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Abstract
Accurate forecasting of variations in Indian monsoon precipitation and progression on seasonal time scales remains a chal-
lenge for prediction centres. We examine prediction skill for the seasonal-mean Indian summer monsoon and its onset in 
the European Centre for Medium-Range Weather Forecasts (ECMWF) seasonal forecasting system 5 (SEAS5). We analyse 
summer hindcasts initialised on 1st of May, with 51 ensemble members, for the 36-year period of 1981–2016. We evalu-
ate the hindcasts against the Global Precipitation Climatology Project (GPCP) precipitation observations and the ECMWF 
reanalysis 5 (ERA5). The model has significant skill at forecasting dynamical features of the large-scale monsoon and local-
scale monsoon onset tercile category one month in advance. SEAS5 shows higher skill for monsoon features calculated using 
large-scale indices compared to those at smaller scales. Our results also highlight possible model deficiencies in forecasting 
the all India monsoon rainfall.

Keywords Indian summer monsoon · Monsoon onset · ECMWF · SEAS5 · Forecast skill

1 Introduction

The Indian summer monsoon (ISM) presents an interesting 
challenge for seasonal prediction. ISM precipitation varies 
across different spatio-temporal scales—including the vari-
ability of seasonal mean rainfall and ISM onset and with-
drawal dates over the Indian subcontinent over seasonal and 
interannual timescales. These variations have large impacts 
on major water resources, ecosystems, agriculture and thus 
the Indian population. Improved forecasting of the ISM pro-
gression and seasonal rainfall can help alleviate water stress 

for agriculture and domestic needs and mitigate the impacts 
of hydrometeorological disasters.

Progress has been made by state-of-the-art models in 
simulating ISM climatology (e.g., Menon et al. 2018), its 
interannual variability (e.g., Wang et al. 2015a), and vari-
ations in the monsoon on subseasonal-to-interannual time-
scales, such as for extreme precipitation (e.g., Nanjundiah 
et al. 2013), large-scale circulation patterns (e.g., Saha et al. 
2014), intraseasonal variability (e.g., Abhilash et al. 2014), 
influence of teleconnections on the ISM (e.g., Preethi et al. 
2010) and the monsoon onset (e.g., Chevuturi et al. 2019). 
Further, monsoon prediction is sensitive to features such as 
atmosphere-ocean coupling (Krishna Kumar et al. 2005), 
model resolution (Ramu et al. 2016) and atmospheric ini-
tialization (Alessandri et al. 2015) etc. However, despite 
considerable progress in the prediction of dynamical fea-
tures of ISM variability, models still struggle to simulate 
the local-scale intraseasonal variability (e.g., Sperber et al. 
2001; Johnson et al. 2017; Chevuturi et al. 2019).

Similar to its contemporary coupled ensemble prediction 
systems, the European Centre for Medium Range Weather 
Forecasts (ECMWF) seasonal forecasting system 4 (SEAS4) 
represents the mean Asian monsoon circulation well despite 
systematic errors associated with monsoon precipitation 
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(Kim et al. 2012). It has good skill at predicting ISM inter-
annual variability (Jie et al. 2017; Pandey et al. 2015), and 
shows relatively low model bias for ISM rainfall compared 
to other models (Jain et al. 2019). The new ECMWF sea-
sonal forecasting system 5 (SEAS5) has many improvements 
over SEAS4, including reduction in cold SST errors over 
equatorial Pacific and Indian Ocean regions (Johnson et al. 
2019). These improvements have led to significantly higher 
prediction skill for large-scale ISM rainfall interannual vari-
ability in SEAS5 compared to its predecessor, and also put 
SEAS5 as a front runner in predicting extreme ISM rain-
fall (Köhn-Reich and Bürger 2019). However, SEAS5 like 
SEAS4, still shows stronger than observed teleconnections 
with the tropical Pacific.

It remains unclear how well SEAS5 represents the local-
scale ISM and its onset, and what errors remain in its mon-
soon dynamics. Studies have shown that model deficiencies 
at seasonal timescales have more serious consequences for 
forecast skill compared to those arising from errors in the 
initial conditions (Pokhrel et al. 2016). Thus, an assessment 
of ISM simulation and its prediction skill in the SEAS5 
system will be useful to user communities (scientific and 
operational), by providing information on the strengths and 
limitations of the model. In this study, we aim to exam-
ine the representation of the ISM and its progression in the 
ECMWF SEAS5 forecasting system with a focus on predic-
tion of the monsoon onset. We quantify the prediction skill 
of seasonal mean ISM and monsoon onset variability in the 
SEAS5 hindcasts, using various objective indices.

The article is organized as follows: the SEAS5 hind-
cast and verification data used in the study are introduced 
in Sect. 2.1; methods are provided in Sect. 2.2; results for 
the prediction skill of seasonal mean ISM are discussed in 
Sect. 3 and for the monsoon onset in Sect. 4; and Sect. 5 
provides the summary and concludes this study.

2  Data and methods

2.1  Data

The SEAS5 coupled model features the Integrated Forecast 
System (IFS; cycle 43r1) atmospheric model coupled to the 
HTESSEL land-surface model and the Nucleus for Euro-
pean Modelling of the Ocean (NEMO; version 3.4.1) ocean 
model. SEAS5 seasonal forecasts have O320 ( ≈ 36 km) 
horizontal resolution and 91 vertical levels for the atmos-
phere, and ORCA 0.25 ( ≈ 27 km) horizontal resolution and 
75 vertical levels for the ocean. The SEAS5 forecasts are 
integrated for 7 months with a 51-member ensemble initial-
ised on the first of every month. Johnson et al. (2019) and 
ECMWF (2017) give a detailed description of the SEAS5 
forecasting system.

We use 36 years (1981–2016) of the retrospective sea-
sonal forecasts (also referred to as reforecasts or hindcasts) 
to estimate the forecast skill of the system. For our study, 
the focus is on analysing the 1st of May initialised hindcast 
set. Studies have shown that dynamical coupled models can 
skilfully predict ISM rainfall initialized in May (e.g., Wang 
et al. 2015b; DelSole and Shukla 2010). We use 124 days 
(01 May–01 Sep) of SEAS5 seasonal hindcasts at 1◦ × 1◦ 
horizontal resolution, with 51 ensemble members for each 
year.

