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1. INTRODUCTION

The notion that secondary electrons generated by cosmic rays could be accelerated
over kilometer distances by thunderstorm electric field was first proposed by Wilson.!
The frictional force F of fast nonrelativistic electrons moving in air diminishes with
the kinetic energy of electrons € (Fig. 1) until a minimum value,

AT N, Ze*
—r

mc?

Frnin = a=~11 (D)
is reached.at.. €min =~ 3—4mc?. At relativistic energies € >> mc? the force F is slowly
growing (~ In(e/e;},e; = 270eV ) This specific behavior of friction force F in
nonrelativistic region is a cause of runaway effect in a constant electric field.> Clearly,
if an electric field E, applied to the medium, exceeds the minimum value F;,:

. . 47N, 7 et
B> E. = Fun/e= op 2)

then the electrons with the energies € greater than characteristic value &, = mc*(v.—1)
(Fig. 1) will runaway. In other words electrons will be accelerated up to very high
energies.

Runaway electrons in the context of thunderstorm electric fields in air were
studied previously by a number of authors. 3* A fundamental new idea proposed
by Gurevich, Milikh and Roussel-Dupree in 1992 showed how the generation of an
avalanche of runaway electrons could lead to the air breakdown.® As is well known
impact ionization of the air by energetic electrons leads to the production of newborn
electrons with a wide spectrum of energies. Those secondary electrons whose energy
exceeds the characteristic value €. become a part of runaway population and contribute
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Figure 1. Dynamical friction force. The normalized energy loss per unit length (Fy,/Ec0) for
electrons in air is plotted as a function of the electron Lorentz factor 7.

to further acceleration and ionization that again populates the runaway regime. The
net result is an avalanche in which the number of runaway electrons and with them of
electrons of all other energies grows exponentially. This process was called runaway
breakdown. It proceeds in electric fields £> E. (2) and in the presence of high-
energy electrons (produced as a results of cosmic-ray interaction with atmosphere).
It is important to note, that the critical field for runaway breakdown is about an
order of magnitude lower than the threshold field for conventional breakdown Ecs:

E.=0.1FE ., 3)
This fact makes it possible for runaway breakdown to take place in relatively low
electric fields £, < E << E _,;, and as a result to determine fast charge transfer process
in thundercloud, which can have important implication for lightning preconditioning
and overall development of thunderstorm electricity.

Runaway breakdown proceeds as a beam of fast electrons having maximum
energies of the order of 1 MeV.6 A detailed kinetic theory’ for the runaway process
permitted a precise determination of the intensive fluxes of X-rays produced by
bremsstrahlung emission in the 10-500 keV energy range.

The experimental observations of intensive X-rays by McCarthy and Parks® could
be considered as a first manifestation of runaway breakdown during thunderstorm.
These effects were recently confirmed and studied in details by Eack, Beasley et
al. ! Even more convincing were the observation of very intensive y-ray bursts
by’ BATSE. 12 These observations indicate the direct connection between spectacular
high-altitude lighting and runaway breakdown.

Nevertheless, it is worthy to note that the Earth’s magnetic field B can substan-
tially affect the runaway breakdown process at the altitudes above z ~ 20 km. At
z =~ 40 km, this influence already dominates. That is why, the influence of magnetic
field B on high-altitude lighting should turn out to be significant even though it
strongly depends on the angle between E and B.!3!

