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ABSTRACT: Over 90%of the buildup of additional heat in theEarth system over recent decades is contained in the ocean.

Since 2006, new observational programs have revealed heterogeneous patterns of ocean heat content change. It is unclear

how much of this heterogeneity is due to heat being added to and mixed within the ocean leading to material changes in

water mass properties or is due to changes in circulation that redistribute existing water masses. Here we present a novel

diagnosis of the ‘‘material’’ and ‘‘redistributed’’ contributions to regional heat content change between 2006 and 2017 that is

based on a new ‘‘minimum transformation method’’ informed by both water mass transformation and optimal trans-

portation theory. We show that material warming has large spatial coherence. The material change tends to be smaller than

the redistributed change at any geographical location; however, it sums globally to the net warming of the ocean, whereas

the redistributed component sums, by design, to zero. Material warming is robust over the time period of this analysis,

whereas the redistributed signal only emerges from the variability in a few regions. In the North Atlantic Ocean, water mass

changes indicate substantial material warming while redistribution cools the subpolar region as a result of a slowdown in the

meridional overturning circulation. Warming in the Southern Ocean is explained by material warming and by anomalous

southward heat transport of 118 6 50 TW through redistribution. Our results suggest that near-term projections of ocean

heat content change and therefore sea level change will hinge on understanding and predicting changes in ocean

redistribution.

KEYWORDS: Ocean; Water masses/storage; Climate change; Heat budgets/fluxes; Climate variability; Trends

1. Introduction

Over the past 50 years, as atmospheric greenhouse gas

concentrations have increased, the ocean has absorbed more

than 10 times as much heat as all other components of the

climate system combined (Rhein et al. 2013). This warming

showed substantial spatial variability between 1993 and 2005,

being up to 10 times as much in some regions as the global

average (Zhang and Church 2012). It is unclear whether this

variability is due to geographical variation in the interior

propagation of surface warming versus redistribution of ex-

isting heat within the ocean.

Ocean warming is an important issue because ocean thermal

expansion is the largest projected contribution to global mean

sea level rise in the twenty-first century (Church et al. 2013).

Numerical climate models disagree on the pattern and ampli-

tude of ocean heat content (OHC) change and hence on sea

level rise under anthropogenic greenhouse warming (Gregory

et al. 2016). Understanding how heat has been taken up and

redistributed by the ocean is essential for predicting future

changes in sea level.

Numerical ocean models forced with historical atmospheric

conditions have proved to be useful tools in quantifying how

variability in atmospheric forcing can set variability in OHC

(Drijfhout et al. 2014) and sea level (Penduff et al. 2011) at

interannual to decadal time scales. However, such models can

be unrealistic for simulating multidecadal climate change be-

cause of model drift and inaccuracies in long-term changes in

atmospheric forcing, particularly global mean heat fluxes

(Griffies et al. 2009). On the other hand, coupled ocean at-

mosphere climate models are routinely used to capture the

effect of long-term climate forcing. But such models only ac-

curately simulate past unforced variability in regional OHC

when, by chance, their internal variability is in phase with the

observed system.

An advance in terms of numerical ocean climate modeling

has come from the separation of OHC change into an ‘‘added’’

and a ‘‘redistributed’’ component in climate model simula-

tions, where the former is due to change in the surface heat flux,

and the latter due to rearrangement of existing OHC because

of altered ocean heat transports (Banks and Gregory 2006).

This decomposition is analogous to the ‘‘anthropogenic’’ and

‘‘natural’’ decomposition that has revolutionized our under-

standing of oceanic carbon records (Khatiwala et al. 2013).

Here we will present a novel method to diagnose the ‘‘mate-

rial’’ component of OHC change, which we will show is closely
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related to the ‘‘added’’ component introduced by Banks and

Gregory (2006).

Recent work has aimed to reconstruct the drivers of OHC

change based on observationally derived air–sea boundary

conditions. Zanna et al. (2019) for example used surface tem-

perature anomalies combined with a tracer-based approach to

reconstruct the role of anomalous surface heat fluxes in cen-

tennial heat content change. Roberts et al. (2017) estimated the

contribution of air–sea heat flux changes in setting mixed layer

and full-depth-integrated OHC budgets over recent decades

and inferred the role of ocean circulation as a residual. Here we

aim to circumvent reliance on such boundary conditions and

infer the mechanisms of ocean heat content change directly

based on water mass changes.

Water mass–based methods have been used to decompose

local temperature and salinity changes into a dynamic ‘‘heave’’

component and an apparently material component at constant

density based on a one-dimensional view of the water column

(Bindoff andMcDougall 1994). However, their analysis did not

distinguish between material processes and horizontal advec-

tion, insofar as they affect the water mass properties of an in-

dividual water column.

Herewe introduce a newmethodbased onwatermass theory,

called the minimum transformation method, which we use to

estimate recent drivers of three-dimensional OHC change. In

section 2 we will review water mass theory and establish the

relationship between changes inwatermasses as defined by their

temperature and salinity and material changes in seawater

temperature. We will describe in section 3 how this theory is

translated into a practical method to estimate material changes

in water masses and map these into geographical space. We

present an application of this minimum transformation method

to recent data over the Argo period in section 4 and give results

in section 5. We discuss the results and compare them with ex-

isting work in section 6, and we give conclusions in section 7.

2. Water mass theory

Water mass analysis has long been used in physical ocean-

ography to trace the origin of waters (Montgomery 1958). In

the latter half of the twentieth century a quantitative framework

emerged to describe the relationship between water masses, air–

sea fluxes, andmixing [Walin 1982; see the review byGroeskamp

et al. (2019)]. Recent work has seen this framework advanced in

twoways specifically relevant to ourwork here: tomultiple tracer

dimensions to understand the thermodynamics of ocean circu-

lation (Nycander et al. 2007; Zika et al. 2012; Döös et al. 2012;
Groeskamp et al. 2014; Hieronymus et al. 2014) and to unsteady

problems to understand the ocean’s role in transient climate

change (Palmer and Haines 2009; Evans et al. 2014; Zika et al.

2015a,b; Evans et al. 2017, 2018).

An example of the utility of the water mass transformation

framework in understanding transient change is provided by

Zika et al. (2015a). They demonstrate that the distribution of

water in salinity coordinates is influenced by the water cycle

and turbulent mixing, the latter only being able to collapse the

range of salinities the ocean covers. This means that changes in

the width of the salinity distribution indicate an enhancement

of the water cycle and/or a reduction in that rate at which salt is

mixed. In this project we extend this concept to consider how

changes in the temperature-salinity distribution relate to ma-

terial changes in water masses.

Material changes in Conservative TemperatureQ (hereinafter

simply ‘‘temperature’’ or T) following the motion of an incom-

pressible fluid are related to Eulerian changes and advection by

DT

Dt
5
›T

›t
1u � =T , (1)

where u is the 3D velocity vector and DT/Dt is the material

derivative, which is related to sources and sinks of heat and

irreversible mixing. Conservative Temperature is used here

since it is a more accurate ‘‘heat’’ variable than potential

temperature (McDougall 2003), although the later is still rou-

tinely used in ocean models, including the one analyzed in

section a of appendix A.