ECMWF’s new reanalysis (ERA5; Hersbach et al. 2020) 
at 0.25◦ × 0.25◦ horizontal resolution, has been used for 
comparison with model output for dynamic and thermody-
namic fields. For rainfall observations we used the GPCP 
(Global Precipitation Climatology Project) dataset at 
2.5◦ × 2.5◦ horizontal resolution, with monthly version 2.3 
(Adler et al. 2018) and pentad version 2.2 (Xie et al. 2003). 
We use GPCP due to its better representation of the Indian 
monsoon in comparison to other merged rainfall datasets 
(Prakash et al. 2015).

2.2  Methods

2.2.1  Objective indices

To evaluate prediction skill we use objective indices that 
reflect the key physical mechanisms associated with the 
Indian monsoon and define the monsoon onset date based 
on these mechanisms. The different indices used and their 
respective domains are summarized in Table 1.

– AIRI (All India Rainfall Index) is defined as the weighted 
average of JJA rainfall anomalies over the Indian region 
and is an index used by ECMWF. The weights are scaled 
by the fraction of low-altitude land and normalized to 
a unit-area average at the GPCP native resolution. The 
region covered and the weights at each grid-point are 
shown in Table 1. This mask allows us to only calculate 
rainfall over India and ignore the surrounding regions.

– TTGI (Tropospheric Temperature Gradient Index) is 
defined as the difference between vertically integrated 
tropospheric temperature over 600–200 hPa between 
northern and southern regions of the South Asian 
domain. Pre-monsoon warming over the Asian region 
along with the elevated heat pump due to the Tibetan 
Plateau establishes a meridional temperature gradient 
and forms a heat low over South Asia, which is a precur-
sor to the monsoon onset. The TTGI monsoon index is a 
seasonal average of the TTGI time series for the months 
of JJA. The TTGI monsoon onset date is specified when 
the northern box (depicted in the TTGI panel of Table 1) 
becomes warmer than the southern box (i.e. date on 
which the TTGI becomes positive). As our results were 
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found not to be sensitive to any smoothing of the TTGI, 
no smoothing is applied here.

– WYI (Webster and Yang Index) describes the strength-
ening of the vertical wind shear (lower tropospheric 
westerlies and upper tropospheric easterlies) during the 
monsoon period over South Asia. WYI is calculated as 
the JJA seasonal average of the contrast between zonal 
winds at lower levels (850 hPa) and in the upper tropo-
sphere (200 hPa) over the large-scale South Asian region 
demarcated by the box in Table 1. The onset date calcula-
tion method is the same for both circulation indices (WYI 
and WFI) and is described below.

– WFI (Wang and Fan Index) describes the strengthening 
of the zonal horizontal wind shear in the lower tropo-
sphere (tropical monsoon westerlies over India and the 
easterly flow over the north of India). WFI is calculated 
as the JJA seasonal average of the contrast between 

lower-level zonal winds in the southern and northern 
boxes (Table 1). For onset date calculations for the cir-
culation indices (WYI and WFI), we smooth the index 
time series using a seven-day moving-average to prevent 
assigning bogus onsets. For calculating onset with the 
circulation indices, we use the climatological value of 
ERA5 on 2nd June as our threshold for the respective 
indices. 2nd June is the mean climatological monsoon 
onset date over Kerala from 1981–2016, as listed by the 
India Meteorological Department (IMD).

– WLI (Wang and LinHo Index) defines monsoon onset 
at each grid-point using rainfall, providing spatial vari-
ability at the local-scale. To avoid noise inherent in time 
series of grid-point rainfall, the WLI is calculated using a 
smoothed pentad rainfall time series and calculated rela-
tive to the minimum in the annual cycle (January mean 
rainfall). Then the timing of the monsoon onset pentad at 

Table 1  Details of seasonal mean and onset indices used in the study

Climatological monsoon onset date over Kerala from 1981–2016 is 2nd June

Index Methodology Onset Region

All India Rainfall Index (AIRI; 
ECMWF 2017)

Precipitation weighted average
(scaled as per the figure)
Area = 70°–90° E, 5°–30° N

–

Tropospheric Temperature Gradient 
Index (TGI; Xavier et al. 2007)

TTGI = TN − TS
T = Vertically averaged tempera-

ture (600–200 hPa)
TN = T(40°–100° E, 5°–35° N)
TS = T(40°–100° E, 15° S–5° N)

Date when TTGI time series 
for each year becomes 
positive

Webster and Yang Index (WYI; Web-
ster and Yang 1992)

WYI = U
850

− U
200

U = Zonal Wind at 850 or 200 hPa
U = U(40°–110° E, 0°–20° N)

Date when seven-day 
moving-average of WYI 
time series exceeds climato-
logical WYI value of ERA5 
on 2nd June

Wang and Fan Index (WFI; Wang 
and Fan 1999)

WFI = US − UN

U = Zonal Wind at 850 hPa
US = U(40°–80° E, 5°–15° N)
UN = U(70°–90° E, 20°–30°N)

Date when seven-day 
moving-average of WFI 
time series exceeds climato-
logical WFI value of ERA5 
on 2nd June

Wang and LinHo Index (WLI; Wang 
and LinHo 2002)

WLI = P − Rjan
P = Pentad rainfall for different 

years
Rjan = Mean rainfall for January of 

respective years

Pentad when five-pentad 
moving-average of WLI 
time series for each grid-
point for each year crosses 
5 mm day−1
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each grid-point is determined when the five-pentad run-
ning average of relative rainfall exceeds 5 mm day−1 . The 
spatial variability of climatological (1981–2016) WLI 
monsoon onset pentads for GPCP is shown in Table 1.