Moreover, the role of lighting emission is not completely understood. For instance,
in Refs. 15, 16 is supposed that alternating electromagnetic field is just a source of air
ionization growth produced by high altitude lighting at z ~ 60—-80 km. While, in such
a case in Refs. 15-17 only conventional breakdown in gas was considered. From the
one hand it gives rise to some difficulties in interpretation of the breakdown — the
field is usually less than needed for conventional breakdown. From the other hand
conventional mechanism of gas breakdown can not explain strong y-emission which
as usually supposed to appear under high-altitude lightnings.
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It is pertinent to remember in connection with this fact that runaway process of
electrons may appear not only in constant electric field. In particularly, runaway of
electrons and ions may occur under stochastic Fermi acceleration. This process playing
possibly a marked role in injection mechanisms of cosmic ray generation's leads to
chaotic acceleration and manifests itself as a substantial distortion of the spherically-
symmetrical part of a distribution function.!'® In this case, a chaotic (thermal) tail in
the distribution function and symmetrically spreading in all directions particle flux are
observed. One can say that effective temperature 7 = 7(¢) depends on the particle
energy €, growing infinitely with increasing of the energy €. Clearly, this process could
be called spherical-symmetrical or “thermal” mechanism of runaway. The process may
be evolved effectively not only under the Fermi acceleration mechanism, but also under
the action of a constant electric field on a plasma in case of strong electron scattering
by ions (i.e. at Z>> 1, where Z is an ion charge) or by isotropically excited ion-sound
plasma oscillations. 20; 21

It is natural to expect that the same thermal runaway effect arises in motion
of fast electrons in air if chaotic alternative electric field is applied or in constant
electric and magnetic fields under strong scattering by nuclei Z >> 1. In air Z =~ 7.25
(in reality, the effective value Z ¢ could be slightly lower because of electron shielding
on low levels7). Undoubtedly, that the value of Z in air is insufficient for total
stochastization of electron motion in a constant electric field. In the same time, in
the first approximation, even in this case consideration of chaotic acceleration could be
useful. It simplifies significantly the kinetic theory of the air breakdown and gives it
possible to solve the problem in different conditions: with and without magnetic field,
in oscillating electric field a.s.o. However, what are the conditions, when spherical
symmetrical (thermal) approach is correct? Can that thermal mechanism of runaway
give rise to gas breakdown? Is that process significant in air, i.e. what is the
relationship between critical field of thermal mechanism of runaway breakdown in
crossed electric and magnetic fields or in oscillating electric field and the critical field
of conventional breakdown?

This paper is just devoted to the investigation of these problems.

2. TRANSFORMATION OF KINETIC EQUATION

To describe the breakdown on runaway particles in electric field E and magnetic
field B we start from kinetic equation” :

of
dp

%i+va+eE

af

o+ B

= S1(f) + Sin( ), 4)

here Sion is an ionization integral which describe the production of new electrons due
to collisions with molecules of the air, S = 5’0 + L. The term Sy describes electron
energy loses and the term I isa pitch-angle scattering. The classical integrals Sy and L
and a model integral Sm were determined in the paper Ref. 7. In arbitrary coordinate
system, terms So and L could be presented in a form:

- O
(1) = 35 (gppf)

. 8 /. 0\
Ly = viwr' - [(c&j - %ﬁ’i) 5}] ' )
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AnZe*n,
FD - il "r

mc? 42— 1
y {m [mcz(vz—i}l_/z(viﬁf] B F_iJ 2 1 M}
21

v
is a dynamical friction force,

2 22 16+2

Fn(Z/2+1)
Py

v =

is a collision frequency, / = 80.5 eV for air, N,, is the molecular density,
v = (1/v/1=(v/c)?),

v is the electron speed. Note, that here Z = 14.5, as we denote it as the average charge
of air molecules N, and O,.

There are several characteristic times in the equations (4), (5). One of them is
defined by energy losses 7z and the other one by the pitch-angle scattering #g .

ry

P
Ry — lg =" —————
te " (272 + 1) ©)

Fp
If the effective charge Z is large enough, then depending on the considered energy range
it could be different relation between 7z and g . If

Z
v 1+ —2— (7
then

g < tp

and distribution function in this region should be close to spherical symmetrical due to
dominant angular scattering. On the contrary for high energy electrons

Z
Y>> 1+ 7 (8)
angular scattering is weak enough and distribution function is determined mainly by
energy losses and angular distribution of a new born electrons.

