University of
< Reading

Mapping the big data landscape:
technologies, platforms and paradigms for
real-time analytics of data streams

Article
Published Version
Creative Commons: Attribution 4.0 (CC-BY)

Open Access

Dubuc, T., Stahl, F. ORCID: https://orcid.org/0000-0002-4860-
0203 and Roesch, E. B. ORCID: https://orcid.org/0000-0002-
8913-4173 (2021) Mapping the big data landscape:
technologies, platforms and paradigms for real-time analytics
of data streams. I[EEE Access, 9. pp. 15351-15374. ISSN
2169-3536 doi: 10.1109/ACCESS.2020.3046132 Available at
https://centaur.reading.ac.uk/95419/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing.

To link to this article DOI: http://dx.doi.org/10.1109/ACCESS.2020.3046132

Publisher: IEEE

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement.

www.reading.ac.uk/centaur

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

University of
< Reading
CentAUR

Central Archive at the University of Reading

Reading’s research outputs online

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 23, 2020, accepted December 11, 2020, date of publication December 21, 2020,

date of current version January 27, 2021.

Digital Object Identifier 10.1109/ACCESS.2020.3046132

Mapping the Big Data Landscape: Technologies,
Platforms and Paradigms for Real-Time Analytics

of Data Streams

TIMOTHEE DUBUC'2, FREDERIC STAHL 3, AND ETIENNE B. ROESCH 12
!School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6AH, U K.
2Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Reading RG6 6AH, U.K.

3Laboratory Niedersachsen, German Research Center for Artificial Intelligence GmbH (DFKI), 26129 Oldenburg, Germany

Corresponding author: Etienne B. Roesch (e.b.roesch@reading.ac.uk)

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) through the European Coordinated
Research on Long-Term Challenges in Information and Communication Sciences and Technologies ERA-NET (CHIST-ERA), through the

Project COCOON, under Grant EP/P016448.

ABSTRACT The ‘Big Data’ of yesterday is the ‘data’ of today. As technology progresses, new challenges
arise and new solutions are developed. Due to the emergence of Internet of Things applications within the
last decade, the field of Data Mining has been faced with the challenge of processing and analysing data
streams in real-time, and under high data throughput conditions. This is often referred to as the Velocity
aspect of Big Data. Whereas there are numerous reviews on Data Stream Mining techniques and applications,
there is very little work surveying Data Stream processing paradigms and associated technologies, from data
collection through to pre-processing and feature processing, from the perspective of the user, not that of
the service provider. In this article, we evaluate a particular type of solution, which focuses on streaming
data, and processing pipelines that permit online analysis of data streams that cannot be stored as-is on the
computing platform. We review foundational computational concepts such as distributed computation, fault-
tolerant computing, and computational paradigms/architectures. We then review the available technological
solutions, and applications that pertain to data stream mining as case studies of these theoretical concepts.
We conclude with a discussion of the field of data stream processing/analytics, future directions and research
challenges.

INDEX TERMS Big data applications, Internet of Things (IoT), edge computing, distributed computing,

pipeline processing.

I. INTRODUCTION

Stemming from recent technological advancement, what
came to be coined the ‘Data Era’ [1]-[3] is now concur-
rent to a dramatic increase in the portability of computer-
ized devices. The omnipresent inter-connectivity of these
technologies supports access to an unprecedented amount
of information and, more so, to the sources of this data in
real-time [4]. Nearly every action on an electronic device
generates data, which is stored for future use because of its
foreseen informational value.

Raw Data, however, is now almost rendered useless as
their unrefined and unconstrained nature, combined with the
amount of redundancy and sheer volume make them difficult
to manage [3]. In order to benefit from this data, there is thus
a growing need for data contextualisation and interpretation;

The associate editor coordinating the review of this manuscript and

approving it for publication was Jing Bi

VOLUME 9, 2021

until the end of the last decade, this work was conducted by
human experts and data was gathered at an increasing pace
such that we are currently generating more data than any
human could ever assimilate [5], [6].

Big Data analysis techniques, i.e. the method of processing
and analyzing ‘Big’ amounts of data, is proposed as the
solution. Through the use of computerized frameworks and
architectures, human experts may augment their abilities,
rendering the distillation of raw data and the subsequent
decision-making automation tractable.

A. BIG DATA, OVER 20 YEARS LATER

The term Big Data is commonly thought to have been coined
by John R. Mashey in 1998 at Silicon Graphics [7], [8].
However, its true origin may extend back to the early 90s
[9]. Since then, its popularity has grown in parallel with the
exponential increase of the amount of data being produced,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 15351

https://orcid.org/0000-0002-4860-0203
https://orcid.org/0000-0002-8913-4173
https://orcid.org/0000-0002-4610-0141

IEEE Access

T. Dubuc et al.: Mapping the Big Data Landscape: Technologies, Platforms and Paradigms for Real-Time Analytics of Data Streams

to the point where, in the present day, everyone in the IT world
wants "to do Big Data’ [2], [5], [10]-[15].

The term Big Data suffers from a ‘buzz word’ effect,
which led to widespread imprecise definitions, however it
is typically understood as an umbrella term encompassing a
variety of techniques applied to the analysis of large amounts
of data within a defined timeframe [12], [16], [17] (See
Figure 8). This concept of Big Data poses sizeable multidis-
ciplinary challenges, including the need for distributed and
high-performance computing, parallel computing, statistics,
machine learning, non-structured data treatment, networking,
database design, and IT infrastructure. In light of the lack of a
precise and consensual definition [18]-[20], for the purpose
of this article, we consider ‘Big Data processing’ to include
any operations conducted on a dataset resulting in a process
too voluminous to be handled efficiently and in a tractable
way on a single machine. This is consistent with a previ-
ously used definition [21], and can be extended to include
data acquisition, management, and storage: all of which are
aspects that became critical to the way data are processed,
often in server-less contexts.

Despite these semantic considerations, this new field has
had a striking impact on industries and institutions, who
suddenly realized the value of the data they had been col-
lecting without a clear purpose [14]. The thorough analysis
of that information enabled many organisations to optimize
their business strategies and more efficiently target potential
opportunities [2], [6]. This trend also led to the emergence of
‘Big Data’ consultancies that offered support and services to
companies that wanted to use ‘Big Data’ but did not have the
appropriate expertise or resources to do so. [15], [22]-[24].

As established companies navigate this new and grow-
ing technological landscape, the number of industry-specific
issues grows alongside the number of technological solutions
available, and this upward trend leaves newcomers with the
difficult task of understanding and assessing the available Big
Data tools based on their and characteristics.

B. THE SOLUTION LANDSCAPE

Understanding the architectures available to ‘do” Big Data
is no simple task: of the numerous solutions in the market,
no single problem comes with a unique middleware combi-
nation that will solve the issue; there is no generic way to
do things. In addition to the difficulty arising from the sheer
number of tools at our disposal, other factors complicate and
influence decision making.

Big Data empowering businesses, termed ‘providers’,
position themselves as intermediary agents facilitating enter-
prise operations, either through a service and/or the distri-
bution of ready-to-use tailored solutions. In the former case,
the provider will disclose some documentation and APIs for
clients to make use of the service provided, billing the service
accordingly and retaining the information about the code
and/or any optimized setup of the core service behind closed
doors (the ‘black box’ business model). In the latter case,
the provider often provides the solution for free (sometimes

15352

open source) with minimal developer/administrator docu-
mentation, adopting a business model centered on monetisa-
tion of customer assistance (the ‘grey box’ business model).

Unfortunately, many solutions offer only slight variations
to each other within the same processing paradigm, and are
most often based on outdated scientific publications with
limited relevance to the state of the art. As they are ini-
tially created to answer a specific problem, these solutions
have their own innovations and operative modes (Apache
Kafka/Samza by LinkedIn, OpenStack by Rackspace Hosting
and NASA, Apache FlumeJava/Millwheel/Beam by Google,
etc), but as they are developed further, they may be extended
to operate outside their original specifications, regardless of
whether they can excel and respond to the specific needs of
their creators in their modified state.

This variability creates a fragmented technological land-
scape that is difficult, if not impossible, to map using a uni-
fied, quantified benchmark. Although attempts at mapping
the landscape have been made [25]-[27], the usefulness of
these works suffers from the small number of systems they
can address, compared with the large number of potential
system combinations: a given benchmark is only valid where
itis performed on comparable hardware, using the exact same
version of the code and dependencies -constraints that can
rarely be met when reproducing published benchmarks.

Note that a substantial effort has been made to formulate
hardware-agnostic benchmarking tools capable of bypassing
these limitations in order to compare solutions within their
own contexts. Some are expressed as a platform-specific
setup [28], [29], and others as comparison hubs hosting com-
petitions on real-life synthetic problems. Unfortunately these
approaches typically require substantial R&D efforts, which
typical users would not engage with.

In the present review, we provide a field guide for begin-
ner Big Data consumers. Due to the practical limitations of
benchmarking, we approach this question from a qualita-
tive perspective to produce a lasting frame of reference for
the variety of theoretical paradigms and options available.
We achieve this, first, by reviewing the theoretical concepts
surrounding the characterisation of the data and the infras-
tructure supporting their transformation, before handpicking
the most popular middleware as mediums to discuss the
implementation of these theoretical paradigms and possibil-
ities. Through this approach, we hope to provide both tech-
nological pointers and practical explanations of the different
technologies powering the IT backbone of many industries
that leverage Big Data. Finally, we discuss the technologies’
relevance through the lens of practical and hypothetical use
cases, discussing (1) the types of applications available, (2)
the tools best suited to address the applications, and (3) the
problems that could potentially arise in the future considering
the technological trends we observe today.

Il. COMPUTATIONAL CONCEPTS
We introduced Big Data processing as being an interdis-
ciplinary enterprise. The reasons for this stem from the

VOLUME 9, 2021

T. Dubuc et al.: Mapping the Big Data Landscape: Technologies, Platforms and Paradigms for Real-Time Analytics of Data Streams

IEEE Access

requirements for handling big volumes of data with minimal
processing time and high reliability, which force the develop-
ment of specific architectures that can cope with high work-
loads and scale efficiently. Here we introduce the concepts
that define those requirements, and discuss the nature of the
data (and its metrics), the concepts of task distribution (and
scheduling), fault tolerance, and data availability. Finally,
we review the three main computational architectures that
form the foundations of the different engines presented in
Section III.

A. DATA AND DATA STREAMS

The data processed and stored in a given system can be char-
acterised using metrics, regardless of its intended application.
These metrics were initially referred to as the ‘3D/3Vs’ [30]
and later, as the ‘4Vs’ of Big Data [31]-[33] are the: Volume,
Velocity, Variety and Value/Veracity of the data [34], [35] and
each pertains to a particular aspect of information.

Data Volume represents the order of magnitude of the size
of the data without concern for its encoding or its location.

Data Velocity characterises the rate at which a certain
volume of data move. This adds the dimension of time to the
data volumes in the form of frequency of occurrence, arrival,
and the speed of data transfer, throughput, and bandwidth
[23], [36]. Velocity is becoming more relevant and critical as
cloud services are now omnipresent, thus these services are
accessible by anyone, anywhere, at any time. This constraint,
and the fact that those systems are dealing with human users,
has drastic consequences in terms of data rate fluctuation
as they will directly correlate with our human habits and
limitations - and the type of habit they are designed to deal
with.

All data are of a given type. Data Variety is a consequence
of the technological developments of the last decades that saw
the increase of the number of sources of data [37], [38]. This
resulted in the discovery, creation and storage of unstructured
data: less artificially crafted segments of information that
were not necessarily suitable for relational database mod-
els. Unstructured data often complement structured data and
can originate from any sensor interfacing with the natural
world (bio-sensors, scanners, camera, etc...), and in that
respect, ‘Big Data’ storage and processing facilities are likely
have to encounter such a paradigm and must be capable of
handling it.

Data Value has direct consequences for the analysis pro-
cesses in place, and denotes the informational worth of the
data within a defined context [39]. This can range from user
usage statistics providing useful market insight to payment
details and/or financial data that form the backbone of an
industry.

To that effect, we can add another V, the Veracity as
indicator of the reliability of the data: decision making is one
of the key aspects impacted by Big Data processing [39], and
making decisions on reliable data known is imperative - as
such, Veracity is a Value in itself.

VOLUME 9, 2021

Note that the meaning attributed to the different Vs is
subject to variations (Visualisation, Value, Vulnerability), that
are largely depend upon the context in which ‘Big Data’
is discussed, and on the level of abstraction required with
respect to the technical constraint involved. These character-
istics are important when considering or designing a system
and its proposed usage. For instance, when dealing with data
displaying high Volume but low Velocity, this often translates
into a mitigated emphasis on low latency (see later in the
text) as it becomes more important to maintain the integrity
of a large amount of data when a batch is inbound, than to
parse it quickly to free the system for the next batch. The
Value of the data will also shape the importance of fault
tolerance, whereby the more important the data, the more
stable and robust the system must be, and thus redundancy
often becomes an asset.

Finally, the Veracity of the data will directly impact the
requirements for the manipulation, storage and processing of
the data [39], and each of these aspects may alter the meaning
of the information thus need to be carefully considered to
prevent any data corruption. These steps are crucial for the
efficiency and exactness of any subsequent decision making
process based on the collected data.

Dimensionality: An element paramount to this context is
the minimum number of dimensions necessary to describe the
data to be stored (data dimensionality). Typically, this does
not affect the choice of the storage hardware, or the overall
architecture of the service, however, some database types are
better equipped to deal with certain types of data [23], and
some hardware have advantages over others when it comes
to highly parallel workloads [40].

As an example, consider the following types of dimension-
ality:

« Uni-dimensional: holds a constant value without a time
dimension to store its evolution (e.g. user ID or pass-
word)

o Bi-dimensional: intensity varying through time (e.g.
monochannel sound)

o Tri-dimensional: x,y location components and a pixel
value of a grayscale immage

o Quadri-dimensional: X,y locations of components, pixel
value and time (grayscale video)

As the number of dimension increases linearly, the volume
of data, expressed in raw bits, increases exponentially. This
calls for low complexity algorithm, dimensionality reduction
techniques, and specialized hardware (such as GPU, TPU,
FPGA...) to support the processing of large amounts of data
[41], [42].

Latency and Throughput: Another important element is the
delay in data processing and analytics relative to the data
access in memory, and the time taken by a system to deal
with this. When data are being streamed, the time it takes
to upload the data into the system is a major factor. Latency
characterises the reaction time of a system, e.g. the response
time of a website when a user interacts with it, or the time

15353

IEEE Access

T. Dubuc et al.: Mapping the Big Data Landscape: Technologies, Platforms and Paradigms for Real-Time Analytics of Data Streams

needed for a Big Data application to access and retrieve the
data to operate on [42]. The less latency a system incurs,
the more reactive it is. When involved in a computational
system, this translates into less idle time during which your
data are simply waiting for the engine/system to be able to
acknowledge them. Typically, for batch systems, the latency
time is expressed in hours, whereas real-time systems aim to
express latency in milliseconds, and employ caching mech-
anisms. Another element of data handling systems is the
amount of data they can manage per unit of time, i.e. the
throughput. Unlike latency which is bounded to the software
design, throughput is mainly determined by the nature of the
task and the hardware supporting the operation. Note, also,
that latency is not directly linked to throughput: a system with
high latency can display a high throughput but will lag behind
on user-driven events (batch processing). More details on this
topic can be found in [17].

Batch versus Stream of Data: Independently to the 4Vs
of Big Data is the structure of the assimilation algo-
rithms employed to process the data: either ‘as they come’,
also termed Stream processing, or grouped into chunks on
demand, termed Batch processing.

Stream processing is more similar to event driven systems
where the environment drives their reaction as activation
occurs; they generally enjoy low latency, capturing interac-
tion between different events unfolding and feel very natural
to integrate within user facing systems.

Batch processing is a direct consequence of the specificity
of the hardware supporting the algorithm: within a traditional
x86/x64 architecture, physical processing units and mem-
ory are separated, creating latency when a set of data has
to be requested from either the long term storage (HDD,
SSD) or the volatile memory (RAM). Therefore, instead of
doing multiple data requests and summing the latency of each
call to calculate the overall completion time, it is more time
efficient to wait for all the data requests to be known and
bundle them into a single memory access. This is even more
true when GPU based computing is considered, as the video
memory (VRAM) is generally separated from the central
system memory, and in this case, the addition of all data
request latency could quickly outweigh any benefit of using
GPU computing over CPU computing.

