micro-scale geometry resolved in the DSM widen the 271 

surface zenith angle distribution (Fig 6b). The incorrect classification of highly sloped roofs as walls 272 

and the DSM “rounding” of corners over short (< 1 m) distances also contribute towards this broad 273 
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surface zenith angle distribution. Most observed walls are vertical (median 90.83°) with variability 274 

(±11.07° standard deviation) from the sub-facet wall geometry (e.g. balconies). Roof pixels are 275 

mainly flat (median 176.74°). Here, slight slopes (e.g. 8579 pixels sample roofs with surface zenith 276 

angle between 177.50° and 178.25°) may result from inaccuracies in the DSM, as these pixels most 277 

likely view flat roofs in the RW.  278 

 279 
Fig 6. Frequency of pixels by surface orientations within the instantaneous field of view (IFOV) of each camera (excluding 280 

vegetation canopy elements (VCE) but including “mixed” and “masked” pixels) for (a) azimuth facing (zenith 281 
angle <135°), and (b) zenith angles of pixels. Azimuth angle of 0° (180°) is north (south) for WGS84 UTM grid 282 
zone 31N. Pixels with a zenith angle of 90° (180°) face vertically (horizontally). 283 

4. Surface temperature variability by class 284 

To quantify the role of surface class on Ts variability, the permutations of surface class in the 285 

observations (Table 3) are considered by scale:  286 

1) building scale variability (facet, orientation, and material Σ, e.g. Fig 2b),  287 

2) sub-facet variability within a surface orientation (e.g. different roof slopes) related to the sun-288 

surface geometry (BRF̅̅ ̅̅ ̅̅ , e.g. Fig 2c), and  289 

3) shadow history with high spatial resolution (tshd, e.g. Fig 2d). 290 

4.1 Variability from surface orientation and material at the building scale 291 

Across all pre-classified observations (Fig 7a, white) the overall Ts difference is 37.5 K between the 292 

5th percentile (P5) and P95 during the period 12:00 – 12:55 (hereafter referred to by time ending, i.e. 293 

13:00). Mixed pixels (Fig 7a, grey), primarily walls with complex small-scale features (e.g. balconies 294 

- C6, Fig 2a, b), are generally cooler than roof and ground surfaces, with a smaller hourly and diurnal 295 

range than the pre-classified temperatures. Hilland and Voogt (2020) resolve these small-scale 296 

features and find self-shading significantly reduces facet averaged Ts by around 1 - 6 K.  297 

With our coarsest surface classification (i.e. building facets, orientations and materials) roof Ts, as 298 

expected (Voogt and Grimmond, 2000; Christen et al., 2012; Adderley et al., 2015), has the greatest 299 

diurnal Ts range (Fig 7b, median Σroof[dark] 290.6 → 329.0 K). Ts across Σroof[dark] pixels consistently 300 
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shows most variation at all times. Driven by insolation, intra-facet Ts variability for Σroof[dark] is 301 

between 302.1 and 336.3 K (P5 and P95) at 12:00, with P95 - P5 differences consistently over 20 K 302 

between 10:00 and 16:00. The higher albedo of Σroof[light] surfaces means less shortwave radiation is 303 

absorbed which leads to lower Ts with median Σroof[light] (313.8 K) at 13:00 being 14.2 K lower than the 304 

coinciding Σroof[dark] temperature (Fig 7b). Prior to an overcast period in the afternoon (15:30 – 15:55) 305 

the two roof types have distinct Ts distributions. The fewer Σroof[light] pixels are mainly sunlit 306 

throughout the day, whereas Σroof[dark] areas have some within-canopy surfaces affected by prolonged 307 

(> 1 h) shadowing. Overcast conditions cause the distributions to slightly converge as the contrasting 308 

albedos have reduced effect when only diffuse incident solar radiation is incident. The subsequent 309 

lower sun angles reduce the overall shortwave radiative forcing. 310 

Grass (ΣGround[grass]) Ts has a smaller diurnal range than impervious ground (ΣGround[imp.]). Grass 311 

temperatures are affected by both evaporative cooling and shadowing from grass blades (i.e. leaf area 312 

index is greater than 1) whereas the impervious areas lack moisture (4 days since rainfall). Also, the 313 

generally higher heat capacities of ΣGround[imp.] cause more heat to be stored during the day and released 314 

slowly over night. Uncertainty in grass Ts may arise from a potential sample bias as only one camera 315 

