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Abstract
The Discrete Dipole Approximation (DDA) is widely used to simulate scattering
of microwaves by snowflakes, by discretising the snowflake into small ‘dipoles’
which oscillate in response to (a) the incident wave, and (b) scattered waves
from all the other dipoles in the particle. It is this coupling between all dipole
pairs which makes solving the DDA system computationally expensive, and
that cost grows nonlinearly as the number of crystals n within an aggregate is
increased. Motivated by this, many studies have ignored the dipole coupling
(the Rayleigh–Gans Approximation, RGA). However, use of RGA leads to sys-
tematic underestimation of both scattering and absorption, and an inability to
predict polarimetric properties. To address this, we present a new approach (the
Independent Monomer Approximation, IMA) which solves the DDA system for
each crystal ‘monomer’ separately, then combines them to construct the full
solution. By including intra-monomer coupling, but neglecting inter-monomer
coupling, we save a factor of n in computation time over DDA. Benchmark-
ing IMA against DDA solutions indicates that its accuracy is greatly superior to
RGA, and provides ensemble scattering cross-sections which closely agree with
their more expensive DDA counterparts, particularly at size parameters smaller
than ∼ 5 . Addition of rime to the aggregates does not significantly degrade the
results, despite the increased density. The use of IMA for radar remote sens-
ing is evaluated, and we show that multi-wavelength and multi-polarisation
parameters are successfully captured to within a few tenths of a dB for aggre-
gates probed with frequencies between 3 and 200 GHz, in contrast to RGA where
errors of up to 2.5 dB are observed. Finally, we explore the realism of the IMA
solutions in greater detail by analysing internal electric fields, and discuss some
broader insights that IMA provides into the physical features of aggregates that
are important for microwave scattering.
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1 INTRODUCTION

Microwave remote sensing is a powerful tool to provide
information on ice particles, both in clouds and falling
at the surface. For example, millimetre-wave radars are
widely used to retrieve profiles of ice microphysical proper-
ties (e.g., Lu et al., 2015). From space, microwave radiome-
ters, such as the Ice Cloud Imager due to be launched
on EUMETSAT’s MetOp-SG B satellite (Kangas et al.,
2014) can provide valuable data on ice water path and
other microphysical variables, through interpretation of
the brightness temperature depressions caused by atmo-
spheric ice particles at millimetre and sub-millimetre
wavelengths, and the polarisation-dependence of this pro-
cess. Improved retrievals of this microphysical informa-
tion is integral to the development of cloud microphysics
schemes, and for the evaluation of numerical weather pre-
diction and climate models. However these benefits can
only be realised if an accurate relationship between the
size and shape of an ice particle and its microwave scatter-
ing properties is available.

Remotely sensed measurements are also assimilated
into forecasts to constrain the initial conditions. The
advent of ‘all-sky’ data assimilation in operational fore-
casting centres (Geer et al. 2018; 2019, and references
therein) has led to valuable improvements to short- and
medium-range forecasts. However, accurate data for how
ice particles scatter microwaves are needed as input to
the radiative transfer forward model (Bauer et al., 2006).
Geer and Baordo (2014) showed that, compared to repre-
senting snowflakes as spheres, using a more sophisticated
scattering model results in improved agreement between
forecast and observations. Continued development of such
systems require new scattering calculations for snowflakes
of a range of shapes, sizes and orientations, at multiple
frequencies.

Of particular interest for the remote-sensing applica-
tions above are the scattering properties of aggregates. As
ice crystals sediment through clouds, they collide and stick
together to form clusters. Because the mass of these aggre-
gates is large, and because scattering in the microwave
scales with particle mass in a nonlinear way (∝ mass2

in the Rayleigh regime), they can dominate radar and
radiometer measurements of ice particles in many situa-
tions. Thus, accurate methods are needed to predict their
scattering properties.

The discrete dipole approximation (DDA) is a com-
monly used numerical method to calculate the scattering
properties of ice and snow particles of arbitrary shape
(Purcell and Pennypacker 1973; Draine and Flatau 1994).
In this method, the particle of interest is divided into N
small volume elements which are treated as oscillating
dipoles. The electric field at each dipole is calculated by

summing the field due to the incident wave, and the field
due to each of the remaining dipoles within the parti-
cle. In other words, interactions (coupling) between all
dipoles comprising the particle are considered. For large
aggregates of multiple ice crystals, the DDA method is
computationally expensive, because a large number of
dipoles is needed to accurately represent the geometry
and to capture the variations in electric field across the
particle. Yurkin and Hoekstra (2007) outline the compu-
tational requirements of various implementations of the
approximation. Since coupling between all dipole pairs is
represented, the time taken to solve the DDA linear system
directly is (N3), while iterative solvers reduce the time
requirements to between (N2) and (N3). The memory
requirements of a full matrix assembly is proportional to
N2, but for iterative solvers it is possible to implement
row-wise matrix-vector multiplication in order to reduce
the required memory storage to (N). DDA is therefore a
computationally expensive technique for aggregates, and
this cost grows as one utilises higher frequencies, or wishes
to average over a large ensemble of realisations.

In previous literature, the Fast Fourier transform (FFT)
has been employed to accelerate the numerical solution of
the DDA system (e.g., Goodman et al., 1991). This method
is effective for compact particle geometries but, as noted by
Draine and Flatau (1994) and Petty and Huang (2010), the
benefits of FFT methods may be lost for sparse, fractal-like
particles1. In the Appendix we show that, for the aggre-
gates considered here, the computational time using FFTs
still grows almost quadratically, as N1.5 ln N. However, the
memory requirements for the FFT implementation now
also grow nonlinearly, requiring ∼ 10–1, 000 times more
memory than the basic DDA implementation above.

The Rayleigh–Gans approximation (RGA) is a simpler
method whereby each dipole is affected by the applied
field only; interactions between dipoles are neglected. The
approximation is therefore much more efficient, but not
as accurate as DDA. It has been suggested that RGA is
sufficiently accurate to be used at radar wavelengths (e.g.,
Tyynelä et al., 2013), but the absence of polarimetric infor-
mation limits the usefulness of the method for understand-
ing radar observables. Lu et al. (2013; 2014) developed
the ‘modified RGA’ method and used it to compute scat-
tering by pristine ice crystals with dendritic, plate-like
and columnar habits, along with low-density aggregates.
The method is based on extending RGA by including
near-neighbour dipole interactions within a limited range

1Alternative fast algorithms that do not require regularity of the total
surrounding grid may prove more useful in such cases. Examples in the
scattering literature include the multilevel fast-multipole method (Koç
and Chew, 2001; Järvenpää et al., 2013), and multi-grid DDA (Karásek
et al., 2006; 2009; Moteki, 2016).
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of a given point. Comparisons with RGA calculations
showed that the method allows improvements to backscat-
ter cross-sections for particles with at least one dimension
smaller than the wavelength. Moreover, it can be used
to compute polarimetric observables. However, from the
outset it is not obvious what range of dipole interactions
should be included in the calculations. Lu et al. (2014)
made the choice through experimentation with differ-
ent values. Based on the computational requirements and
accuracy of results obtained, they concluded that the best
compromise was to include interactions within a range of
eight times the local minimum dimension of the particle.

1.1 The Independent Monomer
Approximation (IMA)

The purpose of this paper is to test an approximation that
builds on the studies above, along with recent work by
McCusker et al. (2019) who analysed DDA solutions for the
internal electric fields within a large, low-density aggre-
gate composed of 10 dendrite crystals. Some of the indi-
vidual monomer crystals were removed from the aggregate
and the DDA calculations were repeated on each of the
isolated monomers without the presence of the rest of
the aggregate. The results were found to be within 5%
of the full solution, revealing that the coupling between
dipoles was almost entirely confined within individual
monomer crystals, and inter-monomer coupling was very
weak. Thus we suggest an approximate method of com-
puting scattering from large complex aggregates. Consider
an aggregate of n monomers. The idea behind IMA is
that interactions are only considered within individual
monomers, and inter-monomer interactions are ignored.
The internal fields of the monomers are assumed to be
independent and not to influence each other. However,
in the far field the scattered waves from each of the
monomers may interfere constructively or destructively
with one another.

Numerically, the IMA method involves considering
each of the n monomers individually and independently,
and performing DDA computations for each one. Note that
this requires input data identifying which monomer each
dipole belongs to. More information on the DDA imple-
mentation used here may be found in McCusker et al.
(2019), where results were compared to calculations per-
formed with an independent Boundary Element Method,
BEM++. The difference between the internal field of a
hexagonal ice plate obtained using our DDA code and the
BEM++ set-up used by Groth et al. (2015) was found to be
within 1.2%, depending on the discretisation level. Once
DDA computations are performed for each monomer,
the dipole polarisations (resulting from intra-monomer

interactions only) are saved, and the scattered fields from
the dipoles in all n crystals are summed coherently, fol-
lowed by computation of the net far-field scattering. The
superposition in the far field of the individual dipoles is
calculated in precisely the same way in RGA, IMA and
DDA. The difference is in the internal fields produced by
the dipoles. In RGA, the dipole polarisations are the same
as the incident field times the polarisability.