2.2.2  Verification methods

In this study, we analyse the deterministic skill of the 
SEAS5 ensemble mean, as well as the probabilistic skill of 
the SEAS5 ensemble forecasts. Comparison of interannual 
variability between the hindcast ensemble mean and obser-
vations uses the Pearson correlation coefficient (CC). We use 
a one-sided Student’s t-test to examine the existence of skill 
(CC > 0), and test for significant differences at the 5% level. 
To quantify the relationship between real-world skill and 
potential predictability of the ensemble forecast system, we 
use the ‘ratio of predictable components’ (RPC; Eade et al. 
2014). RPC is calculated as the CC (actual skill) divided by 
the ratio between standard deviation of the model ensemble 
mean and the average standard deviation of individual mem-
bers (potential predictability). A forecasting system having 
RPC equal to 1 indicates that the predictable component of 
the real world is the same as in the model world.

where CC is the correlation coefficient, �2

sig
 is the signal vari-

ance of the model ensemble mean and �2

tot
 is the variance of 

all ensemble members. The actual predictability of any fore-
cast system is usually different to its potential predictability, 
and RPC represents this difference. RPC greater (lesser) than 
1 denotes underconfident (overconfident) forecasts.

Reliability of the ensemble forecast system is meas-
ured based on the relationship between the intraensemble 
spread and the error of the ensemble mean forecast, as the 
‘spread-error ratio’ (SER; Ho et al. 2013). For a large and 
perfect ensemble, the RMSE (root mean square error) of 
the ensemble mean would be equal to the ensemble spread 
about the ensemble mean (Weisheimer et al. 2011). An 
ensemble system with SER larger (smaller) than one is 
considered overdispersed (underdispersed), and the proba-
bilistic forecasts are expected to be unreliable.

where m is the number of ensemble members, RMSE is 
the root mean square error of the ensemble mean and �2

tot
 

is the variance of all ensemble members. To estimate the 

(1)
RPC =

CC
√

�
2

sig
∕�2

tot

(2)SER =

√

m + 1

m

√

�
2

tot

RMSE

sampling uncertainty of RPC and SER, we use the boot-
strapping approach to generate a distribution of RPC and 
SER values, by randomly generating 1000 samples, from the 
ensemble and the hindcast years, with replacement. From the 
randomly generated distribution, using a two-sided test we 
estimate RPC and SER values which are statistically indis-
tinguishable from 1 at the 95% confidence interval.

The skill of SEAS5 at forecasting the monsoon onset 
is also quantified in terms of tercile categories: (a) early, 
(b) normal and (c) late onset. Model skill for onset tercile 
categories is estimated in terms of deterministic (Accuracy; 
ACC and Heidke skill score; HSS) and probabilistic fore-
casts (Brier skill score; BSS and Ranked probability skill 
score; RPSS) (WCRP 2015). ACC is a score that defines 
the accuracy of the model performance, whereas HSS is the 
accuracy of forecasts at predicting the observed category, 
relative to that of random chance. ACC is the ratio of how 
many times the model forecasts the correct onset category. 
Negative values for HSS indicate that the model forecast is 
worse than a randomly generated forecast set. BSS is calcu-
lated separately for all three onset categories and measures 
the mean-squared forecast probability error. RPSS measures 
the sum of squared probability errors, which is cumulative 
across the three forecast categories, in order from early to 
normal to late onsets. Negative values for BSS and RPSS 
indicate a forecast which is worse than a climatological 
forecast (with a probability of 1/3 in each onset category). 
Please refer to Table 2 for detailed description of the veri-
fication skill scores used to quantify skill of an ensemble 
forecast system.

3  Monsoon dynamics and thermodynamics

In this section, we examine the model performance in 
terms of the dynamics and thermodynamics of the ISM in 
order to understand the monsoon rainfall errors. We will 
first assess the climatological mean state of the model, 
to diagnose systematic biases in the model. Next we will 
analyse the interannual prediction skill for the different 
monsoon features. For an objective analysis of monsoon 
characteristics, we use seasonal (JJA) mean indices: AIRI, 
TTGI, WYI and WFI, as described in Table 1.

3.1  Climatological mean and interannual variability

SEAS5 generally simulates the pattern of ISM features well 
(Fig. 1). It clearly shows the enhanced meridional gradi-
ent in tropospheric temperature (Li and Wang 2016), which 
establishes the lower level cross-equatorial flow (Find-
later 1969) and consequently the upper level tropical east-
erly jet (Koteswaram 1958). SEAS5 shows a warmer than 
observed temperature gradient (Fig. 1j) which strengthens 
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the monsoon flow, as indicated by the anomalous westerly 
bias at 850 hPa (Fig. 1k). An upper level easterly wind bias 
north of India and a westerly bias to the south (Fig. 1l) are 
due to a slight northward shift in the positions of the tropi-
cal easterly jet and the sub-tropical westerly jet in SEAS5 
(not shown).

SEAS5 represents the climatological pattern of the sea-
sonal mean monsoon precipitation well: i.e. enhanced pre-
cipitation over the Western Ghats, monsoon core region, 
Gangetic Delta and the Himalayas (Fig. 1a). SEAS5 overes-
timates seasonal mean precipitation over the Western Ghats 
and Himalayas and underestimates it over the Gangetic 
Plains and Delta (Fig. 1i), as with other seasonal forecast 
models, such as the North American Multi-Model Ensemble 
(NMME) seasonal systems (Singh et al. 2019). The under-
estimation of ISM mean rainfall is not a unique problem for 
SEAS5 alone; other contemporary models also show a drier 
ISM with the same forecast lead times (Jain et al. 2019).