(C1) views this surface class whereas all cameras see some ΣGround[imp.]. The relatively coarse (4 m) 316 

land cover dataset (Lindberg and Grimmond, 2011) may introduce unquantified classification 317 

uncertainties.  318 

Considering wall pixels by cardinal orientation, ΣEast (ΣWest) pixels are warmest during morning 319 

(afternoon), with median Ts reaching 306.1 (310.6) K at 11:00 (17:00). ΣWest surfaces peak at higher 320 

temperatures than ΣEast, as the latter are among the first to be heated in the morning while ΣWest 321 

surfaces have already been heated throughout the day. ΣWest remains warm past sunset (sunset at 322 

~18:55 UTC) and is 1.2 K warmer than ΣNorth at 23:00 (differences in per-pixel median). This is 323 

reasonable given ΣNorth pixels are mainly shaded throughout the day so that their Ts is consistently low 324 

with less variability. Shortly prior to sunset, ΣNorth surfaces receive a little direct solar irradiation 325 

which causes their Ts to be slightly greater than that of ΣEast pixels in the evening. The Ts medians 326 

across wall orientations consistently differ by over 10 K between 10:00 and 15:00 (maximum 327 

difference is 18.1 K at 12:00). 328 

The sampling bias of south-east walls (Section 3) causes the median Ts for ΣSouth to peak (315.8 K) at 329 

12:00, i.e. earlier than would be expected for a wall distribution centred around 180° azimuth. Before 330 

sunrise, median Ts differences between wall orientations are less than 0.8 K but are up to 4.9 K 331 

warmer than ΣRoof[dark] at 01:00 during a clear-sky nocturnal period (consistent with e.g. Lagouarde et 332 

al., 2004). During daytime, walls are generally much cooler than roofs. Their complex geometry and 333 

material compositions contribute to wall Ts variability. The study area roofs are mostly planar with 334 

small features (e.g. chimneys and air conditioning units) whereas walls have many balconies and 335 
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other shade-causing features that reduce their overall temperature. As glass emissivity is unaccounted 336 

for, wall Ts may be overestimated (Morrison et al., 2020). Glass and windows (“ΣGlass”) were not 337 

classified as the resolution of data used to construct the DSM (Google Earth images, Morrison et al., 338 

2020) is too coarse. No buildings in the study area have fully glazed walls and glass windows are 339 

assumed to be evenly sampled across all cameras. 340 

 341 
Fig 7. Variability of LWIR camera derived surface temperature (Ts) for 27th August with observations classified as (a) 342 

unclassified (white) (except vegetation canopy elements and “masked” and “mixed” (grey) pixels), (b) roofs, (c) walls, 343 
and (d) ground. Boxplots use data from all camera images (5 min samples) by group (colour) during 1 h (e.g. first hour is 344 
00:00 → 00:55 for Time (HH) “01” between vertical lines) with interquartile range (box), median (horizontal line) and 5 345 
and 95 percentiles (whiskers) of pixel values. 346 

4.2 Variability from shortwave irradiance 347 

Ts by facet (orientation and material) have positive correlation with irradiance using sun-surface 348 

geometry (bidirectional reflectance factor, BRF̅̅ ̅̅ ̅̅ ) (cf. Fig 2a, c). To assess the importance of BRF as a 349 

driver for Ts of the low albedo roofs (ΣRoof[dark]), the difference between sunlit flat [Ts(BRF ≈ 1)] and 350 

all other binned sun-surface geometry configurations [Ts(BRF̅̅ ̅̅ ̅̅ )] for roofs (Fig 8) is calculated through 351 

a day. Overall, there is clear separation in Ts between BRF̅̅ ̅̅ ̅̅  bins. At 09:15, median Ts differences 352 

between sloped and flat sunlit roofs reach 13.2 K [Ts(BRF̅̅ ̅̅ ̅̅  = 1.5) - Ts(BRF ≈ 1), Fig 8]. Sloped roofs 353 

with BRF̅̅ ̅̅ ̅̅  < 1 but still sunlit have median Ts up to 23.3 K cooler than the flat roofs at 11:55. 354 

