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The extent to which the ongoing decline in Arctic sea ice affects mid-latitude climate has

received great attention and polarised opinions. The basic issue is whether the inter-annual

variability in Arctic sea ice is the cause of, or the response to, variability in mid-latitude

atmospheric circulation [1]. Mori et al. (M19, [2]) claims to have reconciled previous conflict-

ing studies by showing that a consistent mid-latitude climate response to inter-annual sea-ice

anomalies can be identified between the ERA-Interim reanalysis, taken as observations, and an

ensemble of atmosphere-only (AMIP) climate model simulations. Here we demonstrate that

such a conclusion cannot be drawn, due to issues with the interpretation of the maximum co-

variance analysis performed. After applying the M19 approach to the output from a simple

statistical model, we conclude that a predominant atmospheric forcing of the sea-ice variability,

rather than the converse, is a more plausible explanation of the results presented in M19.

A leading mode of internal atmospheric variability is associated, in its positive phase, with

a Siberian anticyclone, a Warm Arctic and Cold Eurasia (WACE mode, Fig 1d in M19). It is

debated whether anomalies in the extent of Barents and Kara sea ice can modulate the frequency

of occurrence of this mode, given that the Siberian circulation anomaly could itself force sea-ice

anomalies by warming the Arctic region. To discriminate between these two possible scenarios,

M19 rely on identifying a mode of year-to-year co-variability in the winter-mean (DJF) Eurasian

surface temperature between the ERA-Interim reanalysis and an ensemble of AMIP simulations,

i.e. climate runs forced by observed oceanic conditions (including sea ice). The approach is well

designed: if sea ice forces circulation, and models are realistic, the WACE modes in the ERA-

Interim and AMIP simulations should covary in time. If instead sea ice merely responds to

circulation, the WACE modes should not covary: in the real world the WACE mode would

force sea-ice variability, while in the AMIP simulations the imposed observed sea ice would

only force a monopole of Arctic temperature variability via local thermodynamic processes.

The leading mode of Eurasian surface temperature co-variability between ERA-Interim

and the AMIP simulations is identified in M19 via maximum covariance analysis (MCA), as

implemented through the singular value decomposition (SVD) of the covariance matrix between

the two surface temperature fields in 0E-180E, 20N-90N. However, the pair of singular vectors

that comprise the co-varying mode are not displayed in the paper. Instead, the authors discuss
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the mode in terms of the homogeneous regression maps obtained by regressing each field on the

expansion coefficient (EC) of its own singular vector (see Supplementary Information for an

overview of the methodology). The homogeneous regression maps are not necessarily directly

related to the singular vectors, and hence to the structure of the co-varying mode [3, 4]. This is

because the ECs are obtained by projecting the two analysed fields on their own singular vectors.

Hence, in addition to reflecting the co-varying mode, the ECs include variance generated by any

internal mode of variability that is not orthogonal to the singular vectors themselves. When

the original fields are regressed on their own ECs, such internal modes can be aliased into the

homogeneous regression maps. The way to isolate the structure of the co-varying mode is via

heterogeneous regression maps, in which each field is regressed on the EC from the other field

[3].

The potential pitfalls of solely examining homogeneous maps are explored by applying the

statistical method from M19 to the output from a simple statistical model that qualitatively

incorporates the influence of sea ice and of the WACE mode on surface temperature variability.

In the simple model, the direction of the interaction between atmospheric circulation and sea ice

can be directly controlled (see SI). Regardless of whether sea-ice variability forces atmospheric

circulation or vice-versa, we find that the homogeneous regressions for the leading co-varying

mode always show WACE-like patterns characterised by a warm Arctic, a cold Eurasia and a

positive Siberian surface pressure anomaly. Because they alias in the internal variability in the

WACE mode, homogeneous regressions are insufficient to discriminate between these different

scenarios from the simple model. The same is not true for the heterogeneous regressions,

which correctly identify distinct pairs of co-varying patterns - either WACE-like or an Arctic

Temperature Monopole (ATM) - depending on the presence and direction of the interaction

between sea ice and the atmospheric circulation (Table 1).

