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Hypertension is often characterised by impaired vasodilation involving dysfunction of

multiple vasodilatory mechanisms. ω-3 polyunsaturated fatty acids (PUFAs), doco-

sahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) can reduce blood pressure

and vasodilation. In the endothelium, DHA and EPA improve function including

increased NO bioavailability. However, animal studies show that DHA- and EPA-

mediated vasodilation persists after endothelial removal, indicating a role for vascular

smooth muscle cells (VSMCs). The vasodilatory effects of ω-3 PUFAs on VSMCs are

mediated via opening of large conductance calcium-activated potassium channels

(BKCa), ATP-sensitive potassium channels (KATP) and possibly members of the Kv7 family

of voltage-activated potassium channels, resulting in hyperpolarisation and relaxation.

ω-3 PUFA actions on BKCa and voltage-gated ion channels involve electrostatic

interactions that are dependent on the polyunsaturated acyl tail, cis-geometry of these

double bonds and negative charge of the carboxyl headgroup. This suggests structural

manipulation of ω-3 PUFA could generate novel, targeted, therapeutic leads.

K E YWORD S

hypertension, DHA docosahexaenoic acid, EPA eicosapentaenoic acid, omega-3
polyunsaturated fatty acids (PUFA), vasodilation, endothelium, vascular smooth muscle cells,
Nitric oxide

1 | INTRODUCTION

1.1 | Hypertension is associated with impaired
vasodilation

The characteristic manifestation of hypertension is a chronic increase

in arterial blood pressure (BP), generally defined as systolic (SBP) and

diastolic (DBP) blood pressure values above 139 and 89 mmHg,

respectively (McCormack, Boffa, Jones, Carville, & McManus, 2019).

90%–95% of cases represent primary hypertension, which arises

independently of other conditions, and is associated with lifestyle and

genetic factors (Oparil et al., 2018). Hypertension is divided into

categories depending on severity and risk of complications, and small

reductions in blood pressure (such as 1 mmHg), even for those

Abbreviations: α-LA, α-linolenic acid; CYP450, cytochrome P450; DBP, diastolic blood pressure; DHA, docosahexaenoic acid; EDHF, endothelium-derived hyperpolarisation factor; eNOS,

endothelial NOS; EE, ethyl esters; EPA, eicosapentaenoic acid; LA, linolenic acid; PUFAs, polyunsaturated fatty acids; SBP, systolic blood pressure; SHR, spontaneously hypertensive rat; TAG,

triacylglycerides; VSMC, vascular smooth muscle cell.
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considered normotensive, can represent a significant improvement

in multiple predicted health outcomes such as all-cause mortality or

cardiovascular disease-related mortality (Li et al., 2020; Miller, Van

Elswyk, & Alexander, 2014).

Blood pressure is controlled by several factors and a major determi-

nant is peripheral resistance, largely controlled by changes in arterial

diameter. The arterial system includes elastic and muscular arteries,

which differ in morphology and physiology. Elastic arteries are large

diameter arteries also referred to as conduit arteries, for example the

aorta. They contain more elastin and regulate the pressure wave coming

from the heart in order to stabilise the vascular pulse pressure, reviewed

in Wagenseil and Mecham (2012). Muscular arteries are small diameter

arteries also referred to as resistance arteries, for example the mesen-

teric. They contain less elastin, depending on need, vasoconstriction

reduces the diameter of the lumen, resisting blood flow and thus

generating vascular resistance (Stott, Jepps, & Greenwood, 2014).

Under normal conditions, increased blood flow promotes vasodila-

tion, which is mediated by the two major cell types present in arteries,

the inner endothelial cells and the outer smooth muscle cells. Dysfunc-

tions in vasomotor tone mean arteries develop an abnormally high

contraction, leading to a chronic narrowing of their lumen, which leads

to increased blood pressure. In healthy arteries, vascular smooth muscle

cells (VSMCs) are quiescent and non-proliferative, with the blood

vessel wall containing large numbers of progenitor cells, see Lacolley,

Regnault, Segers, and Laurent (2017) for a review of VSMC function in

health and disease. Vascular dysfunction in diseases such as hyperten-

sion is marked by vascular remodelling leading to a thickening and

narrowing of the lumen caused in part by VSMC migration, hypertrophy

and proliferation leading to an increase in volume, reviewed in Hixon

and Gualberto (2003). Furthermore, increased production of extracellu-

lar matrix proteins such as collagen and endothelial dysfunction lead

to arterial stiffness—the loss of elasticity in the arterial wall.

1.2 | General vasodilatory mechanisms

In vivo and in vitro studies have identified a role for endothelial factors

and VSMCs in mediating vasodilation, extensively reviewed elsewhere

(Brozovich et al., 2016; Chen, Pittman, & Popel, 2008). VSMCs are

highly plastic despite being highly differentiated and can therefore

change phenotype, for example in the case of certain disorders (see

below). VSMCs are stimulated by hypertensive stimuli such as mechani-

cal forces (such as shear stress; Birukov, 2009) and oxidative stress to

produce vasoconstriction (Touyz et al., 2018). The contractile machinery

in VSMCs is dependent on changes in intracellular Ca2+ concentrations

(Figure 1) that control the activity of myosin light chain kinase, which

modulates the phosphorylation of the actin-myosin bridge-cycling.

Importantly, VSMC contraction is also dependent on K+ efflux that

regulates membrane potential by hyperpolarization, which reduces volt-

age gated Ca2+ entry this prevents contraction (Brozovich et al., 2016).

The inability of VSMCs to regulate arterial diameter in response

to blood flow results in impaired vasodilation and the vessels become

stiff. Stiffening of VSMCs leads to endothelial dysfunction (Giles,

Sander, Nossaman, & Kadowitz, 2012). Endothelium-produced vasodi-

lators include nitric oxide (NO), especially in conduit arteries

(Tousoulis et al., 2014), prostaglandins (Durand & Gutterman, 2013)

and endothelium-derived hyperpolarization factors, especially in resis-

tance arteries (Feletou & Vanhoutte, 2007; Vanhoutte, Shimokawa,

Tang, & Feletou, 2009). The endothelium transmits endothelial hyper-

polarization to VSMCs via the myoendothelial gap junctions

(Vanhoutte et al., 2009) (Figure 1). Endothelial dysfunction correlating

with hypertension includes loss of NO production by endothelial NO

synthase (eNOS) and increased production of endothelium-derived

contracting factors (EDCFs) by cyclooxygenases (COX), reviewed in

Vanhoutte and Tang (2008).

Finally, vascular tone is also controlled by adipocytes in the peri-

vascular adipose tissue, which produce vasodilators that relax VSMCs

through mechanisms involving K+ channels (Figure 1) and endothelial

NOS (Ramirez, O'Malley, & Ho, 2017); see Agabiti-Rosei et al. (2018)

for an in-depth review. Inhibition of K+ channels leads to blockade of

the anti-contractile effect of perivascular adipose tissue. Obesity is

often accompanied by more perivascular adipose tissue and alterations

in the physiology of perivascular adipose tissue, leading to dysfunctions

of these mechanisms (Ramirez et al., 2017). In hypertension, there is

less perivascular adipose tissue and of smaller size compared to normo-

tensive arteries (Oriowo, 2015), leading to reduced anti-contractile

activity. Indeed, it was shown that in artery segments with reduced

perivascular adipose tissue, there is reduced hyperpolarisation com-

pared to segments with intact perivascular adipose tissue (Verlohren

et al., 2004). Although to our knowledge no research has investigated

the effects of ω-3 polyunsaturated fatty acids (PUFAs) on adipocytes in

the context of hypertension, some studies report that ω-3 PUFAs

regulate adipocyte differentiation, apoptosis and adipose tissue inflam-

mation in subjects with obesity or metabolic syndrome (Martinez-

Fernandez, Laiglesia, Huerta, Martinez, & Moreno-Aliaga, 2015).