Contributions to the observed Ts variability within each BRF̅̅ ̅̅ ̅̅  bin at a given timestep are linked to the 355 

variable time in sun (Fig 2d), differences in surface albedo and emissivity within the ΣRoof[dark] surface 356 

property, and uncertainties in atmosphere and emissivity corrections (Morrison et al., 2020). 357 
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During the overcast period (15:30 – 15:55) when BRF̅̅ ̅̅ ̅̅  = -1 for all surfaces, there are smaller 358 

differences in Ts(BRF̅̅ ̅̅ ̅̅ ) which persists into the evening (Fig 8). A subset of all possible roof slope 359 

angles are sampled, meaning some arrangements of sun-surface angles (and therefore BRF̅̅ ̅̅ ̅̅ ) are not 360 

observed for sloped roofs. This results in gaps of Ts(BRF̅̅ ̅̅ ̅̅ ) at times (e.g. Ts(BRF̅̅ ̅̅ ̅̅  = 0.25) for around 361 

12:00 → 14:00). Large gaps (> 4 h) for high BRF bins (BRF̅̅ ̅̅ ̅̅  > 1.25) occur with high sun angles (i.e. 362 

peaks in Eλ
↓,dir, Eqn. 1). During these gaps the near-flat roofs are irradiated most and Ts(BRF̅̅ ̅̅ ̅̅  = 1.25) is 363 

the highest physically possible bin around midday (± ~ 2.5 h) for the study site latitude and 364 

corresponding solar elevation maximum.  365 

Applied to vertical facets (Supplementary material 1), this sun-surface geometry analysis shows most 366 

Ts variation is captured by wall orientation (Fig 7c). For ground surfaces, most observations are of flat 367 

ground (i.e. BRF ≈ 1). 368 

 369 
Fig 8. Observed daytime roof surface temperature (Ts) for 27th August for pixels classified with bidirectional reflectance 370 

factor (BRF, Schaepman-Strub et al., 2006) (top) equivalent to solar irradiance for a flat surface (BRF ≈ 1) and (bottom) 371 
by 𝐵𝑅𝐹̅̅ ̅̅ ̅̅  (bin width 0.25) as difference from BRF ≈ 1 (i.e. across all observed sun-surface geometries). DART calculated 372 
BRF assuming Lambertian surfaces.  373 

4.3 Variability from shadow history 374 

Shadow history has a potentially significant impact on Ts variability given the large and variable 375 

thermal inertia of urban materials (e.g. concrete, Arnfield and Grimmond, 1998). We explore the 376 

micro-scale persistence effects of shadows on upwelling longwave radiation with thermography 377 
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(Meier et al., 2010) with multiple cameras and objectively determined shadow distributions across the 378 

images. 379 

For the study day, 1.15 x 106 per-pixel cooling events [τ(x, y, t, Σ)] are identified from all cameras 380 

(Fig 9). The model fits for each cooling event (Section 2.3) have mean absolute error (MAE) of 0.7 K 381 

(ground, roof) or 0.6 K (walls) and are linear (red dashed line, Fig 9 row 1) across the range of Ts 382 

differences (approx. 0 → 30 K). A small number of points have negative differences, indicating the 383 

shaded ambient Ts is warmer than the recently shaded Ts. Through manual inspection, negative 384 

differences for roofs pixels are associated with microscale features in the foreground roof of C6 385 

(approx. centre of image, Fig 2a). These roof features may have low emissivity materials or complex 386 

geometry unresolved by the DSM. Negative differences for walls are explained by C2’s ΣWest(x, y) 387 

pixels near the building with ΣRoof[light] (Fig 2b). This concrete wall extents above the canyon height so 388 

that the relatively high sky view factor and direct solar illumination until sunset are likely causing 389 

recently shaded Ts to be lower temperature than the ambient reference. The latter is more 390 

representative of warmer inside-canyon walls. Overall, these departures from exponential cooling give 391 

the flat “tail” to the scatter (e.g. Fig. 9, wall, row 1), as negative modelled values are not permitted. 392 

