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Abstract
In theory, the same sea-ice models could be used for both research and operations, but in practice, differences in scientific
and software requirements and computational and human resources complicate the matter. Although sea-ice modeling tools
developed for climate studies and other research applications produce output of interest to operational forecast users, such as
ice motion, convergence, and internal ice pressure, the relevant spatial and temporal scales may not be sufficiently resolved.
For instance, sea-ice research codes are typically run with horizontal resolution of more than 3 km, while mariners need
information on scales less than 300 m. Certain sea-ice processes and coupled feedbacks that are critical to simulating the
Earth system may not be relevant on these scales; and therefore, the most important model upgrades for improving sea-ice
predictions might be made in the atmosphere and ocean components of coupled models or in their coupling mechanisms,
rather than in the sea-ice model itself. This paper discusses some of the challenges in applying sea-ice modeling tools
developed for research purposes for operational forecasting on short time scales, and highlights promising new directions in
sea-ice modeling.

Keywords Sea ice · Climate · Model · Numerical weather prediction

Introduction

Broadly speaking, there are three overlapping communities
of sea-ice modelers: those who are interested in under-
standing and accurately simulating the detailed physical
processes, climate modelers who are interested in com-
putationally efficient representations of large-scale sea-ice
characteristics and processes, and the operational forecast-
ing community, who are interested in models that produce
efficient, skillful predictions for a range of spatio-temporal
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scales. A fourth community does not perform the model-
ing work itself but uses the results: policy makers and other
stakeholders, such as mariners.

Numerical weather forecasting centers traditionally have
used relatively simple sea-ice models1, mainly as sur-
face boundary conditions for their atmospheric simulations.
However, as codes in the sea-ice and climate research com-
munity have matured, and as resources have grown to allow
more computationally ambitious simulation procedures
and fully coupled atmosphere-ocean-ice configurations,
operational centers are increasingly turning toward estab-
lished sea-ice research codes for numerical forecasting sys-
tems. Motivated by recent workshop discussions exploring

1The title uses the phrase “modeling tools” to avoid the ambiguous
term “model,” which can refer to any representation of a given process
or system, from an elegant set of mathematical equations to a million
lines of numerical code. In this paper, the relevant definition of
“model” should be clear from the context in which it is used.
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next-generation sea-ice modeling [1], this paper questions
whether forecasting systems should use sea-ice models
developed for climate applications.

While they share a common subject, research and opera-
tional communities have different goals, requirements, and
needs. For the research community (process level through
climate scales), understanding and properly representing the
physical processes are paramount; forecasters need products
that are both skillful and valuable to stakeholders, partic-
ularly with respect to hazards and risk [3]. For instance,
conservation of mass and heat is crucial for long-term sim-
ulations of global change under imposed forcing such as
greenhouse gas emissions, in order to detect and distinguish
the emergent climate response. For shorter term forecasts,
an initial condition is usually imposed by assimilating
observed data products, which often precludes conservation.
In this paper, we use “short term” to refer to time scales up
to seasonal and “long term” or “climate scale” to refer to
interannual to centennial time scales.

Sea ice occurs in many forms that present different
types of hazards, from solid, stationary shelves of landfast
ice to large, brittle plates, to loose mixtures of smaller
floes with slushy brash ice and icebergs. Critical elements
of a physics-based sea-ice model framework include
necessary, first-order physical representations such as basic
thermodynamics and dynamics with sound subgrid-scale
parameterizations of processes essential to major feedback
cycles, relevant coupling mechanisms with the atmosphere
and ocean, system memory (e.g., ice volume), awareness of
sea ice’s multiscale character, and, for longer time scales,
suitably conserved properties such as heat, momentum, and
mass of water and salt. As described below, first-order
physical processes are currently represented in large-scale
Earth system models, but whether they are necessary or
sufficient now or in the future depends on the application.
For instance, mariners say that area fractions of multiple
ice thicknesses or floe sizes are not especially useful for
navigation, while locations of high sea-ice pressure and
ridged ice are [4]. Climate models, on the other hand,
require the ice thickness distribution, which describes the
fractional area coverage within each grid cell of ice in
a given thickness range, to capture important climate
feedback processes [5].

Since the inaugural voyage of the icebreaker Yermak in
1899, mathematical models of sea ice were conceived to
serve a dual purpose of short-term prediction and climatic
signal detection. In [6], early connections were drawn
between sea ice forecasting methods for seasonal Arctic
Ocean navigability and global climate warming. Subsequent
Russian and American models developed in the 1960s and
1970s used numerical methods for synoptic to seasonal
integrations [7–9]. However, the culmination of that

research in comprehensive dynamic-thermodynamic sea ice
models (e.g., [10]) proved too computationally expensive
for coupled climate system integrations. Consequently,
simplifications first used for short-term integrations more
than a decade earlier, especially to internal sea ice stress,
were retrospectively applied in climate investigations (e.g.,
[11]). More recently, alternative approaches for sea ice
dynamics have been developed specifically to improve
operational forecasts (e.g., [12]), which could also be useful
for climate-scale simulations.