1.3 | Roles of omega-3 polyunsaturated fatty acids
(ω-3 PUFAs) in the cardiovascular system

Attention was first drawn to the potential benefits of seafood and

“fish oils” when several epidemiological studies reported a decreased

incidence of cardiovascular disease, including hypertension, in regions

of the world with a high consumption of these foods (Bang, Dyerberg,

& Sinclair, 1980; Kagawa et al., 1982). This led to a large body of clini-

cal, epidemiological, in vivo and in vitro data that identified ω-3 PUFAs

derived from marine sources as having cardiovascular effects.

The two main ω-3 PUFAs, eicosapentaenoic acid (EPA) and

docosahexaenoic acid (DHA), form part of the lipid component of cell

membranes. In the human body, EPA is produced by desaturases and

elongases from α-linolenic acid (α-LA), which is present in

high amounts in certain seeds and vegetables (Shahidi &

Ambigaipalan, 2018) (Figure 2). α-LA is converted into EPA, which can

then be metabolised into DHA through the action of elongases

(which add carbons to the hydrocarbon chain of the fatty acid)

and desaturases (which replace single bonds with double bonds)
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(Sokola-Wysoczanska et al., 2018). DHA and EPA can be further

metabolised, as we will discuss in future sections.

The desaturases and elongases involved in the synthesis of EPA

and DHA also metabolise linoleic acid (LA) into ω-6 PUFAs (Figure 2).

LA has a greater bioavailability than α-LA and competition between

α-LA and LA for the active sites of the same enzymatic pathway

means the generation of ω-6 PUFAs from LA is more efficient than

that of DHA and EPA from α-LA (Arterburn, Hall, & Oken, 2006). In

contrast to saturated fatty acids and monounsaturated fatty acids that

can be synthesised by the body in sufficient amounts, ω-3 PUFAs are

mostly dependent on dietary intake. As between 1% and 10% of α-LA

is converted into EPA, this means that both DHA and EPA can be con-

sidered essential fatty acids, implicating dietary intake into any

expected health benefits (Goyens, Spilker, Zock, Katan, &

Mensink, 2005; Hussein et al., 2005). Furthermore, as ω-3 PUFAs

compete with ω-6 PUFAs, an imbalance in the diet between ω-6 and

ω-3 intake may also lead to an impairment in the cardiovascular

effects of DHA and EPA. ω-6 PUFAs have vasoconstrictive,

vasodilatory and pro-inflammatory roles. For example, arachidonic

acid is a highly studied ω-6 PUFA, whose metabolites act as

endothelium-derived hyperpolarising factors (EDHFs) to cause vasodi-

lation (Campbell & Falck, 2007).

Numerous reviews and meta-analyses have examined the

evidence supporting cardiovascular effects of ω-3 PUFAs (Innes &

Calder, 2020; Jain, Aggarwal, & Zhang, 2015; Mozaffarian &

Wu, 2011; Saravanan, Davidson, Schmidt, & Calder, 2010).

Multiple proposed mechanisms have emerged for these effects

(Massaro, Scoditti, Carluccio, & De Caterina, 2008), including the

lowering of blood pressure. The blood pressure lowering and

vasodilatory effects of ω-3 PUFAs have been investigated, as we will

discuss, using randomised controlled studies, epidemiological studies,

in vivo animal studies and in vitro studies. The beneficial effects of

ω-3 PUFAs on blood pressure in hypertensive or normotensive

human subjects have been reviewed elsewhere (AbuMweis, Jew,

Tayyem, & Agraib, 2018; Colussi, Catena, Novello, Bertin, &

Sechi, 2017; Miller et al., 2014), but to our knowledge, no reviews

to date have discussed the vasodilator mechanisms underlying these

effects. Here, we will present a summary of the evidence for

endothelium-mediated blood pressure lowering effects of ω-3

PUFAs in human studies and discuss possible explanations for

F IGURE 1 General vasodilatory mechanisms. Endothelial factors and vascular smooth muscle cells (VSMCs) mediate vasodilation. The
contractile machinery in VSMCs is dependent on changes in intracellular Ca2+ concentrations which control myosin light chain kinase and thus
the activity of the actin-myosin bridge-cycling. This process is regulated by membrane potential depolarisation increases calcium entry via L-type

VGCC a process opposed by hyperpolarization due to K+ efflux. Endothelium-dependent vasodilation is initiated by mechanical forces such as
shear stress or by agonists binding to receptors, both of which increase endothelial cell calcium concentration. This leads to production of
vasodilators such as NO, PGs (PGI2) and endothelium-derived hyperpolarization (EDH). The endothelium can also transmit endothelial
hyperpolarization to VSMCs via the myoendothelial gap junctions as well as any diffusible factors such as EETs and H2O. Finally, vascular tone is
also controlled by adipocytes in the perivascular adipose tissue (PVAT), which produce vasodilators that instruct VSMCs to relax through
mechanisms involving K+ channels. Abbreviations: ADRF, adipose derived relaxing factor(s); COX, cyclooxygenase; EC, endothelial cell, EET,
epoxyeicosatrienoic acids. eNOS, endothelial nitric oxide synthase Servier Medical Art by Servier is licensed under a Creative Commons
Attribution 3.0 Unported License

862 BERCEA ET AL.

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2391
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2391


conflicting information. We will then present data from animal

studies to discuss endothelium-dependent and endothelium-

independent, VSMC-mediated, ω-3 PUFA-dependent mechanisms of

vasodilation.

2 | DHA AND EPA ON BLOOD PRESSURE
AND VASODILATION IN HUMANS

2.1 | Effects on blood pressure

Long-term cohort studies and short-term randomised controlled trials

have identified associations between increased consumption of ω-3

PUFAs and lowered blood pressure in hypertensive individuals

(AbuMweis et al., 2018; Colussi et al., 2017; Garcia-Lopez

et al., 2016; Miller et al., 2014; Minihane et al., 2016; Ramel,

Martinez, Kiely, Bandarra, & Thorsdottir, 2010; Shen et al., 2017;

Yang et al., 2019). For example, a meta-analysis of short-term studies

lasting several months found that ω-3 PUFA decreased SBP by

1.52 mmHg and DBP by 0.99 mmHg (Miller et al., 2014), whereas in

hypertensive subjects they found reductions in SBP of 4.51 mmHg

and in DBP of 3.05 mmHg. This finding of a greater effect in hyper-

tensive subjects was supported by a second meta-analysis demon-

strating larger decreases in SBP and DBP in hypertensive patients

(Tagetti et al., 2015). The data for the benefits of consumption of

ω-3 PUFA to lower blood pressure in normotensive individuals are

less robust and hence, evidence for primary prevention of hyperten-

sion is weaker (Innes & Calder, 2020; Minihane et al., 2016; Root,

Collier, Zwetsloot, West, & McGinn, 2013), although one interna-

tional epidemiological study found significant hypotensive effects of

ω-3s in non-hypertensive subjects (Ueshima et al., 2007). Large pro-

spective cohort studies lasting several years that looked at the devel-

opment of cardiovascular disease in normotensive patients, whose

diets contained ω-3 PUFAs, found that diets high in ω-3 PUFAs cor-

related with a lower risk of developing hypertension. Other meta-

analyses, reviewed together with the cohort studies, mostly show

reductions in blood pressure only in hypertensive subjects (Colussi

et al., 2017). Consistent with this, a recent cohort study (which did

not focus on blood pressure) found an overall reduced cardiovascular

disease incidence and cardiovascular disease-related mortality in indi-

viduals habitually taking supplements where the effect was stronger

in subjects with a history of cardiovascular disease events

(Li et al., 2020).

