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The Memory of Beta

October 29, 2020

Abstract

Researchers and practitioners employ a variety of time-series processes

to forecast betas, either using short-memory models or implicitly impos-

ing infinite memory. We find that both approaches are inadequate: beta

factors show consistent long-memory properties. For the vast majority of

stocks, we reject both the short-memory and difference-stationary (ran-

dom walk) alternatives. A pure long-memory model reliably provides

superior beta forecasts compared to all alternatives. Accounting for long

memory in beta also pays off economically for portfolio formation. We

widely document the robustness of these results.

JEL classification: G12, C58, G11
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1 Introduction

In factor pricing models like the Capital Asset Pricing Model (CAPM) (Sharpe, 1964;

Lintner, 1965; Mossin, 1966) or the arbitrage pricing theory (APT) (Ross, 1976) the drivers

of expected returns are the stock’s sensitivities to risk factors, i.e., beta factors. For many ap-

plications such as asset pricing, portfolio choice, capital budgeting, or risk management, the

market beta is still the single most important factor. Indeed, Graham & Harvey (2001) doc-

ument that chief financial officers of large U.S. companies primarily rely on one-factor market

model cost-of-capital forecasts. In addition, Barber et al. (2016) and Berk & Van Binsbergen

(2016) also show that investors mainly use the market model for capital allocation decisions.

However, since beta factors are not directly observable, one needs to estimate them. For

this purpose, researchers and practitioners alike typically use past information, i.e., employ

time-series models.

The degree of memory is an important determinant of the characteristics of a time series.

In an I(0), or short-memory, process (e.g., AR(p) or ARMA(p, q)), the impact of shocks is

short-lived and dies out quickly. On the other hand, for an I(1), or difference-stationary,

process like, for example, the random walk (RW), shocks persist infinitely. Thus, any change

in a variable will have an impact on all future realizations. For an I(d) process with 0 < d < 1,

shocks neither die out quickly nor persist infinitely, but have a hyperbolically decaying

impact. In this case, the current value of a variable depends on past shocks, but the less so

the further these shocks are past.

Researchers and practitioners estimate betas in several different ways. One approach

is to use constant beta coefficients for the full sample (e.g., Fama & French, 1992). This

relates to the most extreme I(0) case possible. However, there is a strong consensus in the

literature that betas vary over time. The usual approach to account for such time-variation

is the use of rolling windows, where the most current estimate is taken as a forecast for

the next month (e.g., Fama & MacBeth, 1973; Frazzini & Pedersen, 2014). This approach

inherently imposes infinite memory and resembles a random walk, i.e., presuming that the

- 1 -



best forecast for the future beta is today’s estimate.1

Numerous other studies employ explicit or implicit short-memory processes for modeling

beta dynamics. These include, among others, AR(1) processes in Ang & Chen (2007) and

Levi & Welch (2017), an AR(1) process with further latent and exogenous variables in Adrian

& Franzoni (2009), and an ARMA(1,1) process in Pagan (1980). Blume (1971) imposes a

joint AR(1) process for the entire beta cross-section. The implications of these differing

approaches for the modeling of betas, though, vary substantially.

Andersen et al. (2006) first tackle the issue of long memory in betas and conclude that be-

tas do not exhibit such properties.2 However, this conclusion is mainly based on a relatively

small sample of daily data and only considering tests on the autocorrelation functions. In this

study, we use a large dataset of high-frequency data to comprehensively reexamine whether

betas are best described by either (i) short-memory processes, (ii) difference-stationary pro-

cesses, or (iii) whether beta time series instead show long-memory properties.

First, we use 30-minute high-frequency data to estimate each month the realized betas

for all stocks for which high-frequency data are available. Next, we estimate the memory

of realized beta using the two-step exact local Whittle (2ELW) estimator by Shimotsu &

Phillips (2005) and Shimotsu (2010).3 We find that betas show consistent long-memory

properties. The average estimate for the long-memory parameter d is 0.56. Adjusting for

potential structural breaks in the beta series decreases the average d only modestly, to

0.51. For the vast majority of stocks, the statistical tests clearly reject both the short-

memory (d = 0) and difference-stationary (d = 1) alternatives. Thus, most previous studies

substantially misspecify the properties of the beta time series.

Our findings indicate that market betas have substantially longer memory than docu-

1Black et al. (1992), for example, explicitly model beta dynamics with a random walk.
2The literature on volatility modeling, though, documents that volatility has clear long-memory properties
(Baillie et al., 1996; Bollerslev & Mikkelsen, 1996; Ding & Granger, 1996).