Modelers must balance the physics that can be included
in sea ice component models against their computational
expense. Internal variability makes the atmosphere difficult
to predict [13], and modelers run ensembles of perturbed
simulations to capture the “envelope” of potential outcomes,
which serves as a measure of uncertainty around a mean
response; higher resolution simulations usually impose a
reduction in the number of ensemble members that can be
run, and on the complexity of the sea ice model.

Another practical consideration is availability and reli-
ability of modeling technologies. Well-vetted, community-
developed modeling tools offer attractive options for oper-
ational forecasting centers when upgrading their models.
While sea-ice processes that are primarily restricted to
action in a vertical column are easy to share, dynami-
cal cores are fundamentally linked with the underlying
code structure (e.g., meshing considerations associated with
Eulerian or Lagrangian approaches) and therefore are more
difficult to share. Fortunately, much of sea-ice physics is
already represented within column descriptions, and there-
fore our recommendations focus on dynamics and accel-
erating community-wide progress through shared model
frameworks.

Modeling Systems

Several models designed for large-scale or long-term
(climate) simulation are used in operational forecasting
settings to simulate the growth, melting, and movement
of sea ice, such as the CICE model [14], the Louvain-
la-Neuve Ice Model (LIM, [15]) (now evolving into the
Sea Ice Modelling Integrated Initiative (SI3, [16]), the
Sea Ice Simulator (SIS, [17]), and TED, a thickness-and-
enthalpy-distribution sea-ice model [18]. They capture the
basic sea ice physics, including variable ice concentration
[10, 19], thermodynamics with varying complexity in
the representation of salinity (e.g., [15, 20–23]), and a
dynamical formulation with a viscous-plastic–based sea-
ice rheology, such as elastic-viscous-plastic (EVP [24–28]),
elastic-anisotropic-plastic (EAP [29]), and implicit viscous-
plastic ice dynamics solvers (e.g., [10, 30]).
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Forecasting centers that include sea ice as a component
of their modeling systems are shown in Table 1. The ocean-
ice resolution in these models is moving toward finer scales,
with 1/12◦ global models already in use and even higher
resolution in regional configurations.

Data assimilation codes at operational centers are often
more complex than, and heavily intertwined with, the
physical models. Most of these modeling systems assimilate
satellite-derived sea ice concentration, among other ocean
properties such as ocean temperature and salinity. Only the
ArcIOPS modeling system assimilates ice thickness in an
operational mode [31], although approaches using this and
other sea ice variables such as ice surface temperature are
being explored (e.g., [32–35]).

Modeling Considerations

Most current, physics-based sea-ice models designed for cli-
mate study are expressed in terms of local balances of con-
served quantities such as mass, heat, and momentum, and
include many parameterizations of unresolved, small-scale
processes. Sea-ice physics may be divided into thermody-
namic and dynamic processes, which are mostly vertical

and horizontal, respectively. There are different models and
approaches available for each of these processes, which may
be used in different combinations depending on the problem
being studied. In this section, we discuss considerations rel-
evant to operational modeling, including scales, processes,
data assimilation, and model complexity.

Scales and Resolution

Relevant temporal and spatial scales for sea-ice information
depend on the application. Elements of the ice pack that
are relevant for tactical navigation include floes, leads, and
ridges, with scales of 10 m to a few kilometers for hours up
to a few days; navigation benefits most from information at
300-m resolution or higher [4]. Route planning requires ice
information at larger scales, such as ice thickness, drift, and
convergence/compression on time scales of days to months.
Development of standards and regulations, which requires
an understanding of long-term trends, uses climate-scale
information more directly. A challenge for Earth system
model predictions is the transition from shorter time scales
largely controlled by “memory” of initial conditions to
longer time scales at which the model’s response to external
forcing emerges (decadal and beyond).