While there seems to be a consensus that ω-3 PUFAs can play a

role in reducing hypertension the data from individual studies is vari-

able. This likely reflects the high variation in ω-3 PUFA source, dose

and duration and the formulation of ω-3PUFAs (fish meals, fish oil,

capsules containing ethyl-ester forms of DHA and EPA, and powders).

Current guidelines (Minihane, 2013) recommend 0.5 g/day for healthy

individuals and between 1 and 1.5 g/day for hypertensive individuals,

F IGURE 2 ω-3 polyunsaturated fatty acids (PUFAs) and ω-6 PUFA metabolic pathways. α-linolenic acid (α-LA) and linoleic acid (LA) are
metabolised by and compete for, the same desaturases and elongases, producing EPA (eicosapentaenoic acid) and arachidonic acid (AA),
respectively. EPA can then be metabolised to docosahexaenoic acid (DHA). The same cyclooxygenases and lipoxygenases can then metabolise
EPA (to the vasodilatory 3-series PGs and 5-series leukotrienes, respectively) or arachidonic acid (AA; to the mixed vasodilatory and
vasoconstrictive 2-series PGs). Although many AA metabolites can have vasodilatory effects, the EPA metabolites are considerably more potent.
Finally, DHA and EPA can be metabolised by cytochrome P450 (CYP450) into the fatty epoxides epoxydocosapentaenoic acid (EDP) and 17(18)-
EpETEs, respectively; AA can also be converted into fatty epoxides by CYP450 which have both vasodilator and constrictor mechanisms but is
not shown here for simplicity
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coming from two servings of oily fish per week. Most studies, how-

ever, use over 1.5 g/day, with less emphasis being placed on doses

lower than 1 g/day and there is considerable variation in dosage

between studies (Minihane et al., 2016). Furthermore, most guidelines

only refer to consumption from fish, not other forms, such as supple-

ments (Siniarski et al., 2018) and the amounts of ω-3 PUFAs in fish

can vary. Therefore, intervention studies mostly use higher doses of a

combination of DHA and EPA than could normally be reasonably

obtained from a meal/diet rich in marine oils and administer DHA and

EPA in the form of capsule supplements or drinks. Generally, studies

focus on the combined effects of DHA and EPA (of both known and

unknown ratios), as occurs naturally in fish oil. The effects have been

studied using, for example, capsules containing EPA and DHA to a

ratio of about 1:1.2 (Krantz et al., 2015), emulsion drink containing

equal amounts (Siniarski et al., 2018), or drink with fish oil concentrate

(Newens, Thompson, Jackson, & Williams, 2015). Treatment durations

also vary usually between 1 month and 1 year, with some studies

using higher doses and some studies investigating acute interventions

(see above). Furthermore, as it is possible that DHA has a more potent

effect than EPA on BP and as EPA by itself appears to have a strong

effect on endothelial function, the ratio of EPA to DHA is likely to

have an effect on the results obtained. Interestingly, one major review

of over 60 studies (Colussi et al., 2017) and one major meta-analysis

of 70 studies (Miller et al., 2014) concluded that there does not

appear to be any clear dose-dependence in the effects of ω-3s on

blood pressure. These reviews, as well as that by (Innes &

Calder, 2018), offer an excellent summary of the various doses used

in each study.

Some studies have looked at the individual effect of EPA and

DHA. For example a study on normotensive subjects administered

supplements of either DHA or EPA found that SBP and DBP were

lower after DHA and after the olive oil control, with no difference

between the two; EPA increased SBP and DBP (Lee et al., 2019).

Hence, EPA might exert cardiovascular benefits through other mecha-

nisms than blood pressure lowering (for example heart rate). Other

studies comparing the effects of DHA and EPA separately on blood

pressure in normotensive subjects have found no effect for either

(Asztalos et al., 2016; Grimsgaard, Bonaa, Hansen, & Myhre, 1998;

Nestel et al., 2002), as was the case in hypertensive patients also

being treated with anti-hypertensive medication (Woodman

et al., 2003). Furthermore, DHA alone slightly lowered BP in male but

not female normotensive subjects (Singhal et al., 2013) and EPA alone

lowered SBP in normotensive subjects (Iketani, Takazawa, &

Yamashina, 2013). Therefore, most data point to the fact that individ-

ual ω-3 PUFAs have differential effects on blood pressure and DHA

has been suggested to be more potent in this respect (Cottin, Sanders,

& Hall, 2011; Innes & Calder, 2018; Jacobson, Glickstein, Rowe, &

Soni, 2012; Mori & Woodman, 2006; Mozaffarian & Wu, 2012).

Most of the studies informing ω-3 recommendations used EPA

and DHA ethyl esters (EEs); fish oils from fish eaten as part of

meals are esterified as triacylglycerides (TAGs) and re-esterified,

resulting in concentrated fatty acids. Concentrated fish oil capsule

preparations mainly contain EPA and DHA as TAGs or EEs. Many

studies measuring plasma levels (i.e. short-term bioavailability)

found increased bioavailability of DHA and EPA from TAGs com-

pared to EEs, but the results are heterogenous (Neubronner

et al., 2011). One study in hyperlipidaemic subjects treated with

statins used gelatine-coated soft capsules containing either

reesterified triacylglycerols (rTAGs) or EEs with the ω-3 composi-

tion being the same in the experimental groups (Neubronner

et al., 2011). They found that 6 months of treatment resulted in

an increase in relative EPA in red blood cells significantly higher in

the rTAG group compared with the EE group. The increase in the

ω-3 index (the percentage of ω-3 fatty acids in RBC membranes)

was significantly higher in the rTAG group compared with the EE

group. Furthermore, in hypertensive young adults on a calorie-

restricted diet administered either salmon, cod, or capsules, there is

similarly lowered DBP in subjects taking capsules or eating salmon,

but it should be noted that they also saw a reduction in controls

(Ramel et al., 2010). Hypertensive individuals administered ω-3

PUFAs for 4 weeks in the form of six meals of fish per week forti-

fied with either liquid fish oil or microencapsulated powder found

similar, significant, reductions in SBP (Sveinsdottir, Martinsdottir, &

Ramel, 2016). Therefore, there is no clear consensus if the mode

of administration plays a significant role in lowering of blood

pressure.

There are also considerable differences in participants, with

many studies using mixed cohorts; comorbidities and treatments

affect outcomes, as does the subject's overall diet and most studies

feature normotensive or hypertensive patients with other conditions

(Minihane et al., 2016; Ramel et al., 2010; Sveinsdottir et al., 2016).

Membrane fatty acid composition at the start of a trial or the base-

line amount of ω-3 PUFAs in red blood cells can also vary with diet

and can depend on the subjects' genetics (Colussi et al., 2017).

Finally, as suggested above, it is possible that DHA has a more

potent effect than EPA to lower blood pressure and as EPA appears

to have a greater effect on endothelial function, the ratio of EPA to

DHA is likely to have an effect on the changes in blood pressure

observed (Lee et al., 2019).

Despite the confounding factors, the consensus view is that

effects of ω-3 PUFAs are probably greater in patients already suffer-

ing from hypertension and that DHA has a more potent effect.