Even if a perfect record of ›T/›t were available at a fixed

location, we would not know the relative roles of advection

(u � =T) and material processes (DT/Dt). To separate them,

we consider the water mass perspective as an alternative to the

Eulerian perspective. The following theory draws directly from

Hieronymus et al. (2014).

We characterize water masses by their T and Absolute

Salinity SA (IOC/SCOR/IAPSO 2010; hereinafter simply ‘‘sa-

linity’’ or S). The volume y of water per unit temperature and

salinity and at temperature T* and salinity S* is

y(T*, S*)5
›2

›T›S

ð
T,T*,S,S*

dV, (2)

where the integral is over elements dV of ocean volume that

are cooler than T* and fresher than S*. An estimate of y that is

based on recent observational analysis is given in Fig. 1a.

(These data are described in detail in section 4.)

Considering all of the water in the ocean and retaining the

incompressibility assumption, the only way y can change is via

transformation—that is, by making water parcels warmer,

colder, saltier, or fresher as described by the following conti-

nuity equation [derived formally in Hieronymus et al. (2014)]:

›y

›t
1

›

›T
(y _T)1

›

›S
(y _S)5 0, (3)

where _T is the average material derivative of T within a water

mass. That is,

_T(T*, S*)5
1

y

›2

›T›S

ð
T,T*,S,S*

DT

Dt
dV, (4)

and likewise _S is the average material derivative of S. An es-

timate of recent changes in y is given in Fig. 1b.

In Eq. (3) the terms y _T and y _S are the transformation rates in

the temperature direction (Sv g21 kg21; 1 Sv[ 106m3 s21) and

salinity direction (Sv C821) respectively. Equation (3) states

that the amount of water between two closely spaced isotherms

(T andT1 ›T) and isohalines (S and S1 ›T) will go up if more

water is made warmer at T than at T1 ›T and/or more water is

made saltier at S than at S 1 ›S.
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When the system is in a statistically steady state the water

mass distribution y remains constant such that

›

›T
y _T1

›

›S
y _S5 0, (5)

where the overbar represents a sufficiently long time average.

In this steady case, the vector field described by y _T and y _S can

be characterized by a thermohaline streamfunction (Zika et al.

2012; Groeskamp et al. 2014).

Here, we will not attempt to estimate this steady-state

component of water mass transformation [e.g., as Groeskamp

et al. (2017) have done]. Rather we will attempt to quantify

only the component required to explain changes in y. That is,

we aim to quantify the anomaly in the transformation rate

(y _T)
0
such that y _T5 y _T1 (y _T)

0
, and likewise for (y _S)

0
, with

›y

›t
1

›

›T
(y _T)

0
1

›

›S
(y _S)

0
5 0: (6)

Note that a steady-state component like Eq. (5) can always be

added to (y _T)
0
and (y _S)

0
such that Eq. (6) is still satisfied.

However, we seek only the net change in water mass trans-

formation required to explain changes in y and therefore seek

the smallest (in a root-mean-square sense) values of _T
0
and _S

0

that satisfy Eq. (6). That is, we seek the smallest change in air–sea

heat and freshwater fluxes and mixing—in a net sense—that can

explain changes in water masses. We call this the minimum

transformation.

Here we will use changes in y to infer the minimum transfor-

mation and therefore estimate y _T
0
. This will allow us to estimate

the material processes influencing ocean temperature change.

3. The minimum transformation method

We now apply water mass theory to understand changes in a

discrete set of water masses describing the ocean over two time

periods. We will then describe the application of a minimum

transformation method that exploits an ‘‘earth mover’s dis-

tance’’ (EMD) algorithm to estimate the amount of material

warming required to affect changes in those water masses.

a. Discrete water masses

Consider the set of N discrete water masses with the ith water

mass defined by the limits [Tmin
i , Smin

i , xmin
i ] and [Tmax

i , Smax
i , xmax

i ].

Essentially, our water masses are hypercubes in T–S–x–y–z space

(more arbitrary space- and time-dependent regions can be defined

without affecting the method described below). To indicate

whether water is within the ith water mass we define a boxcar

functionPi such that

P
i
(x, t)5

(
1 Tmin

i #T(x, t),Tmax
i ,Smin

i #S(x, t),Smax
i and xmin

i # x, xmax
i

0 otherwise.
(7)

The volume of water in the ith water mass at time t is

then
ÐÐÐ

Pi(x, t)dV.

We consider two time periods: an early period (t02Dt# t, t0)

and a late period (t0 # t, t0 1Dt). The average volume of the

FIG. 1. Portrait of changing ocean water masses: (a) inventory of ocean volume in Conservative Temperature vs

Absolute Salinity coordinates (mean of 2006–17 inclusive) and (b) change in water mass volume between the early

half and late half of the period divided by the six years (Sv). According to watermass theory, changes in air–sea heat

and freshwater fluxes and/or changes in rates of diffusion are required for these changes to occur.
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ith water mass over the early period is V1i and the average vol-

ume of the jth water mass over the late period is V2j such that

V1
i
5

1

Dt

ðt0
t02Dt

ððð
P

i
(x, t)dV dt and

V2
j
5

1

Dt

ðt01Dt

t0

ððð
P

i
(x, t)dV dt, (8)

and the average temperature and salinity of water within V1i is

T1
i
5

1

DtV1
i

ðt0
t02Dt

ððð
P

i
(x, t)T(x, t) dV dt and

S1
i
5

1

DtV1
i

ðt0
t02Dt

ððð
P

i
(x, t)S(x, t) dV dt, (9)

respectively; likewise for V2j we have

T2
j
5

1

DtV2
j

ðt01Dt

t0

ððð
P

j
(x, t)T(x, t) dV dt and

S2
j
5

1

DtV2
j

ðt01Dt

t0

ððð
P

j
(x, t)S(x, t)dV dt. (10)

To change the set of volumes V1i into the set of volumes V2j
requires a transformation of water in T–S space. When water

transforms, it changes itsT and S and can alsomove geographically.

To understand how water is transformed from the physical

location and physical properties of one water mass to another

we use the shorthand ~x(t1Dtjx, t) for the position of a water

parcel at time t 1 Dt conditional on it previously being at po-

sition x at time t. That is,

~x(t1Dtjx, t)5 x1

ðt1Dt

t

u[~x(t*jx, t), t*] dt*, (11)

where, as previously, u is the 3D velocity vector. We describe

the transformation rate between the early and late water

masses with the matrix g. The ith column and jth row of this

matrix gij correspond to the average rate of transformation of

water from early water mass i to late water mass j such that

g
ij
5

1

Dt2

ðt0
t02Dt

ððð
P

i
(x, t)P

j
[~x(t1Dtjx, t), t]dV dt. (12)

In Eq. (12) the term Pi(x, t)Pj[~x(t1Dtjx, t), t] isolates water
that was in the ith water mass at time t and was subsequently in

the jth water mass at some time Dt later. The quantity gij is

therefore the average rate (m3 s21) at which water in the ith

early water mass is transformed into the jth late water mass.