Table 1 Selected modeling systems that include sea ice

Country Institute Modeling Ocean Sea ice Atmosphere Ocean/ice Assimilation

system model model model resolution system

Australia BoM AMPS Data Polar mods Polar WRF 1.67 km 3DVAR

/ USA / NCAR

Canada CCMEP CAPS NEMO CICE GEM† 0.08◦ SAM

Canada CCMEP GIOPS NEMO CICE GEM† 0.25◦ SAM

Canada CCMEP RIOPS NEMO CICE GEM 0.25◦ SAM

China NMEFC ArcIOPS MITgcm MITgcm GFS 18 km EnKF

Denmark DMI HYCOM-CICE HYCOM CICE IFS† 10 km nudging

Europe ECMWF ECMWF NEMO LIM2 IFS 0.25◦ NEMOVAR

Europe UK Met Office GLO-CPL/CMEMS NEMO CICE UM 0.25◦ CPLDA

Finland FMI ALADIN-HIRLAM‡ HBM HELMI HarmonEPS 1 n.mi. 3DVAR

Finland FMI ALADIN-HIRLAM HBM HELMI HIRLAM 1 n.mi. 4DVAR

France MOI GLO-HR/CMEMS NEMO LIM2 IFS† 0.08◦ SAM

Japan JMA/MRI CPS2 MRI.COM MRI.COM GSM 0.5◦ MOVE

Norway NERSC TOPAZ4 HYCOM TOPAZ IFS† 12–16 km (NP) EnKF

/ Met Norway

UK Met Office FOAM NEMO CICE UM† 0.25◦ NEMOVAR

UK Met Office GloSea NEMO CICE UM 0.25◦ NEMOVAR†

USA NWS RTOFS HYCOM CICE GFS 3.5 km (NP) NCODA-based

USA NWS CFS MOM4 SIS1 GFS 0.5◦ GODAS

USA USN GOFS HYCOM CICE NAVGEM 3.5 km (NP) NCODA

Acronyms are defined in Table 2. †Model is run offline. ‡Variants of this system are used by other members of the HIRLAM Consortium:
Denmark, Estonia, Finland, Iceland, Ireland, Netherlands, Norway, Spain, Sweden, Lithuania
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Spatial resolution depends on model configuration,
ranging from a few kilometers for highly focused, horizontal
areas to tens of kilometers for global simulations. In all
cases, subgrid-scale processes must be represented via
parameterizations. For instance, most models represent an
ice thickness distribution, and floe size distributions are
being tested in research codes. Vertical resolution ranges
from fractions of a centimeter to meters for the sea-ice and
snow column.

Processes

Mariners (e.g., [4]) desire risk analyses and predictions for
ice drift and compression, pressure ridges, thickness, and
probabilistic information such as comparison of the current
ice situation to normal. Ice melting stage, snow cover, and
the presence of landfast ice and icebergs are also useful.
Model parameterizations already represent much of this
information in some form but require careful interpretation
of model output. As [3] note, advances in Arctic sea-ice
predictability (e.g., [36]) and prediction (e.g., [37]) are not
widely utilized for planning and risk mitigation because
the native model output variables are not useful, and more
useful variables lack reliable skill estimates.

Among the most uncertain representations in sea-ice
models are their coupled interactions with the atmosphere
and ocean boundary layers. For example, wind forcing is
poorly represented at lower resolution, while parameteriza-
tions such as drag may break down in the range of floe-
and finer scales, complicating the representation of ice and
boundary layer coupled processes.

Column Physics

Because sea ice is very thin compared with its horizontal
extent, and because of the steep thermal gradient for much
of the year between the upper (atmospheric) and lower
(oceanic) ice surfaces, many thermodynamic processes can
be simply described in the vertical direction, to first order.
These include surface fluxes (radiation, heat, water, salt, and
other bio-chemical constituents), conduction, melting at the
top and bottom of the ice column, seawater freezing, brine
dynamics within the ice column, and snow-ice formation, in
which snow on top of the ice is converted to sea ice through
flooding and freezing of sea water.

A primary goal of large-scale sea-ice models (e.g., those
used to study climate) is to describe the ice thickness
distribution. Each thickness category is usually represented
as a single ice column with snow on top, and a full vertical
thermodynamic calculation is performed for each, which
may also include halodynamics and ecosystem cycling.
In addition to thermodynamic growth and melt, ice may
be transferred from one thickness category to another

through mechanical deformation processes, also known
generically as “ridging.” Although ridging is a dynamical
process arising from ice convergence and shear, it is wholly
described as part of the column physics of current sea-ice
models. Ridges are formidable barriers to ship navigation.

Ice aging and melt stage are useful diagnostics for vessels
operating in the ice because they indicate the degree of
deterioration and strength of the ice. Likewise, snow cover
can be indicative of sturdy ice and also creates friction for
passing ships. Current models are capable of producing ice
age, melt stage, and snow cover, but these diagnostics have
generally not been developed and evaluated for operational
products.