The IMA approach enables significant improvements
to the time and memory requirements of scattering cal-
culations for aggregates, compared to DDA. Consider
an aggregate comprising 10 identical monomers, with a
total of N dipoles in the whole aggregate. As explained
above, the time taken to perform a calculation using DDA
increases as approximately (N2). Thus, a calculation of
an aggregate of 10 monomers would take 100 times longer
than for 1 monomer on its own. However, if we take the
IMA approach and do 10 calculations of one monomer
each, this would only take 10 times longer than doing 1
monomer. This means that calculating the scattering for
this particle using IMA would result in a saving of a factor
of 10 in CPU time, compared to solving the whole parti-
cle using DDA. In the general case of an aggregate of n
monomers, a time saving of a factor of n is achieved. Thus,
the saving increases with the number of monomers, and
we expect the method to be particularly advantageous for
aggregates of large n.

Improvements to the memory requirements are also
expected. As outlined above, we implemented DDA in
such a way that the memory usage increases as (N). The
memory required for an aggregate of 10 monomers using
DDA will therefore be 10 times that of 1 monomer. Since
the IMA method only considers 1 monomer at a time,
there is no increase in memory usage as the number of
monomers in an aggregate is increased. Thus, a memory
saving of a factor of n can be achieved by using IMA instead
of DDA.

1.2 IMA and RGA as special cases of SSA

In the light scattering literature, there have been a num-
ber of recent studies documenting the theory and char-
acteristics of what Mishchenko and Yurkin (2019) refer
to as the ‘Single Scattering Approximation’ (SSA). In this
approximation a group of scatterers is illuminated by an
electromagnetic wave, and individual particles within the
group are assumed to be excited by the incident wave only,
and do not respond to the fields scattered by other parti-
cles (Mishchenko, 2014). Typically this approach has been
applied to groups of disconnected particles. In atmospheric
radiative transfer, the single scattering approximation usu-
ally refers to the incoherent addition of scattered fields
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originating from a large number of widely spaced par-
ticles whose positions fluctuate over time (Petty, 2006).
However SSA can also be applied to a coherent group
of particles in fixed orientation (Mishchenko and Yurkin,
2019). Moskalensky et al. (2014) showed that the SSA can
be applied successfully to touching particles, provided the
area of contact between monomers (in their case blood
platelets) is small. In their study, aggregates of spheri-
cal and spheroidal monomers with refractive index in the
range 1.02–1.04 were constructed. Just as in our study,
they solved the light scattering problem for each monomer
first, assuming that each is illuminated only by the inci-
dent electric field, and then combined the solutions from
each of the monomers to form a complete far-field scat-
tering pattern. Further work by Mishchenko and Yurkin
(2019) showed that, in the situation where the SSA solu-
tion is valid, the (total) scattering, absorption and extinc-
tion cross-sections of the aggregate are equal to the sum
of the cross-sections for the component monomers. How-
ever differential properties (e.g., phase function, backscat-
ter cross-section) are not additive due to the interference
between the scattered waves emanating from the various
monomers.

It is evident then that SSA is a broad class of approx-
imate methods in which the scattering problem can be
broken down into a number of individual components
which can be considered independent. The physics of the

problem enters through the choice of which elements of
the scattering group can in fact be considered to be act-
ing independently. In RGA we consider each dipole in the
snowflake to act independently. In IMA we consider each
monomer in the snowflake to act independently. It is also
evident that the accuracy of SSA is dependent on the geom-
etry of the aggregates, and on the refractive index of the
particles, which in our case is substantially higher than
the previous studies referenced above (real part ≈ 1.78). In
what follows, we continue to refer to our approach as IMA
to make clear the exact specification of our approach, but
readers should note its close connection to Moskalensky
et al. (2014).

2 EXPERIMENT DESIGN

Different experiments are performed to evaluate the new
scattering method. Our analysis has focussed on the fol-
lowing questions:

• How the accuracy of IMA depends on size parameter
(x = kDmax/2, where k is the wavenumber and Dmax is
the maximum dimension of the aggregate).

• How the accuracy of IMA depends on the shape of the
individual monomers: we consider plate-like, dendritic,
and columnar monomers shown in Figure 1.

F I G U R E 1 Examples of the generated particles of 3, 5, and 7 monomers, along with an example from each of the larger bins of 9–13
and 14–18 monomers. The top row shows aggregates of plates, the middle row shows columns, and the bottom row shows aggregates of
dendrites. The figure also shows the effective densities of the particles generated for this study, along with dashed and dotted lines showing
the values predicted using the relationships of Cotton et al. (2013) and Brown and Francis (1995). In the figure, the marker symbols represent
the different monomer habits, while the shading (between black and white) represents the different numbers of monomers used
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• How the accuracy of IMA depends on effective density,
which we examine by looking at particles with differ-
ent numbers of monomers. Effective density is likely
to be an important parameter because higher densities
imply strong coupling, and it is the coupling that we
are simplifying in IMA. For the same reasons, we have
also investigated whether the addition of rime to the
aggregates has any impact on the accuracy of IMA.

• Whether IMA is sufficiently accurate to be of practical
value for radar remote sensing, which we investigate
by computing multi-wavelength and multi-polarisation
parameters.

2.1 Particles used for single-scattering
calculations

Using DDA, McCusker et al. (2019) explored the inter-
nal electric fields of plane-wave-illuminated particles. It
was shown that, for a given size parameter, aggregates
have more weakly interacting dipoles and lower field
magnitudes than single monomers. For example, a single
solid-ice plate of x = 10 has a clearly defined internal struc-
ture with enhanced field magnitude at the shadow-side of
the particle, whereas an aggregate of 5 plates with x = 10
exhibits an internal field structure that is less defined,
along with displaying a significant decrease in the maxi-
mum field magnitude. To explore whether such fields can
be accurately simulated using IMA, we look at a variety
of different aggregates. The particles used in this study
were generated using the aggregation model of Westbrook
et al. (2004). The monomer size distribution was chosen to
be almost monodisperse, with only very slight variations
such that differences in fall speeds allowed the aggregation
process to initiate.

To explore the sensitivity of our results to monomer
shape, aggregates were generated using 3 different
monomer habits, as shown in Figure 1. The habits used
include hexagonal plates of aspect ratio 0.15 and columns
of aspect ratio 3. These aspect ratios were chosen to
produce aggregates with a realistic mass–size relation-
ship. We also performed simulations with an idealised
branched planar crystal habit, aspect ratio 0.25. While this
idealisation most closely resembles type P1c/P1d in the
classification system of Magono and Lee (1966), we intend
for it to be representative of a broad class of branched
planar crystal types, and refer to this habit simply as ‘den-
drites’ in what follows. For each of the monomer habits,
we generated aggregates comprising 3, 5, and 7 monomers,
storing 10 particles of each number. Each of the 10 aggre-
gates have the same size and shape of monomers, but with
different arrangements.

We also explore aggregates with larger numbers of
monomers. A number of studies have suggested that
the formation of very large aggregates is favoured if the
monomer crystals are dendrites (Connolly et al., 2012;
Barrett et al., 2019, and references therein), presum-
ably because the crystal branches readily interlock with
one another. Thus we explore larger aggregates using 2
bins containing aggregates of 9–13 and 14–18 dendrite
monomers. Within each of those bins, we use 2 parti-
cles of each monomer number, that is, 2 aggregates of 9
monomers, 2 aggregates of 10 monomers, etc. This means
we have 10 particles in total in each of the 2 larger bins.
The average Dmax for the particles in each bin is 4.8 and
6 mm, respectively.

Scattering calculations for each ensemble of 10 par-
ticles are performed. For each x value considered in a
given experiment, the wavelength is chosen that the aver-
age size parameter of the ensemble is equal to x (ie.
𝜆 = 𝜋⟨Dmax⟩∕x). Thus, the size parameters considered in
Figures 2 and 4–6 are averages over the 10 aggregates
used in each case. The corresponding frequencies range
from about 8 GHz (e.g., for large dendrite aggregates at
x = 0.5) to about 740 GHz (e.g., aggregates of 3 columns
at x = 10). All scattering calculations performed satisfy the
commonly used criterion of using at least 10 dipoles per
internal wavelength (e.g., Yurkin and Hoekstra 2007). The
dielectric properties of the modelled particles have been
calculated using the permittivity parametrization intro-
duced by Mätzler (2006). As mentioned, this results in the
real part of the refractive index having a value of 1.78, while
the imaginary part varies between approximately 1× 10−4

and 2× 10−3.
To assess whether the generated particles are realistic,

their effective densities are plotted in Figure 1. The values
are calculated as the mass of the particle m divided by the
volume of a sphere of the same maximum dimension, that
is,

𝜌eff = m
/(

𝜋

6
D3

max

)
.