Since the total volume of water is conserved between the

early and late periods all the water from the early water masses

(V1i) must be transformed into late water masses. Likewise, all

water masses from the late period (V2j) are made from water

masses of the early period. That is,

V1
i
5Dt�

N

j51

g
ij

and V2
j
5Dt�

N

i51

g
ij
. (13)

The average temperature change of water that transforms from

V1i to V2j is then

DT
ij
5

1

Dt2g
ij

ð t0
t02Dt

ððð
P

i
(x, t)P

j
[~x(t1Dtjx, t), t]fT[~x(t1Dtjx, t), t]

2T(x, t)gdVdt,

(14)

where the temperature change of an individual water parcel is

related to the Lagrangian derivative by

T[~x(t1Dtjx, t), t]2T(x, t)5

ðt1Dt

t

DT

Dt
[~x(t*jx, t), t*]dt*. (15)

We can also write Eq. (14) as

DT
ij
5 T 2

ji
2 T 1

ij
, (16)

where T 2ji is the volume-weighted average temperature of the

water in the jth late water mass that was previously in the ith

early water mass and T 1ij is the volume-weighted average

temperature of the water in the ith early watermass that is later

in the jth late water mass.

The transformation gij involves a range of water parcels

with a range of temperatures T(x, t), whose mean is T 1ij, in

the early period moving to a range of temperatures

T[~x(t1Dtjx, t), t], whose mean is T 2ji, in the late period. To

simplify this problem, we assume that in both periods the water

masses are well mixed. This means that we expect that the

mean temperature of any sample of water parcels from water

mass i in the early period will equal the mean temperature of

the water mass as a whole, and in particular this is true for the

sample of parcels that ends up in water mass j in the late period.

Thus T 1ij 5T1i with this assumption. By a similar argument,

T 2ji 5T2j, and hence the average T and S change of water

transforming from the ith early to the jth late water mass as the

difference of the averageT and S of the two water masses. That

is, DTij 5 T2j 2 T1j and DSij 5 S2j 2 S1j.

This above approximation preserves the following equality

relating the change in global volume-weighted temperature to

the transformation matrix:

�
N

j51

V2
j
T2

j
2�

N

i51

V1
i
T1

i
5Dt�

N

i51
�
N

j51

g
ij
(T2

j
2T1

i
) , (17)

and likewise for the volume-weighted salinity.

We have effectively discretized the continuum of trajecto-

ries from early to late water masses into a finite set of discrete

trajectories. This discretization clearly leads to some infor-

mation loss; however, such losses are unavoidable in any

computationally feasible inverse method.

Note that, even if the ith water mass for the early period has

the same temperature and salinity bounds as the ith water mass

of the late period, the distribution of properties within the

water mass can change. That is, in general T1j 6¼ T2i and S1j 6¼
S2i, so gij is always a transformation, even with i 5 j. For ex-

ample, assume the ith water mass has temperature bounds 18
and 28C and that the water between those bounds is on average

at 1.98C in the early period and 1.18C in the late period.

Groeskamp et al. (2014) called this a ‘‘local effect’’ and in-

cluded it as an separate term in their formulation. Here, we find

it convenient to consider the transformation from the ith early
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water mass at 1.98C to the ith late water mass at 1.18C to be yet

another transformation—no different than between any other

pair of water masses.

We relate the transformation rate to the average material

temperature tendency required to warm the ith early water

mass to form the range of destination water masses it arrives at

in the late period. That is,

_T
i
5

1

V1
i

�
N

j51

(T2
j
2T1

i
)g

ij
. (18)

We use _T to define a 3D material temperature change field

DTMaterial such that

DT
material

(x)5

ðt0
t02Dt

�
N

i51

P
i
(x, t) _T

i
dt

’
1

Dt

ðt0
t02Dt

�ðt1Dt

t

DT 0

Dt
[~x(t*jx, t), t*] dt*

�
dt. (19)

Note here that we are relating _Ti only to the anomaly of the

Lagrangian tendency (i.e., DT0/Dt rather than DT/Dt) as it ap-

pears inEq. (19). This is because our _Ti describes only the changes

in the transformation rate required to explain changes in thewater

mass distribution [as in Eq. (6)]. There can be (and indeed is) an

additional ‘‘mean’’ transformation rate that leads to cycles of

water inT–S space but does not lead to any changes in water mass

inventories with time (Groeskamp et al. 2014). Implicit in Eq. (19)

is the assumption that the anomalous warming of a particular

water mass occurred evenly (in a volume- and time-weighted

sense) over the regions and times during which that water mass

existed in the early period.

We will contrast the inferred material warming at one lo-

cation x against the total warming

DT(x)5

ðt0
t02Dt

T(x, t1Dt)2T(x, t)dt/Dt,

with the residual of the two being a redistribution component

such that

DT
material

5DT2DT
redistribution

. (20)

By construction, DTredistribution accounts for the advective redistri-

bution of temperature (u � =T), which does not affect the under-

lying water masses and therefore is not accounted for in DTmaterial.

b. Finding the minimum transformation using an EMD
algorithm

Our goal now is to estimate the transformationmatrix g. Out

of the infinite number of choices that could satisfy Eq. (13), we

will look for the smallest (in a least squares sense) possible

transformation required to change the distribution.We call this

the minimum transformation.

Previous studies have diagnosed transformation rates from

time-dependent changes in water mass distributions by searching

for a minimum least squares solution on a regular T–S (Evans

et al. 2014) or density–spiciness grid (Portela et al. 2020). Because

of the dramatic variations in volume per unit temperature and

salinity of the World Ocean (Fig. 1b) we choose to describe the

distribution in an unstructured way. Furthermore, we exploit re-

cent advances in the area of ‘‘optimal transportation theory’’—in

particular, the EMD algorithm that is mentioned at the beginning

of section 3 (Pele and Werman 2008, 2009).