A new capability now becoming available in large-scale
sea-ice models is the floe size distribution (FSD [38–41]).
At global scales, the FSD affects rates of change for sea
ice in wave-influenced ice areas [42]. Although floe size
itself is of less interest to mariners [4], if coupled with melt
stage, it could be considered for operational deployment as
an indicator of ice damage and/or strength.

Dynamics

The dynamics components of sea-ice models capture
the spatial character and evolution of the ice pack
through processes that affect its momentum, strength, and
deformation, and are thus directly relevant to operational
forecasting of ice drift, compression, and ridging. The
computed velocity is used to conservatively transport the
ice horizontally, and divergence and convergence create
areas of open water and closely packed, often ridged ice,
which affect the large-scale sea-ice state. The ice pack can
generally be divided into two regimes: the consolidated
pack, in which ice is composed of large, brittle plates
that behave as a plastic material, and the marginal ice
zone (MIZ), in which ice floes tend to be smaller and
less concentrated. The transition region between these two
regimes is not well defined and changes in both time and
space as the ice pack freezes, melts, and moves around.
Vessels operating in the ice pack encounter less resistance
in the MIZ than in the consolidated pack, although it
is still a very hazardous area; the consolidated pack
generally requires icebreaking capabilities, and identifying
paths of weaker or less consolidated ice is helpful for
transiting the pack. In the Arctic, the MIZ has traditionally
been a relatively narrow region around the edges of the
consolidated ice pack, but this distinction is changing as
the Arctic pack becomes more seasonal and similar to the
Antarctic [43].

There are a number of different approaches for sea-ice
dynamics (by which we mean the horizontal momentum,
stress, and transport of the ice) and the applied forcing
required to move it. Most large-scale models use the
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isotropic, viscous-plastic (VP) model of [10] or an extension
of it, such as EVP or EAP. The VP model was designed
for scales on the order of 100 km. Observations indicate
that VP’s continuum and isotropic assumptions do not hold

below these scales (in particular, not enough leads are
present to make the ice isotropic; [44, 45]). However, when
run at high resolution, isotropic, plastic rheologies generate
linear kinematic features (LKFs, Fig. 1) such as leads and

Fig. 1 a Sea-ice drift forecast from GOFS 3.1 (green vectors) in sup-
port of the ICEX joint exercise “Camp Seadragon” in March 2020,
overlain on VIIRS and RADARSAT2 (red rectangle) sea-ice imagery
[49]. Colored dots show buoys rotating in inertial motion. b GOFS
sea-ice compressive strength (104 N/m). The ice is weak where it is

moving away from the shore and along the shore lead, visible as a
white line in the satellite image in a. The ice has slowed under com-
pressive conditions in the eastern area of the NIC domain (black box).
c Sea-ice opening rates (%/day) associated with divergence and shear.
Linear kinematic features appear in response to shifting winds
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ridges, which look realistic but are usually not well resolved
and may not be oriented correctly [46, 47]. In [48], it
is found that many statistical properties are represented
very well in a lead-resolving VP model, except for lead
intersection angles.

In the consolidated ice pack, recent research has focused
on capturing its brittle and/or anisotropic character (e.g.,
[29, 50–53]) and the landfast ice phenomenon, in which
ice becomes grounded and stable in shallow water [54].
Approaches for embedding anisotropy below the grid
scale include adding an anisotropic damage model to
an existing rheology [29], and abandoning continuum
approaches altogether for discrete element models (DEMs,
e.g., [55]), which represent collections of ice floes as
discrete, Lagrangian elements that interact through contact
forces more reflective of the brittle, anisotropic nature
of the ice pack. As a transported scalar variable, sea-ice
damage could be a key operational diagnostic but needs to
be considered in conjunction with concentration changes
associated with ice divergence, shear, and compression, in
order to determine whether the damage results in greater
open water or impassable, ridged ice. Much more research
is needed of ice dynamics concerning ice strength, ridging,
landfast ice, and interactions with icebergs.

A majority of current operational sea ice models assume
constant, neutral transfer coefficients of momentum, heat,
and moisture between the air-ice and ice-ocean interfaces.
These transfer coefficients, which depend on the large-scale
roughness of these interfaces, e.g., from pressure ridges
and keels, are expected to vary spatially and temporally.
Numerical models [53, 56] suggest the neutral transfer
coefficients can vary by as much as a factor of 4 across the
pack and a factor of 2 through the year, with impacts on
the sea ice mass balance and air-ocean momentum transfer
comparable to uncertainties in the sea-ice rheology [53, 57].