The particle masses range from approximately 4× 10−8 to
1× 10−6 kg. For comparison, relationships derived from
aircraft measurements by Brown and Francis (1995), and
Cotton et al. (2013) have also been plotted.2 Overall, the

2Note that the original Brown and Francis (1995) relationship of
0.0185D1.9 relates mass to Dmean, where Dmean is the average of two
orthogonal particle dimensions, measured in directions parallel and
perpendicular to the direction of travel of the aircraft. Here we have used
the relationship that was re-derived by Hogan et al. (2012) to relate mass
to Dmax. In that paper, Hogan pointed out that the Dmean relationship is
often mistakenly used in the literature, and could lead to overestimates
in ice water content (IWC) by a factor of approximately 1.5.
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F I G U R E 2 Relative bias in scattering cross-section compared to reference DDA results, plotted as a function of size parameter. (a)–(c)
represent results for aggregates of 3, 5, and 7 monomers, respectively. The results using different monomer habits are plotted using various
markers; triangular markers represent plates, plus signs represent columns, and hexagrams represent dendrites. Each marker is an average of
the results calculated for 10 particles comprising the same monomers, but with different arrangements. (d) shows the results for larger
aggregates of dendrites. Again, the markers represent averages of 10 particles in each category, but in this case the aggregates comprise 9–13
monomers (hexagrams) or 14–18 monomers (crosses)

particles used in this study have realistic values of 𝜌eff,
following the behaviour of the two observed relation-
ships. The plate-like and columnar aggregates tend to have
higher effective densities, while the long, thin arms of the
dendrites result in particles with a lower density. Increas-
ing the number of monomers in the aggregates also results
in decreased particle effective density on average.

2.2 Scattering quantities

The accuracy of the IMA method is evaluated by com-
paring against the DDA method, which we consider to

represent the true solution. We use these data to calculate
the bias of each of the scattering parameters considered for
the ensemble of particles. Equivalent calculations are also
done with RGA in order to analyse the degree to which the
IMA method provides an improvement to the simpler RGA
approach.

Calculations for each particle are performed at one
fixed orientation. The direction of travel of the incident
wave is in the vertical z-direction, and the wave is polarised
in the x-direction. However, each of the particles has a
different orientation, since the aggregation model gen-
erates particles that are oriented randomly in space. As
mentioned above, 10 different particles are used in each
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F I G U R E 3 Variation in relative bias of 𝜎s with effective
density. The different markers show results for particles with size
parameters of 2 (black triangles), 6 (grey squares), and 10 (white
circles). Straight lines have been fitted to the points in order to see
the trend

scenario for a given monomer number and particle habit.
This means that, although orientational averaging is not
performed, we are integrating over multiple realisations,
each in random orientations.

Four different quantities are analysed – the scattering
cross-section 𝜎s, absorption cross-section 𝜎a, backscatter
cross-section 𝜎b, and the asymmetry parameter g. These
quantities are chosen since they are fundamental to radar
and radiometer applications (Bauer et al., 2006). The
results are shown in Figures 2 and 4–6. Each of the figures
displays 4 panels, with (a)–(c) showing results for aggre-
gates of 3, 5, and 7 monomers. In other words, the effective
density of the particles decreases in consecutive panels.
Within the panels, each of the particle habits are repre-
sented using different marker shapes, as detailed in the
figure legend. Panel (d) of each figure shows results for the
larger aggregates of 9–13 dendrites and 14–18 dendrites
described above. As mentioned, the results presented here
represent biases calculated using an ensemble of 10 par-
ticles. However, interested readers may refer to Figures
S1–S11 of the supporting information where individual
particle errors are shown.

We illuminate the particle with a plane wave, Einc
j =

E0 exp(ik ⋅ rj), where a time-harmonic exp(−i𝜔t) compo-
nent is assumed. k is the wave vector, whose magnitude
k = |k| = 2𝜋∕𝜆 is the wavenumber corresponding to an
incident wave of wavelength 𝜆, and whose direction k̂ =
k∕k is the direction of propagation of the wave. E0 = E0ê
is the polarisation vector for the electric field, where E0 is
the amplitude and ê is the unit vector in the direction of

polarisation. We assign a unit amplitude, E0 = 1. Through-
out the manuscript, all electric fields are normalised rela-
tive to E0, and hence are dimensionless.

The dipole polarisation Pj is related to the macroscopic
electric field inside the volume elements by Pj = EjVj𝜒j,
where V j = d3 is the volume of the dipole and 𝜒j = (𝜖 −
1)∕4𝜋 is the complex-valued electric susceptibility for a
material of permittivity 𝜖 (Liou and Yang (2016)). Then the
scattering amplitude F(n̂) can be written:

F(n̂) = k2(13 − n̂n̂)
N∑

j=1
Pj exp(−ikrj ⋅ n̂). (1)

The unit vector in the scattering direction is n̂ = r∕r,
and n̂n̂ is a dyadic. Application of the component (13 −
n̂n̂) represents taking the vector components that are
perpendicular to the scattering direction. The scattering
cross-section,

𝜎s = ∫4𝜋
|F(n̂)|2dΩ,

represents a sum of waves scattered in all directions in the
far field. dΩ = sinΘ dΘ dΦ is the differential solid angle
for polar and azimuthal angles of Θ ∈ [0◦, 180◦] and Φ ∈
[0◦, 360◦]. A total of 800 different angles are used for the
𝜎s calculations performed here. A sensitivity test was per-
formed by increasing the number of scattering angles by a
factor of 16, and the errors were found to be within 1.5%.

From a detector, we can measure waves polarised par-
allel to the unit vector êdet. The normalised differential
scattering cross-section 𝜎(n̂, êdet) in the backscatter direc-
tion (n̂ = −k∕|k|) is given by:

𝜎b = |F(Θ = 𝜋) ⋅ êdet|2 = k4
||||||

N∑
j=1

Pj ⋅ êdet exp(ik ⋅ rj)
||||||
2

. (2)

As in Draine (1988), the absorption cross-section can
be calculated as:

𝜎a = 4𝜋k
N∑

j=1

[
ℑ(Pj ⋅ Eexc*

j ) − (2∕3)k3Pj ⋅ P∗
j

]
, (3)

where Eexc
j = Pj∕𝛼j is the ‘exciting’ field, which includes

the field resulting from the incident wave and contri-
butions from the other N − 1 dipoles, but not the field
induced by the dipole on itself. Here and throughout this
manuscript, the real and imaginary parts are denoted by ℜ
and ℑ, respectively. The polarisability of dipole j is given
by 𝛼j.



MCCUSKER et al. 1209

F I G U R E 4 As Figure 2, but for the absorption cross-section

The asymmetry parameter,

g = ⟨cosΘ⟩ = 𝜎−1
s ∫4𝜋

|F(n̂)|2 cosΘ dΩ,

is used as a measure of how much radiation a particle scat-
ters in the forward or backward direction. The values are
between 1 and –1, where 1 means total forward scatter-
ing, –1 means total backscatter, and values around 0 are
obtained when there is equal forward and backscatter. This
latter case occurs for Rayleigh scatterers.

3 EVALUATION OF THE
ACCURACY OF IMA

3.1 Accuracy of the scattering
cross-section

Here we consider the bias in the total scattering
cross-section. Figure 2a shows results for aggregates of 3

monomers. Using IMA produces a relative bias less than
10% for small size parameters of x < 5, for all monomer
habits considered. Figure 2b,c show the results for aggre-
gates of 5 and 7 monomers. As the number of monomers
increases, the error incurred by using IMA generally
decreases. Particles of x < 6 have errors below 10% when
5 monomers are considered, and this can be extended to
x < 7 for 7 monomers. Even for the largest size parameters
considered, the average errors for aggregates of 7 plates
remain within about 25%, while the errors are much
smaller for the other shapes. Dendritic aggregates give
the most accurate results out of the 3 different monomer
habits. The bias in 𝜎s is generally within 10% of what
DDA predicts, for all size parameters and numbers of
monomers considered. The bias decreases with increased
monomer number, that is, with decreased effective den-
sity. Figure 2d shows the bias in 𝜎s for aggregates with
an increased number of dendritic monomers. Results
are plotted for 9–13 monomers using hexagram markers,
while crosses are used to depict the results for aggregates
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F I G U R E 5 As Figure 2, but for the backscatter cross-section

of 14–18 monomers. It is clear that, when the number of
monomers in the aggregates is increased, the IMA bias
in 𝜎s remains very small, showing errors within 5%. This
is comparable to the results of Lu et al. (2014), who state
that their modified RGA method provides improvements
to RGA for dendrites and low-density aggregates. Here we
find that the results for aggregates of plates and columns
show larger errors overall.