The EMD solves the hypothetical problem of moving earth

froma set ofmounds, eachwith varying amounts of earth, into a set

of holeswith varying amounts of empty space to be filled,where the

total volume of themounds is equal to that of the holes. In our case

the ‘‘mounds’’ are the early water masses and the ‘‘holes’’ are the

late water masses. The optimization problem is to find the set of

transfers (fromamound to a hole, or the early to latewatermasses)

that gives the smallest possible total of mass-weighted distance (the

product of the mass and the distance of a transfer) that needs to be

traveled in order to empty the mounds and fill the holes. For the

EMD algorithm, we require a distance metric d, which is a matrix

whose ith column and jth row dij is the cost of moving water from

the ith early water mass to the jth late water mass. The EMD al-

gorithm then estimates g such that Eq. (13) is satisfied and the

following total mass-weighted ‘‘distance’’ is minimized:

�
N

j51
�
N

i51

g
ij
d
ij
. (21)

We use the following distance metric:

d
ij
5 (T1

i
2T2

j
)2 1 [a(S1

i
2S2

j
)]2 1 d

ij
, (22)

where temperature and salinity differences are squared so that

the distance is positive definite and long trajectories in T–S

space are penalized more than short ones and a is a constant

that scales the salinity change relative to the temperature

change and whose choice is described in the next section. The

intent of dij is to permit movement between water masses that

are adjacent geographically without additional penalty but at

the same time to stop direct exchange between geographically

disconnected water masses, for example between water masses

in the Southern Ocean and the Arctic. To achieve this we set

dij 5 0 where the ith and jth water masses are in the same or

adjacent geographical regions and dij � max {(T1i 2 T2j)
2 1

[a(S1i2 S2j)]
2} otherwise (in practicewe use dij5 106 in the latter

case). Regions that share a meridional or zonal boundary are

considered to be adjacent. The Arctic and North Pacific Oceans

are not considered to be adjacent, whereas the Indian Ocean and

equatorial Pacific regions are considered to be adjacent.

Our motivation for using EMD is simply to find the smallest

amount of transformation (in a least squares sense) required to

explain observed water mass change. If T–S changes in the

ocean could be explained purely by adiabatic redistribution of

existing water masses, then our method would prioritize this

solution. Our initial guess is therefore this adiabatic solution

(i.e., where gij5 0 for all i and j). The EMD algorithm finds the

smallest deviation possible from this adiabatic case. We cannot

rule out larger compensating transformations having taken

place. In principle, solutions given different initial guesses

(e.g., an initial guess for g that is based on a numerical simu-

lation) could be explored. We leave this to future work.

Figure 2 summarizes the minimum transformation method

schematically. In the schematic just four early and four late
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watermasses are definedwith two in one geographical area and

two in another. The minimum transformation moves water

from the ith early to the ith late water masses in all four cases

(i.e., gii 6¼ 0 for all i). In addition, a substantial amount of water

is moved from the second early water mass to the first late

water mass (g21) and from the third early water mass to the

fourth late water mass (g34). The observed change in temper-

ature is therefore explained by a material warming of 28 and
18C of the two warmer shallower water masses and of 0.58C for

the cooler deeper water masses. The remainder of the Eulerian

pattern of temperature change is explained by redistribution.

This schematic representation is vastly simplified as compared

to our actual implementation of the minimum transformation

method, which is described in the next section.

4. Data and application of the minimum transformation
method

Observational estimates of T and S come from the objective

analysis provided by the Enact Ensemble (V4.0, hereinafter

EN4; Good et al. 2013). EN4 has a 18 3 18 horizontal resolution

with 42 vertical levels. We analyze each month between 2006

and 2017 inclusive. We split these data into two time periods:

an early period between 2006 and 2011 inclusive and a late

period between 2012 and 2017 inclusive (i.e., t0 5 0000

1 January 2007 and Dt 5 6 years).

We then define a discrete set of water masses for each time

period by splitting the ocean into nine geographical regions and

within each region by splitting up the ocean according to T–S

bins. Our nine geographical regions are the Southern Ocean

south of 358S, the subtropical Pacific and Atlantic Oceans be-

tween 358 and 108S, the Indian Ocean north of 358S, the tropical
Pacific and Atlantic Oceans between 108S and 108N, the North

Pacific north of 108N, the Atlantic Ocean between 108 and 408N,

and the Atlantic and Arctic Ocean north of 408N. To avoid

discontinuities in our resulting analysis we transition linearly

from one region to another over a 108 band (Fig. 5).

We defineT and S bin boundaries ([Tmin,Tmax] and [Smin, Smax]

respectively) using a quadtree. The quadtree starts with a single

(obviously oversized) bin with T boundaries [26.48, 968C] and S

boundaries [25.2, 46 g kg21] in which the entirety of the ocean’s

seawater resides. The single bin is then split into four equally sized

FIG. 2. Schematic describing a simplified hypothetical implementation of the minimum transformation method. (left) Between a late

and an early period, surface waters warm, especially to the south, where the ocean is fresher and the upper ocean layer becomes thicker.

(center) The ocean is split into a southern region containing water masses 1 and 3 and a northern region containing water masses 2 and 4.

Between the early and late periods, water masses 1 and 4 increase in volume and 2 and 3 reduce in volume. Taking into account the

changing temperatures, salinities, and volumes of the early and late water masses, the ‘‘minimum transformations’’ gij are found using the

EMD algorithm. These suggest modest warming of each water mass with some of early water mass 2 transforming to become late water

mass 1 (g21) and some of early water mass 3 transforming to become late water mass 4 (g34). (right) The total temperature change is

heterogeneous. A warming of 28C explains changes in water mass 1, a warming of 18C explains changes in water mass 2, and a warming of

0.58C explains changes in water masses 3 and 4. This warming is projected onto the location of those water masses in the early period to

show the ‘‘material change.’’ The residual of the total and material changes is then explained by a ‘‘redistribution’’ that involves intense

subsurface warming in the southern region and intense subsurface cooling in the northern region.
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bins with the same aspect ratio as the original bin. The same

process of splitting into four is repeated for any bin whose volume

change is greater than a threshold of 62 3 1012m3 (equivalent to

the volume of a 58 longitude by 58 latitude region at the equator

with a depth of 200m) or until the bin size is 0.48C by 0.2 gkg21.

Average volumes for each water mass are shown in Fig. 3. In the

supplementary text we show that changing the size of these bins

by a factor of 2 does not substantially change our results. The

quadtree is appliedwithin each region and for the change between

the late and early periods. This results in bin edges defining N 5
1447 water masses. These bins are then used to define both the

early water masses and the late water masses.

We choose the constant a to be the ratio of a typical haline

contraction coefficient to a typical thermal expansion coefficient

(a 5 b0/a0 5 4.28). This does not mean that transformations

along density surfaces are necessarily preferred; rather, the

squares in Eq. (22) mean that density-compensated changes in T

and S are penalized as much as changes of the same magnitude

where one of the signs is reversed. The inferredDTmaterial for each

watermass is shown in Fig. 4.Wehave tested the sensitivity of our

method to varying a by a factor of 2 and found only negligible

changes in inferred warming (see section b of appendix A).

In section a of appendix A, we compare the results of our

method applied to synthetic data from a climatemodel simulation

with an added-heat variable explicitly simulated by themodel.We

find good agreement between added heat and our inferred

DTmaterial and between simulated redistributed heat and our in-

ferred DTredistribution when ocean temperature and salinity are fed

in as ‘‘data’’ to themethod. Section b of appendix A also explores

sensitivity of our results to parameter choices. The uncertainties

we place on OHC change are 62 standard deviations of a boot-

strap ensemble, also described in section c of appendix A.