We therefore compare the structure of the co-varying mode between the ERA-Interim and

AMIP simulations obtained from the homogeneous (Fig. 1a-b) and heterogeneous (Fig. 1c-f)

regression maps (see also the singular vectors in Extended Data Fig. 1). The only difference with

M19 is that, since the MIROC4 simulations are unavailable to the authors, the AMIP multi-

model ensemble consists of 6 rather than 7 models. Nonetheless, the homogeneous maps bear a

strong resemblance to those presented in M19, featuring the WACE-mode temperature dipole

between the Arctic and Central Eurasia together with the Siberian sea level pressure anomalies.

All these three features are present, albeit with a weaker amplitude, in the heterogeneous map

from ERA-Interim (Fig. 1c,e), but not in the heterogeneous map from the AMIP ensemble

(Fig. 1d,f). In particular, while the warm anomaly in the Barents and Kara seas is still present

due to thermodynamic forcing from sea ice, the cold anomaly in Central Eurasia is weakened

and displaced southward and, most importantly, the Siberian anticyclonic anomaly is entirely

missing (Fig. 1f). This implies the co-varying temperature pattern in the AMIP simulations

is distinct from the WACE mode, since the weak cold anomalies that persist further south in

Eurasia are not generated via cold advection by the Siberian anticyclone anomaly.

The missing Siberian SLP signature of the WACE mode in the heterogeneous maps is found

in all individual models, with the possible exception of ECHAM5, where the signal is nonetheless

not significant (Extended Data Fig. 2). In contrast, the SLP signal is present in all models’

homogeneous maps, which we attribute to the aliasing of internal variability that affects Arctic

temperature. Indeed, the magnitude of both the Siberian circulation and Eurasian temperature
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signals in the homogeneous maps are reduced, and made more similar to the heterogeneous

maps, by averaging the models’ ensemble members before the MCA (Supplementary Fig. 1).

This would not be expected if the signal was forced, since ensemble averaging only suppresses

the unforced internal variability.

The exact cause of the remaining southward-displaced cold anomaly in southern Eurasia

is unknown, but we note that the co-varying mode is associated with a global pattern of SST

anomalies (Extended Data Fig. 3). Some of these SST anomalies could drive southern Eurasian

temperature and circulation co-variability without the need to invoke an Arctic mechanism (see

Supplementary Fig 2 on the role of tropical Pacific SSTs). Understanding and isolating these

connections should be a topic for future research.

Comparing the structure of the heterogeneous maps between the ERA-Interim and the

AMIP simulations with those from the statistical model, suggests that a more plausible inter-

pretation of the results in M19 is an atmospheric driving - via the WACE mode - of Barents

and Kara sea-ice variability in the real world (Ice ← Atm). This interpretation is consistent

with the comment by Screen and Blackport, 2019 [5], who examined the lead-lag covariance

between sea ice and the WACE mode. M19 argue for the opposite direction of causality based

on the negative correlation (r) in the year-to-year variability between the sea ice and the ECs,

and later use r2 to quantify the fraction of WACE variance that is forced from sea ice. However,

the rationale is flawed since, as shown by the statistical model, the correlation between the ECs

and the sea-ice anomalies is always negative regardless of whether sea ice forces circulation, or

vice-versa (Table 1). This is a direct consequence of the fact that sea-ice anomalies directly

affect Arctic temperature, hence projecting on the singular vector.

Another potential interpretation of Fig. 1 is that the models entirely fail to capture the

observed dynamical WACE response to sea-ice anomalies. But in that case, the models certainly

cannot be used to argue in favour of a causal linkage. Either way, the conclusion of M19 is not

supported by the evidence presented.
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Ice → Atm Ice � Atm Ice ← Atm

Real AMIP Real AMIP Real AMIP

Homogeneous regression

TArctic 2.2 2.2 1.4 1.4 2.2 1.7

C 1.4 1.4 0.7 0.7 0.9 0.6

TAsia -1.4 -1.4 -0.7 -0.7 -0.9 -0.6

Pattern WACE WACE WACE WACE WACE WACE

Heterogeneous regression

TArctic 2.3 2.3 1.4 1.4 2.3 1.7

C 1.2 1.2 0.0 0.0 0.8 0.0

TAsia -1.2 -1.2 0.0 0.0 -0.8 0.0

Pattern WACE WACE ATM ATM WACE ATM

Correlation between sea ice (I) and ECs

rI,EC -0.86 -0.86 -0.71 -0.71 -0.93 -0.82

Table 1: The application of the M19 approach to the output from a simple statis-

tical model. The modes of co-variability between the “real-world” (Real) and “AMIP-world”