In previous sections, we reviewed the properties that char-
acterise the data and their delivery to a given system, how-
ever we presented the properties irrespectively of the type
of application or context-specific constraints. Those context-
specific constraints are the factors separating an ideal ‘do-it-
all’ system from the systems available in reality. Notably, they
result in the following common issues and practices:

« High volume computing comes with the constraint of
tractability: The goal of conducting an analysis is to
create an informative conditioning of a given dataset.
This should, therefore, be done in tractable time and
within the time window the data remain relevant: e.g.,
there is little practical interest in predicting the price

15354

for crude oil 20 years ago. This variety of challenge
begins at the data ingestion stage - reading data from
a file of several hundred MBs up to several GBs is
common, however, attempting to read data from a file
of TBs or even PB size becomes very challenging. For
such an amount of data, the design of the system han-
dling the communication between the data source and
the different parts of the analytic pipeline can create
a major bottleneck. In addition to needing the right
choice of software/hardware architecture, routine opti-
misation and partial processing (only selecting the frac-
tion of data representative of the whole) are common
workarounds [43].

When we cannot process any faster, we try to process
many things at once: A single computational node,
even when using multiple cores (parallel computation)
can only process as fast as its hardware enables; even
considering the right data subset to process and the opti-
mal algorithmic implementation, this threshold would
constitute a theoretical upper limit. Common practice
is to set up many parallel physical processing units
capable of digesting data faster than a single unit could
(distributed computation) but this approach also has its
limits, as not all problems may be broken down into tasks
that can occur in parallel.

Parallelism comes with its own formalism and costs:
When a problem is to be allocated to a group of machines
(mapping, a focus of some paradigms), the subsequent
individual tasks have to be coordinated (scheduling) and
distributed such that no single node would choke under
the workload while others stood idle (load balancing).
Results have to be collected and conditioned (reduced,
a focus of some paradigms) for storage. Those two
apparently simple steps come with a susceptibility to
failure and numerous technical constraints. Distributing
work across multiple machines relies heavily on the
network connecting the nodes, whereby if a link, or the
recipient of a task fails at a critical moment, the system
can be left in an undetermined state potentially leading
to data being lost or duplicated. Therefore, the con-
stant monitoring of the system is required to assure
tasks occur successfully, which is not always feasible.
Finally, it is worth mentioning that distributed com-
putation comes with an overhead that stems from the
necessity to pack, transmit, and unpack the data when
transferred from a node to another. As a consequence,
many machines working together on a single problem
will never be able to solve as many tasks as the sum of
their computational power would lead us to expect.
Large jobs should not be lost: Even when using a
computational cluster, some analyses can take days,
weeks or longer. Upon carrying out such an enterprise,
it is important to ensure the completeness and exactness
of the results. As such, technical failures should be
handled in such a way that their occurrence would not
prevent completion (fault tolerance) of the entire process

VOLUME 9, 2021

T. Dubuc et al.: Mapping the Big Data Landscape: Technologies, Platforms and Paradigms for Real-Time Analytics of Data Streams

IEEE Access

nor corrupt the data (lost, duplication, undetermined
state, etc...). This calls for mechanisms such as queu-
ing systems, message re-delivery, task re-scheduling,
and/or result check-pointing that although necessary,
will inevitably generate additional overheads.

The above description of common problems faced by data
processing systems provides insights into what an ideal archi-
tecture would look like: a system capable of managing a large
volume of tasks in parallel, in a resilient environment, that is
easy to monitor and manipulate, and that scales well. Such a
system is (to date) purely hypothetical, however, distributed
systems present numerous qualities similar to this ideal sys-
tem.

Within distributed systems, the reliance on many machines
removes single points of failure from the system, rendering it
more resilient in the long term. It also becomes possible to
maintain and upgrade the system without any service disrup-
tion, by unplugging one/more nodes at a time and re-routing
resources. Moreover, this architecture enables systems that
scale out rather than (or in addition to) scale up: namely,
the system’s performances and capabilities will grow accord-
ing to the number of nodes joining the existing pool, whether
hosted in the same space or rented out from elsewhere. This,
theoretically, enables larger growth than a ‘scaling up’ system
as in this scenario, we are not constrained by the physical limit
of the hardware. The power of the resulting architecture is,
however, only matched to the complexity involved: the addi-
tion of middleware layers and services can result in ‘bulky’
systems that are too difficult to adapt to specific needs. In the
following subsection, we discuss a number of aspects that
must be considered when designing such a platform.

B. TASKS DISTRIBUTION AND COMPUTATION
SCHEDULING

Task distribution is an important component of both dis-
tributed and ‘Big Data’ processing, as it prevents the under-
exploitation and/or exhaustion of resources. If at any point,
the main work queue is populated, all of the computational
nodes should be filled to capacity in order to minimise idle
time and resource loss, while respecting the relative urgency
of the different tasks and the minimum Service Level Agree-
ment expected from the system. Within the well-adopted
Apache Hadoop, this is achieved through a separated service
(Apache YARN - see Section III) that manages the dynamic
negotiation of the resources. The priority of such a software
is to reduce latency and network congestion by distributing
the task with respect to node capacity and data location. The
system should prioritize tasks performed locally, followed by
those within the same vicinity (rack), rather than using nodes
across the board within the same data center.

Although a multitude of schedulers exist, only a few
paradigms tend to be used; these will not be discussed in
full here, but have previously been reviewed by Etsion et al.,
and Sliwo et al. [44], [45]. Here, we present examples of

VOLUME 9, 2021

Results
FIFO queue
Results

O

—)DD

FIGURE 1. FIFO scheduler representation: A FIFO Scheduler handles tasks
as they arrive, without concern for the requirements in terms of
computing units. The top part of the figure exposes a task that only
requires two compute units out of nine. The following task (that requires
seven compute units - bottom part of the figure) will nonetheless have to
wait for the completion of the previously submitted small task.

o0

Results

FIGURE 2. Maui scheduler representation: A Maui Scheduler builds
statistics relative to task executions and estimates how much time will be
needed to carry out a computation. The next task will, then, be planned
accordingly. In the figure, the top pipeline shows the green task currently
being executed and estimated to take longer than it will actually take to
complete (extending dashed line the left part of the green task). Should a
task finish ahead of schedule (middle part of the figure), a small task
parked in a backfill queue will be inserted as padding prior to the next
scheduled task. This effectively reduces the overall turnaround time and
increases the throughput of the cluster.

schedulers that we believe are representative of the most
important aspects of large scale computing:

FIFO/FCFS Scheduler. This paradigm is one of the
simplest scheduling frameworks possible. The assump-
tion is that tasks should be executed in order (First In,
First Out or First Come, First Served) [46], even if
this may be inefficient overall (See Figure 1). While
the simplicity of such an arrangement results in a very
low overhead, and in the absence of resource starvation
(no process interruption or computational reduction),
there are drawbacks. For example, the computational
resources can be held in a locked state by a long lasting
process and/or resource that is temporarily inaccessible;

15355

IEEE Access

T. Dubuc et al.: Mapping the Big Data Landscape: Technologies, Platforms and Paradigms for Real-Time Analytics of Data Streams

1.(Cluster Results

—>

FIGURE 3. Capacity scheduler representation: A Capacity Scheduler
provisions resources ahead of time and attributes them to different
entities. Here, the cluster has been split into two blocks of three and six
compute units (between entity green and entity blue), respectively.
Should a given task not use all the resource allocated (1), the scheduler
will allow the larger task to overflow and re-allocate spare resource to
bigger tasks that can use it (2). Regardless, each entity holds priority over
its quota and the overflow permission will be revoked, should a more
demanding task be posted by the green entity.

Results

>
O
L
O
O

—->

>0
U

FIGURE 4. Fair scheduler representation: A Fair Scheduler will always
endeavour to allocate the resources evenly among the submitted tasks.
(1.) shows a single task on the cluster running on all compute units until
(2.) a new task is submitted. The cluster will progressively re-distribute
the resources available until an even division is reached (3.). The process
also occurs should a task complete (4., 5. and 6).

scenarios that are likely to increase the turnaround time
of other jobs significantly, regardless of their respective
size or priority.

15356

Maui Scheduler. Widely used in the early 2000s among
the HPC community, this batch scheduler aims to order
the execution of tasks to minimize turnaround time
[47]. This is achieved through its advanced reservation
and backfill scheduling capabilities: the Maui Scheduler
estimates the users’ execution time for a job by cal-
culating statistics on the tasks involved. This informa-
tion, alongside the stated priority of the task, is used to
reserve a time window during which the job will run. The
execution schedule queue is filled following a priority
FIFO queue, and in accordance with the required amount
of resources available or predicted to be available, at a
given time. Subsequently, a backfill phase fills the
scheduling gap with jobs of lower priority and/or smaller
size (See Figure 2). This has been shown to increase the
usage of HPC centers by 20% compared with scheduling
systems without backfill mechanisms. This set up is not
flawless as efficiency increases are typically perceptible
for small tasks, whereas medium or large tasks will gain
no benefit from the backfill mechanism as they are too
big to fill gaps between tasks of higher priority.
Capacity Scheduler. This scheduler permits the sharing
of a single (Hadoop) cluster among many entities in
such a way that the different applications are allocated
resources in a timely manner, and taking into account
hardware capacity (See Figure 3). The practice of shar-
ing a cluster is a direct consequence of the high cost of
maintaining such an infrastructure: not every organiza-
tion can afford the investment and for those who can,
under-exploitation of the cluster constitutes resource
wastage. Furthermore, any cluster of a significant size
have periods of high stress (peak of demand) and idle
periods, during which a high cost infrastructure is being
under-utilized. The Capacity Scheduler is designed to
allow each user/entity to be allocated a capacity quota,
with the added possibility to use any excess resources
not currently allocated to a task [48]. This provides high
throughput and elasticity, maximizing cost-efficiency.
Those features come with capacity/time safeguards pre-
venting a malicious or excessive allocation of resources.
The overall capacity splitting and allocation is governed
by a set of isolated queues, linked to a set of computa-
tional resources, through which entities (i.e. users) can
submit jobs with user-defined priority levels.

Fair Scheduler. Unlike the Capacity Scheduler, the Fair
Scheduler does not split the computer cluster (i.e. a
Hadoop cluster) into predefined computational blocks,
and instead aims to ensure that any job on the cluster
is allocated an equal share of the resources [49] (See
Figure 4). In this configuration, if a single task is run-
ning, it occupies the entire cluster. If a second task was
submitted, the resources initially occupied by the first
task would be slowly reallocated, to the new task until a
“fair balance’ is restored. The partitioning of the cluster
can be shaped by the priority of the task to be executed,
by altering the weights used to determine the fraction

VOLUME 9, 2021

T. Dubuc et al.: Mapping the Big Data Landscape: Technologies, Platforms and Paradigms for Real-Time Analytics of Data Streams

IEEE Access

of computation time allocated to every job. Jobs are
organized into pools (owned by individuals or groups),
each benefitting from a fair share of the computational
resources; each pool supports fair sharing or FIFO
scheduling of the tasks submitted, and is guaranteed a
minimal level of resources upon submission of a job.
If this minimal operational criterion cannot be met (all
nodes are already allocated), the pool can be configured
to support killing tasks from other pools, thereby ensur-
ing the availability of resources. A key advantage of this
configuration is that killing an operation does not result
in the loss of a job, as computational tasks are fault-
tolerant and will be rescheduled (as it is implemented
in Hadoop).

(HT)Condor. Created in 1988, Condor (renamed
HTCondor in 2012) was introduced as a distributed
scheduler capable of managing a dedicated Beowulf
cluster (see Section II-E1). No centralized submission
point exists within the system, and every node hosts
its own job queue. It also includes a meta-scheduler
accepting acyclic task graphs by making the successful
completion of a set of tasks a dependency for future
jobs. Moreover, it offers a functionality that many do
not: it combines the latent computational power of idle
workstations to complement the resources of a dedicated
cluster. This feature is extended by ‘ClassAd’ which
enables the matching of specific ‘resource requests’ with
specific ‘resource offers’, thus enabling both jobs and
machines to specify their preferences, in term of running
platforms and appropriated tasks. For more information
about this advanced scheduling platform see Tannen-
baum 2001 [50], or the HTCondor website [51].

C. FAULT TOLERANCE

Fault tolerance is a central element of ‘Big Data’ computation
- even the fastest systems will eventually encounter a task
requiring hours to complete, yielding vulnerability to ongoing
tasks. The loss of a running task might not seem like a big
problem, however, should the task need to be completely
restarted, this can create a substantial setback to the overall
processing pipeline; this would in turn create financial costs,
which can rapidly multiply. It is therefore imperative to pre-
serve the integrity of running tasks. In this section, we review
the features of fault tolerance that current solutions attempt
to mitigate, before reviewing some of those solutions (see
Section III).

1) DATA PRESERVATION
To prevent loss of data, multiple policies can be used to
regulate storage: (1) task sensitive data can be duplicated,
preferably on separate hardware, to avoid a cascading fail-
ure, or (2) fault-tolerant file systems can be used to mitigate
hardware and/or system failure.

HDFS (Hadoop) [52], Cosmos (Microsoft) [53] or GPFS
(IBM) [54] are examples of file systems suited to this
task. Alternatively, including a solution involving Redun-

VOLUME 9, 2021

dant Arrays of Inexpensive Disks (RAID) within the hard-
ware/software architecture could increase the possibility of
recovering from a storage failure, in addition to boosting the
I/O relative performances (RAID 5/6).

Some of these solutions constitute distributed data stor-
age, and therefore fall under Brewer’s conjecture that such a
medium can (at best) provide only two of the following three
guarantees [55]:

o ‘Consistency’: the ability to deliver the latest version of
a data item, according to the latest modification.

o ‘Availability’: the ability to deliver some data in the
event of a request.

« ’Partition tolerance’: the ability to continue operating in
the event of degradation of the network quality (packet
loss, delay, network partition, ...).

Under normal conditions, a system can operate without
compromising in terms of Consistency and Availability. The
choice only arises in the event of a network failure, if the
system were to remain operational. In 2002, this exclusive
choice was proven mandatory by Seth Gilbert and is now
known as the ‘CAP Theorem’.

2) MESSAGE DELIVERY

Message delivery drives the reliability and performance of
a distributed system. The multiple processes involved must
be able to communicate, coordinate, and transfer data as
needed. However, reliance on communication represents a
weak spot within the architecture, as it relies on the quality
of the network and on a larger scale, the ‘reachability’ of the
nodes. Imperfect by nature, this calls for a set of mechanisms
to detect a system failure and respond accordingly; three
paradigms are currently used within the solution landscape:

« At-most-once delivery (avoid duplication) [56]
« At-least-once delivery (for completeness concerns) [57]
« exactly-once (in an ideal world) [58]

Generally, all paradigms implement a check-pointing sys-
tem that asserts the correct departure of a message, its receipt,
and the existence of a functioning link between two nodes.
Consider two nodes communicating (a master and a slave)
and transmitting a unique message - how many messages
will be delivered if everything works correctly? If one packet
is lost? If the slave crashes? If the master crashes? If a
combination of failures occurs?

Naive communication involves the blind dispatch of the
message from the master to the slave. In the event of a failure,
the packet is lost during transmission, but no duplicate is
possible (i.e. at-most-once delivery systems). The simplest
fault-tolerant communication protocol involves requiring an
acknowledgement from the slave node upon receipt of the
message. In such a configuration, a lost packet will trigger the
re-submission of the message after an established period of
time. However, if the network fails during the acknowledge-
ment phase, this will instead trigger the generation and receipt
of a duplicate message (i.e. at-least-once delivery systems).
Preferably, a system should be able to deliver a message,

15357

IEEE Access

T. Dubuc et al.: Mapping the Big Data Landscape: Technologies, Platforms and Paradigms for Real-Time Analytics of Data Streams

regardless of the condition, once and only once. Such a
solution requires the presence of a counter on each node, that
identifies the origin and the unique ID of each transaction.
In the event of a failure, if re-delivery occurs, a duplicate
would be detected as the transaction’s unique ID would be
present twice [59]. This is a very simplified vision of what
an exactly-once semantic system could be, but the actual
implementation of such a system would have more technical
problems than can be addressed in this review. However,
it remains that the tracking of transaction states holds a central
place in the mechanisms enabling this functionality, and with
that, the preservation of the different tasks running.