As discussed previously, McCusker et al. (2019) used
DDA to explore the internal fields of particles with size
parameters up to 10. The authors of that paper showed
that, as size parameter increases, constructive interference
causes a region of enhanced electric field magnitude at
the shadow-side of the particle. It was found that this
focussing behaviour is stronger when the particle has a
greater amount of solid mass in the direction of propa-
gation (e.g., in aggregates of plates which have a greater
packing density). IMA would struggle to represent such

behaviour, since the monomers act independently of one
another in the approximation. However, dendritic parti-
cles were found to produce less focussing due to the air
gaps present in the particle structure. The air gaps result
in weaker interactions between dipoles, and subsequently
a field that is more smoothed out. Such a field would be
easier to reproduce using IMA, which may be why IMA
calculations of 𝜎s for such particles have a lower bias than
plate-like and columnar aggregates. It is likely that the
metric of particle effective density is correlated with that
property. We expect that increased effective density leads
to increased dipole interactions, meaning a smaller IMA
bias will occur for lower effective densities, with the error
increasing with 𝜌eff. It is worth exploring whether this is in
fact the case. Note that this focussing phenomena has also
been studied in detail for single, dense particles by Tyynelä
et al. (2010) and Muinonen et al. (2011), who demonstrated
the role of these local maxima in the internal electric fields



MCCUSKER et al. 1211

F I G U R E 6 The blue markers show the asymmetry parameter g calculated using DDA, with the values given on the left axis. The
magenta and black markers show the bias compared to DDA results using IMA and RGA, respectively. The error values are shown as a
percentage on the right axis. Each marker represents an average value for the 10 particles used in each scenario. (a), (b), and (c) represent
results for aggregates of 3, 5, and 7 monomers, respectively. (d) shows the results for larger aggregates of dendrites, comprising 9–13
monomers (hexagrams) and 14–18 monomers (crosses)

on the far-field scattering properties of wavelength-scale
dielectric particles.

Figure 3 shows how the bias in 𝜎s using IMA changes
with 𝜌eff. Three different size parameters of 2, 6, and 10 are
included in the plot. The markers show the results for the
individual particles, including all of the different monomer
habits. Straight lines have been fit to the points for each
value of x. For small x, there is a very small bias, inde-
pendent of the effective density of the particle. As the size
parameter is increased, a correlation between 𝜌eff and bias
can clearly be seen. It is not guaranteed that small val-
ues of 𝜌eff result in low bias, and large 𝜌eff means the bias
will be large. Nonetheless, the general trend is that the
bias in 𝜎s increases with 𝜌eff for x > 2, with the relationship
becoming more apparent as x increases.

As well as showing the bias in scattering cross-section
calculated using IMA, Figure 2 also shows results using
RGA. Overall, RGA substantially underestimates scatter-
ing at all size parameters, with IMA providing a great
improvement in the majority of the cases considered.
It is interesting that the magnitude of the RGA biases
tend to increase at intermediate size parameters, and then
decrease again for larger size parameters. For aggregates
of 3 columnar or plate-like monomers at 8 ≲ x ≲ 10, the
RGA bias decreases to values below IMA. However, we
note that this is a coincidence due to the oscillating depen-
dence on size. Aside from these cases, RGA produces much
larger errors than IMA, generally underpredicting 𝜎s by
approximately 40%, and reaching almost 60% for some
particles.
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3.2 Accuracy of other scattering
quantities

The results for the absorption cross-section are shown in
Figure 4. The bias in 𝜎a is very low using IMA, for all par-
ticles and sizes considered. The maximum bias found is
for aggregates of 7 columns, but even in this case the error
is within 15%. Aggregates of dendrites show errors within
5%. Using RGA, the absorption is significantly underesti-
mated. The bias increases with size parameter, with large
errors of 70% for many of the particles at x = 10. Aggregates
of dendrites with more than 5 monomers have a slightly
smaller error of approximately 50% at x = 10, but this is still
considerably larger than the IMA error.

We expect the backscatter cross-section to be more
sensitive to detailed internal field structure than integral
quantities like 𝜎s, and hence provide a more challenging
test of the accuracy of IMA. The results for 𝜎b are shown
in Figure 5. For all habits considered, the error is less than
20% using IMA for x < 5, while underestimates of 60% are
found for the equivalent cases using RGA. Estimates for
the bias in IMA for x > 5 are more variable. Figure 5a,b
show that aggregates of 3 and 5 dendrites agree with DDA
benchmark results to within 20%. Meanwhile, it is clear in
Figure 5c that for larger size parameters near x = 10, IMA
significantly underestimates aggregates of 7 dendrites by
around 60%. For aggregates of columns and plates, typ-
ical biases are around 20% but differences of up to 60%
may be observed at some size parameters. Both under- and
over-estimation is possible. It can be seen in Figure 5d
that the error in 𝜎b becomes smaller and less variable
for aggregates containing large numbers of monomers,
typically 10% or less in these examples. Again, we find
that IMA is more accurate than RGA which systemati-
cally underestimates the backscatter. One uncertainty in
the interpretation of these results is that our ensembles
are relatively small (10), and it may be that some of the
differences between IMA and DDA would be reduced if
a larger sample of particle realisations was considered.
The lack of a coherent ‘pattern’ in the error characteris-
tics in Figure 5 suggests that they are driven in part by a
finite sample of random particle realisations. Nonetheless,
the scattered results demonstrate that IMA becomes less
accurate at reproducing the backscatter cross-section of
individual aggregates at large size parameter. We consider
the accuracy of backscatter properties further in Section 5
when considering radar applications.

Results for the asymmetry parameter g are shown
in Figure 6. The figure shows the value of g calculated
using DDA, along with the bias resulting from using IMA
and RGA, compared to DDA results. It is clear that g is
well captured by both IMA and RGA. The error using
IMA is always within 10%. The error remains within 20%

using RGA for all particles and values of x. RGA tends
to overestimate forward scattering, as seen by the mainly
positive biases depicted by black markers in Figure 6.
The exception to this is for columnar aggregates of 3
and 5 monomers, at a few larger values of x. As g is an
integral quantity evaluated by summing the phase func-
tion over all scattering directions, it makes sense that
this quantity is not as prone to errors as the backscatter
cross-section.

In the next section we briefly explore what happens if
the density of aggregates is increased via riming.

3.3 Rimed aggregates

The process of accretion and freezing of supercooled water
droplets on to the surface of ice particles is known as
riming. Riming is a common mechanism of ice parti-
cle growth, and leads to the formation of rimed crystals
or graupel. Low-density aggregates may experience rim-
ing which increases the particle density, thus increasing
the interactions within the aggregate. This means riming
may make it more difficult for scattering approximations
to perform well. Leinonen et al. (2017) present results
using RGA and self-similar RGA (SSRGA), which is an
approximation based on RGA that may be used to calcu-
late ensemble-averaged scattering properties (Hogan and
Westbrook 2014; Hogan et al., 2017). They show that signif-
icant deviations are found when the scattering properties
of heavily rimed particles are compared to benchmark
DDA solutions. It is therefore interesting to test whether
riming is also problematic for IMA.

The aggregates of 7 dendritic monomers described in
Section 2.1 were used for this study. A simplified algorithm
to simulate riming, based on work done by Leinonen and
Szyrmer (2015), was used to generate rimed versions of
each of the 10 particles. The algorithm works by captur-
ing stationary droplets (represented as single dipoles) on
a particle as it falls vertically. This means the volume ele-
ments of ice representing rime are located at the bottom
of the particle. Like Leinonen and Szyrmer (2015), each
rime droplet is represented by a single dipole element, and
we do not consider the influence of the airflow around the
snowflake on the droplet. We only consider droplets freez-
ing immediately on contact with the particle. Each droplet
is considered part of the monomer on which it is accreted.
We iterate the riming algorithm until rimed versions of the
aggregate are generated, with rimed mass fractions (RMFs)
of 0.1, 0.2, … 0.5. Examples of rimed versions of one of the
dendritic particles are shown in Figure 7a.