We will start our analyses, considering the low energy range, where conditions (7)
is fulfilled. Introducing a new small parameter of the problem € = ¢4/t we rewrite
equations (4) and (5) in the form:

af of

o TVVIHeBgs = Solf) = Sall) =

oo

[ﬂﬁ—ﬁ&B@ﬂ, ©)

Let us seek for the solution to equation (9) in a power series on the parameter € :
f:f0+6f.1+... .

In zero approximation we have

f(parvt) = fO(lplarv t)'
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On the next step of this procedure, after averaging of equation (9) on the momentum
direction, one can find:

o a
% +eV(V) + e<eE7ﬁ> = So(fo) + Sien(fo). (10)

It is seen from (10), that the term %J;ﬂ ~ €. Taking this. fact into account, we have in
the first approximation on € :

E(f) = v, Bl = pH, ()

here

It is naturally to seek for a solution to the equation (11) in a form:

fi = piAsHe fo. (12)

It is easy to check, that f, (12) is an eigenfunction of the operator L,
f,f 1= —vfi.

That is why, the equation (11) is identical to another more simple equation?2

d N eBv
—vf1 — [D~WB]5—J;1 =pHfy Wp = g (13)
As follows from equation (13) the matrix 4;; has a form:

v 1

Amm:A — T TS TS Azz:—"’

v v+ wh v
- vB 14
Amz‘—Azx:AyzzAzy:O Ao:yz—Ayx:_m- ( )

Substituting (12) into (10) we result in the equation for isotropic part of the distribution
function f:

Ofo 1 O |, dfo dfo
—a-t— + g;ia—p {p eEzAzk (Uaﬁc + eEk_a—p—

(15)

+5i7"i |:§Aik (‘UngZ + eEk%%)] = So(fo) + Sian(f0)-

Equation (15) describes both thermal runaway effects and diffusive spreading of break-
down in the space. The analogous equation in nonrelativistic limit was derived in
Ref. 22. If the magnetic field is negligible the distribution function in (15) is cylindri-
cally symmetrical f = f (¢, p, r 1, z) and equation (15) could be rewritten in a form:

U 1)+ D) + () = Solf) + Senl ) 1o
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where

I = LE (pge:zEzAzza‘f)
op

3p° Op
a (v, Of
I = ar (?Azza> 17)
10 af d af
I = 322 Op (p vel, A”‘ﬁ ) -+ 7 ( eFA,, Bp)

The first term in (16), (17) describe the heating of electrons by electric field, the second
one describe the diffusive spreading of breakdown in space and the third term describe
the motion and acceleration of particles in discharge along electric field direction. The
coefficient 1/3 in (16), (17) appears because of scattering and angle averaging. Previ-
ously Ref. 6 was demonstrated that the breakdown discharge is spreading in space due
to the scattering of a new born fast particles. Now we see that there is another process
(angle scattering) which affect the diffusive spreading of breakdown discharge also.
Below, we restrict our consideration by a space uniform problem and neglect the
dependence of f on the variable r. Equation (15) in these conditions has a form:

9fa 19[4 e?E? (12 +wieos? B\ Oy
vy - 2 F S
oL p2op {P [ pfo+ 3, ( 7+ wh ) o J } + Sion(fo)- (18)

Here cos 3 = gg, A is an angle between electric and magnetic fields.

It is necessary to note that in spite of the equation (18) was derived in conditions
of strong angle scattering of electrons in constant electric field, the quite analogous
equation could be obtained in the case of oscillating or stochastic electric field.22

3. QUALITATIVE ANALYSIS

We will begin from the analysis of the general kinetic equation (4). Since equation
(4) is a linear one we can search for its solution in a form quite analogous to the one

used in conventional breakdown theory?® ?*:
f(p,t) = fp)e™* (19)
Here parameter A; = % — is the ionization growth rate and f(p) is a stationary

distribution function which is established in the process of breakdown. It is determined
by the stationary equation (4) with 'af =N