Current models also do not account for floe rotation,
pitching, rolling, and flexing. In promising work that can
span both consolidated and MIZ regimes, some researchers
are examining the subgrid-scale interaction and evolution of
floes. For continuum models, this takes the form of floe size
distributions that evolve in response to freezing, melting,
and damage by waves and tides through flexure. Wave
energy reaches deeper into the interior Arctic Ocean now
than previously [58], which creates ocean mixing in addition
to altering the floe size distribution, and thus can affect the
heat and moisture flux exchange between the atmosphere
and ocean with feedback effects on the ice [41]. DEMs
are another approach that may prove useful for capturing
the behavior of both regimes. A challenge for DEMs and
continuum floe size distribution models is representing
the consolidated ice pack, where floes are aggregated into
massive ice plates.

Large-scale motion and deformation products derived
from remote sensing [59] provide power-law scaling metrics
for sea-ice deformation in space and time [60], as well as
export fluxes through gateways such as Fram Strait [61].
If Lagrangian drifters were implemented in the models,
motion products could be compared more directly. Recent
work seeks to analyze and characterize LKFs in the ice
based on fracture angles, lengths, densities, growth rates,
and lifetime (e.g., [48, 62]).

Operational forecasts often need information such as
sea-ice pressure at subgrid scales, e.g., in the vicinity of
vessels (Fig. 2). The Risk Index Outcome (RIO, [63])
metric provides information that helps ship captains decide
whether to go and at what speed. However, even 5-kmmodel
grid cells may be too large for such applications, and the
continuum assumption inherent in many models implies
that they are invalid at those scales. This mismatch may
be resolved through statistical interpretation of the model
output, i.e., probabilistic forecasts.

Evaluation and Data Assimilation

Approaches used to objectively evaluate models’ represen-
tation of sea-ice characteristics and evolution also depend
highly on the application. Seasonal sea-ice prediction skill
is significantly affected by the choice of the verification
product [63, 64]. For properties above the subgrid scale,
remote sensing provides a foundation to compare quantities
such as ice concentration, and thickness and freeboard (e.g.,
[65–67]).

Data assimilation offers a mathematically robust frame-
work for integrating observations in models for many pur-
poses, including state estimation, initialization, and param-
eter calibration [68]. It can also be applied to optimally
design sea-ice monitoring and analysis systems [69, 70].

Short-term forecasts are considered an initial value
problem, for which data assimilation provides an optimal
initial state. When the lead time of a forecast is increased,
the significance of the initial condition decays at varying
rates. For example, the “memory” of ice thickness is long,
and so ice thickness is sometimes assimilated for seasonal
ice prediction (e.g., [32, 71–73]). Meanwhile, assimilating
ice velocity is problematic because the initial condition is
quickly lost—ice motion is primarily a function of wind at
short time scales. Biases in the model state are particularly
problematic, and if unaddressed, relaxation to the natural
model state can dominate the forecast period. On the other
hand, assimilation may render many details of the model
physics irrelevant. One disadvantage of data assimilation is
that it may change the natural state of the model and create
undesired features in a forecast, including significantly
altered processes and feedbacks [74].
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Fig. 2 24-h forecast initiated at 00 UTC on 24 April 2020, produced
by CCMEP in support of the MOSAiC expedition (the red dot shows
the Polarstern position), using the Canadian Arctic Prediction System
(CAPS), with NEMO and CICE at 1/12◦ grid (4–5 km in the Arctic)

coupled with the ∼ 3 km GEM atmosphere model. a Sea-ice pressure
(kN/m) and surface winds (m/s). b Sea-ice thickness (m). Linear kine-
matic features appear in response to shifting winds, with high pressure
in areas of convergence and thicker ice

A primary issue for short-term forecasts based on coupled
ocean and sea ice models is bias and uncertainty in the atmo-
spheric forcing, along with a lack of data to properly constrain
the models. This is particularly problematic where satellite
data is ambiguous, near the coasts, and in the marginal ice
zone, areas with numerous marine forecast users.

Ensembles can be used for data assimilation to determine
the uncertainty of a model prediction. The ensemble spread
represents all uncertainties originating from forcing and
physical parameterizations within a modeling tool; missing
processes create immense uncertainties in forecasts. For
instance, before landfast ice was parameterized in models,
[75] had to disable the sea-ice model dynamics to improve
the ensemble spread of ice predictions within the Canadian
Archipelago.

Model Complexity

A critical consideration for operational tools is their
complexity in terms of maintenance and computational
costs, validation of upgrades, and characterization of
uncertainty. Greater model complexity is associated with
increased human and computational resources and tends
to feature larger state vectors and more free parameters
across a greater variety of parameterizations. Operational
centers require a stable code base, and often prefer simpler
codes because of the number, length, and frequency of runs

performed each day. Increased complexity is warranted if
it improves the atmospheric forecast, or to meet demand
for other sea-ice parameters as products. One aim of added
complexity is to provide model output that is comparable
with observations, in terms of variables’ definitions and
their simulated quality of mean sea-ice state and variability.