Figure 7b shows the average bias in scattering
cross-section for each value of RMF. The results for
each RMF are computed using an ensemble of 10 rimed
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F I G U R E 7 (a) shows simulated rimed versions of one of the dendritic aggregates used for the riming study. The top left image shows
an unrimed aggregate of 7 dendrites, generated using the aggregation model of Westbrook et al. (2004). The following images show the rimed
versions of the particle, consecutively increasing the fraction of the final mass that is due to riming on the aggregate. The rimed mass fraction
(RMF) increases from 0.1 in the second image to 0.5 in the final image. The same process was performed for each of the 10 aggregates of 7
dendrites described in Section 2.1. (b) shows the average relative bias in 𝜎s for different values of RMF, computed using rimed versions of 10
different aggregates of 7 dendrites. The solid lines show the results using IMA, while the dashed lines show the results using RGA

aggregates. The solid lines indicate the results using IMA,
with the red line showing the values calculated for the
unrimed particles. In this case, IMA has a negative bias for
x ≲ 8, while for x ≳ 8 the bias is positive. For almost all size
parameters used here, the bias is enhanced by increasing
the RMF. For smaller values of x when IMA underesti-
mates the scattering cross-section, riming generally causes
more of an underestimation and, for larger x when IMA
overestimates 𝜎s, riming amplifies the overestimation. All
rime percentages give a bias within 10% for x ≲ 8 using
IMA, with the error remaining almost constant with x, up
until x = 6. The bias increases for larger size parameters,
but even at the largest RMF of 0.5 considered here, the
bias remains within 20%. In other words, light to moder-
ate riming has a relatively small impact on IMA accuracy,
and it seems other details of the geometry are more impor-
tant. For heavy riming and the transition to graupel, it is
unlikely that IMA will prove useful since the monomers
are no longer distinct and separable.

The dashed lines in Figure 7b show the equivalent
results using RGA. Overall, it is clear that RGA is less accu-
rate than IMA, showing a considerably greater bias in the
scattering cross-section. For x ≲ 8 when the bias is within
10% using IMA, large differences of approximately −40%
are found using RGA. It is interesting to note that the
RGA method appears to improve slightly by riming, and
also the error begins to decrease for larger size parame-
ters. For x > 6, the interactions between the monomers are

increasing, which is not accounted for either in IMA or in
RGA. The fact that RGA is seemingly improving is due to
the monotonic effect of these interactions on the scattering
cross-section.

As mentioned, we have only considered riming of a
small ensemble of particles with fixed orientations, thus
making it difficult to translate these findings into gener-
alised conclusions. Nonetheless, it is sufficient to show
that IMA is capable of reproducing the magnitude dis-
tribution of both unrimed and rimed aggregates but, at
certain size parameters, riming has an influence on the
applicability of IMA to far-field scattering calculations.

4 IMA AND THE OPTICAL
THEOREM

The extinction cross-section of a particle may be calculated
in two different ways. The first method is to calculate the
total extinction by summing the scattering and absorption
cross sections: 𝜎SA

e = 𝜎s + 𝜎a. Another common approach
is to use the optical theorem. With this method, 𝜎e may
be calculated using the complex scattering amplitude F in
the forward direction only, that is, in the same direction
as the incident wave. This well-known, yet somewhat sur-
prising, relationship is described in textbooks such as van
de Hulst (1957) and Jackson (1962). We use the formu-
lation of Draine (1988). For an incident plane wave, the
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extinction cross-section is given by:

𝜎OT
e = 4𝜋k

N∑
j=1

ℑ(Pj ⋅ E∗
inc,j) . (4)

This formula represents the fact that extinction can be
thought of as interference between the incident wave and
the scattered wave in the forward direction. There are two
mechanisms by which Pj ⋅ E∗

inc,j can have an imaginary
component: (a) via absorption, which is typically small in
our experiments but dominates the extinction when x → 0,
and (b) via phase delays within the particle leading to Pj
becoming out of phase with E∗

inc,j.
The extinction cross-section is calculated using both

methods (𝜎SA
e and 𝜎OT

e ) for the particles in this study, and
comparisons of the results obtained using DDA and IMA
are performed. As a reference result, we use the DDA cal-
culation of extinction obtained by adding scattering and
absorption (𝜎SA

e,DDA). In other words, the bias for a given par-
ticle would be calculated as 100(𝜎e − 𝜎SA

e,DDA)∕𝜎
SA
e,DDA. The

results are shown in Figure 8, calculated as an ensem-
ble average using the 10 aggregates of 7 dendrites gener-
ated previously. The figure shows the bias resulting from
using the optical theorem along with DDA, and also the
bias calculated using both extinction methods along with
IMA. It is clear from the solid line that, when the optical
theorem is used along with DDA, excellent agreement is
found between the two different extinction calculations,
that is, 𝜎SA

e,DDA ≈ 𝜎OT
e,DDA. The difference at the largest size

parameter of x = 10 is very small, with a value of −0.14%.
Moskalensky and Yurkin (2019) show that the optical
theorem holds exactly in the DDA framework, regardless
of the discretisation.

However, the two methods to compute extinction do
not give the same results for IMA. While 𝜎SA

e,IMA pro-
vides an accurate estimate of extinction (as is implicit in
Section 3), the extinction calculated from IMA using the
optical theorem does not. The dotted line in Figure 8 shows
that using the optical theorem with IMA results in under-
estimates of the extinction, with the exception of small par-
ticles in the Rayleigh regime where x → 0. As x increases
the error in 𝜎OT

e,IMA increases rapidly, exceeding 80%. It can
be seen from the dashed line that the error found by sum-
ming scattering and absorption is much lower, remain-
ing within 3%. Thus IMA accurately represents the total
scattering and absorption components independently, but
does not capture the forward scattered electric field with
sufficient precision to apply the optical theorem, and the
self-consistency observed in the DDA solution is no longer
satisfied, because of our neglect of inter-monomer cou-
pling between dipoles. Specifically, we know that for the
monomers in isolation the optical theorem is satisfied
(because we compute it via DDA); it is only when we put

F I G U R E 8 Relative bias (%) in extinction compared to the
reference DDA result calculated by summing the scattering and
absorption cross-sections. The solid line shows the bias using DDA
with the optical theorem in Equation (4). The dotted line shows the
bias using IMA with the optical theorem, and the dashed line is the
bias using IMA but calculating extinction by summing scattering
and absorption. The results represent ensemble averages using 10
aggregates of 7 dendrites. The number of scattering angles was
increased to 7,200 for this experiment.

the monomer solutions together that it fails. Mishchenko
and Yurkin (2019) showed that, if the SSA solution is equal
to the true solution, then 𝜎OT

e of the aggregate is equal to
the sum of 𝜎OT

e of the monomers (a result that follows triv-
ially from Equation (4)). This additivity is automatically
satisfied by IMA. The fact that the DDA solution does not
match the IMA result tells us that the dipole polarisations
Pj are in fact subtly influenced by the coupling between
monomers, even though the overall scattering properties
in Section 3 are well captured by it. It seems that the
optical theorem is particularly sensitive to this imperfect
representation (one which, of course, is also present in
RGA).

From a practical perspective, this imperfection is not
problematic in many cases. If only the total scattering
cross-section is required, then the optical theorem is a con-
venient way to derive it (by computing 𝜎OT

e − 𝜎a). However,
in many applications it is desirable to compute the distri-
bution of scattered light, and if that is the case then the
information to compute 𝜎SA

e,IMA is already available.

4.1 Internal fields

Since the optical theorem holds for DDA simulations, the
failure of IMA to satisfy the optical theorem implies that
the internal field calculated using this approximation is
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significantly different to the DDA solution. Equation (4)
tells us that errors in 𝜎OT

e may arise from imperfections
in the phase of Pj relative to the incident field Einc eval-
uated at that dipole, or in the amplitudes of those dipole
polarisations. Recall from Figure 4 and the discussion
in Section 3.2 that the bias in absorption is very low
for all particles examined in this study. Comparing the
equations for the absorption and extinction cross-sections
in Equations (3) and (4), and noting that absorption is well
reproduced but extinction is not, the implication is that
the field amplitudes are well reproduced but the phase rel-
ative to the incident field is not accurate. To explore this
further, we analyse the internal electric fields and dipole
polarisations of two different aggregates below. The results
presented here show examples when the incident wave
propagates along the z-axis in the positive z-direction, that
is, travelling from the bottom of the particle to the top, and
it is polarised in the x-direction. However, the tests were
also performed at y-polarisation, and the same conclusions
apply.