Boundary conditions to this equatlon at the low energies are determined by the
following physical process. Low energy electrons are generated by fast runaway elec-
trons, they lose their energy in collisions and then disappear at very low energies due
to dissociative or three body attachment of electrons to O, molecules. That mean, that
boundary conditions at p — 0 is determined by the balance of the model ionization
term Sion(f) and electron energy loss term Sio(f):

Sion + Sa(f) =0, p—+0 (20)

As we will see below this condition determines quite definite mode of solution.
At the high energies when p — oo it is natural to expect that:

f—=0, P — 0 (21)
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Qualitatively the structure of the solution of stationary equation (4), (19) with
boundary conditions (20), (21) could be understood basing on the parameters (7), (8)
and the concrete form of distribution function for runaway problems obtained in pre-
vious works. 192225 At the low energy region y < 3-4 (see (7)) distribution function
is close to the spherically symmetric and gradually falls down with the energy of elec-
trons’ f o< (y— 1)~ At the high energies Y>> 8 (see (8)) function f(p) became
directed along the direction of electric field (or in presence of a strong magnetic field
— along the drift direction, analyzed in Ref. 13). Its directivity is high, but not too
high determined by the combined action of electric field and ionization integral Sion (f).
The distribution function can here effectively grow up with y. It reaches maximum
value at the second critical point v, (see Fig. 1) and then rapidly falls down at y>vy,,
analogous to Ref. 25.

It should be emphasized, that according to this analysis the range of energies were
the stationary distribution function is determined is extremely large growing exponen-
tially with E/E. (see Fig. 1). It means that in reality stationary distribution could
be established at £ ~ E. only. At E > 2 E_ it is nonstationary and breakdown essen-
tially depend on the process of developing and establishing of a stationary distribution
function. The last process depends strongly on the form of initial distribution function
fo(y). In our case of the runaway breakdown in the atmosphere the initial distribution
of fast electrons is determined by a cosmic ray secondaries, which have in most part
the low energies € < (1-2) MeV. So we can consider:

_ | Fl), V= Y -

Jo= { 0, T @
It will be shown below, that in this case the quasi stationary distribution function is
rapidly established at y <y, , but in the high energy range 7y > v, it is stretching
out very slowly. It means in reality that breakdown process in initial conditions (22) is
determined mainly by low energy electrons y <v,,. For this electrons condition (7) is
well fulfilled and kinetic equation could be significantly simplified (16). Below we will
use this equation to describe runaway air breakdown.

It should be notified also that as the full stationary solution is not established
during runaway breakdown process in initial conditions (22), the electron distribution
is stretching out with time in energies, what means that the number of electrons —
fast and slow is growing in time not strictly exponentially. This make it different from
the classical breakdown process which is always growing exponentially in time.? >

4. RUNAWAY AIR BREAKDOWN

Let us investigate now the problem of air breakdown, considering spherically sym-
metrical kinetic equation (18). Since equation (18) is a linear one, we can search for its
solution in a form:

Foly %) = X fol) (23)
Y and ¢* are nondimensional variables
P )2 Lt ] | m?c?
= — 1, = —, AT =t g = ——F——— 24
v (mc + to ¢ 0 7 4netZna (24)

Substituting (23) in (18) and introducing parameters 6 = E/E., h = B/E, and
d, = (1 4+ Z/2)7%, one can find from (18)

% {(72 Do) [fu + ?gf-;)] } = VA TN S — S, 25)
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Here yis Lorentz-factor of electron,

1 v2
(bDiE’)/?—l
! ! 2 1\ 1 (-1
8414 —In(v? — 1)+ = In(y = 1) = 0.] L =
x{ 4211(4/ )+2n(fy ) 0‘347(7 72)+272+ 57

— is a friction force determined by interaction of electron with air molecules, and

T 6% (V? + w¥ cos? )
o = 36, (wh + )2y (26)
— is a parameter which we will call effective temperature, wg = h/v, v = ¢pé;1(y* —
1)~1/24=1 g 2~ 11.2 — is a fundamental constant.® Model ionization integral S; in (4)
takes a form & 7:
1 = 125 tp (4 1 2')/ -1 1 1
v dy folv') S = + +—
(y=12 %y =y —1) (V=72 A7
27)

" 2a 2{y—1)+1

Note, that effective temperature To¢r according to (26) depend significantly on the
energy of electrons € = mc?(y— 1). Thus, in the absence of magnetic field (2 = 0)
temperature Tefr in nonrelativistic limit y— 1 < 1 is proportional to €3. Directly this
strong grows of Terr with € lead to thermal runaway effect.