Another reason to include more detailed sea-ice param-
eterizations is to better capture the physical processes
themselves with more faithful feedback and sensitivity to
perturbations [76]. For instance, the same sea-ice processes
are at work in the Arctic and Antarctic, but the resulting
icepack characteristics and behavior are different because
the relative balance and importance of the various processes
differ between the two hemispheres. This is largely due to
differences in the atmosphere and ocean forcing on the sea
ice, but a complete suite of primary sea-ice processes is
needed to explore their impacts, with significant implica-
tions for predictive performance of the models in the two
hemispheres. Although the primary sea-ice processes and
their coupled feedbacks are critical to simulating the Earth
system, the most effective model upgrades for improving
sea-ice predictions might be made in the atmosphere and
ocean components of coupled models, or in the coupling
mechanisms themselves, which may have a greater impact
on short-term forecasts than details of the sea-ice physics.

Both continuum and discrete element models face
computational challenges associated with communication
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in a parallel computing environment and storage of ever-
increasing amounts of output data, with clear impacts
on the generation of sea-ice diagnostics needed for
applications. Physically based statistical analyses and
reduced-order modeling can decrease the data volume in
a comprehensible way. Machine learning can also be used
to train parameterizations within physical models, such as
the floe-contact models needed for DEM, and holds great
promise for revolutionizing the data-intensive aspects of
Earth system prediction.

Model complexity in the form of multiple options for
representing the physics adds value for users, who can
choose the level of complexity relevant for their problem.
For example, simpler configurations with coarse resolution
are preferred for long (e.g., millenial) simulations and
large ensembles, and simpler sea-ice model configurations
might also be appropriate if data assimilation dominates
the sea-ice response. While detailed, complex physical
descriptions are fundamental for understanding Earth
system processes and their interactions, being able to reduce
the model to a simpler version enables experimentation,
and mechanisms can be prioritized for further modeling and
observational study. Moreover, developing a common set
of integrated modeling tools entrains capability from the
whole community, including research model development
and operational validation resources.

Vision for the Future

The next generation of sea-ice models and parameteriza-
tions is being developed while application groups utilize
and continue to improve existing models. This approach
includes three phases: operational applications using older,
well-tested codes; research groups using newer, released
versions of codes and updating them with incremental
development; and model developers building novel algo-
rithms and modeling frameworks.

A hierarchy of models (or model configurations) is
necessary to address the variety of scientific questions
spanning operational needs, process understanding, and
climate research. A key question is whether to create a
simple model to address each scientific problem, or one all-
purpose modeling framework that can address a range of
problems by selecting relevant parameterizations.

Sea ice is a highly complex material, and implement-
ing numerous options for every process into a single model
framework can become unwieldy. Thus, a diversity of model
frameworks is useful to better understand alternative mech-
anisms and balances. The modeling paradigm for coupled,
Earth system models has long been modular, allowing com-
ponents such as the ocean model to be swapped with
other options. Now, the components themselves are moving

toward mix-and-match subcomponents. For instance, the
Discrete Element Model for Sea Ice (DEMSI [77]) uses the
column physics from CICE (“Icepack”), with a molecular-
dynamics–based model (LAMMPS [78]) underlying the
sea-ice dynamics. The ability to combine or link technolo-
gies within a common set of frameworks could allow mod-
elers to approach the multiscale, multiphysics challenges of
predicting local sea-ice conditions in the context of regional
and global change. For example, nested models are com-
monly used now, in which a large-scale, continuum model
provides boundary conditions for an embedded, higher-
resolution domain. Combining technologies could enable
a DEM “super-parameterization” [79, 80] approach in the
embedded domain, or DEM might be applied near the ice
edge or coastlines within the continuum model framework,
to better capture floe-scale effects at the high resolutions
and short time scales needed for navigation.

Although a single model framework is unlikely given the
diversity of funding agencies, research interests, and user
needs, a common set of metrics and data assimilation tools
could be jointly developed and deployed online. Modeling
tools necessarily are configured to meet the demands of
the problem at hand, but model-agnostic analysis tools that
incorporate recommended sea-ice metrics [81], standard
operational products from sea-ice models, and a common
set of observational datasets would be broadly useful across
the sea-ice modeling community, providing a pathway for
research and operational centers to take better advantage
of existing observations and modeling capabilities as new
analysis tools are added. Likewise, data assimilation tools to
calibrate model parameters and initialize predictions could
be shared if the coding were independent of the central
sea-ice model code, a significant challenge. Some tools are
becoming available, [e.g., 82, 83].