3) TASK PRESERVATION

The end-goal of all fault-tolerance mechanisms is to maintain
the operation of the system until all tasks are completed
successfully, and the data are securely stored. When it comes
to task completion, the first and perhaps most common factor
that could put the operation in jeopardy is human error. In a
well-designed environment, if a job sub-task ran a faulty code
implementation or met a limit-case, this should not impact
the rest of the system. To ensure this, most compute engines
start each worker in separated context (multiple JVM process,
linux cgroups, virtual machines, containers, etc...) [60]—[63]
enabling a process to die without affecting the overall system.

In the case of a hardware failure, the re-scheduling of the
operation should be ensured to prevent a task from disappear-
ing; this is generally handled by the scheduler in charge of
monitoring the health of each task. Other engines keep a log
of the operations performed to attempt recovery of context
and data in the event of a system failure.

Finally, one of the most sensitive features related to the
robustness of a system is the presence of ‘single points of fail-
ure’: a unique part or function upon which depends the oper-
ation of the whole system. Should a central node (typically a
control node) or process cease to function, the entire system
would become inoperative and stop in an undetermined state,
leading to extensive maintenance and downtime. Most mod-
ern systems offer the possibility to be distributed/duplicated
over multiple identical nodes (redundancy) to prevent such
weaknesses.

D. DATA AVAILABILITY

Data availability is a substantial concern when dealing with
large amounts of data. If handled incorrectly, it can have
immediate adverse consequences on system latency and
throughput - as each computational task tries to acquire the
data it needs, it will also need to retain control of the compu-
tational resources required for the task, for however long data
retrieval takes.

This problem can extend further: in the event of a faulty
node or unstable network, data retrieval may need to be
repeated several times until a new node takes over the task
of the faulty/unreachable node. This can be catastrophic if
communication fails at a critical moment (i.e. peak usage),

15358

Boewulf cluster

|
0 |
0 W—]X[u

é—[u) (il

FIGURE 5. Beowulf cluster-based computation: A Beowulf cluster
composed of multiple pieces of convenience hardware ingests multiple
data entries. The computation scheduling and data routing are handled
by the custom software running along with the data. No built-in fault
tolerance exist. The result can be retrieved whenever the code execution
completes.

Result

— [

)
)

and the consequent recovery procedures trigger cascading
issues that impact system latency.

Mitigating measures are typically taken to decrease the
danger of hardware failure but are not aimed at decreasing
the system’s data-driven latency. For this, at least one version
of the data should be located close to the compute node and,
depending on the problem, should persist in a shared memory
[64]. Note that this mainly applies to recursive tasks acting
multiple times upon the same data samples.

E. COMPUTE PARADIGMS

Thus far, we have introduced the concepts of distributed
computing, and Big Data appliances as a pool of computa-
tional power. The reality is largely different from the theory
however, as hardware and software constraints often structure
the application pipeline. We now introduce four successful
computational architectures that are used in various produc-
tion environments; these paradigms are often tailored to suit
particular markets, thus their individual implementation can
differ.

1) BEOWULF CLUSTER
This paradigm is widely used when prototyping systems,
including those that leverage multiple convenience comput-
ers. Originally tailored for a designated computer hardware
(built in 1994 at NASA, by Thomas Sterling and Donald
Becker [65]), today it does not require specific hardware.
Typically, a Beowulf cluster is anything with computational
power (See Figure 5), physically and logically interconnected
in a way that allows a task to be distributed (LAN + software).
There are a number of good practices to follow (state
saving, thread-safe data structures, communication synchro-
nization, etc.), but it is important to remember that this
architecture (unlike the Lambda or Kappa architectures,
reviewed below), requires significant customisation. Typi-
cally, a Beowulf application setup involves some form of
network abstraction (e.g. Parallel Virtual Machine [66]) to
enable the easy parallelisation of tasks by creating a logical
virtual machine using all available nodes, or fast inter-
machine communication (e.g. InfiniBand, Message Passing

VOLUME 9, 2021

T. Dubuc et al.: Mapping the Big Data Landscape: Technologies, Platforms and Paradigms for Real-Time Analytics of Data Streams

IEEE Access

E]E]Dita 00

|
OO00O
/ /Map \ \ O
) B &)) X

| | ' !Reducel

FIGURE 6. MapReduce based computation: A MapReduce computation
paradigm composed of four computing units. The data are grouped in
batch, preprocessed (Shuffle operation) and Mapped to the different
compute units. Each data entry so dispatched is expected to be of equal
size. The result is obtained upon completion of all individual
computations by Reducing the multiple outputs into a single resuit.

Result

@

Interface [67], [68]) to manage communication of heteroge-
neous nodes.

In essence, fault tolerance and data access in an application
is the responsibility of the cluster Designer, unlike for other
solutions that instead rely on the quality and performance of
off-the-shelf software solutions. Although hosting a Beowulf
cluster carries significant overhead, in terms of maintenance,
this approach still offers advantages due to its tailored infras-
tructure that can optimise for low latency, communication,
high memory performance, or distributed processing.

2) MapReduce

The MapReduce programming model is a distributed, fault-
tolerant paradigm [69] where computations unfold in three
parallel phases: (1) the Map method allows the initial
transformation (sorting, splitting, normalization, ...) of the
data, (2) the Shuffle operation reroutes the interdependent
datasets toward the designated computation units, and (3)
the Reduce step aggregates and consolidates the results [69]
(See Figure 6). In a way, this paradigm can be considered a
‘divide-and-conquer’ strategy as the Map primitive allows the
generation of individual datasets much smaller than the initial
tuples, thereby increasing the tractability of the individual
tasks to be undertaken (supposing that the initial task can
indeed be parallelized).

The native resilience and scalability of the MapReduce
paradigm is its main difference compared with Beowulf: by
constraining the manner in which the code unfolds (Map —
Shuffle — Reduce), it becomes possible to identify critical
points supporting the computation and optimize/protect those
points accordingly. Depending on the hardware specification
of the nodes supporting the code, this approach is capable of
dealing with large scale data (petabytes) within a reasonable
time frame [69].

3) LAMBDA ARCHITECTURE
The Lambda architecture can be considered the pinnacle
of Big Data computing: it is robust, well established [70],

VOLUME 9, 2021

tested [12] and somewhat bulky [71] (See Figure 7). Lambda
architecture can be divided into three main modules:

o A batch processing layer controls handling the heavy
load of the computation. This MapReduce layer
runs requests in bulk, distributing tasks over many
cores/nodes (map operation), and aggregates the results
upon completion (reduce operation) without latency
related restrictions; in certain applications, tasks handled
this way can take between hours and weeks to complete.
Despite long computation times, this method remains
one of the most efficient, and is a direct consequence
of the architecture of currently available hardware solu-
tions.

o A Speed processing layer controls balancing the high
latency produced by the batch processing layer. This
layer conducts incremental computation to provide par-
tial results, thus enabling any service relying on its
architecture to continue operating while waiting for the
batch computation to complete. Through this pipeline,
the overall system is able to handle applications with
millisecond latency.

o A Serving layer ensures the results are coherent,
as the Lambda architecture contains two data production
pipelines that need to be merged correctly. This layer
takes the most complete and up-to-date version of the
result(s) to serve to the client application, efficiently
intertwining the two time scales in an (almost) seamless
way.

Within the treatment pipelines of Lambda, the operations
are carried on immutable data - only addition and deletion
operations are authorised. This paradigm is described as
‘human fault-tolerance’ by Nathan Marz and James Warren
[72]: if some records imputed are invalid, their deletion and
the re-computation of the results during the next batch will
correct the overall data and metrics. This architecture comes
with a set of characteristic features:

First, when erroneous data are entered and corrected,
an entire batch of data has to be recomputed, which can take a
substantial amount of time. However, as Lambda architecture
acts on immutable, discretized data-sets, recomputing the
data can be straightforward.

Second, each algorithm has to be implemented twice (a
batch version and a real-time version) thereby increasing
maintenance and development cost. Note that some high
level programming frameworks (Summingbird [73]) solve
the problem to an extent, by making it possible to implement
the algorithm once, before compiling it for both paradigms at
once.

Third, the architecture is not fit for every application:
machine learning e.g., requires a large amount of iterative
operations on which I/O times can have a huge impact. This
is primarily true for Apache Hadoop, and some mechanisms
have been implemented to by-pass it (see sub-section III-A1).

Finally, the requirement for two layers following two dif-
ferent paradigms often means that two different processing

15359

IEEE Access

T. Dubuc et al.: Mapping the Big Data Landscape: Technologies, Platforms and Paradigms for Real-Time Analytics of Data Streams

[Data batch] [New data]

---DDD?DD%E

v
[Shuffle]
m D Result

| i
OO0 A
/ /' Map _ C') g

[[u -) (1—-) (u -]] ,r
| | L————[Reduce

FIGURE 7. Lambda architecture driven computation: A Lambda
architecture computation pipeline composed of two main parts: a
MapReduce, batch processing, pipeline (in red) and a Speed processing
layer (in green). As data are submitted over time, they are grouped in
batch and submitted to the slow MapReduce pipeline. Each new data
entry added during the batch processing life cycle is handled by the
Speed processing layer. This will incrementally update a temporary cheap
approximation of the result space. The serving layer (in blue) aggregates
both, the exact output of the slow Batch layer and the fast approximation
of the Speed processing layer, always serving the best-known result for
the timestamp desired.

Data flow

--0000000000-

=
= —~000
E Result Flow

FIGURE 8. Kappa architecture driven computation: A Kappa architecture
computation pipeline composed of three compute units. This paradigm
forgoes the bulky Batch layer of the Lambda architecture and transfers its
accuracy to the Speed layer. Unlike the previous setup, the data entries
here are immutable and the introduction of rectifying data items (in blue)
is the only way to amend an erroneous input (in red). The data are
handled in the same fashion as the Speed layer (in green) of the Lambda
architecture .

engines are needed. Although not immediately obvious, that
subsequently entails a double administrative policy, which
again adds to the overheads of running the infrastructure.

4) KAPPA ARCHITECTURE

First introduced by Jay Kreps in 2014 [74], and then
illustrated by Martin Kleppman at the 2014 Strangeloop con-
ference [75], Kappa architecture is a processing model sim-
ilar to traditional event-oriented programming. The Kappa
architecture is a simplification of the Lambda architecture,
in which the batch system is removed [17]. Kappa moves the
core background processes of a database into the foreground:
rather than storing the data itself, the system acts as a logging
module, storing the ordered, immutable, series of operations
that have transited through it. There are numerous impli-

15360

cations of this new paradigm, compared with the Lambda
architecture:

« A message logging system is required.

« No input data are lost, except if explicitly requested.

o Correcting an input is impossible, and instead a new
record is created that will balance out the previous erro-
neous entry.

¢ Only a single version of each algorithm needs to be
implemented.

This yields a fairly simple infrastructure (single time scale,
no algorithm duplication) where the computation layer has
to be efficient enough to maintain real-time performance,
capable of keeping up with the continuous stream of data.
Another theoretical point supposes the log/message system
will be able to replay messages on demand. This is an impor-
tant feature that enables performing re-computations needed
to ensure the integrity of the database upon modification of
an algorithm. This last aspect will not be extended here as the
implementation is very much dependent on the underlying
technology (see sub-section I1I-A3).

We have reviewed essential theoretical concepts that shape
the landscape of technological solutions available for Big
Data processing in real-time. Designers and end-users of
such solutions must consider their individual constraints,
and understand that these constraints dependent on: what is
expected of the system as a whole, its expected robustness
to failure, its ability to recover from fault and compensate
for the loss of data, the intended throughput, etc. Applica-
tions of ‘Big Data’ and data streams have properties that
will inevitably influence the decision to utilize one solu-
tion over another. We reviewed four compute paradigms,
which form the backbone of most off-the-shelf solutions.
These paradigms attempt to accommodate hardware and soft-
ware constraints to maximise performance and availability,
by increasing redundancy of data, and structuring processing
pipelines in order to leverage low cost computing archi-
tectures. Adopting such solutions comes at a cost, which
depends on the application requirements, i.e. the use of off-
the-shelf technologies is more cost effective than for the
application tailored specific solutions.

IIl. AVAILABLE SOLUTIONS

As the rise of Big Data yielded new challenges, the number
of off-the-shelf solutions grew in similar proportions. In this
section, we review a selection of technologies; although
these might rapidly become obsolete, our objective is to use
these solutions to qualitatively map the technologies cur-
rently available. This qualitative analysis is important as it
highlights the aspects that service providers believed were
important for Big Data, and have thus far survived market
pressures. To begin, we differentiate two types of solution:
(1) the specialized modules and (2) stacks considered ‘off-
the-shelf’. This first distinction is important as each module,
when considered separately, only covers a small portion of
the problems to be addressed when creating a fully fledged

VOLUME 9, 2021

T. Dubuc et al.: Mapping the Big Data Landscape: Technologies, Platforms and Paradigms for Real-Time Analytics of Data Streams

IEEE Access

computational, fault-tolerant system. We do not discuss the
different implementation-specific limitations of the middle-
ware as these bear little weight with respect to the paradigm
and architecture they represent.

A. MODULAR SOLUTIONS

Amongst the modules available, we can differentiate a num-
ber of roles or aims - note these are not necessarily mutually
exclusive.

1) COMPUTE ENGINES

Processing capabilities is one of the pillars of Big Data.
Many types of compute engines exist (e.g. Apache Hadoop)
with each implementing the MapReduce or ‘‘real-time”
paradigms to a degree. Apache Hadoop is commonly thought
to be the embodiment of the Lambda architecture, which itself
is often mistaken for a simple batch processing architecture,
disregarding the benefit of the speed layer. Apache Hadoop
laid the foundation for many different compute engines and
merits a detailed discussion.

Apache Hadoop (see Table 1) is a compute cluster model
and implementation based upon the MapReduce paradigm
[76]. Its main role is the delivery of the (to be processed) data
blocks to the computational nodes available and the manage-
ment of the activity of these nodes. This is achieved using the
network-distance sensitive Hadoop Distributed File System
(dubbed HDFS) [52]. HDFS offers file splitting and redun-
dancy across the network, along with local rack-awareness,
enabling a smart triple-point redundancy of the data: one
copy on the node to perform the computation, another on a
neighbour node located in the local rack, and a third located
in a foreign rack to shield against power outage (note that
while other file systems are supported (see Table 1), some of
the redundancy functionality might not be operative for other
file systems than HDFS). Apache Hadoop architecture layers
are as follows:

Bi-layered: the HDFS layer carrying the data are distinct
from the MapReduce layer handling the computational
tasks

HDFS layer: contains two types of nodes, the NameN-
ode (controls scheduling and the indexation) and the
DataNodes (act as containers, and are the entities
through which data persistence and redundancy is imple-
mented).

MapReduce layer: also contains two types of nodes,
the JobTracker (the gateway to job submissions and
recipient of the rack-awareness information), and the
TaskTracker (manages the health and location of a task).
The TaskTracker node spawns a separate Java Virtual
Machine (JVM), efficiently shielding the rest of the
system from any operational crash. Any forcefully ter-
minated task (e.g. crash, fail, time out) is rescheduled,
leading to an at-least-once processing guarantee.

In its prime mode, Apache Hadoop presents itself as a
FIFO queue, treating the tasks in order of arrival. This can

VOLUME 9, 2021

be extended by specifying one of five optional scheduling
priorities to favour some tasks over others; It is also possible
to define a customised scheduler that is better suited to a
particular workload. Additionally, its file system is designed
to hold very large amounts of data (tens of petabytes) -
while being possibly limited by the RAM requirement of the
namespace [77]) making it a valid data storage solution for
Big Data applications.

Apache Spark (see Table 1) [78] is considered the state
of the art of the MapReduce paradigm. It was developed
in response to one of the main limitations of the paradigm:
the heavy reliance on I/O operations to/from the disk to
perform batch computation. Apache Hadoop compute clus-
ters are inherently hard drive intensive because of the 1/O
oriented redundancy and data: the data loading — map com-
puting — result storage life cycle of the basic MapReduce
model becomes a time consuming process, especially for
tasks requiring successive iterations over the same dataset,
i.e. Machine Learning model training. Storing and keeping
immutable data in RAM directly reduces the overhead of the
model. Note that while machine learning training is an itera-
tive task, and could therefore be represented as a cyclic com-
putational graph, as for most stream engines presented here,
Apache Spark only supports acyclic computational graphs to
be processed (termed DAG, Directed Acyclic Graph).