What remains unclear and is not always investigated in human stud-

ies are the physiological and pharmacological mechanisms that

potentially underly this reduction in blood pressure, which are dis-

cussed below.

2.2 | Effects on the endothelium

Arterial stiffness (i.e. decreased elasticity) is caused by both endothe-

lial dysfunction and dysfunction of the collagen matrix in the artery

wall (Diez, 2007). Endothelial dysfunction is marked by endothelial

injury and a disruption in repair mechanisms. It is possible that ω-3

PUFAs improve large artery elasticity through their effects of lowering

blood pressure via vasodilation, for example, by enhancing NO
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production or release. Indeed, there is evidence that acute administra-

tion of ω-3 PUFAs improves endothelial function as assessed func-

tionally using flow-mediated dilationa marker of endothelial

dependent relaxation attributed to NO generation (Newens, Thomp-

son, Jackson, Wright, & Williams, 2011).

Two meta-analyses suggest that long-term administration of

ω-3 PUFAs has a beneficial effect on flow-mediated dilation in

subjects with cardiovascular disease (Wang et al., 2012; Xin, Wei,

& Li, 2012) including hypertensive subjects, albeit with no signifi-

cant reduction in BP (Casanova et al., 2017). Furthermore, in

patients with coronary artery disease, whose baseline endothelial

function is impaired, EPA treatment improves flow-mediated dila-

tion (Sawada et al., 2016). EPA in particular is believed to increase

endothelium-dependent vasodilation by producing PGs and increas-

ing NO production in endothelial cells (Iketani et al., 2013). Inter-

estingly, postprandial reductions in flow-mediated dilation seen in

normotensive individuals following a high-saturated fat meal is

reversed by acute supplementation of ω-3 PUFAs (Fahs

et al., 2010; Newens et al., 2011). In contrast, several studies

found no differences in flow-mediated dilation between control

and treatment groups in hypertensive subjects receiving DHA and

EPA capsules (Grenon et al., 2015; Ramirez et al., 2019; Siniarski

et al., 2018). In hypertensive individuals receiving ethyl ester cap-

sules, pulse-wave velocity (PWV, another functional measure of

endothelial function) appeared to be reduced, but this was not sta-

tistically significant (Krantz et al., 2015).

Studies in healthy individuals have generally found no improve-

ment in flow-mediated dilation after ω-3 PUFA treatment (Sanders

et al., 2011; Singhal et al., 2013). Interestingly, an acute dose of ω-3

PUFAs in the form of a drink containing fish oil concentrate found ω-3

PUFAs enhance endothelial function independently of NO production

(Newens et al., 2015). Moreover, Wu, Mayneris-Perxachs, Lovegrove,

Todd, and Yaqoob (2014) studied normotensive subjects at moderate

risk for cardiovascular disease and found that a combination of DHA

and EPA had no effect on BP, but increased the number of endothelial

progenitor cells and decreased the number of endothelial microparti-

cles, without affecting the concentration of circulating NO; this might

indicate improved maintenance and repair and decreased damage. As

2017 review (Colussi et al., 2017) concluded that in animal and human

studies, ω-3 PUFAs improve the function of both normal and damaged

endothelium, mainly through an increase in NO availability, via the

activation of eNOS. Despite this, it seems that ω-3 PUFAs do not have

large effects on the healthy endothelium in humans except in condi-

tions of stress and that their effects of on the endothelium are pre-

dominately in those suffering from CVD.

In addition to the method of delivery, another major limitation to

assessing the effect of these fatty acids on the human endothelium is

that endothelium-dependent flow-mediated dilation measurements

are an indirect measurement, conducted in large arteries where vaso-

dilation is largely mediated via NO. Few investigate other vasodilator

mechanisms; there is a lack of investigation of resistance vascular

responses and mechanisms including those independent of the endo-

thelium. Indeed, the exact mechanisms of vasodilation are difficult to

study in human subjects, and currently, both in vivo and in vitro ani-

mal studies provide most mechanistic evidence for ω-3 PUFAs action

on blood pressure and vasodilatation.

3 | DHA AND EPA VASODILATORY
MECHANISMS IN ANIMAL OR IN VITRO
STUDIES

3.1 | Overview

Animal studies typically use doses of DHA or EPA (or a combination

of both) that result in free fatty acid concentrations of approximately

10–60 μM, obtaining higher concentrations is restricted by lack of sol-

ubility or by vehicle effects. However, these doses are clinically rele-

vant as they reflect the concentration of ω-3 PUFAs in their free fatty

form present in human plasma after a meal rich in fish oil, which is

around 70 μM (Newens et al., 2011).

Vasorelaxation is normally studied on isolated arteries (most often

the aorta) following precontraction with a vasoconstrictor. The most

commonly used is U46619, a mimetic of the powerful vasoconstrictor

TXA2 (Otsuka, Tanaka, Tanaka, Koike, & Shigenobu, 2005). A large

number of studies using different model animals have confirmed that

DHA and EPA induce relaxation in isolated arteries following U46619

contraction in a concentration-dependent manner (Hoshi, Tian, Xu,

Heinemann, & Hou, 2013; Hoshi et al., 2013; Limbu, Cottrell, &

McNeish, 2018; Omura et al., 2001; Sato et al., 2014; Wang, Chai, Lu,

& Lee, 2011). Other constricting agents have been used to induce

vasoconstriction, such as noradrenaline or high [K+] solutions (Engler

& Engler, 2000; Engler, Engler, Browne, Sun, & Sievers, 2000); with

these constrictor agents, the response to ω-3 PUFAs is less

consistent. For example, DHA (10 μM) caused complete relaxation of

normotensive rat aorta pre-contracted with U46619 but not those

pre-constricted with noradrenaline (α-adrenoceptor stimulation) or

high [K+] (depolarising stimulus) (Sato et al., 2013). In fact, Otsuka

et al. (2005) and Sato et al. (2013) both identified that DHA causes

greater vasodilation after TP receptor-mediated contractions than

after α1-adrenoceptor contractions. The smaller ω-3 PUFA response

in the presence of high [K+] solutions (Sato et al., 2013) may also

potentially indicate role for K+ channels—as previously described for

acetylcholine-mediated dilatation in rats (Adeagbo & Triggle, 1993;

McNeish, Dora, & Garland, 2005; McNeish, Wilson, & Martin, 2001).

The further mechanistic implications of high [K+] will be discussed

below.

Multiple studies have used in vivo approaches to study the

effects of ω-3 PUFAs on blood pressure with mixed results. Acute

administration of intravenous DHA (62.5 μmol/kg) transiently lowered

BP in normotensive mice (Hoshi, Wissuwa, et al., 2013). However,

when normotensive orchidectomised rats were fed chow containing

2 g/100 g DHA for 2 months (i.e. chronic administration), there was

no change in systolic blood pressure (Villalpando et al., 2015). Inter-

estingly chronic feeding of ω-3 PUFAs can prevent angiotensin

II-induced hypertension in rats (Niazi et al., 2017). Furthermore,
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chronic feeding of DHA has no effect on blood pressure in control

WKY rats but reduced the development of hypertension in the

stroke-prone spontaneously hypertensive rat model (Kimura

et al., 2002). These results suggest that ω-3 PUFAs may not have a

major impact on blood pressure in healthy animals but have greater

effects in models of hypertension, which seems to agree with the

human clinical data where effects seem to be larger in hypertension.

3.2 | Endothelial mechanisms—NO production,
epoxides and eicosanoids

As discussed above, human studies implicate endothelium-dependent

mechanisms, particularly NO, in ω-3 PUFA-mediated relaxation. This

also appears to be the case in animal studies, many of which demon-

strate ω-3 PUFAs improve the function of both normal and damaged

endothelium, mainly through an increase in NO availability, especially

via the up-regulation of eNOS (Colussi et al., 2017). However, as in

human studies, there is considerable variation in both study method-

ology, results and reported mechanisms.