The verification of SEAS5 seasonal mean (JJA) monsoon 
indices is summarized in Table 3. SEAS5 seasonal mean 
monsoon indices differ significantly from those in observa-
tions/reanalyses, due to biases discussed in the above para-
graph. Tropospheric temperature for SEAS5 is generally 
warmer than in reanalysis and the local-scale rainfall biases 
lead to a seasonal mean dry bias in AIRI. Due to the westerly 
wind biases, at lower and upper levels, SEAS5 underesti-
mates the zonal vertical wind shear (WYI) and overestimates 
the zonal horizontal wind shear (WFI). For almost all the 
monsoon indices, the interannual spread in SEAS5 is usu-
ally larger than observed, except for WYI (Table 3). For the 
detailed interannual ensemble member spread of monsoon 
indices in SEAS5 compared to observations, please refer to 
Fig. 2. Compared to the ensemble spread of AIRI in SEAS5, 
ensemble spread is higher for WYI and lower for TTGI. 
SEAS5 ensemble spread generally encompasses the seasonal 
mean observations except in years such as 1994 for TTGI, 
WYI and WFI, and 2002 for AIRI and TTGI. Further, as all 

Table 2  Description and calculation of the verification skill scores used in the study

Verification Skill Score Calculation

Accuracy (ACC) quantifies the fraction of forecasts predicting 
the correct tercile category amongst all forecasts and ranges 
from 0 (no skill) to 1 (perfect score)

ACC =
1

N

C
∑

i=1

n(Fi,Oi) (1)

where C is the forecast category (early/normal/late), N is the total number of 
forecasts (years) and n(Fi,Oi) is the number of accurate forecasts for all dif-
ferent categories for each year

Heidke Skill Score (HSS) represents the accurate forecasts after 
eliminating those which are correct due to random chance. 
This score ranges from − ∞ to 1, with 0 meaning no skill and 
1 meaning a perfect forecast score. Negative values for HSS 
indicate that the model forecast is worse than a randomly 
generated forecast set

HSS =

1

N

C
∑

i=1

n(Fi ,Oi)−
1

N2

C
∑

i=1

n(Fi)n(Oi)

1−
1

N2

C
∑

i=1

n(Fi)n(Oi)

(2)

where C is the number of forecast categories, N is the total number of fore-
casts (years), n(Fi,Oi) represents the accurate forecasts and n(Fi)n(Oi) is all 
combinations of expected forecast and observed category combinations

Ranked Probability Skill Score (RPSS) measures how well 
the multi-category probabilistic forecast predicts the actual 
observed category in cumulative sense. This score ranges from 
− ∞ (highest possible error) to 1 (perfect score), with 0 indi-
cating no skill when compared to reference climatology

RPSS = 1 −
RPS

RPSclim
(3)

RPS =
1

N

N
∑

i=1

[
1

(C−1)
(
C
∑

j=1

(Fj − Oj)
2)] (4)

where RPS is the Ranked Probability Score and RPSclim is the reference RPS 
climatology, calculated with the same formula as RPS, but with climato-
logical probability of 1/3 for the value of F in all the cases. F is the forecast 
probability, O is the observed category, N is the number of forecasts and C 
is the number of forecast categories: (1) early, (2) normal, (3) late; quanti-
fied as cumulative categorical forecast probability in the given order

Brier Skill Score (BSS) defines the skill of the probabilistic 
forecast for a category and is calculated separately for each 
category and reflects the mean-squared probability error. This 
score ranges from - ∞ (highest possible error) to 1 (perfect 
score), with 0 indicating no skill when compared to the refer-
ence climatology

BSS = 1 −
BSc

BSclim
(5)

BSc =
1

N

N
∑

i=1

(Fi − Oi)
2 (6)

where BSclim is the reference Brier Score climatology, calculated with the same 
formula as BSc but with climatological probability of 1/3 for the value of F in 
all the cases and BSc is the Brier Score of a particular category. F is the forecast 
probability of that category, O is the observed category and Nc is the number of 
forecasts (years) in the same category. O is 1 for the observed category and 0 
for other categories



 A. Chevuturi et al.

1 3

of these indices are indicators of Indian monsoon strength, 
they are known to not be entirely independent (Moron and 
Robertson 2014). Our results indicate that these indices 
show similar patterns of interannual variability and there 
are significant correlations between the monsoon rainfall 
index (AIRI) and the three other indices, for both SEAS5 
and observations (Fig. 2b–d).

Analysing the monthly mean AIRI (Fig. 3), shows that 
SEAS5 also represents the monsoon (May to September) 
seasonal cycle well. Monthly AIRI strongly increases from 
May to July, as the monsoon peaks, and then shows a gradual 
reduction from July to September. SEAS5 has a wet bias 
in the months before the monsoon peak (May–June) and a 
dry bias from July to September. Thus, the seasonal mean 
dry bias for AIRI in SEAS5 stems from insufficient rainfall 
from July onwards. The interannual spread of the monthly 
mean AIRI is larger in SEAS5 than observed, similar to the 
interannual spread of the seasonal mean AIRI (Table 3).

3.2  Skill of interannual prediction

To evaluate how well SEAS5 hindcasts represent predictable 
modes of ISM variability, we compare the principal compo-
nent (PC) time series for the first two modes (PC1 and PC2) 
of ISM variability between SEAS5 and GPCP (Fig. 4). For 
the PC time series calculation we use the first two leading 
modes of empirical orthogonal function (EOF) calculated 
for GPCP monthly-mean summer rainfall anomalies over the 
South Asian domain (15◦ S–30◦ N, 60◦ E–120◦ E), as EOF1 
and EOF2 (ECMWF 2017). The first EOF (EOF1; Fig. 4a) 
resembles precipitation patterns associated with summer La 
Niña events, with enhanced precipitation over the eastern 
equatorial Indian Ocean and southeast Asia and reduced pre-
cipitation over the northern Bay of Bengal and East Asia. 
The second EOF (EOF2; Fig. 4c) pattern has enhanced pre-
cipitation over the Indian subcontinent, surrounding oceans 
and western equatorial Indian Ocean; which resembles the 

Fig. 1  Seasonal (JJA) mean climatology for a precipitation (mm 
day−1), b tropospheric temperature (K; averaged over 600–200 hPa), 
c lower-level winds (m s −1 ; 850 hPa) and d upper-level winds (m s −1 ; 
200 hPa) for SEAS5 at native resolution. e–h show the same as a–d 
but for verification datasets (GPCP and ERA5) at their respective 

horizontal resolution. i–l is the bias between the model and observed 
calculated at coarser resolution. i Precipitation bias is shown at GPCP 
resolution, and j–l biases of the other three variables are shown at 
SEAS5 resolution
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rainfall anomalies observed during the positive phase of the 
Indian Ocean Dipole. PC1 (Fig. 4b) and PC2 (Fig. 4d) time 
series are generated by spatially regressing seasonal mean 
rainfall anomalies each year (SEAS5 and GPCP) onto the 
EOF1 and EOF2 patterns respectively. Comparison of the 
SEAS5 PC time series against observations shows moderate 
but significant correlations between the models and observed 
for the first two modes of interannual monsoon variability 
(Fig. 4b, d).