(AMIP) systems are described using homogeneous (top) and heterogeneous (bottom) regres-

sions in terms of the following variables from the simple model (see Supplementary Information

for details): TArctic (representing Arctic temperature), C (atmospheric circulation, positive for

a Siberian anticyclone) and TAsia (Central Eurasian temperature). The patterns are classified

either as WACE-like (WACE), if formed by a temperature dipole and a circulation anomaly,

or as an Arctic Temperature Monopole (ATM) with no circulation anomaly (also highlighted

bold). Note that the exact values are of secondary importance. The columns report results

from different setups of the statistical model: sea ice driving the circulation (Ice → Atm), no

interaction between sea ice and circulation (Ice � Atm), and circulation driving the sea ice (Ice

← Atm). The bottom line reports the correlation between the variability in the sea ice (I) and

that in the expansion coefficients. Only the heterogeneous maps can discriminate between the

different model setups: if the WACE pattern is found in both the real-world and the AMIP-

world, then sea ice forces circulation, while if the WACE pattern is found in the real-world

only, then it is the atmosphere that forces the sea ice.
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Figure 1: The co-varying mode of Eurasian surface temperature between ERA-

Interim and the AMIP simulations. Comparison between a-b) the homogeneous and c-f)

heterogeneous regression maps following the analysis in M19. a,c,e) refer to the ERA-Interim

reanalysis, while b,d,f) refer to the AMIP simulations. In a-d), shading shows the near-surface

atmospheric temperature (K), and the contours the sea-level pressure with a c.i. of 0.5 hPa,

solid for positive and dashed for negative. The heterogeneous map for sea-level pressure is

further shown in e-f) in shading. Stippling indicates statistical significance at the 5% level in

the shaded variable, i.e. temperature in a-d) and pressure in e-f), as obtained by bootstrapping

the individual years with replacement (see SI). All maps are scaled to one standard deviation

anomaly in the expansion coefficients. Note how only the heterogeneous maps correctly repro-

duce the co-varying temperature signals shown by the singular vectors within their domain of

definition in the Eastern Hemisphere (Extended Data Fig. 1).
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Extended Data Figure 1: The singular vectors. The pair of singular vectors composing

the first co-varying surface temperature mode between the a) ERA-Interim and b) AMIP

simulations via the maximum covariance analysis proposed in M19. As in Fig. 1, the vectors

are scaled to correspond to unit standard deviation in the expansion coefficients.
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Extended Data Figure 2: The robustness of the co-varying mode to model differences.

Homogeneous (top) and heterogeneous (bottom) regression maps of sea level pressure in the

AMIP simulations obtained by separately performing the maximum covariance analysis for

each individual model and using all the available ensemble members: 17 members are used for

AM3, 12 for GEOS-5, 20 for CAM4, and 50 for all other models. Stippling shows statistical

significance at the 5% level as in Fig. 1.
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Extended Data Figure 3: The potential confounding role of the SSTs. Heterogeneous

map of the SSTs associated to the co-varying mode in the AMIP simulations. Stippling denotes

statistical significance at the 5% level. The potential of these SST anomalies, such as the ENSO-

like pattern in the tropical Pacific, to force the circulation signals associated to the co-varying

mode in Fig. 1f is discussed in the SI (Supplementary Fig. 2).
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1 MCA: a brief overview

Maximum covariance analysis (MCA) enables to identify pairs of spatial patterns that

covary in time between two fields (A and B) and that explain as much as possible

of the covariance between the two. A and B can have different spatial dimensions

(x), but are restricted to having the same temporal dimension (t). Without loss of

generality, the fields A and B can be described as two bi–dimensional matrices having

dimensions, respectively, Xa × T and Xb × T . A set of pairs of co–varying spatial

patterns is then identified by decomposing the cross–covariance matrix (C) between

A and B via its singular value decomposition:

C =
1

T
ABT = UΣV T =

∑
k

σk · uk v
T
k (1)

where U = (u1, . . . ,uN ) and V = (v1, . . . ,vN ) are squared matrices containing the

so-called left (uk) and right singular vectors (vk) in their columns. For any value of k,

each pair of left and right singular vectors describe a mode of co–variability between

A and B. Σ is a diagonal rectangular matrix, with the values on the diagonal (σk)

reflecting the magnitude of the squared covariance between A and B explained by each

mode. Each successive mode following k = 1 explains a smaller fraction of squared

covariance.