To produce maps of the total, material and redistributed

contributions to the heat content we multiply the density and

heat capacity of seawater by the respective temperature

change and vertically integrate these through the entire water

column. Our method also produces a material salinity change.

We leave discussion of those data to future work.

5. Results

Patterns of total OHC change between early and late pe-

riods are heterogeneous (Fig. 5a). There are basin-scale

patches of decreasing heat content in the western equatorial

and tropical Pacific, in the Pacific sector of the Southern

Ocean, in the subtropical south Indian Ocean, and in the

subpolar North Atlantic. Warming is seen most strongly in the

tropical eastern Pacific, South Atlantic Ocean, and subtropical

North Atlantic. These changes are highly sensitive to the spe-

cific observation years chosen and the length of the epochs

reflecting the regional time scale of variability associated with

the redistributed component. Uncertainty is far larger than the

signal in the majority of regions (stippling in Fig. 5a) and co-

incident with previously identified regions of large sea level

anomaly variability (Penduff et al. 2011).

However, there are a few regions (e.g., patches of the

Southern Ocean and North Atlantic) where the regional

redistributed signal is robust and emerges from the uncertainty

(Fig. 5b). The patterns of redistributed heat observed in the

Pacific are consistent with interdecadal Pacific oscillation

(IPO)-driven thermosteric sea level variability (Lyu et al.

2017). The IPO was typically positive in the late period and

negative in the early period (see https://psl.noaa.gov/gcos_

wgsp/Timeseries/ for these data).

Material heat content change shows a smaller amplitude but

more coherent signal than redistributed heat (Figs. 5b,c). Material

warming is seen across almost the entirety of the globe, with

maxima in the Southern Hemisphere and Atlantic subtropical

convergence zones (Maximenko et al. 2009), consistent with

model simulations of passive ocean heat uptake due to anthro-

pogenic greenhouse warming (Gregory et al. 2016). In suchmodel

simulations, anomalous heat fluxes into the ocean predominate at

mid-to high latitudes and this heat is distributed throughout the

ocean largely passively via subduction (downwelling) in theNorth

Atlantic and the Southern Ocean (Marshall et al. 2015).

Strikingly, the uncertainty in material heat content change is

far smaller than that of total OHC change (stippling in Fig. 5c).

This suggests that heat was added to and distributed within the

ocean persistently over the Argo period and that this warming

is not an artifact of a particularly warm year or years.

Zonally integrating the net OHC change reveals a signal of

roughly the same magnitude as its uncertainty at all latitudes

(Fig. 6a). Zonally integrated redistributed heat likewise has a

small signal to uncertainty ratio except in the Southern Ocean

(Fig. 6a). Accumulating the redistributed heat contribution

from north to south gives the meridional heat transport due to

redistribution. Broadly, heat is redistributed from north to

south with a southward cross-equatorial transport of 73 6 60

TW between the two epochs (Fig. 6c).

Material heat content change (Fig. 6a) is larger than its un-

certainty atmost latitudes and shows a peak at 358S and at 158 and
358N. The material heat content change peaks at 358S and 358N
are collocated with climatological wind stress curl minima, where

material warming due to anomalous surface heat fluxes may be

accumulating due to convergence of surface Ekman transport.

Table 1 shows material, redistributed, and total heat content

changes byoceanbasin.Material heat content change is distributed

among the Indian, South Pacific, and South Atlantic basins ap-

proximately according to their area. However, the tropical and

subtropical North Atlantic stores close to 20% of the global

ocean’smaterial heat content change despite representing less than

10% of its area (Table 1). An outsized role for the North Atlantic

in storing material heat content change in the climate system has

also been foreseen in numerical modeling studies (Lee et al. 2011).

We identify robust redistributed warming signals in the

subtropical North Atlantic and Southern Ocean. Warming in

the subtropical North Atlantic is compensated by cooling in the

subpolar North Atlantic consistent with a 406 13 TW southward

transport of heat across 448N (Fig. 6c). Southward heat redistri-

bution across 328S brings 1186 50 TW into the Southern Ocean.

6. Discussion

Recent anomalous southward heat transport in the North

Atlantic has been well documented and has been attributed to

a downturn in the Atlantic meridional overturning circulation
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FIG. 3. Gray lines show Conservative Temperature T and Absolute Salinity S bounds of each water mass (or ‘‘bin’’) generated using a

quadtree for each geographical region. The average T and S of the water found within each bin are shown by the location of each marker,

and the volume is represented by the color scale (log10m
3). Inventories and mean T and S values represent the entire period (2006–17

inclusive). Inset panels show masks associated with each geographical region.
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FIG. 4. Each symbol shows DTmaterial, the average warming required for each early water mass in order to transform them into the set of

late water masses.
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(Smeed et al. 2014; Bryden et al. 2020). Observed heat transport

anomalies equate to a downturn in meridional heat transport

equivalent to2236 60 TW for the period 2006–11 versus 2012–17

at 268Nin theAtlantic [see appendixB for details of this calculation,

which is based on data from Bryden et al. (2020)], which is consis-

tent with our estimate of the change in redistribution heat transport

of2236 19 TW (Fig. 6; uncertainties are62 standard deviations).

The large apparent meridional heat transport we have

identified in the Southern Ocean was previously identified by

Roberts et al. (2017) based on the residual of observed OHC

change and estimates of air–sea heat fluxes. Their approach

captures additional heat in the systemwhere it is fluxed into the

ocean while our approach estimates how that heat is distrib-

uted. Nonetheless, the correspondence between our results

and theirs is reassuring and perhaps not surprising if the re-

distribution signal is large as both approaches indicate.

The approach of Zanna et al. (2019) is more directly com-

parable to ours. They reconstruct the passive contribution to

ocean warming since 1850 by propagating SST anomalies into

the ocean interior using Green’s functions. They report

changes for a much longer time frame (1955–2017 as opposed

to our 2006–17), and therefore magnitudes of warming esti-

mates are not comparable, but a comparison of patterns of

change is relevant. In terms of our zonally averaged material

warming and their ‘‘passive warming’’ the two datasets share

peaks at approximately 358S and 358N potentially attributable

to surface Ekman convergence (see their Fig. 3).

Zanna et al. (2019) report relatively small amounts of pas-

sive warming at low-latitude regions while we report a peak in

material warming there. This may suggest that the material

warming we estimate at low latitudes is in fact related to in-

terannual to decadal variability. An explanation of this may be

that the lower low-latitude SST corresponds to a predominance

of a negative IPO (Lyu et al. 2017), leading to anomalous ocean

heat uptake over our study period. This is a commonly cited

explanation for the so-called global warming hiatus discussed

in the 2010s (Whitmarsh et al. 2015).