When we look at skill in ISM interannual variability, in 
terms of CC, RPC and SER (Table 3), the results suggest 
that large-scale monsoon features measured by temperature 
gradient (TTGI) and vertical wind-shear (WYI) are better 
represented in SEAS5 than smaller-scale features (AIRI 
and WFI), as large-scale seasonal mean monsoon indices in 
SEAS5 are significantly correlated with the reanalysis. Other 
models also show moderate skill for ISM rainfall (Rajeevan 
et al. 2012) but have better skill for large-scale monsoon 
circulation (Johnson et al. 2017). Further, for smaller-scale 
monsoon features (AIRI and WFI), SEAS5 RPC is sig-
nificantly lower than 1 (Eade et al. 2014), which indicates 
overconfident forecasts, where the ensemble mean resem-
bles the ensemble members more than the observations. 
RPC for large-scale monsoon features (TTGI and WYI) is 

Fig. 2  Seasonal (JJA) mean monsoon indices with symbols showing 
monsoon index for SEAS5 ensemble mean (black rhombi) and ERA5 
(red circles). The boxplots show the ensemble spread of seasonal 
mean monsoon index for SEAS5. For each boxplot, whiskers show 
the range (max–min) of the onset dates, middle dash is the median 
and box ends show inter-quartile range of the ensemble spread. Sea-

sonal mean monsoon indices for each sub-figure are calculated with 
a AIRI, b TTGI, c WYI and d WFI. The grey horizontal line demar-
cates the 0 threshold. The numerical values shown in panels b–d are 
CC between AIRI against each respective index for observed (red) 
and SEAS5 (black) and asterisk represents statistical significance at 
the 5% level

Fig. 3  Monthly interannual spread of AIRI for SEAS5 (blue) and 
GPCP (white) in boxplots. For each boxplot, whiskers show the range 
(max–min) of the AIRI, middle dash is the median and box ends 
show the inter-quartile range
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statistically indistinguishable from 1, which suggests that the 
forecast skill of SEAS5 is close to the potential predictability 
limit estimated by the model ensemble spread. Similar to 
RPC, SEAS5 has SER statistically indistinguishable from 
1 for large-scale indices (TTGI, WYI), and SER lower than 
1 for smaller-scale indices. This suggests that SEAS5 has 
reliable forecasts for large-scale monsoon features and the 
forecasts associated with smaller-scale monsoon features 
are underdispersed, which leads to unreliable probabilistic 
forecasts for the smaller-scale indices.

The model’s interannual predictive skill at each grid-
point for seasonal (JJA) mean rainfall, tropospheric tem-
perature, vertical zonal wind shear and rainfall is shown 
in Fig. 5. SEAS5 skill, in terms of correlation, at each 
grid-point, indicates that the thermodynamic and dynamic 
features such as the vertical wind shear of zonal winds 
(Fig. 5c) and tropospheric temperature (Fig. 5b) are gen-
erally better represented in SEAS5 than the precipitation 
anomaly (Fig. 5a), which is a common feature amongst 
all current models (Kim et al. 2012). SEAS5 only has sig-
nificant correlations with observed precipitation anoma-
lies (p-value less than 0.05; Fig. 5a or RPC statistically 
indistinguishable from 1; Fig. 5d) over parts of southern, 

eastern and western India, with only parts of the northern 
India having SER statistically indistinguishable from 1. 
For zonal vertical wind shear, SEAS5 over most parts of 
India has good prediction skill (Fig. 5b). Its actual skill 
matches well with potential predictability (Fig. 5e), and 
has reliable forecasts (Fig. 5h), over the whole Indian sub-
continent and surrounding seas. Fig. 5c shows that SEAS5 
skill for tropospheric temperature is high over the whole 
of the tropical Indian Ocean region (15◦ S to 15◦N), and 
SEAS5 has reliable forecasts for tropospheric temperature 
over southern India (Fig. 5i). SEAS5 generally produces 
underdispersed and overconfident forecasts (SER < 1), for 
all the three variables, for most parts of the study domain 
(Fig. 5g–i), which is a common problem among other sea-
sonal forecasting systems (Weisheimer et al. 2011). None-
theless, there are some regions where SER > 1, i.e. parts 
of central and western Indian subcontinent for precipita-
tion, southern India for zonal vertical wind shear, and the 
western equatorial Indian Ocean and parts of the Tibetan 
Plateau for tropospheric temperature. These regions have 
unreliable (underconfident) probabilistic forecasts with 
SEAS5, due to a larger ensemble spread than the ensem-
ble mean error.

Table 3  Seasonal (JJA) mean monsoon indices and onset dates are shown with their interannual standard deviation (SD) for SEAS5 and GPCP/
ERA5 along with CC, RPC and SER, using their respective indices

Model mean and standard deviation values marked with a plus sign are statistically different than observed. CC values marked with an asterisk 
are statistically significant at the 5% level. RPC and SER values marked with an apostrophe are statistically indistinguishable from 1 at the 95% 
confidence interval (more details in Sect. 3.2)

SEASONAL MEAN

AIRI TTGI WYI WFI

MOD MEAN 7.48+ 2.63+ 23.55+ 9.64+

OBS MEAN 7.74 2.55 26.16 8.72
MOD SD 0.84+ 0.21+ 1.35+ 0.94+

OBS SD 0.68 0.19 1.41 0.91
CC 0.33* 0.60* 0.73* 0.35*
RPC 0.60 0.81’ 0.95’ 0.62
SER 0.84 1.23’ 1.09’ 0.75

ONSET DATES

TTGI WYI WFI

MOD MEAN 24-May 29-May 22-May+

OBS MEAN 26-May 28-May 28-May
MOD SD 6.55 6.75 8.46+

OBS SD 7.40 8.81 9.66
CC 0.74* 0.66* 0.57*
RPC 1.01’ 0.95’ 0.93’
SER 1.26’ 1.00’ 0.93’
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4  Monsoon onset and progression

In this section, we examine the model performance for 
the ISM onset and its progression. We will first assess the 
climatological mean and interannual variability of mod-
elled monsoon onset dates and progression. Next we will 
analyse the model prediction skill for tercile categories 
of monsoon onset. To calculate the monsoon onset dates 
we use objective indices: TTGI, WYI, WFI and WLI, as 
described in Table 1.