Apache Spark augments both the MapReduce paradigm
and Apache Hadoop through the use of distributed data
objects [78], which provide degrees of fault tolerance and can
accommodate a range of querying languages through APIs.

All of the engines described so far are both particularly
well-suited and limited to batch processing.

Apache Spark Streaming (see Table 1) [79] moves further
towards real-time computing by enabling Apache Spark to
support micro-batch processing. It is set up by periodically
splitting any continuously incoming flow of data, and them to
the Spark nodes. This naturally decreases the latency deliv-
ered by the engine as the maximum idle waiting time for a
newly submitted dataset reduces hours to seconds.

The recent demand for real-time analytics and applications
has driven a paradigm shift to addressing messages instantly
upon submission and/or in order of production. This is one
more step beyond Apache Spark Streaming, in that the con-
cept of a batch is substituted by that of a single data record - as
mentioned earlier, such an approach has a number of practical
difficulties but constitutes the closest implementation of a
resilient computation engine that bears no latency.

Apache Storm (see Table 2) [80] is a distributed-stream
processing engine encoding the operations to be carried
out as an acyclic graph through which records (termed
events) - enter, flow and leave ‘transformed’. Unlike Apache
Spark, an event is not guaranteed to be treated at-least-
once nor exactly-once. This restriction can be bypassed with
Apache Storm Trident that provides an exactly-once pro-
cessing guarantee, by replacing the event-driven computation
paradigm with a micro-batch treatment. Apache Storm keeps
within memory the ‘history’ of the graph operations that

15361

IEEE Access

T. Dubuc et al.: Mapping the Big Data Landscape: Technologies, Platforms and Paradigms for Real-Time Analytics of Data Streams

TABLE 1. A comparison of the qualitative features of the Apache Hadoop, Apache Spark and Apache Spark Streaming compute engines. Programming
Level defines the level of hardware abstraction; Native file system file systems for which the engine was originally designed; Alternative file system file
systems that are now compatible, using with plugins to extend the original compatibility; Fault tolerance the presence/type of computational
preservation mechanism; Fault tolerance type the fault tolerance qualification; Semantic the level of computational guarantee the engine delivers;

Compute type the compute engine method for handling tasks as they arrive.

Apache Hadoop Apache Spark Apache Spark Streaming

Programming Level Low Mid Mid

Native file system HDEFS HDFS, HBase HDEFS

Alternative file systems FTP, Amazon S3, WASB Shared file system FTP, Amazon S3, WASB

Fault tolerance Yes Yes Yes

Fault tolerance type Re-scheduling Re-compute operation line Re-compute operation line

Load balancing Yes Yes Yes

Semantic EO

Compute type Batch Batch Stream through microbatch

Operating systems Windows, Linux Windows, Unix-based ‘Windows, Unix-based

Native language Java Java, Scala Java

Alternative language Any (wrapper) Python, R, Julia Scala, Python, Clojure, R

Ambivalent database/Data model HDEFS SQL, Dataframe, Cassandra, SQL, Dataframe, Cassandra,
HBase, Hive, Tachyon, files (CSV, HBase, Hive, Tachyon, files (CSV,
JSON, Parquet, ORC, Avro, text), JSON, Parquet, ORC, Avro, text),
any hadoop datasource NFES, GSC, any hadoop datasource

Source database and data providers None None Amazon Kinesis Streams, Twitter,

TCP sockets

Sink database and data providers None None

Processing order FIFO FIFO FIFO

Expected throughput Low Mid Mid

Latency (unit of time) Hours Minutes Seconds

License Apache 2.0 Apache 2.0 Apache 2.0

TABLE 2. A comparison of the qualitative features of computer engines: Apache Storm, Apache Flink and Apache Samza. Programming Level defines the
level of hardware abstraction; Native file system file systems for which the engine was originally designed; Alternative file system file systems that are
now compatible, using with plugins to extend the original compatibility; Fault tolerance the presence/type of computational preservation mechanism;
Fault tolerance type the fault tolerance qualification; Semantic the level of computational guarantee the engine delivers; Compute type the compute
engine method for handling tasks as they arrive.

Apache Storm Apache Flink Apache Samza
Programming Level High High High
Native file system Distributed FS HDFS, S3, GCS, MAPRFS (all Any
through FS abstraction)
Alternative file systems None Any distributed FS None
Fault tolerance Yes Yes Yes (using Apache Yarn/Kafka)

Fault tolerance type

Load balancing
Semantic
Compute type
Operating systems

Native language
Alternative language

Ambivalent database, Data model
Source database and data providers
Sink database and data providers
Processing order

Expected throughput

Latency (unit of time)
License

Re-compute from earliest failure
point onward

Yes

AMO, ALO, EO (through Trident)
Stream

‘Windows, Unix-based

Clojure, Java

Ruby, Python, Javascript, Perl, any
language using Apache Thrift

SQL

Any through spout abstraction (a
large number exist).

Time based
High
milliseconds
Apache 2.0

Re-compute from latest failure
point onward

Yes

EO

Stream

Windows, Unix-based

Java, Scala
Python

Apache Kafka, RabbitMQ, Amazon
Kinesis Streams, Apache NiFi
Twitter

Elasticsearch, HDFS, Apache Cas-
sandra, Redis, Flume, ActiveMQ
(via Apache Bahir)

Time based

High

milliseconds

Apache 2.0

Snapshot + Rescheduling

Yes (using Apache Yarn or Kafka)
ALO

Stream

Windows, Mac OS X (dev) and
Linux (dev + prod)

Java, Scala

JVM languages

Apache Kafka

Any (through plugable API)

Time based
High

Apache 2.0

generated the data, such that in the event of a job failure, this
information can be used to restart the job from the earliest
failure point, ensuring operation completeness.

Apache Flink (see Table 2) [81] is a relatively recent
stream processor exposing an only-once semantic and sup-
porting acyclic computational graphs. It is described as

15362

being dedicated to ‘distributed, high-performing, always-
available, and accurate data streaming applications’ [82].
Unlike Apache Storm, Flink ensures ordered data processing
based upon the timestamp of data production rather than the
time of arrival. Another strength of Apache Flink is the way
it handles backpressure (where downstream operators are not

VOLUME 9, 2021

T. Dubuc et al.: Mapping the Big Data Landscape: Technologies, Platforms and Paradigms for Real-Time Analytics of Data Streams

IEEE Access

fast enough to process data at the same speed as the upstream
operator pushing the data):

In the case of two workers hosted on the same machine,
this process is achieved in memory whereas over the network,
the reading process unfolding over TCP connection is inter-
rupted in the event of a full buffer, effectively stalling the
source until more capacity is available.

As for previously mentioned engines, those operations are
carried out in a fault-tolerant fashion. A system of stream-
replay and distributed check-pointing [81] tracks the unfold-
ing of each task at the local and global scale and flags the
progression of the different operations involved. This enables
the rollback and recovery of a task in cases where one element
is faulty.

Apache Samza (see Table 2) [63] is another relatively
recent stream processing engine. It relies on Apache Kafka
for data communication (see Section III-A3) and Apache
Hadoop Yarn for fault tolerance, processor isolation, security
and resource management (see Section I1I-A2). As such it is
more of a stack than an independent compute engine, and
this was its intended purpose when LinkedIn developed it
concurrently with Apache Kafka.

Apache Samza resembles Apache Flink, but a key func-
tional difference is its inability to perform batch processing:
the engine is built entirely on the concept of streams and ordi-
nary queue distribution. Another difference is its reliance to
the stream partition functionality of Apache Kafka, to achieve
cross-machine task parallelism; the tasks themselves are iso-
lated within a process of a Linux cgroup analogously to
Apache Storm. Finally, Apache Samza cannot guarantee an
exactly-once semantic - although each element is ensured to
be treated, the fault tolerance and distribution model only
provide an at-least-once semantic.

2) COORDINATORS

We define ’coordinators’ as an umbrella term to describe
solutions in charge of maintaining the computation cluster
and/or task execution integrity. For instance, the software
might be used for another middleware to safely maintain their
configuration parameters, or for a task scheduler to maintain
the execution integrity of a group of computational instances.
Nonetheless, they form the central coordination piece of the
cluster, without which the good behaviour of the system is
impossible.

Apache Hadoop YARN (see Table 3) [83], or ’ Yet Another
Resource Negotiator’ [84], is a task scheduler coupled with
a resource dispatcher for distributed processing systems. It is
composed of two main components:

Resource Manager: the master authority of resource
and task distribution in the system.

Node Manager: a per-machine task and resource moni-
toring agent in charge of providing useful metrics to the
Resource Manager.

Within the Resource Manager agent there are two services
in constant communication: the Scheduler, responsible for

VOLUME 9, 2021

allocating resources to the various running applications (with
respect to constraints and queues) and the Application Man-
ager, which handles job submissions (from their acknowl-
edgement and container negotiation, to the management of
fault tolerance). In the event of a failure forcing the restart of
the system, two options enable the (partial) preservation of
the service state, essentially making the event invisible to the
user:

Non-work-preserving Resource Manager restart,
preserves the state of the service in an external database
(Zookeeper, HDFS, LevelDB) and kills the existing jobs.
Upon failure, the state is restored and the previously
running application is re-started.

Work-preserving Resource Manager restart, pre-
serves the state of the service in an external database
but does not kill the existing jobs. Upon restart, the state
of the newly activated Scheduler is rebuilt using infor-
mation provided by Node Managers and Application
Masters.

Together, those communicating components form an
adaptable, customizable environment in which tasks are
maintained and can thrive. Despite this adaptability,
the infrastructure can be difficult to manage, especially for
users new to the system.

Apache Twill (see Table 3) [85], formally Apache Weave,
is an abstraction layer to Apache Hadoop YARN that allows
the use of its distributed capabilities through a programming
model similar to threading. However, because of their heavy
reliance on the Resource Manager, both Apache Hadoop
YARN and Apache Twill can potentially suffer from a single
point of failure.

Apache Zookeeper (see Table 3) [86] takes a different
approach, presenting a distributed coordination service - ini-
tially a sub-project stemming from Apache Hadoop, it is
now a first-level project. Zookeeper aims to offer a low-
latency, high availability, fault-tolerant distributed computa-
tional network, devoid of single points of failure. Zookeeper
attributes a name and a path to each node, much like any file
system; the difference lies in the low storage size available
(< 10KB), which is dedicated to the persistence of the cluster
configuration and identification of each node. As this is not
a Big Data passing/replicating system, it is necessary to run
this architecture alongside a database with which to share the
actual data to process.

Furthermore, the communication architecture demands
that at least (N + 1)/2 nodes (where N is the total number of
nodes in the system) are running at any time for the system to
maintain its operation. This translates into a three-node Kafka
cluster (running in Zookeeper) being able to bear a maximum
of one node failure, alike a four nodes system.

The official FAQ recommends aiming for a five node
system as the number of nodes has a negative effect on the
data writing speed of the ensemble (and a marginally positive
impact on the reading speed).

15363

IEEE Access

T. Dubuc et al.: Mapping the Big Data Landscape: Technologies, Platforms and Paradigms for Real-Time Analytics of Data Streams

Apache Curator (see Table 3) Apache Curator is an
Java/JVM client library for Apache Zookeeper that aims to
ease the use of the latter through a high-level API framework.
It is not a coordinator in its own right but packages a number
of pre-implemented procedures fit to tailor the coordination
of a cluster to specific needs [87].

HTCondor is a coordinator that offers additional capabil-
ities, that merit mentioning it here. HTCondor can harness
the computational capabilities of machines that are idle (such
as unused desktop machines), combining them into a bespoke
Beowulf cluster. It can dynamically detect available machines
and elastically adapt the distribution of the computational
tasks and related data to the size of the cluster [88].

3) MESSAGE PASSING SYSTEMS

Message passing systems are an important part of all Big
Data systems: when the quantity of data to be managed
increases such that a single system can not possibly handle it,
their displacement and direction towards the recipient nodes
can become a problem. Message passing systems handle
the heavy task of fault-tolerant message delivery and must
be horizontally scalable and well-behaved regardless of the
amount of data.

Apache Flume (see Table 4) [89] is a streaming platform
that aims to deliver information to the HDSF of Apache
Hadoop, thus it uses a simple structure optimized for that task,
based upon data streaming. Pictured as an information fun-
nel, driving data from various sources towards a centralized
sink, Apache Flume can handle any data source, including
social media, telecommunication networks, email, databases,
other streaming platforms or files. The fault tolerance within
Apache Flume is delivered through two steps: (1) every
incoming message is stored in a passive queue hosted by
the HDFS; (2) when two or more Flume processes need
to communicate, the message within the sender’s queue is
only deleted when the receiver has acknowledged receipt and
storage of the message content.

Apache Kafka (see Table 4) [90] was originally developed
by LinkedIn alongside Apache Samza and was designed to
compensate for the lack of ubiquity of Apache Flume. It is
a streaming platform enabling the easy interconnection of
multi-type data sources, compute engines and data sinks.It is
seen as the correct implementation of the Kappa architecture
in that it generates streams of data from sources that are,
in principle, never to be deleted. This enables any process to
be replayed from the beginning if any processing needed to
be amended.

Its foundations rely on Apache Zookeeper to coordinate
its different stream brokers; the clients are directly notified
by the coordinator of the availability of each data broker.
This means that when facing a running cluster, as long as
the client accounts for the list of brokers provided and tries
them sequentially, it is guaranteed to successfully send a
message regardless of the main receiver node’s availability.
Each message/event transmitted is then redundantly stored

15364

within a distributed fragmented log, ensuring fault tolerance.
In that respect, Apache Kafka is an efficient storage system.

The streams produced are organised in (user defined) top-
ics and handled by Producers (applications producing data)
and Consumers (applications receiving data) paired through
the simplest form of communication, and their API which
enables writing and reading from a data stream, respectively.
Extending those basic functionalities, results in a processing
and a connection framework:

Kafka Stream API, supports and promotes stateful
stream transformations. It is similar to Apache Storm
in the sense that this is achieved through the generation
of an acyclic computation graph distributed within the
cluster.

Kafka Connect, enables the external communication
to and from Kafka. It facilitates the ingestion of large
amounts of data (such as entire databases), in addition
to data assimilation on-demand; it can be run as a stand-
alone process or as a scalable, fault-tolerant cluster ser-
vice.

The advertised capabilities of Apache Kafka recommend
the clients to use the Kafka API, enabling managing of
error messages and buffering necessary to achieve robustness
within the platform.

RabbitMQ (see Table 4) was one of the first mature
(good level of features, client libraries, developer tools, doc-
umentation) message brokers on the market. Focusing on
message transmission, over archiving/retrieving events, it is
unlike Apache Kafka as it comes with a large variety of
messaging protocols such as AMQP, originally developed to
support STOMP, MQTT and HTTP. Unlike Apache Kafka,
RabbitMQ does not rely on an external coordinator to manage
its data brokers and consumers. Presenting a more monolithic
face, it assumes a server-centric model where the clients
are only expected to subscribe to a queue to start con-
suming/publishing messages. The server side (and therefore
queue side) assumes the buffering and distribution of the
messages to the appropriated consumers [91].

4) DATABASES

Databases are inevitably an important component of
production-grade ‘Big Data’ environments. While not
mandatory (data could simply be streamed and the results
consumed by the end-user without retention), they are ubig-
uitous and constitute main data sinks/sources. Loosely speak-
ing, we can differentiate the following types of databases:

« Relational DBMS (e.g. Oracle, MySQL, Microsoft SQL
Server, PostgreSQL, SQLite)

o Document databases, NoSQL (e.g. MongoDB, Ama-
zon DynamoDB, Apache Cassandra, CouchDB, HBase,
Couchbase)

o Graph databases (e.g. Neo4J, Titan, Giraph, Infinite-
Graph, DGraph)

VOLUME 9, 2021

T. Dubuc et al.: Mapping the Big Data Landscape: Technologies, Platforms and Paradigms for Real-Time Analytics of Data Streams

IEEE Access

TABLE 3. A comparison of the qualitative features of the coordinators: Apache Hadoop YARN, Apache Twill, Apache Zookeeper and Apache Curator.
Programming Level defines the level of hardware abstraction;Fault tolerance the presence/type of computational preservation mechanism; Fault
tolerance type the fault tolerance qualification.