Zanna et al. (2019) compare their inferred passive warming

between 1955 and 2017 to the warming observed in situ. Based

on this they find evidence of a southward redistribution of heat in

the Northern Hemisphere but no substantial southward redistri-

bution in the Southern Hemisphere. This suggests that the

southward redistribution of heat inferred by both Roberts et al.

(2017) and this study in the Southern Hemisphere may be a more

recent occurrence. Indeed, two recent studies have shown that the

Southern Hemisphere dominance of ocean heat content change

during the twenty-first century is not consistently represented in

historical climate simulations and is likely linked to internal var-

iability (Bronselaer and Zanna 2020; Rathore et al. 2020).

Here we have exclusively analyzed theHadley Centre’s EN4

dataset. Sensitivity to observational coverage is mitigated in

part by our consideration of data during the Argo observing

period (2006–17). We consider uncertainties to have been

reasonably estimated based on our bootstrapping approach,

which subsamples those years (see section c of appendix A).

Because of EN4’s mapping approach, however, regions where

minimal observations were made (e.g., the marginal ice zones in

the Southern Hemisphere and below 2000m) will likely have

muted trend estimates. This issue will require special attention

when our method is applied to the pre-Argo period and in

particular with regard to salinity observations, which are less

numerous than temperature observations (Clément et al. 2020).

7. Conclusions

In summary we have shown the following:

d Water mass changes between 2006–11 and 2012–17 can be

interpreted in terms of material warming across the globe

and with the highest concentrations in the tropical and sub-

FIG. 5. Heterogeneous pattern of total and redistributed heat

content change contrast against robust material heat content

change: (a) change in depth-integrated ocean heat content between

2006–11 and 2012–17 inclusive, (b) inferred redistributed heat, and

(c) inferred material heat content change based on changing water

masses for the same period. Regions where the magnitude of the

signal is less significant (less than 2 standard deviations of a boot-

strap ensemble) are stippled.
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tropical North Atlantic Ocean, consistent with simulations of

the addition of heat into the ocean due to greenhouse forcing.
d The majority of the variance in ocean heat content change at

scales of 18 3 18 over that period can be explained by a

redistribution of existing water masses within the ocean.
d The inferred redistribution indicates a downturn in north-

ward meridional heat transport into the subpolar North

Atlantic of 40 6 13 TW and an anomalous southward heat

transport into the Southern Ocean of 118 6 50 TW.

The material warming signal that we have inferred is gen-

erally weaker than redistribution, but the signal is far less

sensitive to changes in the years over which the analysis was

carried out. This suggests that material warming may be

giving a robust indication of slow thermodynamic changes in

the ocean. This could be a result of anthropogenic forcing,

although that would be remarkable since the midpoints of the

early and late periods are only 6 years apart.

We expect the strength of the material warming signal to

increase into the future as the oceanwarms.However, since the

redistribution signal is so large, circulation changes and vari-

ability must be understood if near-term ocean temperature

variability and regional sea level change are to be projected

accurately.

FIG. 6. Material heat content change is accumulating in the tropics and subtropics, whereas

existing heat is being redistributed southward. (a) Total heat content change (gray), redistri-

bution contribution (blue), and material contribution (red). (b) Contributions to material heat

content change from the Indian (green), Pacific (orange), and Atlantic (yellow) Oceans.

(c) Meridional heat transport due to redistribution in the Southern Ocean (blue), Atlantic

(cyan), and Indian plus Pacific Oceans (magenta). Shaded areas represent 62 standard devi-

ations of a bootstrap ensemble.
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APPENDIX A

Validation, Parameter Sensitivity, and Uncertainty
Estimation

Accuracy of the analysis we have presented in this paper

relies on the following assumptions:

1) the mapping from transformations in T–S space for each

region to local changes in geographical space is accurate,

2) the ‘‘minimum transformation’’ inferred using the EMD

algorithm, including our choice of distance metric, accu-

rately estimates the net thermodynamic transformation,

3) the resolution of our T–S grid is sufficiently fine to capture

relevant water masses, and

4) the density of observations and the procedure used to map

them onto a regular grid are sufficiently accurate for us to

quantify changes in water mass volumes.

We investigate the impact of each of these assumptions in

appendix A. We investigate assumptions 1 and 2 using syn-

thetic data from a climate model in which ‘‘added heat’’ is

explicitly simulated (section a of appendix A), and we inves-

tigate assumptions 3 and 4 using sensitivity tests (sections b and

c of appendix A). A bootstrap approach is taken in the latter

case to derive uncertainty estimates.

a. Assessment of the minimum transformation method
using synthetic data

We use synthetic data from the Hadley Centre Climate

Model, version HadCM3 (Gordon et al. 2000), to assess the

minimum transformation method. Specifically, we exploit the

configuration used for the Flux Anomaly Forced Model

Intercomparison Project (FAFMIP; Gregory et al. 2016). We

will consider two specificmodel experiments used by FAFMIP:

piControl, which is a reference experiment with no external

forcing, and FAFheat, in which the ocean is warmed by an

imposed surface heat flux.

1) SIMULATED ADDED AND REDISTRIBUTED HEAT

TRACERS

In HadCM3, the Lagrangian derivative of seawater potential

temperature, T (note here that we use potential temperature rather

than Conservative Temperature because the HadCM3 conserves

potential temperature), is set by sources and sinks of heat Q,

predominantly at the air–sea interface, and the divergence of

parameterized diffusive temperature fluxes F such that

DT/Dt5Q1= � F . (A1)

As we discussed in section 3, the minimum transformation

method is used to estimate the anomaly inDT/Dt with respect

to a statistically steady time average. This anomaly can be re-

lated to the anomaly in heat sources and sinksQ0 and diffusive

temperature fluxes F0 such that

TABLE 1. Material, redistribution, and total contributions to heat content change by ocean basin in terawatts and area as fraction of

global ocean area. Heat content change estimates are based on differences between the periods 2006–11 and 2012–17 inclusive.

Uncertainties are 62 standard deviations. The Southern Ocean is defined as the entire ocean south of 328S. The South Pacific, South

Atlantic, and Indian Ocean estimates exclude the ocean south of 328S. The North Atlantic is split into a region south of and a region north

of 448N. The latter includes the Arctic Ocean.

Material Redistributed Total Area fraction

Southern Ocean 90 6 18 118 6 50 208 6 63 0.27

South Pacific 53 6 16 226 6 22 28 6 22 0.15

North Pacific 82 6 25 261 6 55 21 6 54 0.23

Indian Ocean 45 6 10 213 6 25 32 6 30 0.12

South Atlantic 34 6 11 6 6 7 40 6 7 0.06

North Atlantic (,448N) 75 6 33 20 6 17 95 6 46 0.10

North Atlantic (.448N) 19 6 6 240 6 13 220 6 16 0.08

Global Ocean 398 6 81 0 398 6 81 1.00
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(DT/Dt)
0 5Q0 1= � F0 . (A2)

In the HadCM3’s FAFMIP simulations an ‘‘added tempera-

ture’’ tracer Tadded is simulated; Tadded is simulated as a passive

tracer initialized at zero and forced at the ocean boundary by

the imposed heat flux anomaly Q* and with time-evolving

diffusive flux Fadded such that

DT
added

/Dt5Q* 1= � F
added

. (A3)

An additional ‘‘redistributed temperature’’ tracer Tredist is

furthermore defined such that T 5 Tredist 1 Tadded.