The time variability associated with a co–varying mode can be described in terms

of expansion coefficients (ECs) (ak and bk) obtained by projecting the original fields

on their own singular vectors, i.e. ak = uT
k A and bk = vT

k B. Since the ECs are

computed via a projection, the expansion coefficient ak also incorporates variance

from any internal mode of variability in A that is not orthogonal to the singular
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vector uk. In the same way, the expansion coefficient bk includes variance due to any

mode of internal variability in B not orthogonal to vk. The presence of such internal

variance in ak and bk has implications for the interpretation of the spatial patterns

associated with the expansion coefficients via linear regression. In particular, the

patterns obtained by regressing each original field onto their own expansion coefficients

(called homogeneous maps) tend to reflect both the structure of the co–varying mode

and of any internal modes that contribute to the variance of ak and bk. As a result,

homogeneous regression maps do not necessarily have a direct relationship to the

singular vectors, which exclusively contain the structure of the co–varying mode. After

appropriate scaling (see below), the structure of the co–varying mode can instead be

recovered via heterogeneous regression maps, so–called because they are obtained by

regressing each field on the expansion coefficient of the other field [1].

2 Scaling of singular vectors and regression maps

In Fig 1 of the main text, the homogeneous and heterogeneous regression maps, as well

as the singular vectors, are scaled to correspond to a one standard deviation anomaly

in the ECs. In particular, the scaled (̃ ) expansion coefficients and singular vectors

are computed as:
ãk = ak/σak

b̃k = bk/σbk

ũk = uk · σak
ṽk = vk · σbk ,

(2)

where σak and σbk are the standard deviations of the respective ECs. For each grid

point, the homogeneous regression maps are obtained as the slope (m) of the linear

regressions passing through zero, between each field and their own scaled expansion

coefficients. Using the notation m =< y, x > to indicate the slope of y regressed on x

and the standard formulas for least square regression:

< A, ãk > =
AãTk
ãkãTk

, homogeneous map for A

< B, b̃k > =
Bb̃Tk
b̃kb̃Tk

, homogeneous map for B

(3)

The heterogeneous regression maps can be interpreted in a similar way, but the

linear regressions are computed conditional on the EC from the other field:

< A,E(ãk|b̃k) > =
Ab̃Tk
b̃kb̃Tk

· 1

r(ak, bk)
, heterogeneous map for A

< B,E(b̃k|ãk) > =
BãTk
ãkãTk

· 1

r(ak, bk)
, heterogeneous map for B

(4)

r(ak, bk) is the correlation between the two expansion coefficients, and it represents

the scaling factor needed to make the scaled heterogeneous regressions equivalent to

the scaled singular vectors.

2



3 A simple model of Arctic–midlatitude interac-

tions

The ability of the approach from M19 to identify climate impacts from sea–ice vari-

ability is tested on the output from a simple statistical model of Arctic and Eurasian

temperature variability, in which the role played by sea ice can be directly controlled.

Despite its simplicity, the statistical model, which is defined as follows, incorporates

the key role of sea ice and circulation to force the temperature anomalies discussed in

M19:
TArctic = −α I + β C + εArctic

TAsia = 0 − β C + εAsia

T̂Arctic = −α̂ I + β̂ Ĉ + ε̂Arctic

T̂Asia = 0 − β̂ Ĉ + ε̂Asia

}
Real world}
AMIP world

TArctic and TAsia represent, respectively, the surface temperature anomalies in the

Arctic and Central Eurasia, I represents the sea–ice anomaly in the Barents and Kara

region and C represents the atmospheric circulation anomaly associated with the

WACE mode, so that a positive value in C corresponds to an anticyclonic circulation

anomaly in Siberia. α and β are parameters quantifying the respective influence of

sea ice and circulation anomalies on temperature anomalies. For simplicity, it is here

assumed that circulation anomalies drive temperature anomalies of equal amplitude,

but opposite sign, between the Arctic and Eurasia. ε represents additional variability

in the surface temperature, here modelled as Gaussian white noise, that is induced

by other local processes or by other atmospheric processes than the WACE mode.

The variables representing the output from AMIP simulations are denoted with a .̂

The distinction between the real–world and AMIP–world equations comes from the

asymmetry in the system introduced by I, as it is the real–world sea ice that affects

Arctic surface temperature in both the real world and the AMIP world.