Apache Hadoop Yarn Apache Twill Apache Zookeeper Apache Curator
Type Cluster Coordinator Cluster Coordinator Cluster Coordinator Cluster Coordinator
Programming Level Low High Low High
Fault tolerance Yes Yes Yes Yes (through Zookeeper)
Fault tolerance type State save/reconstruction State save/reconstruction Master election / reroll Retry + Zookeeper
Load balancing Yes Yes Limited Yes

Operating system

(dev) Windows, Mac OS X,

(dev) Windows, Mac OS X,

(dev + prod) Linux (dev + prod) Linux (dev + prod) Linux
Native language Java Java Java, conf files
Alternative language None None None
License Apache 2.0 Apache 2.0 Apache 2.0

(dev) Windows, Mac OS X,

(dev) Windows, Mac OS X,
(dev + prod) Linux

Java, configuration files
None

Apache 2.0

TABLE 4. A commparison of the qualitative features the streaming platforms: Apache Kafka, Apache Flume, and RabbitMQ. Programming Level defines
the level of hardware abstraction; Native file system file systems for which the engine was originally designed; Alternative file system file systems that
are now compatible, using with plugins to extend the original compatibility; Fault tolerance the presence/type of computational preservation
mechanism; Fault tolerance type the fault tolerance qualification; Semantic the level of computational guarantee the engine delivers; Compute type the
compute engine method for handling tasks as they arrive.

Apache Kafka Apache Flume RabbitMQ
Type Streaming Platform, Compute En- Streaming Platform Streaming Platform
gine
Programming Level High High High
Native file system N/A HDFS N/A
Fault tolerance Yes Yes Yes
Fault tolerance type Re-routing, data replication data replication data replication
Load balancing Yes Yes, at the sink level Yes (Queues), No (nodes)
Semantic Transaction: ALO (EO in dev.) ALO (EO in discussion) AMO, ALO (conf. dependant)

Compute type
Operating system

Native language
Alternative languages (for clients)

Stream API: ALO, EO
Stream
Windows, Unix-based

Java, Scala

C, C++, Python, Erlang, Go (aka
golang), .NET, Clojure, Ruby,
Node.js, Proxy (HTTP, REST),
Perl, PHP, Rust, Alternative Java,

stdin/stdout, Storm, Scala DSL,
Clojure

Ambivalent database/Data model Virtually any

Source database and data providers | N/A

Sink database and data providers N/A

Processing order Time-based

Expected throughput High

Latency (units of time) milliseconds

Open Source Yes

License Apache 2.0

N/A

Ubuntu, CentOS, Red Hat, Suse,
Mac OS X

Java, Scala

Assumes clients can produce a
Flume compatible message

HDFS
Any
None
FIFO
Mid

Yes
Apache 2.0

N/A

Debian-based, SUSE, Mac OS X,
RPM-based, Windows XP and later
Erlang

Java, .net, Objective-C, Ruby,
Python, PHP, Swift, Clojure,
JRuby, JavaScript, C, C++, Go,
Erlang, Haskell, OCaml, Perl,
Common Lisp, COBOL

Virtually any
N/A

N/A

FIFO

Mid

Yes
Mozilla Public 1.1

o Multi-model databases formed from hybrids of the
above (e.g. MarkLogic, Microsoft Azure Cosmos DB,
OrientDB, Apache Drill, ArangoDB)

Regardless of the type used, the setup needs to be scal-
able and robust enough (according to the Volume of the
data) to handle the high throughput of the computational
system. As such, distributed implementation seems optimal,
despite the constraints posed by the CAP Theorem (see
Subsection II-C1).

The choice of database systems and their specifications
is a vast topic and is outside the scope of this review.
Multiple benchmarks and reviews [92], [93] highlight the
capacity, strengths and weaknesses of existing databases,
and the different documentations for the products cited
above.

VOLUME 9, 2021

B. FULL STACK AND CLOUD COMPUTING
1) MANAGED PLATFORMS
The main conclusion that can be drawn from this review is
that ‘Big Data’ and real-time analytics is a highly complex
and interdisciplinary field that requires diverse expertise in
network communication, IT infrastructure, storage, control
and optimisation; this expertise is required even before one
can begin to plan the types of processing and analytical
pipelines that could yield return on investment from the data
available. This expertise is likely to involve diverse teams,
whose roles will become critical for core operations of busi-
nesses.

For companies that are not involved in research and
development of computing solutions, this required expan-
sion can have substantial cost, and several service providers

15365

IEEE Access

T. Dubuc et al.: Mapping the Big Data Landscape: Technologies, Platforms and Paradigms for Real-Time Analytics of Data Streams

are offering simplified solutions, involving decentralised and
remote resources that are managed on behalf of customers.
The goal is to provide reliable and flexible solutions that can
be adapted to needs as they arise.

This is essentially a paradigm shift, where one purchases
the amount of resource needed for a particular task, as and
when it is needed. This is in contrast to the more traditional
model that sees hefty investments in hardware, software
and human resources, in anticipation of future needs, that
may or may not transpire. Dedicated computing hardware
hosted in-house, comprising desktops and computing clus-
ters, can be replaced entirely with cloud computing facilities
that are virtually as powerful and versatile as needed. This
resource can scale rapidly, on-demand, and provides extended
capacity and cost benefits. This is a new and volatile mar-
ket, however, and although the direction of travel is clear,
the precise shape of the technological landscape is likely to
see numerous changes in years to come.

This emerging market has been enabled by a range of
technologies, and several examples are worth outlining here.
Virtualization and containers, for instance, which abstract
software requirements from the hardware layer, have opened
up new possibilities. A particular set of software packages
can be developed and maintained in a given environment,
which can be reproduced and run elsewhere; the details
of the hardware being used becoming largely irrelevant for
most operations. Docker and Singularity are amongst popular
choices. These solutions play a critical role in the landscape
of technologies, and must provide resolutions to a wide range
of issues.

Security, for instance, is a concern that has slowed down
acceptance of these middleware solutions: as middle layers
must negotiate access to privileged resources on unknown
hardware, which in most cases is shared amongst groups of
users, permissive processes can become attack vectors for
malicious actors. Another such issue concerns the replication
of a given environment which may need low-level recon-
figuration, involving compilation steps that can introduce
small discrepancies in code and during execution. Such issues
can be deal-breakers for specialist applications that can-
not afford uncertainty. Cloud computing platforms, however,
have received a lot of attention, and keep growing rapidly. It is
predicted that the global cloud computing market will value
over $200B in 2019, growing over 50% from 2018 [94].

Abstraction layers afford a range of new opportunities to
developers, and come in various forms, ranging from bare-
metal cloud-server solutions effectively providing a basic
operating system on shared hardware (i.e. Rackspace), that
can be reconfigured on-the-go with a user interface (Ama-
zon Web Services (AWS), Microsoft Azure, Nutanix), up to
modular access to specific tools that manage and optimise
network communication, data storage or even out-of-the-box
analytical pipelines (i.e. Google Cloud Platform). These tools
may monitor communication between decentralised entities,
rearrange and move data in response to resource outage at
a particular geographical location, organise communication

15366

queues to minimise packet loss, or adjust the processing
pipeline. Developers thus trade convenience for flexibility,
leaving the system to manage itself. A consequence of this
evolving situation is that users tend to become ‘vendor-
locked’, due to the cost of redeveloping code that does not
rely on these convenience mechanisms.

2) TASK SCHEDULING AND RESOURCE ALLOCATION IN THE
CLOUD

In the paradigm where a company budgets and purchases only
as much resource they need, for exactly the time they need
it, it falls on the provider to ensure that task scheduling and
resource allocation is organised and managed efficiently, and
at a reasonable cost. This is particularly important for real-
time analytics of data streams because the characteristics of
the input flows are likely to vary over time (see Section II-A),
and providers are thus required to be responsive and flexible
to demand whilst keeping costs low [95], [96]. Our review
takes the perspective of the user, not that of the provider. Thus
describing in detail the paradigms deployed by the providers
falls outside the remit of the work presented here. We feel it
is valuable, however, to become familiar with the landscape
of approaches that providers may deploy, and the focus of
what they see as important. This is not, however, an easy task:
big companies, like Google [97], Amazon, Microsoft, or even
Facebook [98] or Twitter, tend to keep most of the details
of their technology under embargo for significant periods
of time, for evident reasons. This technology, which may
be available for hire, may also be subject to change at a
moment’s notice.

For cloud solutions providers, decisions supporting the
provision of computing resources only make sense in the
context of their own business plans, and the way they
may drive profits. Margins typically stem from a range
of sources, spanning customer-facing features (like an Al-
based API, or a robust lossless network queue) and back-end
optimisations (like the efficient management of virtualized
resources, or geo-localised redundancies of data centers).
In addition, although the democratization of Al and data
are now pervasive in virtually every sector, for any given
user, the development of a cloud-based product remains a
significant endeavour, and thus providers have the hard task
of streamlining their offering, ease access and remove hurdles
to adoption.

On the one hand, sources of margins are tangible assets,
often available to customers for comparison. On the other
hand, costs minimization strategies are more opaque and
complex, and ensuing technological decisions may bear sig-
nificant weight on scheduling capabilities for any given
cloud provider. In addition to the more typical costs of run-
ning a global company, cloud providers must manage the
costs involved of running their infrastructure, providing users
with security, robustness and redundancy. Costs associated
with energy consumption, for instance, and associated task
scheduling decisions can make or break a provider [99],
[100]. It is also worth noting that applications that are now

VOLUME 9, 2021

T. Dubuc et al.: Mapping the Big Data Landscape: Technologies, Platforms and Paradigms for Real-Time Analytics of Data Streams

IEEE Access

common, like your typical natural language processing (NLP)
feature, used by personal assistant systems on mobile devices,
bear significant carbon footprint. It was for instance demon-
strated that the training alone of a common NLP deep learning
network can be equivalent to the carbon emissions of five cars
in their lifetimes [101]. Such studies provide ground for the
development of so-called Green Cloud Data Centers, which
attempt to maximise revenue for cloud providers whilst at
the same time minimizing energy cost and carbon footprints
[102].

Global cloud providers do attempt to design solutions that
provide flexibility in dealing with such issues. At the time
of writing, a good example of “out-of-the-box™ thinking is
exemplified by the Dremel architecture that powers several
core services at Google [103], [104]. Unlike typical tabular
data that is accessed sequentially, the Dremel architecture
is characterised by two features that are designed to reduce
response time for big data, and are optimised for MapReduce-
based computing architectures and applications.

o Columnar storage: Data records are split and stored in
columns, not rows as has been customary in databases.
This innovation has the advantages that the high degree
of redundancy in any given column can be compressed,
and that queries can thus manipulate small subsets of
the whole data. A disadvantage, however, is that the
architecture is optimised for retrieval and updates can
thus be extremely costly.

o Processing tree architecture: In addition to a high degree
of storage redundancy, the processing of a query relies
on decentralised sub-queries that are operated in sepa-
rate nodes (leaves). Sub-queries are then simply consol-
idated in a tabular way, if and when needed.

It is our belief that years to come will see the industry move in
that direction, proposing technologies in response to common
customers’ needs, such as lossless network queues, as well as
entirely new ways to structure data to align with current on-
demand paradigm for flexible applications.

IV. PRACTICAL CONSIDERATIONS
A. DECISION POINTS
In light of the difficulty comparing platforms on an equal
footing, and short of realistic and meaningful benchmarking,
one relies on theoretical considerations to inform decisions
on architecture to implement. We can imagine that, for every
problem, it is possible to formulate a Kappa or Lambda
architecture oriented solution based on the fact that (1) the
Kappa architecture is essentially a refined and persistent
version of the Lambda’s speed layer, tasked with compen-
sating for the latency of the batch engine and (2) that the
Lambda architecture can be applied to any problem, even in
extremely inefficient fashion. We, therefore, provide here a
set of aspects that indicate if a particular problem is more
efficiently solved using one architecture or the other.

Let us begin with latency: if the application to be designed
holds low latency constraints, the simplest approach is the

VOLUME 9, 2021

Kappa architecture which treats the elements as they arrive
with minimal delay.

Second, we move to the data time dependency: if the
application needs to integrate over an infinite period of
time to formulate an answer, then Kappa architecture will
present the simplest implementation, through the use of expo-
nential decay (i.e. Reinforcement Learning) of incremental
assimilation. Alternatively, if the time dependency is limited,
the Lambda architecture is a better choice: the batching of the
data reduces the overhead associated with a single, isolated,
computation instantiation - it requires set up once per batch,
instead of once per event.

Third, the complexity of the algorithm is taken into
account. The Lambda architecture requires a double imple-
mentation of each algorithm to compensate for batch layer
latency, which means that the more complex the algorithm,
the harder and more expensive it is to maintain. Subsequently,
the need for hardware maintenance is evaluated: most com-
pute engines capable of handling the Kappa architecture
can only tolerate a certain number of failed nodes before
experiencing service discontinuity. The Lambda architecture
features a natural inactivity period (node dependent - between
batches), that is minimised by the scheduler (see subsection
II-B), where most of the compute nodes are at rest making it
easier to schedule a mass maintenance operation.

Finally, we consider the recursive nature of the algo-
rithm: in any architectural case, this aspect can induce prob-
lems. Some compute engines (Apache Spark, Apache Spark
Streaming, Apache Flink) come with features enabling the
iteration over the same set of data without the overhead
of loading the data from the disk. However, this feature is
not part of the architectural design of these paradigms as
it constitutes an application specific case. In the absence of
such a feature, the Message Passing System can be employed
as remedy, continuously rewriting the same piece of data
within the streaming pipeline or shifting the reading index
backward accordingly. Unfortunately, this is just a patch and
more research is needed to develop a more durable solution.

B. REAL-LIFE ILLUSTRATIONS

As a result, multiple integrated hosting platforms (e.g.
Microsoft, Amazon, Google) offer compute paradigms on
demand, enabling them to cover as many applications as
possible. Those architectures, when combined, permit the
elaboration or addition of numerous technologies. In an over-
simplified view, our computerised financial world works in
such a way: the Real Time Gross Settlement System (RTGS)
is a real-time system handling important transactions as soon
as they are submitted (gross settlement). These are usually
large economy critical systems operated by the central bank
of a country, but on the other hand, payment systems in charge
of handling smaller transactions batch them for periodical
clearing. Similarly, telecommunications hot-billing exploits
near real-time systems to track service usage by individual
users of prepaid packages whereas billing for postpay pack-
ages can be batch assessed after a fixed period.

15367

IEEE Access

T. Dubuc et al.: Mapping the Big Data Landscape: Technologies, Platforms and Paradigms for Real-Time Analytics of Data Streams

As the maturity of the available middlewares and the com-
putational power increases, more applications will be within
the grasp of businesses. The Internet of Things (IoT), which
refers the widening network of ordinary objects communicat-
ing, comes with the production of a massive amount of het-
erogeneous information that can be relevant to a multitude of
fields. For instance, while most [oT devices focus on usability
and interactivity, the large-scale aggregation of basic infor-
mation, such as whether or not the device is running, could
open the door to pattern identification, consumption extrap-
olation and eventually, to more efficient power grid man-
agement systems. This would enable the ingestion of high
volume of data produced by smart homes in nearly real-time.

C. DATA STREAM MINING TECHNIQUES AND
ALGORITHMS AND MOBILE DATA MINING

For over a decade, research has been conducted on Data
Stream Mining (DSM) algorithms to address the ‘Velocity’
aspect of Big Data. The two main drivers behind these devel-
opments are: (1) rapid model construction and the update
of techniques to cope with high velocity data streams; (2)
changes in the pattern encoded in the stream (also known
as concept drift) which data mining algorithms aim to learn.
The advancement of DSM algorithms has enabled the imple-
mentation of Data Mining applications on Mobile Devices,
smartphones and tablets, leading to distributed mobile data
mining systems.

1) ADAPTING BATCH DATA MINING TECHNIQUES TO
ANALYSE DATA STREAMS

Several approaches have been proposed to modify existing
data mining techniques for their application on streaming
data, such as windowing, sliding windows [105], [106] and
reservoir sampling [107]. The underlying concept of window-
ing or the sliding window approach is to only consider recent
data instances for building data mining models. A variable
size sliding window technique is the ADaptive sliding WIN-
dow method (ADWIN) [108]. ADWIN changes the window
size based on observed changes: if there are changes then
the window shrinks, if there are no changes it increases.
A drawback of ADWIN is that windows can potentially
become very large which results in longer time requirements
for adaptation. Reservoir sampling maintains and updates a
representative sample of all the data in stream, and can be
used to build data mining models representative of all the
data observed so far. However, models built using reservoir
sampling assume that each data instance, regardless of when
it was generated, is equally represented in the pattern encoded
in the stream.