If Q0 ’Q* and F 0
redist ’ 0 then�

DT

Dt

�0
’
DT

added

Dt
. (A4)

In practice Q0 6¼Q* in the FAFMIP experiments discussed

here. This is because the net surface flux responds to changes in

Tredist at the sea surface. This has a large influence in the North

Atlantic where anomalous ocean warming leads to a slowdown

in the AMOC and therefore to a reduction inTredist at subpolar

latitudes (Gregory et al. 2016). Indeed, unlike the redistributed

heat inferred using our method, Tredist, as defined in FAFMIP,

can be a net nonzero contributor to ocean heat content.

Also, F 0
redist 6¼ 0 since changes in circulation lead to changes

in the diffusive flux with time. Furthermore, we are not able to

average DTadded/Dt along the pathways connecting early and

late water masses as would be required for a perfect comparison

between model ‘‘truth’’ and the inferences of the minimum

transformation method. Despite the above caveats, we consider

it worthwhile to assess our method by comparing the average

change in Tadded over water masses to our inferred DTmaterial.

2) ASSESSMENT BASED ON SYNTHETIC DATA

There are two aspects of theminimum transformationmethod

that we aim to assess using these data: the uncertainty introduced

by 1) projecting an inferred warming signal from temperature

and salinity classes (watermasses) to the geographical location of

those water masses and 2) using the EMD algorithm.

The FAFMIP protocol does not describe historical climate

change but rather an idealized increase in ocean heat content

as would be expected from a doubling in atmospheric CO2. Our

observational record is centered on the beginning of 2012 when

the global atmospheric CO2 concentration reached 392 ppm

(Conway et al. 1994), which is approximately 40% above pre-

industrial levels of approximately 280 ppm. Although no

comparison can be perfect, we consider this reasonable moti-

vation to choose years 35–46 of the FAFMIP experiments to

test our method.

3) ASSESSMENT OF THE WATER MASS–BASED

PROJECTION

FigureA1a shows the column integral of the added-heat tracer

for years 41–46 for theHadCM3 FAFheat experiment (the tracer

is represented in kelvins but is here converted to the more fa-

miliar unit of watts per meter squared by multiplying by the heat

capacity and density and dividing by 43 years).Aswas done to the

EN4 data, we selected water mass bins using a quadtree ap-

proach. Figure A1b shows column-integrated added-heat change

between years 41 and 46, but in this case the added-heat tracer is

first averaged within each water mass within each of the nine

geographical regions and then is projected back into the location

of those water masses. What this projection amounts to is simply

homogenizing the added-heat tracer within each water mass in

each region. If added-heat change varies substantially within a

water mass this method will smooth out those variations.

The information loss in the reprojection is difficult to discern

between Figs. A1a and A1b, particularly in the Southern

Ocean and Indian and Pacific Ocean basins. In the North

Atlantic Ocean, simulated added heat is concentrated farther

north than in the homogenized fields. In the zonal mean

(Fig. A1c) the reprojected added heat has an RMS error of 0.5

TW (8lat)21 with differences of up to 2 TW (8lat)21 in the

subtropical Northern Hemisphere. The mismatch in the North

Atlantic is possibly due to water masses with the same T–S

properties being distributed between the subpolar and sub-

tropical regions, and it may be fruitful to distinguish between

water masses in alternative ways in future.

4) ASSESSMENT OF THE EMD-BASED MINIMUM

TRANSFORMATION

We will test the minimum transformation method in the

following three scenarios:

1) added heat only: heat is added to the ocean and water

masses are not redistributed,

2) redistribution only: no heat is added and water masses are

redistributed, and

3) added and redistributed heat: heat is added and water

masses are redistributed.

TableA1 details the way data from piControl and FAFheat are

used for these scenarios.

(i) Scenario 1

In this scenario there is no explicit ‘‘redistribution’’ signal in

the model data. The purpose of this validation is to see how

much of the change is attributed to material heat content

change using the minimum transformation method. In the

zonal mean (Fig A2a) the difference between the simulated

and inferred added heat (which is precisely the inferred re-

distributed heat) has an RMS of 1.8 TW (8lat)21.

(ii) Scenario 2

In this scenario there is no explicit added-heat signal in the

model data. This is simply a climate control run with no variations

in forcing (solar, aerosol, etc.). There are, however, some very

small changes in ocean heat uptake due to natural variability in

the fluxes of heat at the air–sea interface. The purpose of this

validation is to see how much of the change is attributed to our

redistributed heat using the minimum transformation method. In

the zonal mean (Fig. A2b) the difference between the simulated

heat content change and the inferred redistributed heat (which is

precisely the inferred added heat) has anRMS of 0.4 TW (8lat)21.

(iii) Scenario 3

In this scenario there is both an explicit added-heat signal in

the model data and the model redistributes heat in response to
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both natural variability and the imposed warming. Despite

the inclusion of a nonzero global mean net surface heat flux in

FAFMIP redistributed heat (as described above), it is in-

structive to see how well our material and redistributed heat

estimates compare to the directly simulated added and

redistributed heat variables. In the zonal mean (Fig. A2c) the

difference between both the simulated FAFMIP added heat

content and the inferred material heat content change and

between the simulated FAFMIP redistributed heat and our

water mass based redistributed heat, has an RMS of 2.4 TW

(8lat)21. We emphasize that this difference should not nec-

essarily be directly attributed to an inaccuracy in our method

considering the differing meanings of redistributed heat be-

tween the model simulations and our method. In broad terms,

we consider the stated differences between directly simulated

and inferred changes to be acceptable. We made no attempt

to tune method parameters to optimize correspondence with

the simulated variables, but this could be pursued in the

future.

b. Parameter sensitivity

Here we test the sensitivity of the results, in particular the

zonally integrated added heat, to parameter choices within

the minimum transformation method. The two choices were

(i) the choice of relative penalty on temperature versus salinity

changes (i.e., parameter a) and (ii) the number of water masses

in T–S space used to represent the early and late ocean states.

We discuss sensitivity to these choices here.