Different possible setups are considered based on the interaction between sea ice

and circulation anomalies. First, to reflect the conclusions from M19, we consider a

setup in which sea ice drives the probability of occurrence of the WACE mode. In

this setup, we define I as an independent random variable, and circulation (both C

and Ĉ) as a random variable whose mean expected value depends on sea ice:

I
iid∼ N(0, 1)

C|I ∼ N(−γ · I, 1)

Ĉ|I ∼ N(−γ̂ · I, 1),

 Sea ice drives circulation

where N(0, 1) is a normal distribution of zero mean and unit variance, and γ and γ̂

are positive parameters describing the strength of the interaction in the real world and

in the AMIP world, respectively. The minus sign before γ reflects the conclusion from

M19 that a negative anomaly in the sea ice can force a positive WACE mode. This

simple model does not include the possibility that circulation or surface temperature

are forced by the variability in the SSTs. This is acceptable for the purpose of this
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note since M19 suggest that SSTs play only a minor role in the forcing of the WACE

mode.

As a contrasting case, we consider an opposite setup in which it is circulation that

drives sea–ice variability, rather than vice–versa. In this case, C – as well as Ĉ – is

modelled as an independent random process, and I as a random variable whose mean

value depends on C in the real world:

C
iid∼ N(0, 1)

Ĉ
iid∼ N(0, 1)

I|C ∼ N(−γ · C, 1).

 Circulation drives sea ice

As in the previous setup, γ is defined to be positive and it describes the strength of

the interaction. The minus sign before γ implies that a positive anomaly in C, i.e. a

Siberian anticyclone, drives a reduction in sea ice, for example by advecting warm air

into the Arctic. The two setups described above become identical for γ = 0, which

describes a third setup in which there is no interaction between the variability in the

circulation and in the sea ice.

For any given parameter setting, the statistical model is used to generate two sets

of synthetic time series of 106 values in the variables TArctic, T̂Arctic, TAsia, T̂Asia, C,

Ĉ and I. The same MCA adopted in M19 is applied to the two 2–dimensional time

series (TArctic, TAsia) and (T̂Arctic, T̂Asia) in order to test whether the approach is able

to discriminate between cases with different values of γ and with different directions of

interaction between circulation and sea ice. In particular, three setups of the model’s

parameters are considered and discussed in Table 1 of the main paper: one in which

sea ice drives circulation (with γ = 1), one in which there is no interaction between the

sea ice and the circulation anomalies (γ = 0), and one in which it is the atmosphere

that drives the sea ice (also with γ = 1). For simplicity, a no–bias configuration has

been chosen for the other parameters in the statistical model, i.e. γ̂ = γ, α̂ = α = 1

and β̂ = β = 1.

Finally, we note that simple models such as this one could be extended by future

research to account for two-way interaction between sea ice and circulation. Such a

tool can be a useful testbed to explore the ability of statistical methods to extract the

impact of the lack of atmosphere-ocean coupling in the AMIP simulations.

4 Significance testing

The statistical significance of the homogeneous and heterogeneous regression maps

is evaluated via boostrapping the individual years with replacement (1000 samples).

In particular, we randomly resample with replacement the predictand, i.e. variables

A and B in eq. 3 and eq. 4, while keeping the expansion coefficients unaltered. In

each bootstrap sample, the same set of random years is selected across all the AMIP

ensemble members. At any given grid point, the regression map is deemed significant

at the 5% level if the observed regression value lies outside the 2.5-97.5 percentile range
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of the bootstrap distribution. Significance is illustrated as stippling in the regression

maps.

The statistical significance of the mode of co-variability itself is evaluated by boot-

strapping the SVD. As above, the bootstrapping is based on resampling with replace-

ment the years from the AMIP simulations, while keeping the ERA-Interim dataset

unaltered. In particular, three metrics of co-variability are considered [2]:

• The square of the Frobenius norm of the cross-covariance matrix (CC = 1.99 106

in the unshuffled dataset).

• The correlation between the ECs (R = 0.49 for the first mode).

• The squared covariance fraction (SCF = 54% for the first mode), i.e. the fraction

of cross-covariability that is attributed to a specific mode.