Standalone concept drift detection methods exist, and
are typically used in combination with batch data mining
algorithms and sliding window approaches. For example,
the sequential analysis technique CUmulative SUM [109]
detects a drift when the mean of incoming data deviates
significantly. The Exponentially Weighted Moving Average
(EWMA) uses charts to monitor the mean of misclassifica-

15368

tion rates of a classifier, and gives less weight to older data
instances and greater weight to more recent data instances.
A traditional concept drift detector, named Drift Detection
Method (DDM) [110] computes error statistics over two con-
secutive time windows, however, this method tends only to
detect sudden drifts while gradual drifts are frequently missed
[111]. The Early Drift Detection Method (EDDM) [112] is a
further development of DDM,; its drift detection is based on
estimating the distribution of distances between classification
errors, however EDDM is very sensitive to noise. A more
recent concept drift detection method tailored for machine
learning uses statistics about the extent to which models are
modified by newly arriving data [113].

2) ADAPTIVE DATA STREAM MINING ALGORITHMS

Most of these algorithms can be broadly categorised into
classification and clustering techniques. This section dis-
cusses Data Stream Mining algorithms that are adaptive to
concept drift without the need for a separate concept drift
detection or windowing method. Other more specialised algo-
rithms exist, but are outside the scope of this review.

a: DATA STREAM CLASSIFICATION TECHNIQUES

A notable family of data stream classification techniques
are the Hoeffding bound based techniques. The Hoeffding
inequality provides an upper bound for the probability of
the sum of a random variable diverging from an expected
value. This Hoeffding bound has been used successfully for
the development of various data stream mining algorithms
known as Very Fast Machine Learning (VFML) techniques
[114]. An additional development of classification techniques
based on the Hoeffding bound is the Hoeffding Tree family
of algorithms: the original Hoeffding Tree algorithm was able
to learn incrementally in real-time [115] and has since been
improved in terms of accuracy and data processing speed
into the Very Fast Decision Tree (VFDT) algorithm [116],
which can adapt to concept drift, by further expanding the
tree. Unfortunately, this adaptation is very limited as previ-
ously learned concepts are not forgotten, thus the CVFDT
algorithm (where C is for Concept Drift) was developed and
removes this limitation by using a sliding window approach
to alter entire subtrees. It is important to note that the tree
structure makes tree-based data stream classifiers suscepti-
ble to noise. Alternatively there are rule-based data stream
classifiers, such as VFDR [117] or Hoeffding Rules [118],
which have more modular classification models. They may
not reach the same levels of predictive accuracy as tree-based
approaches but are generally more robust to noise. Additional
approaches include APSO based on particle swarm opti-
mization [119], Prototype-based Classification Model [120],
SFNClassifier [121] and ensemble-based frameworks [122].
There are constantly more methods being developed and there
is no single classifier that works well on all data stream
sources. Therefore it is important for the analyst to have a
good tool-set of algorithms available to tailor predictive data
stream mining workflows to specific application needs.

VOLUME 9, 2021

T. Dubuc et al.: Mapping the Big Data Landscape: Technologies, Platforms and Paradigms for Real-Time Analytics of Data Streams

IEEE Access

b: DATA STREAM CLUSTERING TECHNIQUES

Cluster analysis is the method of grouping of data with sim-
ilar characteristics, with the aim of having a high degree of
similarity within a cluster, but a high degree of dissimilarity
between clusters. With respect to cluster analysis on data
streams, clustering algorithms must have a short processing
time, ideally one pass through the data to adapt to concept
drifts should be sufficient; and they also need a minimum
memory footprint (as not all observed instances can be kept
in memory). To date, several such algorithms have been
developed, and an early algorithm in this direction is BIRCH
[123]. Rather than storing raw data, BIRCH generates, stores,
and updates statistical summaries of clusters; in this manner,
BIRCH can learn incrementally but cannot forget obsolete
concepts. These statistical summaries are known as Micro-
Clusters and many data stream cluster analysis algorithms
are based on some form of Micro-Cluster data structure;
typically they hold as many of these structures in memory as
computationally viable, and on demand, in an offline process,
can build actual clusters by treating Micro-Clusters as data
instances.

In this sense a notable development of BIRCH is the
CluStream algorithm [124] which extends Micro-Clusters to
include a time component, which enables CluStream to detect
obsolete Micro-Clusters and thus forget obsolete concepts
and browse through historical models. Another extension of
BIRCH is the ClusTree algorithm, which implements hierar-
chical data stream clustering, however a major shortcoming
of CluStream is that these clusters are circular, whereas many
problems require alternative shapes. To address this, the Den-
Stream algorithm [125] introduces ‘dense’ Micro-Clusters
to summarise clusters using an arbitrary shape. In addition
the authors of [126] developed a density based clustering
algorithm in combination with rough sets. There is also a
Micro-Cluster based development for the purpose of clas-
sification, the MC-NN algorithm, in which a new Micro-
Clusters data structure has been developed to parallelise data
stream classification in order to scale to multi source and high
velocity data streams [127]. A recent data stream clustering
approach is the A recent Micro-Clusters based development,
for the purpose of classification, is the MC-NN algorithm,
in which a new Micro-Clusters data structure has been devel-
oped to parallelise data stream classification in order to scale
to multi source and high velocity data streams [127]. As for
data stream classification many more data stream clustering
algorithms exist, and it is important for the analyst to have
a strong toolkit of algorithms available so they may tailor
workflows to the specific needs of the application at hand.

3) DATA STREAM MINING ON THE GO IN EDGE
ENVIRONMENTS

A discussion of streaming analytics in mobile environments
is also necessary due to the growing importance of edge
computing. Edge computing refers to distributed computing,
in which data storage and processing is kept closer to the

VOLUME 9, 2021

devices at which data are recorded, so-called edge devices
[128]. The purpose of edge computing is to optimise com-
putation by reducing data communication delays. In IoT
applications such edge devices are often sensors, smart-
phones, tablets. The combination of edge computing with
Data Stream Analytics has been subject in Data Stream Min-
ing research for over a decade. Overall it is expected that with
the roll out of G5 technology data driven machine learning
applications will move closer into the edge then ever before
[129]. Systems are realised either with specialised mobile
hardware or off the shelf mobile devices such as Personal
Digital Assistants (PDAs) or in recent years smartphones
and tablets. There have never been better opportunities to
leverage the increasing computational power of such devices,
owing to their increasing computational and storage capacity,
readily available sensor systems such as gyroscopes, cam-
eras, microphones, and connectivity such as Wi-Fi, mobile
internet, Bluetooth, etc. Formerly core functionalities such
as phone calls and text messages, seem nowadays just like
an additional feature rather than core functions. Such mobile
data mining systems started off with basic Mobile Interfaces
executing data analytics tasks server side but then quickly
moved into on-board execution and hybrids [130].

An early representative of mobile data mining systems
is MobiMine developed in 2002 [131]. MobiMine offered
mobile on the go analytics capabilities for stock market
prices. MobiMine is based on computationally limited PDAs
which had little computational power at the time and thus
presents a Mobile Interface and computational tasks are exe-
cuted on a server architecture. The same group that developed
MobiMine developed the Vehicle Data Stream Mining System
(VEDAS) [132] using PDAs on board of moving vehicles
to monitor driving behaviour using pattern extraction from
streams to detect abnormal behaviour. Its commercial pen-
dant is MineFleet [133]. As smartphones became available
capable of recording and processing data in real-time through
their sensor and processing capabilities, software systems that
allow execution of algorithms on smartphones have emerged,
like the Open Mobile Miner (OMM) [134]. Shortly after the
Pocket Data Mining System (PDM) framework appeared as a
first proof of concept that exploration and collaborative data
mining is possible in streaming environments [130], [135].
Since PDM various smartphone based data stream mining
technologies emerged, such as Mobile Sensor Data Engine
(MOSDEN) [136]. MODSEN similar to PDM and attempted
to create a mobile collaborative analytics platform optimised
for sharing data across multiples applications and users to
make use of smartphones’ sensory capabilities. Another such
development is UniMiner [137]. UniMiner aims to achieve
scalability of data mining tasks through hybrid execution
models, leveraging computational power of wearables, smart-
phones and the cloud, aiming at maximising data processing
at the source, thus minimising data communication cost. The
data Reduction on the Edge architecture (RedEdge) [138]
also aims at computing data in the edge close to its source.
RedEdge makes use of IoT devices as its primary data pro-

15369

IEEE Access

T. Dubuc et al.: Mapping the Big Data Landscape: Technologies, Platforms and Paradigms for Real-Time Analytics of Data Streams

cessing environment. However, in case of unavailability, i.e.
due to low battery, it offloads data processing to either near
devices or the cloud.

D. CONJECTURES

Considering the surge in IoT currently occurring worldwide,
an approach similar to telecommunication billing could be
imagined in other left-behind fields, such a water and elec-
tricity billing. We still have, in 2020, to handout the reading
of the different meters to the different provider for them to
be able to approximate our periodic billing. This practice is,
in our opinion, certainly a legacy of the pre-connectivity era
that required human action for any data collection process,
coupled with the heterogeneity of the entities managing the
infrastructures.

On the other hand, while this usage suggestion follows
the trend of the ever-growing data collection and IoT devices
multiplication, we foresee potential network issues stemming
from the exponential growth of those appliances. While it is
customary to use low power communication interfaces for
IoT devices, this only limits the amount of data that can
be emitted on the LAN, per device. However, considering
their number and coupled with the young age of the indus-
trial market (no unified communication protocol standard,
no enforced security policies [139], [140], limited under-
standing of the technology), we might not be able to anticipate
the appearance of billions of ever-measuring new devices on
the network, constantly connected to the cloud [141].

This will require ever more elastic infrastructure and
scheduling to prevent any discontinuity of services: as data
processing infrastructure become more and more vital for
the diverse companies, optimizing the costs and maximizing
the availability will prove ever more critical to the business.
Current compute stacks and architectures already put the
emphasis on those characteristics through the use of node
redundancy and job re-scheduling. However, most of the
distributed systems currently available - at least in the open
source domain - are not natively elastic and require a custom
implementation/stack to achieve this model.

V. CONCLUDING REMARKS

Big Data Technologies and Analytics for Data streams has
recently emerged as a field of study, due to the development
of IoT and similar applications. There is a vast landscape
of technologies, platforms and applications for Big Data,
however, they vary widely and can often build upon funda-
mentally different principles. This review aimed to organise
the landscape of technologies, by applying some form of clas-
sification or categorisation, and discussed the advantages and
limitations of different approaches. In this context, the review
discussed computational concepts, compute paradigms, and
some of the available solutions, and provided a pratical dis-
cussion of the strengths, weaknesses and limitations of these
with respect to their functions, applications and what would
constitute the ‘ideal’ system. The paper aimed to emphasis the
computing principles of the technologies rather than the indi-

15370

vidual distributions. The reason for this is that the computing
principles enjoy a much increased longevity than the indi-
vidual distributions. Often already existing computing princi-
ples or paradigms can be found in new technologies. Another
aspect discussed is the scalablity and flexibility of existing
technologies with respect to the surge of IoT applications
and devices. Here a lack of unified communication standards
and heterogeneous security policies may overburden existing
technologies in the near future. A more flexible infrastructure
and easy to use/implement systems are desirable to ensure
continuity of services and maximizing availability.

ACKNOWLEDGMENT
The authors would like to thank and acknowledge valuable
feedback and comments from Dr. Orla Fannon.

REFERENCES

[1] B. Brown, M. Chui, and J. Manyika, “Are you ready for the era of ‘big
data,”” McKinsey Quart., vol. 4, no. 1, pp. 24-35, 2011.

[2] S. Lohr. Opinion | Big Data’s Impact in the World. The New
York Times. Accessed: Feb. 2012. [Online]. Available:
https://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-
in-the-world.html

[3] Z.Lv, H. Song, P. Basanta-Val, A. Steed, and M. Jo, “Next-generation
big data analytics: State of the art, challenges, and future research topics,”
IEEE Trans. Ind. Informat., vol. 13, no. 4, pp. 1891-1899, Aug. 2017.

[4] F.Suchanek and G. Weikum, “Knowledge harvesting in the big-data era,”
in Proc. Int. Conf. Manage. Data (SIGMOD). New York, NY, USA: ACM,
2013, pp. 933-938, doi: 10.1145/2463676.2463724.

[5] R. Pepper and J. Garrity, “The Internet of Everything: How the net-
work unleashes the benefits of Big Data,” in Rewards and Risks of
Big Data (Global Information Technology Report), no. 13. Cologny,
Switzerland: World Economic Forum, 2014, pp. 35-42. [Online]. Avail-
able: http://reports.weforum.org/global-information-technology-report-
2015/

[6] C. L. P. Chen and C.-Y. Zhang, ‘“Data-intensive applications,
challenges, techniques and technologies: A survey on big data,”
Inf. Sci., vol. 275, pp.314-347, Aug. 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0020025514000346

[71 J. R. Mashey. Big Data and the Next Wave of InfraStress Problems,
Solutions, Opportunities. Accessed: 1998. [Online]. Available:
https://www.usenix.org/conference/1999-usenix-annual-technical-
conference/big-data-and-next-wave-infrastress-problems

[8] V. Parmar and J. Yadav, “Big data: Meaning, challenges,
opportunities, tools,” Int. J. Adv. Res. Comput. Sci., vol. 8,
no. 1, pp.165-168, 2017. [Online]. Available: http://www.ijarcs.
info/index.php/Ijarcs/article/view/2875

[9]1 A. Gullberg, “Den sambhilleliga sjdlvreflexionens majligheter?: Big data
pé 1980-talet,” in Fragment 80-Tal. Stockholm, Sweden: Nordiska Insti-
tutet for Samhillsplanering, 1991, pp. 180-187. [Online]. Available:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-149318

[10] P. M. Hartmann, M. Zaki, N. Feldmann, and A. Neely, ‘“Big data for big
business? A taxonomy of data-driven business models used by start-up
firms,” in Proc. Cambridge Service Alliance, Mar. 2014. [Online].
Available: https://cambridgeservicealliance.eng.cam.ac.uk/resources/
Downloads/Monthly%20Papers/2014_March_DataDrivenBusiness
Models.pdf

[11] D. D. Hirsch, “The glass house effect: Big data, the new oil, and the
power of analogy,” Maine Law Rev., vol. 66, p. 373, Feb. 2014. [Online].
Auvailable: https://papers.ssrn.com/abstract=2393792

[12] M. Kiran, P. Murphy, I. Monga, J. Dugan, and S. S. Baveja, “Lambda
architecture for cost-effective batch and speed big data processing,” in
Proc. IEEE Int. Conf. Big Data (Big Data), Oct. 2015, pp. 2785-2792.

[13] K. C. Sieben. Labor Markets in 2040: Big Data Could Be a
Big Deal for Jobseekers: Monthly Labor Review: U.S. Bureau
of Labor Statistics. Accessed: Feb. 2016. [Online]. Available:
https://www.bls.gov/opub/mlr/2016/article/labor-markets-in-2040-
big-data-could-be-a-big-deal-for-jobseekers.htm

VOLUME 9, 2021

http://dx.doi.org/10.1145/2463676.2463724

T. Dubuc et al.: Mapping the Big Data Landscape: Technologies, Platforms and Paradigms for Real-Time Analytics of Data Streams

IEEE Access

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

[34]

D. Alexander and K. Lyytinen, “Organizing successfully for big data
to transform organizations,” in Proc. AMCIS, Boston, MA, USA,
Aug. 2017, pp. 1-10. [Online]. Available: http://aisel.aisnet.org/
amcis2017/DataScience/Presentations/30

L. Columbus. IBM Predicts Demand For Data Scientists Will
Soar 28% By 2020. Accessed: May 2017. [Online]. Available:
https://www.forbes.com/sites/louiscolumbus/2017/05/13/ibm-predicts-
demand-for-data-scientists-will-soar-28-by-2020/#7a9¢05e7e3bd

M. Dave and R. Gianey, “Different clustering algorithms for big data
analytics: A Review,” in Proc. 5th Int. Conf. Syst. Modeling Advancement
Res. Trends, Nov. 2016, pp. 328-333.

W. Wingerath, F. Gessert, S. Friedrich, and N. Ritter, “Real-time
stream processing for Big Data,” Inf. Technol., vol. 58, no. 4,
pp. 186-194, 2016. [Online]. Available: https://www.degruyter.
com/view/j/itit.2016.58.issue-4/itit-2016-0002/itit-2016-0002.xml

A. Gattiker, F. H. Gebara, H. P. Hofstee, J. D. Hayes, and A. Hylick,
“Big Data text-oriented benchmark creation for Hadoop,” IBM J. Res.
Develop., vol. 57, nos. 34, pp. 10:1-10:6, May 2013.