When ω-3 PUFAs are included in the diet or supplemented long

term, endothelial NO production is often enhanced, as is endothelial

function and vasodilation. For example, dietary EPA enhances

endothelium-dependent relaxation in porcine coronary arteries

(Shimokawa, Aarhus, & Vanhoutte, 1988) and chronic exposure of cul-

tured porcine aortic endothelial cells to EPA increases agonist-

induced NO release (Boulanger, Schini, Hendrickson, &

Vanhoutte, 1990). Long-term supplementation of ω-3 PUFAs restores

reduced NO production in orchidectomised rats (Villalpando

et al., 2015) and in the AngII-induced hypertension model in rats

(Niazi et al., 2017). Chronic fish oil supplementation increases the

expression of eNOS at both gene and protein level in the rat aorta

with resultant increase in NO bioavailability (Lopez et al., 2004).

Short-term administration of ω-3 PUFAs also increases endothelial

function; acute administration of EPA evokes NO production in

bovine aorta and endothelium removal inhibited this EPA-induced

relaxation (Omura et al., 2001). In human umbilical vein endothelial

cells (HUVEC), EPA led to translocation of eNOS from caveole frac-

tions to soluble fractions and increased eNOS activity in a

concentration-dependent manner (Li et al., 2007). Finally, in porcine

coronary arteries and in human mammary arteries from bypass sur-

gery patients, EPA and DHA combined in the ratio 6:1 elicit

endothelium-dependent relaxation through formation of NO (Zgheel

et al., 2014; Zgheel et al., 2019) and in cultured endothelial cells they

induce an increase in ROS (discussed below) (Zgheel et al., 2014). In

this latter study, ω-3 PUFAs indirectly induced eNOS phosphorylation

at the activator site. In addition, the authors found that a ratio of EPA

to DHA of 6:1 and 9:1 has a more potent effect than lower ratios of

EPA to DHA, similar ratios of DHA to EPA or either PUFA on its own.

Together, these results indicate that these endothelial effects are not

limited to long-term supplementation.

In contrast, multiple studies with short-term or acute addition of

ω-3 PUFAs to evoke relaxation suggest that the endothelium only

plays a small role in DHA or EPA-mediated vasodilation. For example

in rat aorta and mesenteric arteries, DHA and EPA induce relaxation,

which is only slightly reduced after endothelium removal, is unaf-

fected by inhibition of NOS (Limbu et al., 2018). Effects similar to

those previously observed for EPA-induced relaxation in the rat aorta

that were not affected by either L-NAME or endothelium removal

(Engler et al., 2000). Furthermore, DHA-induced relaxation responses

are independent of NO in aorta of spontaneously hypertensive rats

(SHR) (Engler & Engler, 2000) and of both NO and the endothelium in

Wistar rats (Sato et al., 2013).

Calcium homeostasis is partly regulated by reactive oxygen spe-

cies (ROS), the major source of which is NADPH oxides. In hyperten-

sive blood vessels, increased ROS and oxidation/reduction signalling

lead to enhanced calcium signalling, contraction and tone, and

increased ROS can reduce NO production; a redox state where pro-

oxidants are in excess of anti-oxidants leads to oxidative stress,

which leads to arterial remodelling (Touyz et al., 2018). In porcine

coronary arteries as well as cultured endothelial cells treated with

EPA and DHA rations of 6:1 relaxation was accompanied by an

increase in endothelial ROS and was reduced by the anti-oxidant

N-acetylcysteine and by inhibitors of intracellular stress, indicating

ω-3 PUFAs might have a pro-oxidant effect leading to increased

eNOS (Zgheel et al., 2014). In contrast, rats fed a high fructose diet,

the addition of fish oils prevented increased oxidative stress (Nyby

et al., 2005). Additionally, in human aortic endothelial cells, EPA and

DHA reduced ROS and increased the mRNA levels of anti-oxidant

molecules (Sakai et al., 2017).

As described in Section 1.3, EPA is metabolised from the ω-3

α-LA and the same enzymes also metabolise ω-6 linoleic acid (LA) into

ω-6 PUFAs such as arachidonic acid, with LA having a greater bioavail-

ability than α-LA. After synthesis, ω-3s and ω-6s are also necessary for

the downstream synthesis of eicosanoids (Figure 2), which play con-

trasting roles in vascular physiology (Bagga, Wang, Farias-Eisner,

Glaspy, & Reddy, 2003). There are three main pathways of eicosanoid

synthesis (Figure 2), with ω-3s competing with arachidonic acid for

the active sites, cytochrome P450 enzymes (CYP450), COX and

lipoxygenase enzymes (LOX) with CYP lipid mediators being the most

sensitive to changes in dietary intake of fatty acids (Fer et al., 2008).

EPA is metabolized by the COX pathway into 3-series PGs and throm-

boxanes and by 5-lipoxygenase into 5-series leukotrienes. EPA and

DHA are metabolized by CYP450 epoxygenases into fatty epoxides

(Wang et al., 2011) and the epoxide molecules cause vasodilation by

activating Ca2+-activated K+ channels, as will be discussed below

(Hoshi, Wissuwa, et al., 2013). The anti-hypertensive actions of ω-3

supplements or ω-3-rich foods might occur by reducing the ratio of

ω-6 to ω-3, thus balancing the competition with arachidonic acid as a

substrate for CYP450 and production of more vasodilator mediators

(Tagetti et al., 2015).

An example of a CYP450 DHA-metabolite is epox-

ydocosapentaenoic acid (EDP), which in porcine coronary arteries

activates large conductance Ca2+-activated K+ channels in VSMCs,

leading to hyperpolarisation and vasodilation (Engler et al., 2000).

Metabolites of EPA obtained via CYP450, 17(18)-EpETEs, act in
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human pulmonary arteries (Morin, Sirois, Echave, Rizcallah, &

Rousseau, 2009) and rat cerebral and mesenteric arteries (Hercule

et al., 2007) promoting vasodilation. Furthermore, DHA-mediated

dilation of rat coronary arteries is reduced upon CYP450 inhibition

(Wang et al., 2011). In contrast, some studies have observed that inhi-

bition of CYP450 does not affect DHA-mediated dilation of rat aorta

or mesenteric artery (Limbu et al., 2018; Sato et al., 2014). Interest-

ingly, in our study (Limbu et al., 2018), we found that while inhibition

of CYP450 did not block DHA-mediated dilation in either aorta or

mesenteric artery, it did partially block EPA-mediated dilation,

supporting the idea that DHA and EPA likely cause vasodilation by

different mechanisms.

Studies from several groups conclude that COX-derived metabo-

lites do not contribute to DHA-induced vasodilation of rat aorta and

mesenteric artery (Limbu et al., 2018; Lopez et al., 2004; Sato

et al., 2013). Interestingly, the study by Lopez et al. (2004) found that

ω-3 PUFAs incorporate into the phospholipids of cellular membranes,

leading to changes in eicosanoid metabolites that affect the produc-

tion of NO. On the other hand, others have reported that ω-3 PUFA

vasodilatory effects in resistance vessels are modulated by inhibition

of COX (Engler et al., 2000; Engler & Engler, 2000). In aorta from SHR

and normotensive Wistar rats (Engler & Engler, 2000) also found

involvement of vasodilatory prostanoids at high concentrations of

DHA. Furthermore, in orchidectomised rats, DHA reversed the

increase in release of the prostanoids TXA2, PGI2, PGF2α and PGE2

induced by orchidectomy (Villalpando et al., 2015); in contrast, in con-

trol male rats DHA only decreased PGE2 release.