Negative differences account for 1.3 % of all cooling events (sunlit - shaded difference of -2.5 K at 393 

P5).  394 
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 395 
Fig 9. Surface temperature (Ts) cooling rates observed (x axis) and estimated (using Eqn. 3) for each pixel with pixels 396 

numbers (npixel) indicated (colours) with (row 1) fitted time constant τ per pixel [τ(x, y, Σ)] and (row 2) modelled 397 
time constant as median τ(x, y, t, Σ) per surface type [τ(Σ)] for (column 1) ground (grass and impervious), (column 398 
2) roof (light and dark) and (column 3) walls (N, E, S, W). Statistics: coefficient of determination (r2), mean absolute 399 
error (MAE, K). 400 

The generalised values of τ [τ(Σ)] (Fig 9 row 2 labels), determined from the median of τ(x, y, t, Σ) 401 

pixels (Section 2.3), allow inter-facet Ts cooling rates to be compared. Roofs generally cool much 402 

faster (τ(ΣRoof) = 43.13 min) than ground (τ(ΣGround) = 132.98 min) and walls, which cool around four 403 

times slower (τ(ΣWalls) = 173.54 min). As τ(x, y, t, Σ) is highly variable (e.g. τ(ΣGround) is 91.08 → 404 

196.27 min for P25 → P75), using these generalised median values of τ(x, y, t, Σ) results in a greater 405 

spread between observed and modelled results (Fig 9 cf. row 1 and 2). There is generally good 406 

agreement between observed cooling rates and the generalised modelled results (Fig 9 row 2) but with 407 

some large (> 10 K) departures when facets have distinctly different thermal properties. Uncertainty is 408 

increased for roofs as their shading during daytime can only be from micro-scale roof geometry or 409 

from nearby taller buildings (e.g. Fig 2b, foreground of C2 and C3) which is mostly confined to short 410 

periods. This reduces the number of pixels available for the ambient Ts estimation (Section 2.3). 411 

Additionally, the emissivity correction uncertainty is greatest for roof surfaces because of the large 412 

contrast between LWIR irradiance (from the relatively cool sky) and LWIR exitance (Morrison et al., 413 

2020).  414 

Instances of poor model agreement for ground pixels may arise from the highly contrasting material 415 

properties (impervious and grass), whereas for walls the more complex surface geometry may lead to 416 

uncertainties in shadow patterns and history. Walls also have a mix of glass and masonry/concrete 417 

with their contrasting thermal properties and cooling rates not accounted for. 418 
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The cooling rate model and the spread in Fig 9 (row 2) are summarised (Table 5) using a subset of 419 

observations (P95 differences between recently shaded and ambient after 10 minutes in shade, to 420 

represent surfaces that have been heated by the sun throughout the day) modelled at various times in 421 

shade using τ(Σ) values. After 10 min, these recently shaded roofs differ most to the ambient 422 

temperature (27.5 K warmer than ambient). They exponentially cool the fastest (2.1 K warmer than 423 

ambient after 90 min using τ(ΣRoof) P50, 0.7 K → 4.1 K across interquartile range - IQR) as τ(ΣRoof) is 424 

lower than τ(ΣWall) and τ(ΣGround). The higher τ(Σ) for walls and ground means there are still significant 425 

differences to the ambient temperature after long periods of cooling. After 90 min the walls are 8.8 K 426 