The equation (4) has two asymptotics in the limit y — 1. They have different
behavior at y — 1: first one isfy ~ expﬁ and the second one fo ~ 1/(y— 1). The
first asymptotic corresponds to equipartition between two terms in LHS of the equation
(4) and is equivalent to zero flux condition at Y — 1. The second one is defined by the

balance of friction force term in LHS and particle source S(fy) at RHS, it behaves as

(7_11)2, fooo (28)

7-1

Only the second solution has a physical meaning in our case. Really, the fast particles
from runaway region y— 1 > 2/0g generate a wide range of electrons with low energies
€, which under the action of friction force lose their energy and disappear at € — 0 due
to attachment to the air molecules. So the v — 1 asymptotic of distribution function
is determined by the balance of particle generation and friction force, as was already
noted in Section 2.

Integrating equation (25) over Yy we obtain the following expression for nondimen-
sional ionization rate A* (24):

S(fo)

L {540+ 41>~ Vowsi} dy
L 7y 1f dy @)

Here we took into account asymptotic behavior of distribution function at y — 1 (28).
We supposed also in accordance with (21), (22) that f =0 at Y > Y. Note that close
to the threshold conditions

A — 0 at E=Ey, or S = Oy (30)

runaway breakdown process is always well described by the equations (18), (29)
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As it was shown in Section 2 the equation (18) strictly speaking has no exponential
growth rate. To clarify this point let us consider the solution of equation (25) in a limit

1 €y €y
here y,. is a second root of equation
eE = Fp(y)
(see Fig. 1) In this limit the equation (25) has following asymptotics the first one
FU o0 433V el

and the second one

f(z) - ﬂ{ag+§\/9+m/¢mTw

were

8.5 646z
boo = — Te = ey

a

Numerical and analytical analysis show that the first asymptotic can not satisfy the
boundary condition (28). The second asymptotic gives a growing up solution f(*) which
contradict to the restriction (21). It means that in rigorous theory to obtain exponen-
tially growing in time solution we should consider an extremely spread in energies
solution of the full kinetic equation (4), taking into account directional part of distri-
bution function analogous to Refs. 20, 25. But as it was shown earlier in real situation
for runaway breakdown in atmosphere this solution is not realized.

Really, runaway breakdown arises only in the presence of a high energy electrons.
In the air conditions these electrons are cosmic ray secondaries with the energy € <1
MeV. So, the initial distribution function is not too spread in energies and could-be
supposed as a beam which have an energy cut at e =€, (22).

Now, we will estimate the contribution of various parts of distribution function in
growth rate (29). Let us suppose, that the main contribution is defined by the range
of Yy~ v and 7y, >> 1. Taking into account (28) one can find from (29):

7
A 31

" day

So, we see, that contribution into the growth rate (31) decrease with increasing of 7 -
It means that the bulk part of distribution function f(y) for y < 1-2 gives the main
contribution into the A* .

Let us estimate now the spreading of the initial beam in time. The equation (18)
is diffusive type in energy. For simplicity we restrict our consideration on relativistic
limit. In this limit the simplified equation (18) takes a form:

of Do [ ,0f ) ,
=S (5 ) s =) D = T ~ 043536
gt 2o~ (7 37> +6(t)o(v — Ym) 1D 0.430%0 (32)

The solution of (32) has a following form:

exp {_ (In 7—11\1/’1%9—31773)2 }

Dt (33)
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We see from (33) that the spreading of this beam and the motion of its maximum is
rather slow (in limit 6, << 1). If the speed of maximum D is lower, than A% ,

/\: > D (34)

we will have quasi-exponential growth rate. Using this condition we obtain from (32),
(34) restrictions on critical field:

K AY

EC < 1.5 g (35)

It should be noted that A* depend on E/E.. This dependence was obtained previously %7

. (BN . 16
A=A 7 T R —

a

Using this relations one can find:

E_, (L6 ?