It is found that both CC and R are significantly different from zero at the 1% level

(they lie outside the 0.5-99.5 percentiles of the bootstrap distribution). This strongly

suggests that there is significant co-variability between the ERA-Interim and AMIP

Eurasian surface temperature fields (significant CC) and that the first mode detected

by the maximum covariance analysis is also statistically significant (significant R).

The same is not true for the SCF , which is found to be not statistically significant

(p-value > 0.1). As discussed in reference [2], this does not undermine the significance

of the identified mode, since an insignificant SCF , with a significant CC and R, is to

be expected when the variability in each of the two fields is dominated by the leading

EOFs.

5 Sensitivity of the MCA to averaging the ensem-

ble members

In the standard setup from M19, which is also adopted in this comment, the 12

initial-condition ensemble members available for each climate model are concatenated

to increase the sample size in the dataset. In Fig. 1, we test the sensitivity of the

results to averaging, rather than concatenating, the different initial-condition ensemble

members. This setup reduces the unforced internal variability in the dataset, thus

enabling to test, via comparison against the standard setup, the impact that internal

variability exerts on the output of the maximum covariance analysis. The results show

that the AMIP homogeneous map becomes more similar to the heterogeneous one,

and that the temperature and circulation signatures of the WACE mode become less

evident. This strongly supports that the WACE mode identified in the homogeneous

map of M19 reflects the aliasing of internal variability rather than a forced response

to Arctic sea ice, as it is discussed in this comment.
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Supplementary Figure 1: Sensitivity of the results to reducing the internal

variability in the model data. Panels a-d) are as in Fig. 1a-d of the main paper, but

the initial-condition ensemble members are averaged, rather than concatenated, before

performing the maximum covariance analysis. Panels e-f) show the corresponding

singular vectors. Note how the signals in the AMIP homogeneous map become weaker

compared to Fig. 1b of the main paper, which reflects the aliasing of internal variability

in the standard setup by M19.
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6 Confounding influences from SST variability

The heterogeneous maps shown in Fig 1c-f of the main paper reveal an hemispheric

pattern of circulation and temperature anomalies associated with the co-varying mode

including, e.g., a weakening of the Aleutian low and a cold anomaly in northern North

America. These anomalies may not be statistically significant but they still stand

out as some of the largest signals covarying with the first mode from the maximum

covariance analysis across the Northern Hemisphere. At the same time, the co-varying

mode is also associated with sea-surface temperature anomalies including, e.g., a warm

anomaly in the North Pacific and an ENSO-like pattern in the tropical Pacific (Ex-

tended Data Fig. 3). Here, we suggest that these SST anomalies can potentially force

a sizeable portion of the co-varying circulation signals without the need to invoke

an influence from Arctic sea ice. As a case study, Fig. 2 compares the surface tem-

perature, sea-level pressure and geopotential height at 500 hPa associated with the

co-varying mode against those associated with ENSO. The latter is obtained by re-

gressing the output from the AMIP simulations on the Nino 3.4 index (area-averaged

surface temperature between 5S-5N and 170W-120W). Despite a correlation of only

0.2 between the ECs and the Nino 3.4 index, there is good resemblance between the

ENSO-driven circulation patterns and those associated with the co-varying mode over

the North Pacific and North American sectors. This illustrates how even a small -

and possibly just accidental - correlation with an internal mode of variability can act

as a substantial confounding factor in the attempt to isolate the role of Arctic sea-ice

variability in the climate system. Fig. 2a also suggests that these ENSO-like SST

anomalies may modulate the southern Eurasian surface temperature variability too,

though the signal appears to be weak. Quantifying their exact role, as well as that

of the SSTs from the other ocean basins, will require the application of a dedicated

experimental framework which should be a topic for future research.
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Supplementary Figure 2: Confounding influences from SST variability. Com-

parison of a) the regression of winter-mean (DJF) surface temperature on the Nino

3.4 index in the AMIP simulations (sign reversed), against the b) heterogeneous map

of the co-varying mode in the AMIP simulations. Surface temperature is defined as

the sea-surface temperature over the ocean, and as 2-meter air temperature over land.

c-d) same as a-b) but for sea level pressure and e-f) same but for geopotential height at

500 hPa. All regressions are scaled to correspond to one-sigma anomaly in the predic-

tor. Panels e) and f) are based on 5 AMIP models since upper-air data is unavailable

for GFDL-AM3.
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