As described in Section 1.2, endothelium-derived hyper-

polarisation (EDH) is a major vasodilator pathway, especially in resis-

tance arteries. EDH is characterised by the involvement of small- and

intermediate-conductance Ca2+-activated K+ channels in the endo-

thelium (SKCa and IKCa, respectively) and large-conductance Ca2+-acti-

vated K
+

channels in VSMCs (BKCa) (Feletou & Vanhoutte, 2007)

(Figure 3). In pig coronary arteries, vasodilation to a combination of

EPA and DHA seems to involve EDH as combined inhibition of NOS

and both SKCa and IKCa are required to fully inhibit relaxation (Zgheel

et al., 2019). Our group has identified that in aorta and the mesenteric

resistance artery, SKCa inhibition had no effect on vasodilation

induced by DHA or by EPA, and additional inhibition of IKCa led to

partial reduction in relaxation only in mesenteric arteries and that inhi-

bition of NOS had no additional effect (Limbu et al., 2018).

It is also possible that ω-3 PUFAs as being able to reduce

endothelium-dependent constrictor responses produced by

endothelium-derived contracting factors (EDCFs) by competing with

arachidonic acid for COXs (Vanhoutte & Tang, 2008). Indeed, this may

be the case as age-dependent endothelial dysfunction in rats is

reversed in part by ω-3 PUFAs reducing EDCF production (Farooq

et al., 2020). While further investigation of the effect on EDCFs is

F IGURE 3 Vasodilatory pathways where ω-3 polyunsaturated fatty acids (PUFAs) are believed to be involved. Docosahexaenoic acid (DHA;

grey circles) and eicosapentaenoic acid (EPA; purple hexagons) have been suggested to evoke vasodilation by a variety of mechanisms that are
shown on the diagram—where the evidence is limited/suggested or contradictory we have indicated this by a “?” symbol. Suggested
endothelium-dependent mechanisms include stimulation of endothelial nitric oxide synthase (eNOS) or increasing NO bioavailability (DHA and
EPA) and generation metabolites of ω-3 PUFAs by CYP450 or cyclooxygenase (COX) (contradictory results in the literature for both DHA and
EPA). Removal of the endothelium often has a limited effect on ω-3 PUFA-induced vasodilation and several potential smooth muscle targets have
been identified; these include blockade of L-type Ca2+ channels (DHA), activation of KATP (DHA and EPA), activation of BKCa (DHA) and
putatively Kv7 channels (DHA and EPA) Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License
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warranted, these mechanisms are unlikely to contribute to the acute

vasodilator effects of ω-3 PUFAs seen in heathy and diseased tissues.

Despite the differences in findings between studies, it is clear that

the endothelium, NO and COX contribute to ω-3 PUFA-mediated

vasodilation upon chronic exposure but they do not seem to be

involved in the main vasodilatory mechanisms upon acute exposure to

ω-3 PUFAs in healthy tissues (see Figure 3 for a summary of the

mechanisms). As discussed above, an alternative interpretation is that

endothelium-dependent mechanisms only have a major contribution

to ω-3 PUFA-induced relaxations in arteries where endothelial func-

tion is already impaired.

3.3 | The role of smooth muscle cells:
hyperpolarising effects and activation of K+ channels

Many studies performed in blood vessels isolated from animals show

that DHA- or EPA-mediated vasodilation occurs even after NOS inhi-

bition or endothelial removal (Limbu et al., 2018; Sato et al., 2013;

Singh, Kathirvel, Choudhury, Garg, & Mishra, 2010), indicating a direct

role on VSMCs. Moreover, as discussed above, several human studies

show that in subjects where DHA and EPA reduced BP, the effect on

endothelial function was unclear, as measured using flow-mediated

dilation or Doppler flow analyses (Newens et al., 2011; Ramirez

et al., 2019; Singhal et al., 2013). Very few human studies have inves-

tigated the specific role of SMCs. Typically senescent, the growth and

proliferation of VSMCs are manifestations of hypertension or vascular

dysfunction (Lacolley et al., 2017. Studies on isolated human VSMCs

found that ω-3 PUFAs might affect SMC proliferation (Mizutani

et al., 1997), migration (Goua et al., 2008; Mizutani et al., 1997) and

contraction (Zhang, Zhang, Lyu, Kishi, & Kobayashi, 2017). Indeed,

there is strong evidence of a role for VSMCs in ω-3 PUFA-mediated

dilation in animal studies (see below).

VSMCs control vessel diameter and in hypertensive vessels

VSMCs are dysfunctional; the constantly rigid vascular wall and

increased contraction lead to increased blood pressure. A major con-

troller of contraction in VSMCs, especially in smaller resistance arter-

ies, is Ca2+ homeostasis, which is largely controlled by depolarisation

and resultant Ca2+ influx and modulated by hyperpolarising K+ efflux

(Nelson & Quayle, 1995).

As Ca2+ influx via L-type Ca2+ channels is one of the major mech-

anisms in vascular contraction, it is possible that their inhibition could

be the reason why ω-3 PUFAs can evoke vasodilation. Extensive

research has shown that L-type calcium channels can be inhibited by

PUFAs, as reviewed by Elinder and Liin (2017). DHA at high concen-

trations has been shown to negatively regulate L-type Ca2+ channels

in aortas from SHRs (Engler & Engler, 2000), similarly EPA-induced

relaxation might rely on reduction of extracellular Ca2+ influx in the

sheep pulmonary circulation (Singh et al., 2010). However, few other

studies implicate this channel type in ω-3 PUFA-induced relaxation,

for example in rat aorta EPA-induced relaxation does not involve

influx of Ca2+ through L-type Ca2+ channel (Engler et al., 2000). Fur-

thermore, as mentioned above, ω-3 PUFAs fail to evoke large

relaxations in conditions where constriction is elicited by depolarizing

concentrations of [K+] where L-Type Ca2+ channels would be

expected to be open (Sato et al., 2013; Sato et al., 2014). Therefore,

there is only weak evidence that inhibition of Ca2+ channels is a pri-

mary mechanism in ω-3 PUFA-induced vascular relaxation. The results

of Sato et al. (2013) also indicate there could be a significant role for

the hyperpolarising K+ efflux, which would normally reduce the open

probability of L-type Ca2+ channels, causing relaxation as these condi-

tions of high [K+] effectively abolish any dilation dependent upon

potassium channels by altering their reversal potential (Adeagbo &

Triggle, 1993) (Figure 3).

In contrast to Ca2+ channels, K+ channels are often activated by

PUFAs (Elinder & Liin, 2017), an effect that would elicit vasodilation.

Some of the major classes of potassium channels in VSMCs linked to

the control of vascular tone are Ca2+-activated (e.g., BKCa), voltage-

gated (including the Kv7 family), ATP-sensitive and inward rectifier

Potassium channels. Opening of potassium channels leads to efflux of

K+ and repolarisation/hyperpolarisation of the membrane resulting

closure of voltage-activated Ca2+ channels and subsequent vasodila-

tion (Nelson & Quale, 1995). Voltage-gated channels are activated by

depolarisation and in the case of BKCa channels regulated by other

factors independently, such as calcium.