M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile Netw. Appl.,
vol. 19, no. 2, pp. 171-209, Apr. 2014, doi: 10.1007/s11036-013-0489-0.
Z. Zheng, P. Wang, J. Liu, and S. Sun, “Real-time big data processing
framework: Challenges and solutions,”” Appl. Math. Inf. Sci., vol. 9, no. 6,
p- 3169, 2015.

G. Li and X. Cheng, “Research status and scientific thinking of big data,”
Bull. Chin. Acad. Sci., vol. 27, pp. 647-657, Jun. 2012.

M. D. Assuncdo, R. N. Calheiros, S. Bianchi, M. A. S. Netto, and
R. Buyya, “Big data computing and clouds: Trends and future direc-
tions,” J. Parallel Distrib. Comput., vols. 79-80, pp. 3—-15, May 2015,
doi: 10.1016/j.jpdc.2014.08.003.

I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and
S. U. Khan, “The rise of ‘big data’ on cloud computing: Review and
open research issues,” Inf. Syst., vol. 47, pp. 98-115, Jan. 2015, doi:
10.1016/j.i5.2014.07.006.

L. Columbus. Big Data & Analytics Is The Most Wanted Expertise By
75% Of IoT Providers. Accessed: Aug. 2017. [Online]. Available: https://
www.forbes.com/sites/louiscolumbus/2017/08/21/big-data-analytics-is-
the-most-wanted-expertise-by-75-of-iot-providers/#4daalde51887

J. L. Reyes-Ortiz, L. Oneto, and D. Anguita, “Big data analytics
in the cloud: Spark on Hadoop vs MPI/OpenMP on beowulf,”
Procedia Comput. Sci., vol. 53, pp.121-130, Jan. 2015, doi:
10.1016/j.procs.2015.07.286.

L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia,
Y. Shi, S. Zhang, C. Zheng, G. Lu, K. Zhan, X. Li, and B. Qiu, “Big-
DataBench: A big data benchmark suite from Internet services,” in Proc.
IEEE 20th Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2014,
pp. 488—-499.

M. Capota, T. Hegeman, A. Iosup, A. Prat-Pérez, O. Erling, and P. Boncz,
“Graphalytics: A big data benchmark for graph-processing platforms,”
in Proc. GRADES. New York, NY, USA: ACM, 2015, pp. 7:1-7:6, doi:
10.1145/2764947.2764954.

S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, ““The HiBench bench-
mark suite: Characterization of the MapReduce-based data analysis,” in
Proc. IEEE 26th Int. Conf. Data Eng. Workshops (ICDEW), Mar. 2010,
pp. 41-51.

W. Xiong, Z. Yu, L. Eeckhout, Z. Bei, F. Zhang, and C. Xu, “Shen-
Zhen transportation system (SZTS): A novel big data benchmark suite,”
J. Supercomput., vol. 72, no. 11, pp. 4337-4364, Nov. 2016. [Online].
Available: https://link.springer.com/article/10.1007/s11227-016-1742-7

D. Laney, “3D data management: Controlling data volume, velocity,
and variety,” META Group, Stamford, CT, USA, Tech. Rep.,
Feb. 2001. [Online]. Available: https://blogs.gartner.com/doug-

laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-
Volume-Velocity-and- Variety.pdf

J. Gantz and D. Reinsel, “Extracting value from chaos,” EMC Corp.,
Hopkinton, MA, USA, Tech. Rep., Jun. 2011. [Online]. Available:
https://www.emc.com/collateral/analyst-reports/idc-extracting-value-
from-chaos-ar.pdf

The Four V’s of Big Data. Accessed: 2013. [Online]. Available:
http://www.ibmbigdatahub.com/infographic/four-vs-big-data

B. Saha and D. Srivastava, “Data quality: The other face of big data,” in
Proc. IEEE 30th Int. Conf. Data Eng., Mar. 2014, pp. 1294-1297.

H. Hu, Y. Wen, T.-S. Chua, and X. Li, “Toward scalable systems for big
data analytics: A technology tutorial,” IEEE Access, vol. 2, pp. 652687,
2014.

VOLUME 9, 2021

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

I. Anagnostopoulos, S. Zeadally, and E. Exposito, “Handling big
data: Research challenges and future directions,” J. Supercomput.,
vol. 72, no. 4, pp. 1494-1516, Apr. 2016. [Online]. Available: https://
link.springer.com/article/10.1007/s11227-016-1677-z

J. Gama and M. M. Gaber, Eds., Learning From Data Streams: Processing
Techniques in Sensor Networks. Berlin, Germany: Springer-Verlag, 2007.
[Online]. Available: http//www.springer.com/gb/book/9783540736783
Data, Data Everywhere. The Economist. Accessed: Feb. 2010. [Online].
Available: https://www.economist.com/special-report/2010/02/25/data-
data-everywhere

D. E. O’Leary, “Atrtificial intelligence and big data,” IEEE Intell. Syst.,
vol. 28, no. 2, pp. 96-99, Mar. 2013.

Y. Demchenko, P. Grosso, C. de Laat, and P. Membrey, “Addressing big
data issues in scientific data infrastructure,” in Proc. Int. Conf. Collabo-
ration Technol. Syst. (CTS), May 2013, pp. 48-55.

S. Mittal and J. S. Vetter, “A survey of CPU-GPU heteroge-
neous computing techniques,” ACM Comput. Surv., vol. 47, no. 4,
pp. 69:1-69:35, Jul. 2015. [Online]. Available: http://doi.acm.org/
10.1145/2788396

D. Singh and C. K. Reddy, “A survey on platforms for big data ana-
lytics,” J. Big Data, vol. 2, no. 1, p. 8, Dec. 2015. [Online]. Available:
https://link.springer.com/article/10.1186/s40537-014-0008-6

X. Tian, R. Han, L. Wang, G. Lu, and J. Zhan, “Latency critical
big data computing in finance,” J. Finance Data Sci., vol. 1, no. 1,
pp. 33-41, Dec. 2015. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S2405918815000045

L. Djafri, D. Amar Bensaber, and R. Adjoudj, “Big data analytics for
prediction: Parallel processing of the big learning base with the pos-
sibility of improving the final result of the prediction,” Inf. Discov-
ery Del., vol. 46, no. 3, pp. 147-160, Aug. 2018. [Online]. Available:
https://www.emeraldinsight.com/doi/10.1108/IDD-02-2018-0002

Y. Etsion and D. Tsafrir, “A short survey of commercial cluster
batch schedulers,” School Comput. Sci. Eng., Hebrew Univ. Jerusalem,
Jerusalem, Israel, vol. 44221, 2005, p. 13.

L. Sliwko and V. Getov, ‘““Workload schedulers-genesis, algorithms and
comparisons,” Int. J. Comput. Sci. Softw. Eng., vol. 4, no. 6, pp. 141-155,
2015.

M. S. Khaira, ‘“Fast first-come first served arbitration method,”
U.S. Patent 5574867 A, Nov. 12, 1996. [Online]. Available:
http://www.google.com/patents/US5574867

D. Jackson, Q. Snell, and M. Clement, “Core Algorithms of
the Maui Scheduler,” in Job Scheduling Strategies for Parallel
Processing (Lecture Notes in Computer Science). Berlin,
Germany: Springer, Jun. 2001, pp.87-102. [Online]. Available:
https://link.springer.com/chapter/10.1007/3-540-45540-X_6

(Nov. 2017). Apache Hadoop 2.9.0—Hadoop: Capacity Scheduler.
[Online]. Available: https://hadoop.apache.org/docs/current/hadoop-
yarn/hadoop-yarn-site/CapacityScheduler.html

Apache Hadoop 2.9.0—Hadoop: Fair Scheduler. Accessed: Nov. 2017.
[Online]. Available: https://hadoop.apache.org/docs/stable/hadoop-
yarn/hadoop-yarn-site/FairScheduler.html

T. Tannenbaum, D. Wright, K. Miller, and M. Livny, “Condor:
A distributed job scheduler,” in Beowulf Cluster Computing
With Linux, T. Sterling, Ed. Cambridge, MA, USA: MIT Press,
Oct. 2001.

HTCondor—Research Publications and Technical Information.
Accessed: Jan. 18, 2021. [Online]. Available: https://research.cs.
wisc.edu/htcondor/publications.html

K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop dis-
tributed file system,” in Proc. IEEE 26th Symp. (MSST), May 2010,
pp. 1-10.

R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver,
and J. Zhou, “SCOPE: Easy and efficient parallel processing of mas-
sive data sets,” Proc. VLDB Endowment, vol. 1, no. 2, pp. 1265-1276,
Aug. 2008.

F. B. Schmuck and R. L. Haskin, “GPFS: A shared-disk file system for
large computing clusters,” in Proc. FAST, vol. 2, 2002, pp. 1-14.

S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibil-
ity of consistent, available, partition-tolerant Web services,” ACM
SIGACT News, vol. 33, no. 2, pp.51-59, Jun. 2002, doi: 10.1145/
564585.564601.

B. Liskov, L. Shrira, and J. Wroclawski, “Efficient at-most-once mes-
sages based on synchronized clocks,” ACM Trans. Comput. Syst., vol. 9,
no. 2, pp. 125-142, May 1991, doi: 10.1145/103720.103722.

15371

http://dx.doi.org/10.1007/s11036-013-0489-0
http://dx.doi.org/10.1016/j.jpdc.2014.08.003
http://dx.doi.org/10.1016/j.is.2014.07.006
http://dx.doi.org/10.1016/j.procs.2015.07.286
http://dx.doi.org/10.1145/2764947.2764954
http://dx.doi.org/10.1145/564585.564601
http://dx.doi.org/10.1145/564585.564601
http://dx.doi.org/10.1145/103720.103722

IEEE Access

T. Dubuc et al.: Mapping the Big Data Landscape: Technologies, Platforms and Paradigms for Real-Time Analytics of Data Streams

[57]

[58]

[59]

[60

[61]

[62

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]
[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

15372

A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel,
S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal,
and D. Ryaboy, ““Storm Twitter,” in Proc. ACM SIGMOD Int. Conf. Man-
age. Data (SIGMOD). New York, NY, USA: ACM, 2014, pp. 147-156.
[Online]. Available: http://doi.acm.org/10.1145/2588555.259564 1

Y. Huang and H. Garcia-Molina, “Exactly-once semantics in a replicated
messaging system,” in Proc. 17th Int. Conf. Data Eng., 2001, pp. 3—12.
F. Junqueira. Making Sense of Exactly-Once Semantic. Strate. London,
U.K. Accessed: 2016. [Online]. Available: https://cdn.oreillystatic.
com/en/assets/1/event/155/Making%20sense%200f%20exactly-
once%?20semantics %20Presentation%201.pdf

Apache Flink 1.3 Documentation: Distributed Runtime Environment.
Accessed: Dec. 2017. [Online]. Available: https://ci.apache.
org/projects/flink/flink-docs-release-1.3/concepts/runtime.html

Apache Hadoop—2.9.0 Using CGroups With YARN. Accessed:
Nov. 2017. [Online]. Available: http://hadoop.apache.org/docs/current/
hadoop-yarn/hadoop-yarn-site/NodeManagerCgroups.html

Cluster Mode Overview—Spark 2.2.0 Documentation. Accessed:
Jan. 18, 2021. [Online]. Available: https://spark.apache.org/docs/
latest/cluster-overview.html

Samza. Accessed: Jan. 18,
http://samza.apache.org/

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proc. 2nd
USENIX Conf. Hot Topics Cloud Comput. (HotCloud). Berkeley,
CA, USA: USENIX Association, 2010, p.10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1863103.1863113

D. J. Becker, T. Sterling, D. Savarese, J. E. Dorband, U. A. Ranawak,
and C. V. Packer, “BEOWULF: A parallel workstation for scientific
computation,” in Proc. Int. Conf. Parallel Process., vol. 95, 1995,
pp. 1-9.

V. S. Sunderam, “PVM: A framework for parallel distributed com-
puting,” Concurrency, Pract. Exper, vol. 2, no. 4, pp.315-339,
Dec. 1990.

E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J.J. Dongarra,
J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine,
R. H. Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, *“Open MPI:
Goals, concept, and design of a next generation MPI implementation,”
in Proc. 11th Eur. PVM/MPI Users Group Meeting, Budapest, Hungary,
Sep. 2004, pp. 97-104.

M. Schulz, “MPI: A message-passing interface standard version 3.1,”
Message Passing Interface Forum, Chicago, IL, USA, Tech. Rep.,
Apr. 2016.

J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in Proc. 6th Symp. Operating Syst. Design Implement.,
vol. 51,2004, p. 107.

M. Hausenblas and N. Bijnens. Lambda Architecture. Accessed: 2017.
[Online]. Available: http://lambda-architecture.net/

Z. Hasani, M. Kon-Popovska, and G. Velinov, “Lambda architecture for
real time big data analytic,” in Proc. ICT Innov. Web, 2014, pp. 133-143.
N. Marz and J. Warren, Big Data: Principles and Best Prac-
tices of Scalable Real-time Data Systems, 1st ed. Shelter Island,
NY, USA: Manning Publications, 2015. [Online]. Available: https://
books.google.co.uk/books?id=HW-kKMQEACAAJ

0. Boykin, S. Ritchie, I. O’Connell, and J. Lin, “Summingbird: A frame-
work for integrating batch and online MapReduce computations,” Proc.
VLDB Endowment, vol. 7, no. 13, pp. 1441-1451, Aug. 2014, doi:
10.14778/2733004.2733016.

J. Kreps. Questioning the Lambda Architecture. Accessed: Jul. 2014.
[Online]. Available: https://www.oreilly.com/ideas/questioning-the-
lambda-architecture

M. Kleppmann. Turning the Database Inside Out With Apache
Samza. Strangeloop. Accessed: 2014. [Online]. Available: https://
www.youtube.com/watch?v=fU9hR3kiOKO

The Apache Software Foundation. Welcome to Apache Hadoop!
Accessed: 2017. [Online]. Available: http://hadoop.apache.org/

K. V. Shvachko, “HDFS scalability: The limits to growth,” Login, Mag.
USENIX SAGE, vol. 35, no. 2, pp. 6-16, Jan. 2010. [Online]. Available:
http://c59951.r51.cf2.rackcdn.com/5424-1908-shvachko.pdf

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Proc.
9th USENIX Conf. Netw. Syst. Design Implement. Berkeley, CA, USA:
USENIX Association, 2012, p. 2.

2021. [Online]. Available:

[79]

[80]

[81]

[82]

[83]

[84]

[85]
[86]
[87]
[88]
[89]
[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized ~ streams: Fault-tolerant streaming computation
at scale,” in Proc. ACM Symp. Operating Syst. Princ.
New York, NY, USA: ACM, 2013, pp. 423-438. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2517349.2522737

The Apache Software Foundation. Apache Storm. Accessed: 2015.
[Online]. Available: http://storm.apache.org/

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a sin-
gle engine,” Bull. IEEE Comput. Soc. Tech. Committee Data Eng.,
vol. 36, no. 4, pp. 1-12, 2015. [Online]. Available: http:/kth.diva-
portal.org/smash/record.jsf?pid=diva2:1059537

The Apache Software Foundation. Apache Flink: Scalable Stream
and Batch Data Processing. Accessed: 2017. [Online]. Available:
https://flink.apache.org/

The Apache Software Foundation. Apache Hadoop 2.9.0—
Apache Hadoop YARN. Accessed: Nov. 2017. [Online]. Available:
http://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-
site/YARN.html

V. K. Vavilapalli, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia,
B. Reed, E. Baldeschwieler, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, and H. Shah, “Apache
Hadoop YARN: Yet another resource negotiator,” in Proc. SOCC.
New York, NY, USA: ACM, 2013, pp. 1-16. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2523616.2523633

The Apache Software Foundation. Apache Twill—Home. Accessed: 2017.
[Online]. Available: http://twill.apache.org/

The Apache Software Foundation. Apache ZooKeeper—Home.
Accessed: 2017. [Online]. Available: https://zookeeper.apache.org/

The Apache Software Foundation. Apache Curator. Accessed: Dec. 2018.
[Online]. Available: https://curator.apache.org/

HTCondor—What is HTCondor? Accessed: Jan. 18, 2021. [Online].
Available: http://research.cs.wisc.edu/htcondor/description.html

S. Hoffman, Apache Flume: Distributed Log Collection for Hadoop.
Birmingham, U.K.: Packt, Jan. 2013.

J. Kreps, N. Narkhede, and J. Rao, “Kafka: A distributed messaging
system for log processing,” in Proc. NetDB, 2011, pp. 1-7.