£ (%) o0
here 1 << 1.3 is a shielding parameter’ (Zers = Z/01). If condition (36) is fulfilled
the growth rate should be quasi-exponential.

We resume the results of analytical analysis in this section.

1. For atmospheric conditions the runaway air breakdown process could be de-
scribed by simplified time dependent kinetic equation (18) with boundary conditions
(28), (21) and initial distribution function (22).

2. The solution of equation (18) effectively depends on the form of initial distri-
bution function and generally speaking does not grow exponentially in time. But for
the initial conditions (22) and for not very high values of electric field (36) it could be
close to exponential.

S. NUMERICAL RESULTS

Conventional air breakdown always grow in time exponentially. It is fully described
by the threshold electric field E.; and growth rate time 7; which is rapidly diminishing
function of E/E ;.

Runaway breakdown in general case is not growing exponentially in time. Its
growth rate and threshold electric field depend significantly on the initial form of dis-
tribution function. Not far from the threshold runaway air breakdown process could
be quite analogous to conventional, though it has much lower threshold electric field.

Here we will discuss the numerical solution of equation (18) with boundary condi-
tions (21), (28) and a model ionization integral. First of all it is necessary to mention
that numerical simulations justify analytical predictions about the behavior of the solu-
tion. We see (Figs. 2 and 3), that if the electric field is close to the threshold (5, = 1.3)
the electron density is growing up exponentially, but the exponent depends on the en-
ergy of initial beam ¢, .

5.1. Comparison with exact solution. Previously in the absence of magnetic
field B = 0 the solution of kinetic equation (4) with the model ionization integral S;,,
was investigated numerically.” It is shown at Fig. 4 for §; = 2. One can see from
the figure that the main bulk of electron distribution function is close to spherically

28
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Figure 2. Spherically symmetric solution with €, = 10 MeV. The electron density is plotted as a
function of time for &y = 1.4, h=0and €, = 10 MeV.
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Figure 3. Spherically symmetric solution with & = 1 MeV. The electron density is plotted as a
function of time for 8z = 1.4, h =0 and €, = 1 MeV.
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Figure 4. General solution of Boltzmann equation. The magnitude of the self-similar electron distri-
bution function 8z = 2 and no magnetic field (2 = 0) is plotted as a function of the electron energy
and the angle 06 between the applied electric field and the electron momentum vector. These results
were obtained in Ref. 7.

symmetrical. Quite analogous statement could be made about the form of distribution
function f for higher electric fields §; = 5, 8, obtained in Ref. 7, though at the high
energies ¢>1 MeV we see there, that the distribution function takes more directional
character.

The solution of simplified spherically symmetrical equation (18) with boundary
conditions (21), (28) and the same model ionization integral and initial distribution
function as in Ref. 7 for 6 = 2 is demonstrated at the Fig. 5. One can see quite a
reasonable agreement with Fig. 4. The dependence of the growth rate A; on electric
field & is presented in Table 1. As we expected for the low value of &z the growth rate
of electron density is close enough to the previous one and the difference between them
is increasing with increasing of df.

The solution of equation (18) allowed to determine the threshold electric field for
runaway breakdown with B = 0, which was found to be 8, = 1.3. We see from
Figs. 4, 5 and Table 1, that not far from the threshold the form of distribution function
and breakdown growth rate is well enough described in spherical symmetrical approach,
what is in a full agreement with the results of analytical analysis, presented in the
previous section. It allows us to explore the influence of magnetic field and oscillating
electrical field on runaway breakdown in the same spherical symmetrical approximation.