Reviews have offered insights of how ω-3 PUFAs are believed to

interact with several types of K+ channels (Elinder & Liin, 2017;

Moreno, de la Cruz, & Valenzuela, 2016). Briefly, the structure of ω-3

PUFAs is important for its effect on ion channels, including the length

of the carbon chain and the degree of unsaturation, and we will dis-

cuss several structural characteristics of DHA and EPA relevant for

their vasodilatory effect. Furthermore, reviews by Nieves-Cintron,

Syed, Nystoriak, and Navedo (2018), Sobey (2001) and Baker (2000)

have reviewed the functions of different ion channels in the regula-

tion of blood pressure. Here, we will discuss how vasodilatory effects

of ω-3 PUFAs are potentially mediated via opening of BKCa channels,

the Kv7 family of voltage-activated potassium channels and ATP-

sensitive potassium channels (KATP), all of which have been implicated

in ω-3 PUFA-mediated responses.

3.3.1 | BKCa channels

BKCa channels are densely expressed in VSMCs, have a high conduc-

tance and are key to controlling resting membrane potential (Lai

et al., 2009). Multiple studies offer evidence that ω-3 PUFAs act on

BKCa to cause hyperpolarisation. For example, in patients with pulmo-

nary arterial hypertension, the pulmonary arterial SMC membrane

potential is depolarised compared to healthy cells; DHA activates

BKCa and returns the resting membrane potential to levels observed

in healthy subjects (Nagaraj et al., 2016). Blocking BKCa reduces DHA-

induced relaxation in these arteries and in mice, lacking the α-subunit

of BKCa, DHA-induced relaxation was reduced (Nagaraj et al., 2016).

Inhibition of BKCa leads to a significant reduction in DHA-mediated

relaxation in rat aorta and mesenteric artery (Limbu et al., 2018). In rat

coronary artery, DHA produced BKCa mediated-vasodilation and
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reversibly increased outward BKCa currents (Wang et al., 2011); these

DHA-dependent effects on BKCa were prevented when cells were

treated with inhibitors of CYP450, indicating that CYP450-derived

metabolites of DHA (and EPA) also act on BKCa. This is consistent

with the effects observed in pig coronary arteries treated with

DHA-derived EDPs (Ye et al., 2002), as well as EPA-derived 17(18)-

EpETEs in human pulmonary artery (Morin et al., 2009) and rat mes-

enteric arteries (Hercule et al., 2007).

The structure of ω-3 PUFAs is important for their effect on BKCa

channels and it is thought to involve electrostatic or “lipoelectric”
interactions. The pore-forming Slo1 subunit of BKCa plays a role in the

hypotensive effects of DHA in aortic SMCs. DHA reversibly activates

Slo1 when in association with the auxiliary subunit β1 and accelerates

its activation kinetics in Ca2+-free cell-free patches, suggesting that

DHA binds directly to the channel as opposed to modulating the

channel via a signalling cascade (Hoshi, Wissuwa, et al., 2013). The

mechanism through which DHA opens this conduction gate involves

destabilising its closed conformation without the need for voltage

sensors or Ca2+ binding (Hoshi, Wissuwa, et al., 2013). Interestingly,

the non-polar DHA ethyl-ester does not replicate the effects of DHA

on current, activation kinetics or animal blood pressure, indicating that

both the aliphatic tail and the polar carboxylic headgroups are impor-

tant; the same is true for EPA versus EPA ethyl-esters (Hoshi,

Wissuwa, et al., 2013). A comprehensive screening of mutations

(Hoshi, Tian, et al., 2013) identified residues fundamental for the

response to DHA. Positively charged Arg11 and positively charged

Cys18 (or any pair of oppositely charged Arg and Glu, Lys and Asp,

and Lys and Glu) in the N terminus and transmembrane domain of β1,

respectively. Interestingly, other groups have proposed electrostatic

interactions in the S4 pore forming regions of Slo1 also contribute to

BKCa activation by DHA (Tian et al., 2016).

There is very little evidence of ω-3 PUFAs having effects on other

members of the KCa family. As described above, in rat mesenteric

artery lacking NOS production, we found inhibition of SKCa had no

effect on DHA or EPA-induced relaxation, with only slight decrease in

relaxation occurring after inhibition of IKCa channels (Limbu

et al., 2018). Here, additional inhibition of BKCa led to significant inhi-

bition of relaxation, supporting a direct action of DHA on VSMCs by

acting on BKCa channels (Limbu et al., 2018). However, it may also be

possible that ω-3 PUFAs can act indirectly to activate KCa. For exam-

ple, in human endothelial cells EPA and its metabolite 17,18-EEQ

enhanceTRPV4 (transient receptor potential cation channel subfamily

V member 4) currents (Caires et al., 2017). TRPV4 channels are

involved in reducing BP, with activation leading to an increase in

endothelial intracellular Ca2+, the release of NO and hyperpolarisation

via activation of KCa (Earley et al., 2009).

3.3.2 | Kv7 channels

Kv7 channels are widely expressed in the cardiovascular system; Kv7.

1, 7.4 and 7.5 are the predominate subtypes expressed in VSMCs,

with Kv7.4 and 7.5 thought to be key in the regulation of vascular

tone and relaxation (Fosmo & Skraastad, 2017; Stott et al., 2014). In

terms of interaction with ω-3 PUFAs, Kv7.1 is the subtype most stud-

ied; as well being expressed in vascular tissue, it forms the pore sub-

unit of the cardiac IKS channel that is a major component of

repolarisation in cardiac cells (Liin et al., 2015). ω-3 PUFAs activate

Kv7.1 channels in rat cardiac myocytes and in xenopus oocytes

(Elinder & Liin, 2017; Liin et al., 2015), leading to increased conduc-

tance and more negative voltage activation values.

To activate Kv7.1, the negatively charged headgroup and the

polyunsaturated acyl tale of DHA and EPA are critical for increasing

current amplitudes and shifting conductance versus voltage curves (IV

curves) in the negative direction (Larsson, Larsson, & Liin, 2018). Simi-

lar to that observed in BKCa channels, the action of ω-3 PUFAs on

Kv7.1 is dependent on an electrostatic “lipoelectric” interaction, with

the S4 voltage sensing domain (Figure 4), leading to S4 movement and

channel opening (Larsson et al., 2018). The PUFAs bind to the outer

leaflet of the cell membrane close to the transmembrane segments S3

and S4 (Figure 4). The negatively charged DHA carboxylic acid head

group enhances Kv7.1 opening by electrostatic interaction with the

positively charged S4 helix, shifting the voltage dependence towards

more negative voltages. The outermost positive charge of S4 and a

non-polar amino acid in the S3-S4 loop (R228 and G219, respectively,

see Figure 4) contribute to this DHA affinity (Liin et al., 2015). Struc-

tural characteristics of fatty acids required to do this are reviewed in

depth by Elinder and Liin (2017) and Moreno et al. (2016), briefly at

least two double bonds with all cis-geometry are required to embed

into a membrane hydrophobic pocket located near the voltage sensing

S4 domain of Kv7.1, where they can influence the segment move-

ments and affect channel gating (Borjesson, Hammarstrom, &

Elinder, 2008; Elinder & Liin, 2017). Therefore, similar to what is

observed at BKCa channels, both the negatively charged headgroup

and the polyunsaturated acyl tale of DHA and EPA are fundamental

for increasing current amplitudes and negatively shifting IV curves,

properties not shared with uncharged, methyl esters and ethyl esters

(Liin et al., 2015).

Despite extensive evidence that ω-3 PUFAs can activate Kv7.1, to

date, no group has investigated the possibility that these channels or

other Kv7 subtypes are involved in vascular responses to ω-3 PUFAs.