These types of shared resources foster communication
across the modeling and observational communities. To
build the modeling, observational, and deployed capabilities
that meet society’s needs, dedicated resources are needed
to engage the entire community of developers and users
in a co-design “value cycle” in which each community
contributes and responds to the needs of the others [84, 85].
A key element of this vision is enhanced communication
among research communities, operational centers, and
stakeholders outside of the scientific realm, such as
policymakers.

Summary

Although the same models can be used for both research
and operational applications, in practice this is complicated,
with different products and parameters needed, or needed
on very different spatial scales. Computational resources
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Table 2 Acronyms

3DVAR 3-D variational analysis method

AMPS Antarctic Mesoscale Prediction System [86]

ArcIOPS Arctic Ice Ocean Prediction System [31]

BoM Australian Bureau of Meteorology

CAPS Canadian Arctic Prediction System

CCMEP Canadian Centre for Meteorological and Environmental Prediction

CICE The Los Alamos Sea Ice Model [14, 87]

CFS Climate Forecast System [88]

CMEMS Copernicus Marine Environment Monitoring Service

CPLDA Coupled atmosphere–land–ocean–ice Data Assimilation system [89]

CPS2 Coupled Prediction System [90]

DMI Danish Meteorological Institute [91]

ECMWF European Centre for Medium-Range Weather Forecasts [92]

EAP elastic-anisotropic-plastic rheology

EnKF Ensemble Kalman Filter

ESMF Earth System Modeling Framework [93]

EVP elastic-viscous-plastic rheology

FMI Finnish Meteorological Institute

FOAM Forecasting Ocean Assimilation Model [94]

GEM Global Environmental Multiscale model [95]

GFS Global Forecast System [96]

GIOPS Global Ice Ocean Prediction System [97]

GLO-CPL Global Coupled System

GLO-HR Global High Resolution System [98]

GloSea Global Seasonal forecasting system [99]

GODAS Global Ocean Data Assimilation System [100]

GOFS Global Ocean Forecasting System [101, 102]

GSM Global Spectral Model [103]

HarmonEPS HIRLAM–ALADIN Research on Mesoscale Operational Numerical weather prediction

in Euromed (HARMONIE) Ensemble Prediction System [104, 105]

HBM High-Resolution Operational Model for the Baltic (HIROMB) Baltic Operational

Oceanographic System (BOOS) Model [106]

HELMI Helsinki Multi-category sea-Ice model [107]

HIRLAM High Resolution Limited Area Model [108]

HYCOM Hybrid Coordinate Ocean Model [109, 110]

IFS Integrated Forecasting System [92]

JMA/MRI Japan Meteorological Agency/Meteorological Research Institute

LIM2 Louvain-la-Neuve Ice Model version 2 [111]

LKF Linear kinematic features

MITgcm Massachusetts Institute of Technology Global Circulation Model [112]

MIZ Marginal Ice Zone

MOI Mercator Ocean International

MOSAiC Multidisciplinary Drifting Observatory for the Study of Arctic Climate

MOVE Multivariate Ocean Variational Estimation [113]

MRI.COM Japanese Meteorological Research Institute Community Ocean Model [114]

NAVGEM U. S. NAVy Global Environmental Modeling system [115]

NCAR U. S. National Center for Atmospheric Research

NCODA U. S. Navy Coupled Ocean Data Assimilation system [116]
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Table 2 (continued)

NEMO Nucleus for European Modelling of the Ocean [16]

NEMOVAR 3DVAR data assimilation system for use with NEMO [94, 117]

NERSC Nansen Environmental and Remote Sensing Center

NMEFC Chinese National Marine Environmental Forecasting Center

NP North Pole

NWS U. S. National Weather Service

Polar WRF Polar Weather Research and Forecasting model [118]

RIOPS Regional Ice Ocean Prediction System

RTOFS Real Time Ocean Forecast System [119]

SAM Systéme d’Assimilation Mercator [120]

SI3 Sea Ice modelling Integrated Initiative [121]

SIS Sea Ice Simulator [17]

TED Thickness and Enthalpy Distribution sea-ice model [18]

TOPAZ The Operational Prediction system for the North Atlantic European coastal Zones [122]

UK United Kingdom

UM Unified Model

USA United States of America

USN U. S. Navy

VP viscous-plastic rheology

present considerable constraints for both research and oper-
ations, driving choices of included physics as well as spatial
and temporal resolution, simulation length, and ensemble
size. Data assimilation is necessary for initializing short-
term forecasts, for which sea-ice physics parameterizations
that mainly influence longer term feedbacks are likely irrel-
evant. The main parameters desired by mariners are already
available in large-scale sea-ice models, but validation met-
rics and probabilistic risk information need to be developed.
These parameters may not be accurate enough for opera-
tional use, requiring additional research and development in
new or refined approaches.