4.1  Climatological mean, interannual variability 
and skill

Before analysing SEAS5 prediction skill for the monsoon 
onset, we examine the climatology of the gradual progres-
sion of the monsoon over the Indian subcontinent, during 
different pentads (Fig. 6). Climatologically, the beginning 
of the monsoon onset over India is traditionally considered 
to occur around 1st of June (Krishnamurthy and Shukla 
2000) along the coast of Kerala (Ananthakrishnan and 
Soman 1988). Prior to that, the onset of monsoon rains 
is only clearly seen over the Bay of Bengal and Arabian 
Sea, and a north-westerly flow dominates over the Indian 

landmass, which brings dry air towards India during 
the pre-monsoon. In GPCP, we see monsoon onset well 
established over Kerala by late May, pentad 29 (Fig. 6g); 
however, the monsoon onset over continental India is just 
beginning in SEAS5 (Fig. 6a). Monsoon onset over Kerala 
for SEAS5 is delayed by a pentad compared to GPCP, and 
occurs by pentad 30 (Fig. 6b).

As the summer progresses, monsoon winds become 
established bringing in moist air from the south-west. 
Advance of the monsoon over India follows the south-east 
to north-west direction; that is, perpendicular to the mon-
soon flow. This is due to the presence of pre-monsoon mid-
level north-westerly dry winds which are slowly eroded by 
low-level moist monsoon flow from the tropics (Parker et al. 
2016). These dynamics are well represented in SEAS5. Fur-
ther, although slow to start, the monsoon precipitation in 
SEAS5 encompasses almost the whole of India by pentad-39 
(Fig. 6i), whereas in observations, it only does so by pen-
tad-40 (Fig. 6t) i.e. mid-July (Krishnamurthy and Shukla 
2000). SEAS5 shows similar south-east to north-west pro-
gression of the monsoon onset, as observed, but the onset 
progression is slower in SEAS5 than GPCP during May, and 
faster during July.

To present a holistic assessment of prediction skill for the 
ISM onset, we use different objective indices based on pre-
dominant physical aspects of the monsoon to calculate onset 

Fig. 4  Modes of June–September GPCP ISM precipitation variability as a EOF1 and c EOF2 patterns over the Indian region; and principal com-
ponent (PC) time series associated with the b first (PC1) and d second (PC2) leading modes of EOF of ISM precipitation
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dates in the model and reanalysis, rather than verifying the 
model against the classical subjective criterion of increased 
rainfall over a small region of Kerala. SEAS5 ensemble 
mean climatological monsoon onset dates are statistically 
similar to the onset dates for reanalysis with TTGI and WYI 
(Table 3). For these two onset indices the interannual spread 
of the monsoon onset date in SEAS5 is also statistically 
similar to the spread in reanalysis and the interannual vari-
ability is significantly correlated between the two (Table 3). 
However, the seasonal mean monsoon values for the same 
indices (TTGI, WYI) have interannual spread that is signifi-
cantly different between SEAS5 and reanalysis (Table 3).

The average onset date measured by WFI is significantly 
earlier in SEAS5 than ERA5 (Table 3). Even the histogram 
and the tercile bounds of the WFI onset dates in SEAS5 are 
shifted towards earlier dates than in reanalysis (Fig. 7c) and 

the interannual spread is also statistically different for onset 
dates between SEAS5 and reanalysis (Table 3). However, 
SEAS5 represents the WFI onset variability moderately 
well, unlike for the WFI seasonal mean monsoon index. The 
RPC and SER of SEAS5, with all onset indices, are statisti-
cally indistinguishable from 1. RPC equal to 1 suggests that, 
for monsoon onset dates, SEAS5 skill is comparable to its 
potential predictability, i.e. the model predicts itself and the 
reality with similar skill. SER statistically indistinguishable 
from 1 suggests that the SEAS5 monsoon onset probabilistic 
forecasts are reliable, wherein ensemble members are statis-
tically indistinguishable from the observations.

We also consider SEAS5 onset forecast skill at each grid-
point based on the WLI (Fig. 8). SEAS5 represents the inter-
annual variability of the monsoon onset well over parts of 
northern India, central India, coasts of the Indian peninsula 

Fig. 5  Interannual CC for seasonal (JJA) mean  a precipitation, b 
zonal vertical wind shear (difference between 850–200 hPa) and c 
tropospheric temperature (averaged over 600–200 hPa) between the 
SEAS5 ensemble mean and verification dataset at each grid-point. 

Stippling indicates a CC that is significant at the 5% level. d–f show 
the same as a–c but for RPC and g–i show the same as a–c but for 
SER. Stippling shows RPC and SER values which are statistically 
indistinguishable from 1 at the 95% interval
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and marginal seas of the Indian Ocean, as the hindcast is 
significantly correlated with observations (Fig. 8a). SEAS5 
shows good forecast of onset variability for most parts of 
India (Fig. 8a) higher than its skill at representing seasonal 
mean precipitation (Fig. 5a). Over all of the Indian subcon-
tinent and surrounding seas the forecast skill for monsoon 
onset is higher than that of a random chance (HSS > 0; 
Fig. 8b). As the monsoon onset occurs within 1–2 months 
lead time, whereas seasonal mean precipitation is accumu-
lated over months 2-4 of the forecast, this difference in skill 
between monsoon onset and mean precipitation is expected. 
However, for the local-scale onset, RPC and SER are statisti-
cally indistinguishable from 1 (Fig. 8c, d), over only some 
small parts of India and the marginal seas, similar to sea-
sonal mean AIRI RPC and SER (Fig. 5d, g). SEAS5 has 
reliable forecasts (SER ≃ 1) and close-to-perfect predictabil-
ity potential (RPC ≃ 1), over only small parts of northern, 

central and western India. Over most parts of India, RPC is 
less than 1 (overconfident forecasts), and over some parts of 
eastern India and the Bay of Bengal RPC is greater than 1 
(underconfident forecasts). Over most parts of India, SER 
is greater than 1, indicating unreliable underconfident fore-
casts, where the forecast spread exceeds the ensemble mean 
error.