This is an exciting potential avenue of research as the Kv7 family is

very highly conserved across members and species, particularly in the

S4 voltage sensing domain required for the activation of Kv7.1

(Figure 4). Indeed, the amino acid residues found to be involved, as

well as the putative ω-3 PUFA binding domain of Kv7.1 are conserved

between Kv7.1, 7.4 and 7.5 (Figure 4). Therefore, it is possible, if not

likely, that ω-3 PUFA also activate the subtypes implicated in regula-

tion of vascular tone, relaxation and regulation of blood pressure, that

is Kv7.4 and Kv7.5 (Barrese et al., 2018; Stott et al., 2014).

3.3.3 | KATP channels

KATP channels are typically activated by an increase in the ratio of

ADP to ATP. Vascular KATP channels are a predominantly smooth
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muscle cell potassium channel shown to be involved in responses to

many vasodilators (Kubo, Quayle, & Standen, 1997; Nelson, Huang,

Brayden, Hescheler, & Standen, 1990; Quayle, Nelson, &

Standen, 1997; Quinn, Giblin, & Tinker, 2004). The major vascular

KATP consists of the Kir6.1 pore subunit and SUR2B accessory sub-

unit, but as opposed to channels consisting of SUR2B and Kir6.2, do

not open in the absence of intracellular ATP (Yamada et al., 1997).

Global deletion of either channel subunit leads to hypertension and

coronary artery vasospasm leading to death due to lack of hyper-

polarising currents (Miki et al., 2002) (Chutkow et al., 2002). Further-

more, mutations in KATP are associated with cardiac dysfunction in

patients (Haissaguerre et al., 2009; Medeiros-Domingo et al., 2010;

Tester et al., 2011). Vascular KATP channels are also a currently

exploited target for pharmacological regulation of blood pressure;

agents that act on these channels such as minoxidil (Knutsen

et al., 2018) and pinacidil (Friedel & Brogden, 1990) are used clinically

to treat hypertension and certain formulations show promise for the

treatment of ischaemic stroke (Sheth et al., 2018).

KATP channels are expressed both in the endothelium and in

SMCs, and studies suggest that knocking out in either tissue has detri-

mental effects on coronary artery circulation (Kakkar et al., 2006;

Malester et al., 2007). As stated above, vasodilators seem to stimulate

these channels; for example in rabbit mesenteric arteries, NO leads to

hyperpolarisation in SMCs by activating KATP channels (Murphy &

Brayden, 1995). Prostanoids also activate KATP channels, as seen with

PGs PGE0 (Hide, Ney, Piper, Thiemermann, & Vane, 1995) and PGE1

(Eguchi et al., 2007; Ney & Feelisch, 1995). As dietary intake of fish

oils alters prostanoid production (Chin, Gust, & Dart, 1993) and ω-3

PUFAs themselves are substrates for production of prostanoids that

are likely to activate KATP, they are an attractive potential mechanism

for ω-3 PUFA-induced relaxation.

Despite this, very few studies have investigated the role of KATP

channels in ω-3 PUFA-mediated vasodilation. In rat aorta, DHA and

EPA-derived prostanoids induced glibenclamide (a KATP selective

blocker)-sensitive vasodilation in an endothelium-independent man-

ner (Engler & Engler, 2000). Likewise, KATP inhibition using

PNU37883A suppresses DHA-induced relaxation in rat aorta with the

endothelium removed (Sato et al., 2014). In rats, orchiectomy reduces

vasodilatory responses stimulated by KATP channel openers, an effect

that is recovered in DHA-fed animals (Villalpando et al., 2015). Con-

versely, Wang et al. (2011) found that DHA reversibly increased out-

ward K+ current in rat VSMCs and this effect was reduced when

BKCa, IKCa, SKCa and Kv, channels were inhibited, but not when KATP

channels were inhibited using glibenclamide.

The mechanism by which ω-3 PUFA might activate KATP is not

clear, neither is whether the mechanism is like the apparent electro-

static “lipoelectric” effects observed in BKCa and KV7 channels dis-

cussed above. Interestingly, in mouse pancreatic β-cells,

F IGURE 4 Putative ω-3 polyunsaturated fatty acid (PUFA) binding domains in Kv7.1, Kv7.4 and Kv7.5 are highly conserved across humans,
rats and mice. The tertiary and quaternary structure of Kv7.1 inferred from the crystal structure of Kv1.2 (Smith, Vanoye, George, Meiler, &
Sanders, 2007). This channel is a tetramer consisting of four identical monomers. Each monomer consists of 6 subunits: subunits S1-S4 form the
voltage sensing domain and subunits S5–S6 form the pore domain. The outermost positive charge of S4 is an arginine (R228), marked in a bright
red square and contributes to docosahexaenoic acid (DHA) affinity. This essential residue is conserved across species and channel subtype. The
non-polar glycine in the S3-S4 loop (G219), also marked in a dark red square, which is also essential for DHA affinity and is also highly conserved
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polyunsaturated acyl-CoAs (the intracellular esters of free fatty acids)

of PUFAs, but not saturated fatty acids activate these pancreatic KATP

channels in a mechanism dependent on electrostatic interactions with

acyl CoA (Riedel & Light, 2005). An alternative mechanism that may

explain apparent ω-3 PUFA activation of KATP is that ω-3 PUFAs have

been found to activate PKA in human adipocytes and rat cardiac cells

(Mies, Shlyonsky, Goolaerts, & Sariban-Sohraby, 2004; Tai

et al., 2009); PKA is known to induce vasodilation by activating vascu-

lar KATP (Yang et al., 2008). Regardless, it appears that KATP channels

in vascular SMCs may play a role in ω-3 PUFA-mediated vasodilation

(see Figure 3 for a summary of the mechanisms) and further research

needs to be conducted to investigate the role of these channels in

regulation of vascular tone and blood pressure.

4 | CONCLUSIONS

Human studies indicate that ω-3 PUFAs lower blood pressure partic-

ularly in hypertensive individuals and there is sufficient data to sug-

gest that they do this, in part, by having a beneficial effect on

dysfunctional endothelium and NO-dependent responses. Mechanis-

tic insights from both human and animal studies indicate that despite

a role for the endothelium and NO in ω-3 PUFA mediated vasodila-

tion, there are clearly other mechanisms involved. VSMC ion chan-

nels seem to contribute to the ω-3 PUFA vasodilator responses,

consistent with the large body of knowledge regarding PUFA interac-

tions with such channels. Unfortunately, the precise mechanisms

remain elusive. Therefore, a systematic pharmacological strategy to

characterise ω-3 PUFA vasodilatory properties is required to progress

our understanding of the key ω-3 PUFA-induced vasodilatory mecha-

nisms. We propose such pharmacological investigations require

in vitro data from multiple vascular beds coupled with in vivo data.

Furthermore, characterisation of effects on different specific ion

channels is required, with Kv7 and KATP being particularly interesting

novel targets. These studies should include biophysical characterisa-

tion coupled with genetic manipulation of the channels to isolate

which amino acids are required to stimulate channel activation by

ω-3 PUFAs. It is also vital to assess both natural and synthetic struc-

tural analogues of ω-3 PUFAs to elucidate structure/activity relation-

ships for evoking vasodilator responses. Indeed, exploiting known

structural determinants for ω-3 PUFA action such as chain length,

degree of saturation and charge of the polar head could lead to

development of novel compounds with the potential for treating car-

diovascular diseases such as hypertension.

4.1 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in the IUPHAR/BPS Guide to PHARMACOL-

OGY http://www.guidetopharmacology.org and are permanently

archived in the Concise Guide to PHARMACOLOGY 2019/20

(Alexander et al., 2019).
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