5.2. Influence of magnetic field. The exact kinetic equation (4) is quite com-
plicated for numerical analysis if magnetic field B is fully taken into account. The

Table 1. Avalanche Time for Spherical
Symmetric 7,;* and Exact 7; Kinetic Equa-

tions

6 o Ti\( sp) (ns) 7 (HS)
2 19.6 27

5 2.4 7

8 0.6 2.9
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Figure 5. Spherically symmetric approach. The magnitude of the self-similar electron distribution
function for 8z = 2 and no magnetic field (2= 0) is plotted as a function of the electron energy. These
results were obtained using the spherically symmetric approach and can be compared directly with
the general solution obtained in Ref. 7 (see Fig. 4).

5.2. Influence of magnetic field. The exact kinetic equation (4) is quite com-
plicated for numerical analysis if magnetic field B is fully taken into account. The
above both analytical and numerical analysis shows that spherically symmetrical ap-
proach (18) is very useful if one consider solution not far from the threshold. Let us
analyze now using this approach the dependence of the threshold electric field &,, on
magnetic field B. It is characterized by two parameters: normalized value of magnetic
field & = B/E . and angle 3 between B and E. The influence of magnetic field is mostly
strong for B = 90°, when E 1 B. The dependence of &g, on % for B = 90° is shown on
Fig. 6 and in Table 2. One can see from the figure and Table 2 that §g,, is growing with
h. This result seems quite natural: as one can see from equations (18), (26) the growth
of magnetic field at B = 90° diminishes the effective electron temperature Tir. It means
that the effective width of distribution function is decreasing with increasing magnetic
field and one need to apply more strong electric field to achieve breakdown conditions.
It is interesting to note that obtained in Ref. 13 analogous growth of breakdown electric
field 8,, with / based on the analysis of the pure electron runaway process without
heating, was much stronger. It means that the influence of thermal effects on run-
away breakdown is enhancing with the increasing of normalized magnetic field 4. This
fact agrees with the form of distribution function in the presence of magnetic field ob-
tained in Ref. 14 which is more close to the spherical symmetrical one (note that the
amplification of breakdown time constant A; with #'* does not agree with our results).

The dependence of df,, on A for different values of the angle [ are presented at
Table 3. One can see that Oz, for given 4 is diminishing with diminishing B and the
relation

6E:h (00) < 5Em(/3) < 5Eth (900} ) [5Eth (00) ~ 1.3 (37)

Table 2. Threshold Electric Field for Runaway
Breakdown with a Magnetic Field (B = 90°)

h 0 1 2 5 10 30 100
S 130 1.66 1.70 1.80 225 330 5.25
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Figure 6. Threshold electric field vs. normalized magnetic field for B = 90°. The normalized threshold
electric field for runaway breakdown (3£, ) is plotted as a function of the normalized magnetic field
(h) for an angle B = 90° between the electric and magnetic fields.

is always fulfilled. This behavior of 8,, naturally follows from the formulae for Tefr in
Eq. (18).

5.3. Alternating electric field. Spherical symmetrical approach and equation
(18) gives the possibility to analyze breakdown in alternating and stochastic electric
fields.

It is possible to show that in the case of stochastic field the equation (18) is not
changed if one substitute averaged (E?) instead E2. Because of this all previous results
for constant electric field are valid for stochastic field too.

The results of numerical solution of equation (18) for the case of alternating electric
field are shown on Fig. 7 and 8. The solution in this case depends on relation between
frequency of electric field w and ionization rate A;. If

<A (38)

the situation is quasistationary (see Fig. 7) and the total number of secondary electrons
is following to the change of electric field oscillating with the frequency ®. In opposite
case when

O > A; (39)
Table 3. Avalanche

Time as a Function of
Angle B for 8; = 2.0,

63 =10

B (degree) Ti(sp) (ns)
0 19.6
15 72.1

30 100

45 273

60 oo

32



(i

DEKSITY (m-*)

i 1 ' 1 - 1 i 1 ! I I i " 1 " ) WS E— |
00 200 400 800  BOO 1000 1200 100 1600 1840 2000 2200
TIME (ns)