(7.1 K → 10.3 K IQR) warmer than ambient.  427 

Table 5. Differences in surface temperature (Ts) between recently shaded surfaces (i.e. short tshd - time in shade) and a 428 
reference ambient Ts(tshd > nτ) for 95th percentile (P95) of observed thermal camera measurements in central London 429 
(27th August 2017) modelled (Section 2.3) at tshd of 30, 60 and 90 min using observationally derived cooling time 430 
constants (τ) for each surface type. E.g. where recently shaded ground is 21.6 K warmer than ambient after tshd = 10 431 
min, this difference exponentially reduces to 18.6 K after 30 min (17.3 K → 19.5 K interquartile range using 196.27 432 
min → 91.08 min time constants) using time constant τ(Σ) = 132.98 (Fig 9 row 2 “Ground” label) and assuming no 433 
change in ambient temperature. See Fig 9 for all τ(Σ) percentiles and Eqn. 3 for exponential cooling model. 434 

Recently shaded - ambient  

Ts(tshd ≤ nτ) - Ts(tshd > nτ) (K) 

Time in shade (tshd) 

10 min 30 min 60 min 90 min 

observed P25 P50 P75 P25 P50 P75 P25 P50 P75 

Ground 21.6 17.3 18.6 19.5 12.5 14.8 16.7 6.5 9.4 12.3 

Roof 27.5 14.1 17.3 19.5 5.2 8.6 11.7 0.7 2.1 4.1 

Walls 16.5 14.1 14.7 15.2 11.2 12.4 13.3 7.1 8.8 10.3 

 435 

Previous observations acknowledge that shaded surface temperatures exhibit variation from shadow 436 

histories (Voogt, 2008; Morrison et al., 2018), but often aggregate the shaded temperatures to a single 437 

value. This work demonstrates the possibility to stratify shaded temperatures instead by shadow 438 

history using a simple exponential rate of cooling. Variability in τ is directly related to variability in 439 

heat transfer rate (radiative, convective, and conductive), material heat capacities, density, volume, 440 

and overall mass of the observed surface structures. For example, rapid cooling rate of roofs (median 441 

cooling time constants τ(ΣRoof) = 43.13 min) may be explained by a lower mass (cf. walls, Xu and 442 

Asawa, 2020) facilitating conductive heat loss, higher sky view factor (facilitating radiative heat 443 

transfer), and exposure to higher wind speeds (facilitating convective heat transfer).  444 

5. Conclusions 445 

Analysis of a fusion of observation (ground-based thermography) and modelling (urban geometry, 446 

material properties, sensor views and radiative transfer processes) data on a mainly clear-sky summer 447 

day in central London are used to explore various drivers of surface temperature (Ts) variability. With 448 

a very high level of detail surface description and integrated sensor view modelling, the camera 449 

source area analysis is unprecedented for such a complex (i.e. realistic) urban setting. General and 450 

study specific conclusions about the observation process are: 451 

• Cameras installed on higher buildings have a better vantage and larger source area. 452 
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o In this study, the source area is 15.6 % roofs, 41.6 % walls (~10 % per cardinal 453 

direction) and 22.6 % ground (remainder above ground vegetation).  454 

o Even with six cameras the source area is only 9.5 % of the overall area (430 m x 430 455 

m horizontal extent). 456 

o All pixels are assumed to sample equal portions of the surface yet in reality the 457 

surface area covered by a pixel varies across the image due to viewing geometry. 458 

Future work should investigate methods to weight aggregated observations by per-459 

pixel source area. 460 

Objective image classification separates drivers of Ts variability without requiring manual image 461 

classification or statistical inference.  462 

• Observed Ts is highly variable. 463 

o In this study the 5th - 95th percentile differences in per-pixel Ts observations reach up 464 

to 37.5 K during daytime.  465 

o Diurnal patterns of Ts for surfaces with different orientation show general agreement 466 

with prior studies at similar latitude.  467 

Highly detailed image classification enables Ts variability to be quantified in direct relation to the 468 

sun-surface geometry features, including the amount of short- and long-wave radiation incident 469 

onto a surface, driving shadow patterns, direct solar irradiance and radiation trapping between 470 

buildings.  471 

• Material properties are especially important for roof surfaces with increased access to solar 472 

radiation and high exposure to the cold sky. This effect is expected to be particularly 473 

important for thermal spaceborne earth observation, where near-nadir remote sensing 474 

observations have a view bias of horizontal facets. 475 

• Variability of Ts is driven by surface orientation to the sun of the facet (e.g. walls, roofs, 476 

ground) and sub-facet characteristics (e.g. flat or sloped roofs, high or low albedo roofs).  477 