The reference case for a is the ratio of a constant haline

contraction coefficient [b0 5 7.55 3 1024 kg (g kg21)21m23]

to a constant thermal expansion coefficient [a0 5 1.76 3
1024 kgK21m23; i.e., a0 5 b0/a0 5 4.3K (g kg21)21]. This

choice implies that a transformation by 1 g kg21 in Absolute

Salinity is penalized equivalently to a transformation of 4.3K

FIG.A1. (a)Directly simulated added heat by the FAFheat experiment averaged over years 41–46 of the experiment. (b) Inferred added

heat when the same FAFheat data are first homogenized in water masses (bins in temperature–salinity coordinates) and then remapped

into the locations of those water masses over the same period. (c) Comparison of the zonal integration of the two quantities shown in

(a) and (b).
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in temperature. A larger a will cause the method to favor

transformation along the S axis, and a smaller a will favor

transformation along the T axis. We test the method in three

cases—a 5 a0, a0/2, and 2a0 (Fig. A3a)—and find RMS dif-

ferences of 0.3 TW (8lat)21 between the reference case and the

doubling and halving cases.

In termsofT–S resolution, our reference casehas aminimumbin

size of 0.2gkg21 and 0.4K. Using the quadtree, the grid is refined

until either this resolution is achieved or the volume within a par-

ticular bin falls below 62 3 1012m3. We test the sensitivity of this

choice by both refining and coarsening the resolution by a factor of

2 in both the salinity and temperature dimensions and reducing the

FIG. A2. (a) Zonally integrated simulated added heat (solid red) and inferred material heat content change (dashed red) based on the

minimum transformation method for years 41–46 of the FAFheat experiment, comparing the simulation with and without added heat.

(b) Zonally integrated simulated heat content change (solid blue) and inferred redistributed heat (dashed blue) based on our minimum

transformationmethod, comparing years 35–40 and 41–46 of the piControl experiment. (c) Zonally integrated simulated added heat (solid

red) and redistributed heat (solid blue) in the FAFheat experiment and inferred material heat content change (dashed red) and redis-

tributed heat (dashed blue) based on our minimum transformation method applied to the model data.

TABLE A1. Summary of data used for three validation scenarios: Tref and Sref are the temperatures and salinities from the piControl

experiment, respectively; Tadded is the added-heat variable; Tredist is the redistributed heat variable from the FAFheat experiment; and

Sheat is the salinity variable from the FAFheat experiment. The numbers in parentheses are the experiment years chosen [e.g., Tref(41–46)

is temperature from years 41 to 46 of the piControl experiment].

Scenario Early period Late period

1 T 5 Tref(41–46), T 5 Tref(41–46) 1 Tadded(41–46)

S 5 Sref(41–46) S 5 Sref(41–46)

2 T 5 Tref(35–40) T 5 Tref(41–46)

S 5 Sref(35–40) S 5 Sref(41–46)

3 T 5 Tadded(35–40) 1 Tredist(35–40) T 5 Tadded(41–46) 1 Tredist(41–46)

S 5 Sref(35–40) S 5 Sheat(41–46)
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volume threshold by a factor of 4 also. Decreasing the resolution

induces an RMS change in estimated zonally averagedOHCof 0.5

TW (8lat)21, and increasing the resolution induces an RMS change

of 0.4 TW (8lat)21 (Fig. A3b).

c. Robustness of the twenty-first-century trend

To quantify the sensitivity of our trend results to the time

period chosen and the specific observations made and mapped

in that period, we carry out a bootstrap calculation. Our aim

here is not to determine how accurate our trend is but rather to

determine how representative it is of time period as a whole or

whether specific years strongly influence the result.

We chose to subsample the data by including and excluding

entire years from the analysis. Six years areused for the early (2006–

11) and late (2012–17) periods of our analysis of EN4.We therefore

considered all possible permutations of the numbers 1–6 and reran

our analysis of EN4, subsampling the years corresponding to those

sixnumbers. For example, in the case [1, 3, 3, 4, 5, 6] the early-period

data were replaced with the years 2006, 2008 and 2008 repeated,

2009, 2010, and 2011 and the late-period data were replaced with

2012, 2014 and 2014 repeated, 2015, 2016, and 2017.

There are 46 656 uniquely ordered permutations of the

numbers 1–6 when repetition is permitted. Since the calcula-

tion is insensitive to the order of the six years for either the

early or late period, in practice we only need to consider the

462 unique permutations (ignoring order) and weight each by

its frequency in the larger set of ordered permutations.

Figure 5 shows the mean and Fig. A4 shows the standard

deviation of the bootstrap ensemble;62 standard deviations of

the spread in estimates of zonally averaged heat content

change are shown in Fig. 6. Since these error estimates are

generally larger than our other parameter sensitivity tests, we

use them as our formal uncertainties throughout the main text.

APPENDIX B

Comparison with Atlantic Meridional Heat Transport
Trend at 26°N

Wecompare our estimate of the contribution of redistribution to

anomalous meridional heat transport north of 268N in the Atlantic

(MHTRedist; Fig. 6c) with conventional meridional heat transport

(MHT) data reported by Bryden et al. (2020) (Table B1). Our

FIG. A3. (a) Zonally integrated inferred material heat content change for cases in which the parameter a is set at a

reference value of a05a0/b0 5 4.3 K (g kg21)21 (black) and then reduced (red) and increased (blue) by a factor of 2.

(b) Zonally integrated inferred material heat content change for cases in which the T 2 S bins are shrunk using

quadtree until they either contain a volume of seawater less than 623 1012m3 or have a bin size of 0.48C by 0.2 g kg21

(black), cases in which the minimum volume is 15.53 1012 m3 and the minimum bin size is 0.28C by 0.1 g kg21 (blue),

and cases in which the minimum volume is 248 3 1012m3 and the minimum bin size is 0.88C by 0.4 g kg21 (red).
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FIG. A4. (a) One standard deviation of the heat content change inferred on the basis of

subsampling early (2006–11) and late (2012–17) years of the EN4 dataset. Also shown are 1

standard deviation of the ensemble of inferred (b) material heat content change and

(c) redistributed heat on the basis of our minimum transformation method applied to the same

subsampled data as in (a).
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MHTRedist relates to the rate of change of the redistribution com-

ponent of ocean heat content change (OHC); that is, MHTRedist 5
›OHC/›t. Thedifference inOHCbetween twoyears (e.g., 2006 and

2012) relates to MHTRedist throughð2012
2006

MHT
Redist

dt5OHC(2012)2OHC(2006) . (B1)

We have considered the difference in OHC between two 6-yr

periods (2006–11 vs 2012–17). Hence our OHC change and

MHTRedist are related through"ð t01Dt

t0

OHC(t) dt2

ðt0
t02Dt

OHC(t) dt

#

5

ðt01Dt

t0

[OHC(t)2OHC(t2Dt)] dt

5

ðt01Dt

t0

ð t
t2Dt

MHT
Redist

(t0) dt0 dt (B2)

where t0 is midnight 31 December 2012 and Dt is 6 yr. In

practice we have averages of MHT covering April–March (see

Table B1); we approximate Eq. (B2) using 6-yr running means

of MHT anomalies and then averaging these between 2009/10

and 2014/15. Our uncertainties are 62 times the standard de-

viation of the 6-yr running means.
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