4.1.1 Amplitude

To explore how well the IMA method reproduces ampli-
tude, we examine the amplitude of the quantity Pj ⋅
E∗

inc,j in Equation (4). The polarisations Pj are propor-
tional to the dipole volume, and hence the numerical
value of |Pj ⋅ E∗

inc,j| depends on the discretisation. To avoid
this, we choose to present the dimensionless quantity
A = |Ej ⋅ E∗

inc,j| which is independent of the discretisa-
tion, but is nonetheless directly proportional to |Pj ⋅ E∗

inc,j|.
One arrangement from the 10 aggregates of 7 plate-like
monomers has been chosen, as well as one of the aggre-
gates of 7 dendrites. The amplitude results for the aggre-
gate of plates using DDA and IMA are plotted for x = 5 in
Figure 9a–c, and the results for x = 9 in Figure 9d–f. In
terms of the regions of the aggregate where the field ampli-
tude is largest, the IMA method generally places these
regions within the correct monomer, although the exact
location within the monomer is not always precisely cap-
tured. Unsurprisingly, larger errors are generally found
where two monomers join. This can be seen clearly by
the small red regions of large amplitude in Figure 9a that
are not reproduced by IMA in Figure 9b. It is also seen in
the central monomer in Figure 9d, i.e., the fourth of the 7
monomers comprising the aggregate. The field within that
monomer is clearly interacting with nearby monomers,
exhibiting changes to the field close to those areas. The
equivalent monomer does not show this behaviour in
Figure 9e for the IMA case. When the IMA method is
used, we are ignoring interactions at those points that we
know exist. The histograms in Figure 9c,f show that the

overall shape of the distribution is captured using IMA, but
the method slightly underestimates the full breadth of the
distribution. Using DDA results in A ranging from 0.3 to
1.7 for x = 5, and 0 to 1.9 for x = 9, whereas IMA predicts
smaller ranges of 0.3 to 1.2, and 0.2 to 1.8 in those cases.

The amplitude results for one of the dendritic aggre-
gates are shown for x = 10 in Figure 9g–i. In the examples
shown here, the amplitude appears to be more accurately
represented by IMA in the aggregate of dendrites, in com-
parison to the plate-like example, showing very similar
distributions using DDA and IMA in Figure 9i. Using
DDA, A ranges from 0.2 to 1.8, while IMA predicts a similar
range of 0.3 to 1.7. However, we note that all 10 aggregates
of 7 dendrites were examined, although they are not shown
here for brevity. In the other arrangements, some slightly
bigger differences between IMA and DDA were found,
with IMA again slightly underestimating the breadth of
the distribution. Nonetheless, we conclude that the over-
all amplitude is well reproduced by IMA for a variety of
particle shapes.

4.1.2 Phase

For a particle with a greater refractive index than the
surrounding medium, the phase of a wave within the par-
ticle will be retarded when compared to the undisturbed
applied wave outside the particle. The change in relative
phase is known as the phase shift. Because IMA illumi-
nates each monomer by the incident wave, any retardation
of the phase by the other monomers is not captured. There-
fore, one might anticipate that the phases are very similar
between DDA and IMA on the leading edge of the aggre-
gate, diverging as the wave moves through to the far side.

The complex number Pj ⋅ E∗
inc,j represents the forward

scattered wave polarised parallel to the incident electric
field. The phase of that complex number can be used to
see how much the phase changes inside the particle. This
gives the phase shift of dipoles relative to the incident
wave, and is calculated as Ph = arg(Pj ⋅ E∗

inc,j). Values of 0
indicate that the dipoles are oscillating in phase with the
incident wave. Increasing values represent a greater phase
delay within the particle. A visualisation of this phase shift
for the more simple geometry of a hexagonal plate may be
found in McCusker (2019).

We now look at the behaviour of the phase shift for
aggregates. Comparisons of results calculated using DDA
and IMA allow us to examine how well the IMA method
captures the phase shift through a particle. Figure 10a,b
show the results for the aggregate of 7 plates with
x = 5. The phase shifts are shown in degrees. As before,
the incident wave propagates along the z-axis in the
positive z-direction, and is polarised in the x-direction.
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F I G U R E 9 The colour scales represent the dimensionless amplitude factor A = |Ej ⋅ E∗
inc,j| within an aggregate of 7 plates for (a, b)

x = 5 and (d, e) x = 9 using (a, d) DDA and (b, e) IMA. (g) and (h) show A within an aggregate of 7 dendrites for x = 10 using DDA and IMA,
respectively. The axes of the 3D subpanels have units of mm, but note that the colour scales are different for the two particle habits. (c, f, i)
show the corresponding probability histograms of the distribution of A within the aggregates. The incident wave propagates along the z-axis
in the positive z-direction, that is, travelling from the bottom of the particle to the top, and it is polarised in the x-direction

The colour scale has been fixed to [− 180, 180] in order
to easily compare the different cases. A histogram show-
ing the distribution of the phase shifts can be seen in
Figure 10c. The equivalent results for x = 9 are shown in
Figure 10d–f.

For size parameters x ≪ 1, the dipoles oscillate in
phase with the incident wave and no phase shift occurs
within the particle. Figure 10 shows that, as x increases,
the phase shift becomes more prominent. For small size

parameters x ≈ 1 (not shown for brevity), absolute values
of the phase shift are small, at only a few degrees. How-
ever, IMA still underestimates the phase shift in these
cases and it is clear from Figure 8 that this propagates
into large errors in the extinction cross-section. We note
that the amplitude factor is represented accurately by IMA
at x ≈ 1. For x = 5, the phase shift calculated using DDA
in Figure 10a shows similar properties to the result using
IMA in Figure 10b, with differences in the phase shifts



MCCUSKER et al. 1217

F I G U R E 10 Phase shift (in degrees) within an aggregate of 7 plates for (a, b) x = 5 and (d, e) x = 9 using (a, d) DDA and (b, e) IMA.
(g, h) show the phase shift within an aggregate of 7 dendrites for x = 10 using DDA and IMA, respectively. The axes of the 3D subpanels have
units of mm but note that, in order to show more detail, the colour scale for the dendrites has been reduced compared to the plates. (c, f, i)
show the corresponding probability histograms of the phase shift distribution within the aggregates. The incident wave propagates in the
positive z-direction and is polarised in the x-direction

appearing quite insignificant. However, the histogram of
the phase-shift distribution clearly shows that IMA does
not incur as much of a phase lag as DDA. For x = 9, it
is clear that the phase shift is larger, with more obvious
red regions in Figure 10d showing phase shifts reach-
ing 163◦ when DDA is used. The behaviour captured
using DDA is not represented by IMA, and the maxi-
mum delay in Figure 10e is only 62◦. This explains why
𝜎OT

e is systematically underestimated. As hypothesized,

the phase shifts calculated using the two methods are
more comparable on the illuminated side of the particle,
diverging as the wave propagates through the particle.

The phase shift results for the dendritic aggregate of
x = 10 are shown in Figure 10g–i. The colour scale has been
reduced compared to the aggregates of plates in order to
show more detail in the internal structure. As in the case
of the plate-like aggregates, there are red regions showing
a phase shift in the DDA result in Figure 10g that are not
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represented using IMA. Although results are only shown
here for one arrangement of 7 dendritic monomers, the
same behaviour is found for all 10 aggregates of 7 dendrites
generated for this study. Considering we are looking at the
x = 10 case, it is clear that the phase shift within dendritic
particles is not as prominent as it is for plate-like aggre-
gates. For a given size parameter, the phase shift is greater
within aggregates of plates and columns due to their larger
densities, whereas the air gaps found in dendritic particles
prevent the wave from experiencing such a large degree
of retardation. The larger relative phase shift within more
solid particles is not captured using IMA. The phase shift
within the dendritic particles is smaller, but Figure 10i
shows that IMA captures the peak of the distribution quite
well. However, the method fails to capture details at the
tails.

Figure 9 indicates that the compactness of monomers
near their interfaces plays an important role in how well
the IMA method performs. It is likely that some combi-
nation of this parameter, along with x, m, and 𝜌eff, may
be used to determine the region of parameter space where
the IMA scattering method performs well. Further tests
would be required in order to establish such a prescrip-
tion. However, from the tests performed here, we propose
that the method may be applied to scattering by many
ice aggregates in the microwave and sub-mm regimes.
This is explored further in the following section where
the IMA scattering method is used to calculate radar
observables.

5 PRACTICAL APPLICATION
OF IMA TO REMOTE-SENSING
OBSERVABLES

In this section we examine the performance of IMA for
practical applications by computing a number of radar
measurement parameters. We wish to integrate over a par-
ticle size distribution (PSD), and it is assumed that the
particles follow a gamma distribution of the form N(D) =
N0D𝜇 exp(−ΛD). N(D) represents the number of particles
per unit volume per unit size interval, with units of m−4.
We have generated a range of 40 aggregates of between
2 and 18 dendritic monomers, where each monomer has
the same size and aspect ratio. The maximum dimension
(Dmax) of the aggregates ranges between 1.2 and 5.7 mm.
Particles with a smaller value of Dmax tend to have fewer
monomers, and larger aggregates have more monomers.
We use one particle to represent each size interval, mean-
ing we have a total of 40 size bins. The particles are
generated with a random orientation. Following the same
method as Tyynelä et al. (2011), we reorient the particles
based on their maximum moment of inertia, such that the

maximum distribution of mass is in the horizontal (x–y)
plane. The incident wave propagates in the y-direction,
and we perform calculations at horizontal and vertical
polarisations, corresponding to the x- and z-directions,
respectively.