4.2  Tercile forecast skill

Forecasting systems are generally better at categorical fore-
casts than absolute deterministic forecasts. SEAS5 ensem-
ble mean ISM onset forecast skill, for the correct onset cat-
egory (defined by early, normal and late terciles), for all 
single onset indices has been verified using ACC and HSS 
(Fig. 9a–b; see Sect. 2.2.2). Higher values for ACC and HSS 
indicate better forecast skill, with positive values of HSS 

Fig. 6  Spatial pattern of total pentad precipitation (mm; shaded), 
pentad-mean low-level winds (m s −1 ; vectors) and the WLI mon-
soon onset isochrone for that pentad (red contour).  a Pentad-29 to  j 

pentad-40 in SEAS5.  k–t show the same as a–j but with GPCP and 
ERA5 datasets for verification. Dates in the subplot titles show the 
start dates of the respective pentads
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indicating forecast skill better than that from a randomly 
generated forecast. As for the deterministic forecast skill 
for the onset dates (Table 3), SEAS5 ensemble mean predic-
tion skill for monsoon onset categories (Fig. 9a–b) is also 
higher with larger scale onset indices (TTGI and WYI) than 
a smaller scale index (WFI).

The overall performance of SEAS5 in delivering a proba-
bilistic categorical forecast is indicated by BSS and RPSS 
(see Sect. 2.2.2), shown in Fig. 9c–f. Higher positive values 
of these skill scores indicate better forecast skill (RPSS and 
BSS range from − ∞ to 1). Any value higher than 0 for BSS 
and RPSS indicates a forecast better than that from clima-
tology. BSS provides skill for SEAS5 in forecasting onset 
for each category; early (BSS-E), normal (BSS-N) and late 
(BSS-L). RPSS summarizes the model performance scores 
over the three tercile categories. Figure 9 shows that SEAS5 
categorical probabilistic forecast skill is better than that of a 
random forecast (positive HSS) and a climatological forecast 
(positive RPSS and BSS for all categories).

The skill in SEAS5 increases with the scale of the mon-
soon onset index, from indices computed at the local-scale 
(WFI) to those at the large scale (TTGI), perhaps due to the 
model’s ability to simulate the large-scale monsoon features 
better. Early monsoon onsets are better predicted than later 
onsets in SEAS5, due to the shorter lead time of forecast. 
However, skill in different categories of onset, calculated 
using BSS, does not change linearly with the spatial scale of 
onset index. Forecast skill for WFI in the late onset category 
is worse than climatology, and the model does relatively bet-
ter for the early onset category with WFI. This might stem 
from the fact that SEAS5 generally predicts earlier onsets 
with WFI than in reanalysis (Fig. 7c) due to stronger low-
level westerlies (Fig. 1k) strengthening the WFI index in 
SEAS5 (Table 3).

SEAS5 skill for representing monsoon onset categories 
at the local-scale is shown in Fig. 8b. The SEAS5 ensemble 
forecast has the skill to represent the local-scale monsoon 
onset category accurately in more than 50% of the forecasts 
(ACC > 0.5) over most parts of India. The model predicts 
tercile categories of monsoon onset better than that of a ran-
dom forecast over large parts of India (HSS > 0). Similar 
to other forecasting systems like GloSea5-GC2 (Chevuturi 

et al. 2019), SEAS5 has very good skill at predicting mon-
soon onset categories over most of the Indian subcontinent, 
whereas deterministic skill for the monsoon onset is limited 
to certain regions.

5  Conclusion and discussion

We have assessed the seasonal prediction skill of the 
Indian monsoon and its onset in the ECMWF SEAS5 cou-
pled ensemble seasonal forecast system. Using multiple 
monsoon indices we verified the deterministic, probabil-
istic and categorical skill of the SEAS5 forecasting sys-
tem. SEAS5 shows an overall dry bias over the Indian 
subcontinent, as seen in other contemporary models (Jain 
et al. 2019). The strengthened lower-level monsoon winds 
(caused by a warmer than observed temperature gradient) 
are associated with increased rainfall over over the Ara-
bian Sea and Western Ghats. SEAS5 has notable mean-
state ISM precipitation errors, including overestimation of 
rainfall over the high orography regions (Western Ghats 
and Himalayas) and underestimation of rainfall over the 
Gangetic plains and delta, as shown by other seasonal fore-
casting systems (Singh et al. 2019). Known difficulties in 
representing orographic precipitation (Pokhrel et al. 2016) 
and irrigation in surface processes (Mathur and Achuta-
Rao 2020) may play a role in these errors. We should, 
however, be cautious of the fact that the observations over 
the high orography have large uncertainties due to sparse 
observational networks. Despite local-scale precipitation 
errors, SEAS5 represents the interannual variability of the 
precipitation patterns, associated with the first two EOFs, 
moderately well. SEAS5 has better skill at predicting the 
large-scale circulation variability than the all India rain-
fall, consistent with other forecasting systems (Kim et al. 
2012; Johnson et al. 2017). SEAS5 also has better skill 
for seasonal mean monsoon indices averaged over their 
defined domains compared to the respective monsoon 
index calculated over each grid-point. This is because spa-
tially averaging over larger domains yields improved skill 
due to extended spatial coherence of monsoon variability 
(Jain et al. 2019). The progression of the monsoon onset 
over the Indian subcontinent in SEAS5, compared to that 
observed, is slower during May and faster during July.