• Variation in surface temperature across a single facet can be of similar magnitude to the 478 

variation between the median temperatures of different facet types.  479 

o Across all roof pixels within a given hour (i.e. intra-roof) 5th - 95th percentile Ts 480 

differences are consistently over 20 K between 10:00 and 16:00 (max 34.2 K between 481 

11:00 and 11:55) 482 

o Intra-roof variation is driven by sun-surface geometry effects. Ts differences between 483 

flat and sloped roofs reach 23.3 K around midday.  484 

o Pixel-level temperatures of walls stratified by cardinal direction and aggregated to 485 

median values (i.e. inter-wall) differ by up to 18.1 K between north (median 297.7 K) 486 

and south (median 315.8 K) facets around midday. Including roof and ground faceTs, 487 
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median differences reach 29.3 K at 13:00 between the low albedo roof (median 328.0 488 

K) and north facing wall (median 298.7 K). 489 

The second important driver of Ts variability are shadows. For the first time, the effect of shadows 490 

through time on Ts is quantified across a real convoluted urban surface.  491 

• The history of surface shadows greatly affects Ts. Recently shaded roof surfaces are up to 27.5 K 492 

warmer than those in shade for long periods.  493 

• Cooling characteristics were modelled from observations using exponential functions with time 494 

constants (τ) estimated relative to long-term shaded surface temperatures. Clear contrasts were 495 

found between facet types: roofs on average cool much faster τ(ΣRoof) = 43.13 min than ground 496 

τ(ΣGround) = 132.98 min and walls τ(ΣWalls) = 173.54 min.  497 

• Surfaces shaded at sunset will have cooled to within 5 % of the ambient temperature by ~3τ i.e. 498 

over 6 h and 8.5 h into the night for ground and walls, respectively.  499 

• This shadow history methodology could be extended to study recently sunlit temperatures. 500 

Material properties determine the amount of incoming energy absorbed.  501 

• Using simple albedo characteristics (i.e. two classes “light” (high albedo) and “dark” (low 502 

albedo); excluding any metal or glass) clearly separates observed temperature distributions.  503 

o Dark roofs are up to 14.2 K warmer during the day as more solar radiation is absorbed.  504 

• Material classification would benefit from more detailed data (e.g. surface optical material 505 

properties), particularly for glass and windows which can directionally scatter longwave radiation 506 

(e.g. specular reflections) and confound the Ts retrieval (Morrison et al., 2020). Further 507 

classification requires more detailed visible imagery from e.g. Google Street view, (Li et al., 508 

2018; Gong et al., 2018), study-specific vehicle traverses (Hilland and Voogt, 2020) or manual 509 

inspection (Christen et al., 2012). 510 

Overall, the combination of a relatively large fraction of vegetation, complex geometry and associated 511 

Ts distributions give a unique temporally continuous dataset. Observations and the underlying 512 

methods for their retrieval and classification could be used as input and to evaluate unstably stratified 513 

large eddy simulation modelling (Gronemeier et al., 2017) and building energy balance models 514 

(Bueno et al., 2012), or input to radiative transfer models such as DART (Gastellu-Etchegorry et al., 515 

2015) for evaluation of effective thermal anisotropy (Krayenhoff and Voogt, 2016; Morrison et al., 516 

2018; Wang et al., 2018).  517 

These data provide useful insights for meso-scale weather and larger scale climate models which 518 

simplify the urban surface to facets (Masson, 2000; Harshan et al., 2018) assuming flat roofs with a 519 

uniform height (Harman et al., 2004; Krayenhoff and Voogt, 2007). Both the extent of intra-facet 520 

surface temperature variability and the net surface cooling rate variability provide some insights into 521 
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the processes that are “averaged” into composite values. Through ensemble modelling, the 522 

implications of this variability on averaged flux calculations and therefore weather/climate predictions 523 

should be assessed. For many of the larger spatial and temporal extent applications, further 524 

observations should assess how representative our study results are with respect to time of year and 525 

location (across London, other cities).  526 
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