Public Services. Documentation: Table of Contents—RabbitMQ.
Accessed: Jul. 2019. [Online]. Available: https://www.rabbitmq.com/
documentation.html

1. Peattie. The Bench Mark Database. Accessed: Jan. 18, 2021. [Online].
Available: http://www.bench-marks.org.uk/

DB-Engines—Knowledge Base of Relational and NoSQL Database
Management Systems. Accessed: Jan. 18, 2021. [Online]. Available:
https://db-engines.com/en/

A. Ashok, “Four trends in cloud computing CIOs should prepare for in
2019,” Forbes, Jersey City, NJ, USA, Tech. Rep., 2019. [Online]. Avail-
able: https://www.forbes.com/sites/forbestechcouncil/2018/07/05/four-
trends-in-cloud-computing-cios-should-prepare-for-in-2019/

J. Cao, K. Hwang, K. Li, and A. Y. Zomaya, “Optimal multiserver
configuration for profit maximization in cloud computing,” IEEE Trans.
Parallel Distrib. Syst., vol. 24, no. 6, pp. 1087-1096, Jun. 2013.

J. Bi, H. Yuan, W. Tan, M. Zhou, Y. Fan, J. Zhang, and J. Li, “Application-
aware dynamic fine-grained resource provisioning in a virtualized cloud
data center,” IEEE Trans. Autom. Sci. Eng., vol. 14,no.2, pp. 1172-1184,
Apr. 2017.

C. Metz, “Google’s Dremel makes big data look small,” Wired, Boone,
1A, USA, Tech. Rep., Aug. 2012.

C. Metz, “How Facebook knows what you really like,” Wired, Boone,
IA, USA, Tech. Rep., May 2012.

H. Yuan, J. Bi, W. Tan, M. Zhou, B. H. Li, and J. Li, “TTSA: An effective
scheduling approach for delay bounded tasks in hybrid clouds,” IEEE
Trans. Cybern., vol. 47, no. 11, pp. 3658-3668, Nov. 2017.

F. Zhang, J. Cao, K. Hwang, K. Li, and S. U. Khan, “Adaptive workflow
scheduling on cloud computing platforms with IterativeOrdinal optimiza-
tion,” IEEE Trans. Cloud Comput., vol. 3, no. 2, pp. 156-168, Apr. 2015.
E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy consid-
erations for deep learning in NLP,” in Proc. 57th Annu. Meeting Assoc.
Comput. Linguistics. Florence, Italy: Association for Computational Lin-
guistics, Jul. 2019, pp. 3645-3650.

H. Yuan, H. Liu, J. Bi, and M. Zhou, “Revenue and energy cost-
optimized biobjective task scheduling for green cloud data centers,”
IEEE Trans. Autom. Sci. Eng., early access, Feb. 25, 2020, doi:
10.1109/TASE.2020.2971512.

VOLUME 9, 2021

http://dx.doi.org/10.14778/2733004.2733016
http://dx.doi.org/10.1109/TASE.2020.2971512

T. Dubuc et al.: Mapping the Big Data Landscape: Technologies, Platforms and Paradigms for Real-Time Analytics of Data Streams

IEEE Access

[103]

[104

[105]

[106]

[107]

[108

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116

[117]

[118]

[119]

[120]

[121

[122]

[123]

[124]

[125]

[126]

[127]

S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,
and T. Vassilakis, “Dremel: Interactive analysis of Web-scale datasets,”
Google, Mountain View, CA, USA, Tech. Rep., 2010, p. 10.

BigQuery Omni for Multi-Cloud Data Analytics. Accessed: Jan. 18,2021.
[Online]. Available: https://cloud.google.com/blog/products/data-
analytics/introducing-bigquery-omni/

B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models and
issues in data stream systems,” in Proc. 21st ACM SIGMOD-SIGACT-
SIGART Symp. Princ. Database Syst. (PODS). New York, NY, USA:
ACM, 2002, pp. 1-16, doi: 10.1145/543613.543615.

M. Datar, A. Gionis, P. Indyk, and R. Motwani, ‘“Maintaining stream
statistics over sliding windows,” in Proc. 13th Annu. ACM-SIAM Symp.
Discrete Algorithms (SODA). Philadelphia, PA, USA: Society for Indus-
trial and Applied Mathematics, 2002, pp. 635-644. [Online]. Available:
http://dl.acm.org/citation.cfm?id=545381.545466

J. Han, J. Pei, and M. Kamber, Data Mining: Concepts and Techniques.
Amsterdam, The Netherlands: Elsevier, 2011.

A. Bifet and R. Gavalda, “Learning from time-changing data with adap-
tive windowing,” in Proc. SIAM Int. Conf. Data Mining. Philadelphia,
PA, USA: SIAM, 2007, pp. 443-448.

E. S. Page, “Continuous inspection schemes,” Biometrika, vol. 41,
nos. 1-2, pp. 100-115, 1954.

J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with
drift detection,” in Proc. Brazilian Symp. Artif. Intell. Berlin, Germany:
Springer, 2004, pp. 286-295.

P. B. Dongre and L. G. Malik, ““Stream data classification and adapting
to gradual concept drift,” Int. J., vol. 2, no. 3, pp. 1-5, 2014.

M. Baena-Garcia, J. del Campo-Avila, R. Fidalgo, A. Bifet, R. Gavalda,
and R. Morales-Bueno, “Early drift detection method,” in Proc. Int.
Workshop Knowl. Discovery Data Streams, 2006, pp. 77-86.

Z. Yang, S. Al-Dahidi, P. Baraldi, E. Zio, and L. Montelatici, ‘A novel
concept drift detection method for incremental learning in nonstationary
environments,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 1,
pp. 309-320, Jan. 2020.

G. Hulten and P. Domingos, “VFML—A toolkit for mining high-speed
time-changing data streams,” Softw. Toolkit, vol. 51, p. 51, Oct. 2003.
G. Widmer and M. Kubat, “Learning in the presence of concept drift and
hidden contexts,” Mach. Learn., vol. 23, no. 1, pp. 69-101, Apr. 1996.
G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data
streams,” in Proc. 7th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining (KDD), 2001, pp. 97-106.

J. Gama and P. Kosina, “Learning decision rules from data streams,” in
Proc. Int. Joint Conf. Artif. Intell. (IJCAI), 2011, vol. 22, no. 1, p. 1255.
T. Le, F. Stahl, M. M. Gaber, J. B. Gomes, and G. D. Fatta, “On
expressiveness and uncertainty awareness in rule-based classification
for data streams,” Neurocomputing, vol. 265, pp. 127-141, Nov. 2017.
http://www.sciencedirect.com/science/article/pii/S0925231217310172
S. Fong, R. Wong, and A. V. Vasilakos, “Accelerated PSO swarm search
feature selection for data stream mining big data,” IEEE Trans. Services
Comput., vol. 9, no. 1, pp. 3345, Feb. 2016.

J. Shao, Z. Ahmadi, and S. Kramer, ‘‘Prototype-based learning on
concept-drifting data streams,” in Proc. 20th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining (KDD), 2014, pp. 412-421.

J. P. Barddal, H. M. Gomes, and F. Enembreck, “SFNClassifier: A scale-
free social network method to handle concept drift,” in Proc. 29th Annu.
ACM Symp. Appl. Comput. (SAC), 2014, pp. 786-791.

H. Ghomeshi, M. M. Gaber, and Y. Kovalchuk, “RED-GENE: An evolu-
tionary game theoretic approach to adaptive data stream classification,”
IEEE Access, vol. 7, pp. 173944-173954, 2019.

T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An efficient
data clustering method for very large databases,” ACM Sigmod Record,
vol. 25, no. 2, pp. 103-114, Jun. 1996.

C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework for
clustering evolving data streams,” in Proc. 29th Int. Conf. Very Large
Data Bases (VLDB), vol. 29. VLDB Endowment, 2003, pp. 81-92.

F. Cao, M. Estert, W. Qian, and A. Zhou, “Density-based clustering
over an evolving data stream with noise,” in Proc. SIAM Int. Conf. Data
Mining. Philadelphia, PA, USA: SIAM, Apr. 2006, pp. 328-339.

S. Xu, L. Feng, S. Liu, and H. Qiao, “‘Self-adaption neighborhood density
clustering method for mixed data stream with concept drift,” Eng. Appl.
Artif. Intell., vol. 89, Mar. 2020, Art. no. 103451.

M. Tennant, F. Stahl, O. Rana, and J. B. Gomes, ‘““Scalable real-time
classification of data streams with concept drift,” Future Gener. Comput.
Syst., vol. 75, pp. 187-199, Oct. 2017.

VOLUME 9, 2021

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637-646,
Oct. 2016.

M. Polese, R. Jana, V. Kounev, K. Zhang, S. Deb, and M. Zorzi,
“Machine learning at the edge: A data-driven architecture with appli-
cations to 5G cellular networks,” IEEE Trans. Mobile Comput., early
access, Jun. 3, 2020, doi: 10.1109/TMC.2020.2999852.

M. M. Gaber, J. B. Gomes, and F. Stahl, “Pocket data mining,” in
Big Data on Small Devices (Studies in Big Data). Ziirich, Switzerland:
Springer, 2014.

H. Kargupta, B.-H. Park, S. Pittie, L. Liu, D. Kushraj, and K. Sarkar,
“MobiMine: Monitoring the stock market from a PDA,” ACM SIGKDD
Explorations Newslett., vol. 3, no. 2, pp. 37-46, Jan. 2002.

H. Kargupta, R. Bhargava, K. Liu, M. Powers, P. Blair, S. Bushra, J. Dull,
K. Sarkar, M. Klein, M. Vasa, and D. Handy, “VEDAS: A mobile and
distributed data stream mining system for real-time vehicle monitoring,”
in Proc. SIAM Int. Conf. Data Mining. Philadelphia, PA, USA: SIAM,
Apr. 2004, pp. 300-311.

H. Kargupta, V. Puttagunta, M. Klein, and K. Sarkar, “On-board vehicle
data stream monitoring using MineFleet and fast resource constrained
monitoring of correlation matrices,” New Gener. Comput., vol. 25, no. 1,
pp. 5-32, Nov. 2006.

P. D. Haghighi, S. Krishnaswamy, A. Zaslavsky, M. M. Gaber, A. Sinha,
and B. Gillick, “Open mobile miner: A toolkit for building situation-
aware data mining applications,” J. Organizational Comput. Electron.
Commerce, vol. 23, no. 3, pp. 224-248, Jul. 2013.

F. Stahl, M. M. Gaber, M. Bramer, and P. S. Yu, “Pocket data mining:
Towards collaborative data mining in mobile computing environments,”
in Proc. 22nd IEEE Int. Conf. Tools Artif. Intell., vol. 2, Oct. 2010,
pp. 323-330.

P. Prakash Jayaraman, C. Perera, D. Georgakopoulos, and A. Zaslavsky,
“MOSDEN: A scalable mobile collaborative platform for opportunis-
tic sensing applications,” 2014, arXiv:1405.5867. [Online]. Available:
http://arxiv.org/abs/1405.5867

M. Habib ur Rehman, C. S. Liew, and T. Y. Wah, “UniMiner: Towards
a unified framework for data mining,” in Proc. 4th World Congr. Inf.
Commun. Technol. (WICT), Dec. 2014, pp. 134-139.

M. Habib ur Rehman, P. P. Jayaraman, S. U. R. Malik, A. U. R. Khan, and
M. M. Gaber, “Rededge: A novel architecture for big data processing in
mobile edge computing environments,” J. Sensor Actuator Netw., vol. 6,
no. 3, p. 17, 2017.

T. Mahmood and U. Afzal, “Security analytics: Big data analytics for
cybersecurity,” in Proc. 2nd Nat. Conf. Inf. Assurance (NCIA), 2013,
pp. 129-134.

M. M. Hossain, M. Fotouhi, and R. Hasan, “Towards an
analysis of security issues, challenges, and open problems in

the Internet of Things,” in Proc. IEEE World Congr. Services,
Jun. 2015, pp.21-28. [Online]. Available: http://ieeexplore.ieee.org/
Ipdocs/epicO3/wrapper.htm?arnumber=7196499

S. Bi, R. Zhang, Z. Ding, and S. Cui, “Wireless communications in the
era of big data,” IEEE Commun. Mag., vol. 53, no. 10, pp. 190-199,
Oct. 2015.

TIMOTHEE DUBUC received the M.Eng. degree
from Suplnfo/IngeSup Engineer Schools, France,
the M.Sc. degree in machine learning from the
Faculty of Science, Orsay, France, and the Ph.D.
degree in cybernetics from the University of Read-
ing, UK.

Since 2007, his work has interweaved industrial
and academic goals, to ensure insights from neu-
roscience, and the way the human nervous system
processes information, can be used to inform the

development of applications in artificial intelligence and machine learning.
In this career, he has been an active Developer of data infrastructures,
visualization platforms, and game engines. His Ph.D. work involved the
modeling of the neural architecture of cells in the human retina to make
apparent the mechanisms that give rise to low-level features of perception
like the detection of edges in a visual scene. This work further aims to inform
the design and application of artificial neural networks.

15373

http://dx.doi.org/10.1145/543613.543615
http://dx.doi.org/10.1109/TMC.2020.2999852

IEEE Access

T. Dubuc et al.: Mapping the Big Data Landscape: Technologies, Platforms and Paradigms for Real-Time Analytics of Data Streams

FREDERIC STAHL received the Dipl.Ing. (FH)
degree in bioinformatics from the University
of Applied Sciences, Weihenstephan, Germany,
in 2006, and the Ph.D. degree in computer sci-
ence from the University of Portsmouth, U.K.,
in 2010.

From 2010 to 2012, he was a Senior Research
Associate with the Department of Computer Sci-
ence, University of Portsmouth. In 2012, he has
worked as a Lecturer with the Department of
Design Engineering and Computing, Bournemouth University, U.K. From
2012 to 2019, he was a Lecturer and an Associate Professor with the
University of Reading, U.K. Since 2019, he has been the Deputy Head,
the Team Leader, and a Senior Researcher for marine perception with the
German Research Centre for Artificial Intelligence (DFKI GmbH). He has
published more than 60 articles in peer-reviewed conferences, journals,
and book chapters. He has been working in the field of data mining for
more than ten years focusing on the research domain of big data analytics.
His particular research interests include developing scalable algorithms for
building adaptive models for real-time streaming data, developing scalable
parallel data mining algorithms and workflows, and applications in big data
analytics.

Dr. Stahl is a member of the British Computer Society (BCS) and has been
elected three times as a Committee Member of the BCS’s Specialist Group
on Artificial Intelligence (SGAI), serving on the committee, since 2013.

15374

ETIENNE B. ROESCH received the B.Sc. degree
in software engineering and systems integration,
the B.Sc. and M.Sc. degrees in cognitive science,
and the Ph.D. degree in psychology.

He held positions at Harvard University,
the University of Geneva, the Imperial College
London, Goldsmiths University London, and the
University of Reading, U.K., where he is currently
an Associate Professor in cognitive science. His
research interests include interdisciplinary, and
focuses on exploring the interface between technology and neuroscience,
to understand human cognition and inform the development of future and
emerging technology. His research laboratory led projects related to human
perception and consciousness, sensory augmentation, brain—computer inter-
faces, the Internet of Things, as well as the development of novel statistical
methods for the analysis of concurrent EEG-fMRI, and machine learning.
Recently, he has been coordinating the EPSRC project Cocoon, which
combines cyber security with emotion psychology, and served on the steering
board of the EU Network of Excellence HUMAINE. The latter led to two
handbooks in affective computing. He is also the Deputy Director of the
Centre for Integrative Neuroscience and Neurodynamics, and manages the
MRI, EEG, and TMS facilities.

Dr. Roesch is a member of the Emerging Applications Section of the
Royal Statistical Society, a local representative of the U.K. Reproducibility
Network, and the Founder and the Chief Editor of the journal ReScience X,
dedicated to the publication of reproductions and replications of experimen-
tal work.

VOLUME 9, 2021