SEAS5 has small biases in representing the climatologi-
cal strengths of JJA mean monsoon indices as well as the 
mean monsoon onset dates calculated with smaller scale 
indices. However, the interannual spread for the JJA mean 
ISM monsoon indices in SEAS5 is generally higher than 
observed, although the spread in monsoon onset dates is 
statistically similar to that of the observations. This dif-
ference in the skill for mean monsoon features versus 
monsoon onset dates is also seen in the UK Met Office 

Fig. 7  Same as Fig. 2 but showing the onset dates calculated with a 
TTGI, b WYI and c WFI. The dashed horizontal lines show the upper 
and lower terciles for monsoon onset for SEAS5 (black) and ERA5 
(red). The heatmap below the boxplot shows the tercile categories of 
the onset dates for SEAS5 and ERA5. If the onset date of SEAS5 or 
ERA5 lies in between their respective upper and lower tercile lines, 
then it is considered a normal onset (white box in heatmap), but if 
it is before or after it is considered an early (blue box in heatmap) or 
late (red box in heatmap) onset respectively. Histogram distributions 
of the onset dates for SEAS5 ensemble (black) and ERA5 (red) are 
shown on the right of the boxplots corresponding to the onset dates 
on the y-axis

◂
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seasonal coupled forecast model, GloSea5-GC2 (Johnson 
et al. 2017; Chevuturi et al. 2019), which is linked to the 
difference in forecast lead times. SEAS5 has good skill at 
representing the large-scale monsoon onset date for ISM 
and large-scale JJA monsoon, with reliable probabilistic 
forecasts (SER ≃ 1) and close-to-perfect predictability 
potential (RPC ≃ 1). Generally, SEAS5 has SER and RPC 
values significantly lower than 1, at the 95% confidence 
interval, for smaller scale monsoon indices, such as all 
India rainfall, which indicates unreliable (underdispersive 
or overconfident) forecasts. Thus, we can conclude that 
the SEAS5 forecasting systems for small-scale monsoon 
features predicts itself better than it predicts the reality, 
as seen in GloSea5-GC2 (Chevuturi et al. 2019). Parts of 

central India in SEAS5 have unreliable (overdispersive and 
underconfident) forecasts for both monsoon rainfall and 
onset, which indicates that the forecast ensemble spread 
for these features is much larger than the ensemble mean 
error.

Our results show a steady decrease in skill as we move 
from onsets calculated using large-scale indices to those 
at smaller scales. However, we also show that this is not 
true when we analyse the skill for different onset categories 
(defined by early, normal and late terciles). Onsets calcu-
lated from horizontal wind shear (WFI) have higher skill 
for early onsets and lower skill for late onsets. Due to the 
model’s westerly wind bias at lower levels, WFI in SEAS5 is 
stronger than in observations. This strengthened WFI leads 

Fig. 8  a Grid-point wise CC of WLI onset pentads between SEAS5 
and GPCP. Stippling shows locations where the p-value is less than 
0.05 (significant at the 5% level). b ACC calculated at each grid-point 
for WLI onset pentads based on tercile categories. Stippling shows 

regions of positive HSS. c same as a but for RPC, and d same as a 
but for SER. Stippling shows RPC and SER values which are statisti-
cally indistinguishable from 1 at the 95% confidence interval
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to an increased tendency in SEAS5 for earlier WFI onsets. 
In SEAS5, the application of mean-state bias correction 
techniques to reduce the error in low-level circulation may 
improve the representation of precipitation biases and the 
associated monsoon onset date.

SEAS5 has skill which is better than either random or 
climatological forecasts, when giving probabilistic fore-
casts for the monsoon onset category. This skill for SEAS5 
is not only applicable for large-scale onset prediction but 
also for rainfall onsets at the local scale on a pentad-by-
pentad basis. Better skill for monsoon onset compared to 
the poor skill for precipitation forecasts in SEAS5 is also 
seen in GloSea5-GC2 (Johnson et al. 2017; Chevuturi et al. 
2019), which is associated with the difference in forecast 
lead time for the mean monsoon precipitation (2–4 months) 
and monsoon onset (1–2 months). Over most parts of India, 
SEAS5 shows good skill at forecasting the onset pentad 
category and can predict the onset pentad accurately with 
moderate skill over parts of northern central, western and 
eastern India, despite the systematic biases in precipitation. 
The two seasonal forecast models, SEAS5 and GloSea5-
GC2 (Chevuturi et al. 2019), both show good skill at pre-
dicting local-scale monsoon onset over the core monsoon 
region at the same lead time (May forecasts). Previous stud-
ies have shown multi-model ensembles to enhance forecast 
skill for Indian monsoon rainfall (e.g.Kumar et al. 2012). 
Such a multi-model ensemble should improve forecast skill 
for the local-scale monsoon onset, but detailed analysis is 

required in future in order to identify the best approach for 
multi-model combinations.

Operationally, IMD issues probabilistic seasonal fore-
casts of ISM by mid-April, with an update by 1st of June for 
region-wise or all India rainfall using statistical and dynami-
cal models (IMD 2020). IMD also issues a monsoon onset 
date for Kerala using a statistical forecast model by mid-May 
and have recently updated their methodology to identify 
local-scale monsoon onset date with gridded datasets rather 
than station information (Pai et al. 2020). Local-scale agro-
advisories are currently only provided to the farmers at dif-
ferent timescales, through the Gramin Krishi Mausam Sewa 
project by the Agricultural Meteorology Division of IMD 
(AMD 2020). Although the current study’s outcomes may 
not be directly beneficial to the end-user (e.g. farmers), our 
results show that SEAS5 has appreciable skill for operational 
state-level products of ISM rainfall and local-scale monsoon 
onset almost a month in advance over parts of India. Future 
investigation can help identify specific user–oriented ISM 
metrics and SEAS5’s skill for such metrics relative to cur-
rent operation forecasts (Rao et al. 2019). Good prediction 
for the local-scale monsoon features provided to the farmers 
a month in advance, over major agricultural regions may 
help reduce resource wastage, mitigate losses and improve 
crop yield though better-informed decision making in the 
agriculture sector.
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Fig. 9  Model skill-scores compared against ERA5 shown as a ACC, 
b HSS, c RPSS, and BSS of model for predicting d early onsets 
(BSS-E), e normal onsets (BSS-N) and f late onsets (BSS-L). The 
colored symbols show the skill calculated for model onset with the 
three different indices: TTGI (red circle), WYI (magenta triangle) and 
WFI (blue square). The grey horizontal dotted line demarcates the 0 
threshold
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