Figure 7. Oscillating electric field with @ < A;. The electron density is plotted as a function of time
for 8 ,,and A= 0. In this case ® <A ;.

the breakdown is defined by the same equation (18), but the effective temperature takes
the form?*

e’ By

Togp = ~——m—
T 6007 +u?) (40)
Here £y — is the amplitude of oscillating electric field. We see that equation (40) if
® << v coincide with the same equation for the constant electric field E, only this field
is in +/2 times less due to averaging of E2 on oscillations. This averaging is clearly seen
at Fig. 8. So the threshold amplitude for low frequency electric field should be

E()th = \/§Efih 3 6wth = \/iath (41)

Numerical calculations confirm this results exactly giving 6. = V28 =~ 1.8. Note,
that in the nondimensional variables (4) frequency o takes the form:

mow

h, =
6E_}cU

(42)

We see that the equation (18), (4) in normalized variables takes just the same form as
in magnetic field with # = A . The only difference comes from the fact that wg o h/y,
but o does not depend on 7.

In oscillatory electric field and magnetic field the effective temperature takes a
form?*?

e?E? (cos? B sin? @ sin® 3
Teg = — ( + ) (43)

6 v 2[(w — wp)? + 7] N 2[(w 4+ wp)* + 17

We see, that in this case a gyroresonance effect is possible in conditions when 3 = 90°,
v is small enough (4 >> 1) and frequency ®is close to w; at y= 1.3-1.5.

6. CONCLUSION

Analytical and numerical arguments, presented in Sections 3—4 showed, that the
kinetic equation for electrons describing runaway breakdown process in atmospheric
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Figure 8. Oscillating electric field with @ > A,. The electron density is plotted as a function of time
for 8,,,and 2= 0. In this case ® > A ;.

conditions could be significantly simplified and presented in spherical symmetrical form
(18). It allowed us to solve this equation and determine breakdown threshold electric
field and growth rate. In the first time this problem is consistently solved in the presence
of the constant magnetic field, which plays a significant role in the Earth’s atmosphere
at the heights z > 2040 km. 13- 14 I the Table 4 the threshold for a runaway breakdown
by vertically directed electric field is presented as the function of height z for northern
E (,',’1) (B £ 30°) and equatorial E(ﬂfq) (B = 90°) latitudes. Threshold electric field for
the conventional breakdown E.; is given in the Table also. One can see, that in the
northern latitude (and midlatitudes) conditions runaway breakdown threshold fields is
always much less than conventional

Eip < Eoy, (44)

But in equatorial region the same relation (44) is well fulfilled for the heights z < 50—
60 km only. This fact could be significant for understanding of the nature of high
altitude lightning at different latitudes.

We have shown that runaway breakdown in homogeneous atmosphere can take
place not only in a constant but in oscillating in time with any frequency electric
fields also. The physical nature of this new effect is deeply connected with thermal
runaway process. The possibility of existence of runaway breakdown in oscillating
electric fields could be significant for interpretation of lower ionosphere ionization during
thunderstorms 2¢ and high altitude lightning mechanism. But the atmosphere at the
heights z > 50 km is strongly rarefied and due to this the spatial inhomogeneity could
be significant here. So, a more detailed analysis of this problem is needed which lays
out of the frame of present paper.

Table 4. Heights Dependence of Breakdown Parameters
z(m) Nyem3  EU) (Viem) A0 ESD (Viem) Bon(Viem)

0 2.7 x 1019 2961 0.04 2900 2x104
10 8.6 x 1018 929 0.126 966 6.4x103
20 1.8 x 10!8 195 0.60 226 1.33x 103
30 3.7x 107 40.1 2.92 54 274
40 82 x 1016 8.9 13.2 17 60.7
50 22 x 1016 2.4 49.1 74 16.3
60 67 x 101 0.72 161 3.7 4.9
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