The gamma PSD represents a distribution of cloud par-
ticles using three parameters- N0, 𝜇, and Λ. For a given 𝜇,
the parameter Λ controls the average size of the particles
Dm (see below), while N0 scales the overall concentration
of particles. Tiira et al. (2016) show that 𝜇 usually varies
from−2 to 6, where a more positive 𝜇 corresponds to a nar-
rower distribution. Since our range of particles is not very
large, we enforce a narrow distribution by using a large
value of 𝜇, and have chosen 𝜇 = 10 in our experiments.
We acknowledge that this may not be representative of
the atmosphere, however we have also experimented with
smaller values and similar results were obtained. Λ is var-
ied from 3,300 to 5,300 m−1: this range was chosen to avoid
the same PSD truncation effects arising from our limited
range of particle sizes. We calculated the mass-weighted
mean particle diameter Dm for each value of Λ, and these
varied between 2.4 and 3.8 mm.

The equivalent radar reflectivity factor, Ze, may be
calculated at different frequencies, f , as follows:

Ze,f =
1018𝜆4

𝜋50.93 ∫
∞

0
N(D)𝜎r(D) dD, (5)

where 𝜎r = 4𝜋𝜎b, and 𝜎b is the differential backscatter-
ing cross-section given in Equation (2). For example, Ze,35
is the reflectivity factor measured at 35 GHz. The factor
1018 is for conversion from m3 to the conventional units
of mm6⋅m−3. Ze, f is used to compute some of the radar
parameters presented in the following subsections.

5.1 Multi-wavelength parameters

The dual wavelength ratio (DWR) is the ratio of the reflec-
tivity factor calculated at two different frequencies. For
example, DWR using frequencies of 3 and 35 GHz may be
calculated as DWR[3,35] = 10 log10

(
Ze,3∕Ze,35

)
. For small

particles in the Rayleigh regime, DWR≈ 0 dB. Matrosov
(1993) highlights that the ratio becomes useful for infer-
ring particle size when at least one of the frequencies
employed results in non-Rayleigh scattering. A combina-
tion of two different dual wavelength ratios has been used
in triple frequency analysis, providing additional informa-
tion on particle shape, e.g., Kneifel et al. (2011) and Stein
et al. (2015).

Figure 11 shows the DWR plotted as a function of Dm.
We look at DWR[3− 35], DWR[3− 94], and DWR[3− 200], and
compare results using RGA, IMA ,and DDA. Overall, the
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F I G U R E 11 DWR calculated for frequencies of (a) 3–35, (b) 3–94 and (c) 3–200 GHz. Results shown by the dotted line, the dashed
line, and the solid line represent calculations performed using RGA, IMA, and DDA, respectively

DWR is larger for bigger particles. Moreover, the value of
the ratio is larger if there is a greater difference between
the two frequencies used. As pointed out by Battaglia et al.
(2014), this is why a higher frequency radar in the G-band
(between 110 and 300 GHz) would be useful for sizing
smaller particles.

Comparisons with the reference DDA results show
that the error using RGA is considerably greater than
IMA, and the results using RGA are subject to a
frequency-dependent bias. The RGA method underesti-
mates backscatter, and therefore also underestimates the
reflectivity factor Ze. This error is more prominent at
higher frequencies, meaning the amount by which RGA
overestimates DWR increases with frequency. For a given
particle size, RGA overestimates DWR by almost 0.5 dB
for DWR[3− 35]. The error increases to 1.2 dB for the higher
frequency case of DWR[3− 94], rising further to a maxi-
mum of 2.7 dB for DWR[3− 200]. To see the implications
of these errors, consider the scenario where we aim to
retrieve particle size using measurements of DWR. It is
clear that, if we take this approach at 200 GHz and use
RGA for the scattering calculations, we would get a large
error in estimating Dm from DWR. For example, a mea-
surement of DWR[3, 200] = 17 dB would result in retriev-
ing a Dm of 2.4 mm using RGA, in a situation where
the true Dm is approximately 4 mm. Such an error in
particle size retrieval would result in significant impacts
on IWC retrievals. IMA errors are much smaller than
those obtained using RGA. A slight overestimation of
DWR by 0.1 dB is observed for DWR[3− 35], rising to
around 0.2 dB for DWR[3− 200]. The corresponding retrieval
errors are a small underestimate of Dm by no more than
0.1 mm.

5.2 Polarimetric parameters

Polarisation effects are controlled by coupling between
dipoles within the particles and, since RGA neglects

this entirely, it cannot represent polarisation-dependent
scattering at all. However IMA does represent the coupling
within the monomer crystals, and hence has the potential
to be able to predict these properties. We investigate this in
what follows.

The differential reflectivity (ZDR) was introduced by
Seliga and Bringi (1976), and is used to measure the aspect
ratio of particles. It is calculated as the ratio between the
horizontally transmitted and received reflectivity factor
(Zhh), and the vertically transmitted and received reflec-
tivity factor (Zvv), that is, ZDR = 10 log10 (Zhh∕Zvv). For
particles that are close to spherical, Zhh ≈Zvv and so
ZDR ≈ 0 dB. The value increases if the particle shape is
non-spherical and oriented horizontally. Using aggregates
with a horizontal orientation, we explore whether IMA
captures realistic ZDR values. Figure 12 shows ZDR cal-
culated using DDA and IMA at 3, 35, 94, and 200 GHz.
It is clear that, although IMA is not perfect, the method
is capable of representing ZDR. This gives IMA a distinct
advantage over RGA which is incapable of predicting ZDR,
and could prove useful in determining particle shape from
radar measurements.

Figure 12 shows that in our DDA simulations ZDR
tends to decrease with particle size. This is because particle
density generally decreases with size, and ZDR is correlated
with density. Moreover, the smaller aggregates have fewer
monomers. Aggregates with only one or two monomers
tend to have more of a chain-like geometry than aggregates
of many crystals. Since we reorient the aggregates based
on their maximum moment of inertia, it is more likely
that the long dimensions of the monomers will lie approx-
imately aligned in the horizontal plane. Larger aggre-
gates have very irregular structures with many monomers
oriented in all directions, resulting in ZDR values closer
to 0 dB.

Analysis of the IMA results in Figure 12 shows that
IMA successfully captures the behaviour observed in the
DDA simulations. A modest underestimation of ZDR is
obtained using IMA, and the magnitude of this bias varies
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F I G U R E 12 ZDR calculated at frequencies of 3, 35, 94, and
200 GHz, depicted using different line styles as shown in the legend.
Results shown by the blue and magenta lines represent calculations
performed using DDA and IMA, respectively

with frequency and size. At 3 GHz the bias is ≈0.2 dB,
while at 94 GHz the underestimation is larger, ≈0.4 dB.
This level of accuracy is likely to be useful for many appli-
cations.

As well as investigating the performance of IMA for
ZDR calculations, we consider the specific differential
phase shift on propagation (KDP), the backscatter differen-
tial phase shift (𝛿), and the copolar correlation coefficient
(𝜌hv). For these calculations, we require scattering ampli-
tudes in the forward and backward directions for h and
v polarisations. We use the definition of F(n̂) given in
Equation (1), and use êh and êv to denote unit vectors
parallel to the h and v polarised incident wave. Then the
scattering amplitudes in the forward direction are given
by fhh,0 = F(0) ⋅ êh and fvv,0 = F(0) ⋅ êv. Similarly, the scat-
tering amplitudes in the backward direction are fhh,180 =
F(180) ⋅ êh and fvv,180 = F(180) ⋅ êv.

KDP is a measure of the difference in phase shift
between h and v polarised waves that occurs due to for-
ward propagation through cloud, and is computed using
the forward scattering amplitudes:

KDP = 180𝜆
𝜋

∑[
ℜ(fhh,0 − fvv,0)N(D) dD

]
.

It is useful for identifying areas of heavy precipitation, and
has also been used to estimate IWC (e.g., Lu et al., 2015;
Nguyen et al., 2019, and references therein). We saw in
Section 4 that there are issues with the imaginary part of
the forward scattering component of the field when IMA
is used, which we attributed to not properly capturing
the accumulated phase shift across the particle. Since KDP

uses only the real part and is concerned with phase differ-
ences rather than absolute phase shifts, we are interested
to see whether IMA is capable of representing this
parameter.