A community framework for sea-ice modeling would
seek to leverage the whole community for model develop-
ment, verification, and validation toward a goal of mutu-
ally useful, flexible, robust sea-ice modeling tools. With a
strong foundation in physics, computer science, and obser-
vations, we could use models to make recommendations
for targeting observations as well as predicting the sea-
ice state and future change. We recommend creating an
international benchmarking product for model intercompar-
isons and forecasts, as an initial, coherent, directed strategy
toward a sea-ice modeling and observations co-design cycle
valuable for both research and operations.

Shared code is broadly exercised and understood, but a
mix of code frameworks is likely to continue. For instance,
data assimilation methods are usually tightly intertwined
with the physical models, making the code difficult to
share. We encourage code sharing when-, where-, and
however it makes sense, recognizing that code diversity

is also valuable. Within a common conceptual framework,
this can take the form of multiple model frameworks
(e.g., different dynamical cores) with shared elements (e.g.,
column physics). Defining the same basic output is crucial,
along with a variety of common and unique metrics for
applications.

Thus, we need revolution, evolution, and the status
quo, simultaneously. Because of limitations in the inherent
assumptions of continuum models, short-range forecasting
needs DEM, but big changes are not needed for standard
climate scales—evolution is sufficient. In particular, VP
models continue to be useful because they produce desirable
features (anisotropy, tensile stress, scaling laws), although
some of the features are not realistic (e.g., the intersection
angles of LKFs). We can continue to use continuum models
for climate studies, but high-resolution simulations need an
alternative. DEM is a promising, revolutionary candidate for
the heterogeneous, anisotropic ice pack at fine spatial scales.
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Duliére V. On the representation of high latitude processes in the
ORCA-LIM global coupled sea ice–ocean model. Ocean Model.
2005;8(1):175–201. https://doi.org/10.1016/j.ocemod.2003.12.00
9. http://www.sciencedirect.com/science/article/pii/S1463500303
00074X.

112. Marshall J, Adcroft A, Hill C, Perelman L, Heisey C. A finite-
volume, incompressible Navier Stokes model for studies of the
ocean on parallel computers. Journal of Geophysical Research:
Oceans. 1997;102(C3):5753–66. https://doi.org/10.1029/96JC02
775.

113. Toyoda T, Fujii Y, Yasuda T, Usui N, Iwao T, Kuragano T,
Kamachi M. Improved analysis of the seasonal interannual fields
by a global ocean data assimilation system. Theor Appl Mech Jpn.
2013;61:31–48.

114. Tsujino H. Reference Manual for the Meteorological Research
InstituteCommunityOceanModel (MRI.COM) Version 3. Tech. Rep.
Meteorological Research Institute, Japan. 2010. https://library.wmo.

int/index.php?lvl=author see&id=279#.XxjGjC2z2L4 Accessed
22 July 2020.

115. Hogan TF, Liu M, Ridout JA, Peng MS, Whitcomb TR,
Ruston BC, Reynolds CA, Eckermann SD, Moskaitis JR, Baker
NL, McCormack JP, Viner KC, McLay JG, Flatau MK,
Xu L, Chen C, Chang SW. The Navy Global Environmental
Model. Oceanography. 2014;27(3):116-125. https://doi.org/10.
5670/oceanog.2014.73.

116. Cummings JA, Smedstad OM. Variational data analysis
for the global ocean. In: Park SK and Xu L, editors. Data
assimilation for atmospheric, oceanic and hydrologic applications
vol. ii. Springer-Verlag, Berlin Heidelberg; 2013. p. 730.
https://doi.org/10.1007/978-3-642-35088-7.

117. Waters J, Lea DJ, Martin MJ, Mirouze I, Weaver A, While
J. Implementing a variational data assimilation system in an
operational 1/4 degree global ocean model. Q J R Meteorol Soc.
2015;141(687):333–349. https://doi.org/10.1002/qj.2388.

118. Bromwich DH, Otieno FO, Hines KM, Manning KW,
Shilo E. Comprehensive evaluation of polar weather research
and forecasting model performance in the Antarctic. Journal
of Geophysical Research: Atmospheres. 2013;118(2):274–292.
https://doi.org/10.1029/2012JD018139.

119. Mehra A, Rivin I. A real time ocean forecast system for the North
Atlantic Ocean. Terr. Atmos. Ocean. Sci. 2010;21(1):211–228.

120. Lellouche J-M, Le Galloudec O, Drévillon M, Régnier C,
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