The copolar correlation is calculated using the back-
ward scattering amplitudes:

𝜌 =
∫ fhh,180f ∗vv,180N(D) dD√[∫ |fhh,180|2N(D) dD

] [∫ |fvv,180|2N(D) dD
] . (6)

A number of quantities may be derived from the copo-
lar correlation. The copolar correlation coefficient is cal-
culated as 𝜌hv = |𝜌|. It is a measure of how consistent
the polarisation properties of the particles in a volume
are. Values of 𝜌hv close to 1 mean that there is little
variety in hydrometeor shape, while lower values repre-
sent greater variability. A related variable, L = −log10(1 −
𝜌hv), was defined by Keat et al. (2016). Using L is a con-
venient way to visualise and average 𝜌hv data since its
error characteristics are Gaussian. Finally, the argument
of 𝜌 gives the differential phase shift on backscatter 𝛿 =
(180∕𝜋) arg(𝜌), which is a measure of the difference in the
backscattered phase compared to the initial phase between
h and v polarisations. 𝛿 ≈ 0 when particles are small rel-
ative to the wavelength, and increases with frequency for
non-spherical particles that are no longer in the Rayleigh
regime.

Figure 13 shows the results for KDP, L (or 𝜌hv), and 𝛿.
Figure 13a displays the percentage error in KDP for our
four different frequencies. Since a fixed value of N0 was
used in the PSD, increasing Dm corresponds to increas-
ing the IWC. We find that at all frequencies considered,
KDP increases with Dm, and Figure 13 shows that the error
between IMA and DDA also increases from approximately
10 to 20%. We are representing more complicated shapes
with a greater number of monomers towards the larger val-
ues of Dm at the right-hand side of the plots. In Section 4
we found that an error in IMA arises due to the individual
monomers being excited by the incident wave. Any phase
shift that may have accrued from previous monomers is
not taken into account, and this causes an underestima-
tion of the phase lag in the internal field. The results shown
in Figure 10 suggest that the misrepresentation of internal
phase is worse for larger aggregates, which may be why we
see an increase in KDP error with Dm.

Figure 13b, c show L and 𝛿 respectively, where the
magenta lines are IMA results and blue lines are DDA
results. Figure 13b also includes an additional axis on the
right side showing the equivalent values of 𝜌hv. The h and
v signals are very well correlated at low frequencies, with
values of L between 1.8 and 2.3 at 3 and 35 GHz, cor-
responding to values of 𝜌hv between 0.98 and 1. Smaller
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F I G U R E 13 (a) shows the percentage error in KDP between IMA and DDA results, at four different frequencies of 3, 35, 94, and
200 GHz. (b) shows L and (c) 𝛿, where the magenta lines are IMA results and blue lines are DDA results. Note that for L(94 GHz) and
𝛿(3 GHz), IMA agrees with DDA to within the width of a line. Also included in (b) is an axis on the right side showing the corresponding
values of 𝜌hv for each value of L

values of 𝛿 are found in these cases, with 𝛿 ≈ 0 at 3 GHz.
It is clear that the IMA method captures L and 𝛿 very well
for 3 and 35 GHz. Values of L decrease as frequency is
increased to 94 and 200 GHz, while values of 𝛿 increase
to a few degrees in magnitude. This corresponds to an
increase in differences in backscattered phase at h and v
as we move out of the Rayleigh regime. At 94 GHz, L is
well captured by IMA, while the variable is overestimated
slightly at 200 GHz. However, we calculate the maximum
percentage error to be a small value of only 3.5%. We con-
clude that IMA can successfully capture multi-polarisation
parameters.

6 CONCLUDING REMARKS

In this paper, we have developed and tested a new scatter-
ing method for ice aggregates, IMA. The method involves
performing DDA calculations on each monomer individ-
ually, ignoring interactions with other monomers in the
aggregate. This yields substantial reductions in the CPU
time and memory needed when compared to the full DDA
solution.

In summary we find that IMA provides significant
improvements in accuracy compared to RGA, which suf-
fers from large systematic biases. It can accurately cap-
ture 𝜎s and 𝜎a, along with the asymmetry parameter g,
which are the key inputs required in fast microwave radia-
tive transfer applications (Bauer et al. (2006)). Applica-
tion of the method to multi-wavelength radar parame-
ters shows that dual wavelength ratio and differential
reflectivity can be estimated to within a few tenths of a
decibel.

Overall, IMA is more accurate for lower values of the
size parameter x and effective density 𝜌eff. We have also
performed other simulations (not shown here for brevity)
at different refractive indices, and we found that accuracy

is better for smaller contrasts in refractive index between
the particle and the medium it is within. It is probable
that some combination of these properties could provide a
criterion for applicability of the method. This would have
particular relevance if we were to apply IMA to different
types of aggregate particles in other physical problems;
examples could include volcanic ash or soot particles. This
will be developed in future work.

It was found that IMA does not satisfy the optical
theorem. Extinction can instead be calculated accurately
by summing the scattering and absorption cross-sections.
Analysis of the internal electric fields shows that the
phase shift of the wave inside the particle is not cap-
tured correctly, since each monomer is driven by the inci-
dent wave only, whereas in fact the wave is progressively
slowed down by the various monomers in the aggregate.
The phase error is more prominent within higher density
plate-like aggregates than in dendritic particles.

While IMA is a substantial improvement relative to
RGA in many cases, some physics are not captured in the
IMA scattering method. In particular, we plan to investi-
gate whether the phase shifts could be represented more
accurately. This could be achieved by performing calcula-
tions for each monomer in sequence from the front of the
aggregate to the back, and carrying a phase shift to each
subsequent monomer. For example, once P is calculated
for monomer 1 in response to the applied field, the input
for monomer 2 could be calculated as Einc + Esca

mon1, and
so on.

The success of IMA gives us some useful insights into
the geometric properties of snowflakes which are impor-
tant for microwave scattering. For example, we know that
the coupling between dipoles inside monomers may be
strong, but the coupling between monomers is weak. This
means that the polarisation properties (which are con-
trolled by dipole coupling) are not determined by the shape
of the ‘envelope’ around the aggregate (as hypothesised by
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numerous authors, e.g., Hogan et al., 2012), but instead are
controlled by the monomer shapes, and the distribution
of monomer orientations within the aggregate. Simulating
polarimetric properties with a ‘soft spheroid’ is not repre-
senting the physics of the problem, and different monomer
shapes within the same aggregate envelope will lead to
quite different results for polarimetric properties like ZDR.
Our example calculations in Section 5.2 had positive ZDR
because they were composed of dendrites, which had their
long axes (on average) closer to the horizontal plane than
the vertical plane.

Similarly, IMA can guide us when we think about
what properties control the multi-wavelength behaviour
of snowflakes. Positive DWR values occur when the
size parameter of the aggregate is ∼0.5 or greater and
interference occurs between the (independent) scattered
monomers added up coherently in the far field. This inter-
ference is directly analogous to RGA, but is modulated by
the more complex polarisation-dependent scattered fields
from the monomers which IMA is able to capture and RGA
is not. We therefore expect that the statistics of the sepa-
ration between monomers in the direction that the wave
is propagating (incident, and scattered) are important
properties to capture in our geometrical models of aggre-
gates, especially for higher-frequency radars and radiome-
ters. Again, a soft spheroid may not capture the essen-
tial physics, since it assumes the ice is evenly distributed
throughout the envelope, whereas in fact aggregates are
believed to be fractal (e.g., Westbrook et al., 2004; Stein
et al., 2015), which means their monomers are strongly
clustered in space, leading to a very different distribution
of inter-monomer distances.

In the future, it would be useful to produce a database
of IMA calculations for different crystal habits. Since IMA
only requires the internal fields of monomers that are
not interacting with each other, the fields for a given fre-
quency only need to be computed once per monomer
and per orientation. From these, any amount of aggre-
gates can be generated by combining the monomer fields
coherently and interpolating when necessary. Thus, a user
may generate their own aggregate to get the positions
and orientations for each monomer, and add the fields
from the database to get the scattering properties of the
aggregate.
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APPENDIX

The FFT approach requires that the particle be embedded
within a cubic lattice. We define the number of volume
elements (dipoles) within this bounding box as NL. The
number of dipoles which belong to the ice particle is a
subset of these (i.e., N <NL) and the rest represent empty
space.

The computational cost of solving the DDA system
via the FFT method scales as (NL ln NL), and the memory
requirement is proportional to NL (Yurkin and Hoekstra,
2007). A key parameter therefore is the ratio N/NL which
is the fraction of the bounding volume filled by ice, and
this is proportional to 𝜌eff∕𝜌ice (where 𝜌ice is the density
of solid ice, 917 kg⋅m−3). Figure 1 shows that this volume
fraction is small for our aggregates, and therefore NL is
much larger than N, by a factor of ∼10–1,000. Therefore,
although the FFT method is faster for a given number of
dipoles, we require many more dipoles to solve the same
problem.

To understand how the computational time and mem-
ory scale as the number of dipoles increase, we note that
our aggregates (and those in nature; Cotton et al., 2013)
have 𝜌eff ∝ D−1

max ∝ N−0.5. Since N∕NL ∝ 𝜌eff, this means
NL ∝N1.5. Substituting this into the equations above, we
obtain a CPU time which scales as (N1.5 ln N) and a mem-
ory cost which increases in proportion to N1.5.
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