3In simulations, we show that, as opposed to the 2ELW estimator, the alternative, theoretically noise or
structural break robust, estimators of Hurvich et al. (2005), Iacone (2010), Frederiksen et al. (2012), and
Hou & Perron (2014) suffer from material biases in finite samples. Therefore, for our main analysis, we use
the 2ELW estimator.
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mented in Andersen et al. (2006). There are several potential reasons for this difference.

First, our study has a substantially broader focus: we consider more than 1,700 stocks. Sec-

ond, we use high-frequency data to estimate beta factors.4 This enables us to obtain more

precise and less noisy beta estimates (see also Bollerslev et al., 2016; Bollerslev et al., 2020;

Hollstein et al., 2020). Noise in the beta series of Andersen et al. (2006) could potentially lead

to a downward bias in memory estimates, as found by Deo & Hurvich (2001) and Arteche

(2004). In contrast, we find that changing the bandwidth in the 2ELW estimator leads to

similar estimates of the memory parameter. This suggests that the noise in our beta series

is small. Third, and most importantly, using simulations, we show that for small samples,

tests based on autocorrelation functions (as are used by Andersen et al., 2006), as opposed

to direct estimates with the 2ELW estimator (which we rely on), have little power to detect

true long memory.

Having documented that betas exhibit distinct long-memory properties, we next examine

the implications of this result for forecasting. Beta forecasts are of paramount importance for

many applications in finance. For example, capital allocation decisions, portfolio risk man-

agement (Daniel et al., 2020), as well as firms’ cost of capital estimates (Levi & Welch, 2017)

strongly depend on precise forecasts of betas. For our main analysis, we thus examine the

out-of-sample forecast performance of the different models for 50 beta-sorted portfolios over

a six-month horizon. We find that a FI model, which uses only the long-memory properties

for beta forecasting, yields the lowest root mean squared error (RMSE). The FI model signif-

icantly outperforms both the short-memory (AR(p), ARMA(p, q)) and difference-stationary

(RW as well as a modified RWW random walk estimator based on Welch, 2019) alterna-

tives for a substantial fraction of the portfolios. A full-fledged FIARMA(d, p, q) alternative

performs slightly worse than the pure FI model, but better than the AR, ARMA, RW,

and RWW models. Thus, accounting for the long-memory property is very important for

4In a robustness analysis, Andersen et al. (2006) also use betas based on high-frequency data for the sample
period 1993–1999, likewise concluding that betas do not show long-memory properties. The reason for this
likely relates to the third point discussed below: their tests based on autocorrelation functions have very
limited power to detect true long memory.
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obtaining good beta forecasts.

In a next step, we examine the economic value of the forecasts by the different models

in portfolio formation. Sorting the stocks into portfolios based on their beta forecasts, we

detect the largest ex-post beta spread for the FIARMA and FI models. We run a battery

of tests to document the robustness of these results. First, we alternatively estimate the

short-memory and difference-stationary models in a state–space framework. In addition,

we consider the HAR model augmented by jump beta components as well as a FI model,

for which we set the long-memory parameter d to 0.5 instead of estimating it (FI(0.5)).

We find that all alternative models underperform the FI model. Interestingly, though, the

FI(0.5) model performs almost as well as the standard FI model. Second, we also document

the long-memory properties of betas for the entire Center for Research in Security Prices

(CRSP) sample. For this substantially larger sample and a much longer time period, we find

that the FI model also outperforms all the alternatives.

In the Online Appendix, we present the results of further robustness tests. First, we

document that the FI model is the only one that is consistently successful in generating ex-

post market-neutral portfolios for all anomaly variables. All alternatives fail for at least one

of the six anomalies examined. Second, we document substantial industry effects: stocks in

the Energy, Utilities, and Manufacturing industries have comparably high memory in beta,

while stocks in the Healthcare, HiTec Equipment, and Telephone industries tend to have

relatively low memory in beta. The latter industries are and have been particularly prone to

disruptions and creative destruction. The somewhat shorter memory of the betas of these

stocks is thus consistent with what one might intuitively expect. One should note, however,

that these still exhibit long memory: past shocks also have a long-lasting impact on their

betas. Third, we document that for small, illiquid, and high-momentum stocks, using a RW

model instead of the FI model yields particularly high errors. On the other hand, for liquid,

low-leverage, and young stocks, it is most harmful to use an ARMA(p, q) model instead of

the FI model.

- 4 -



Fourth, we show that the FI and FIARMA models also outperform their competitors

when using hedging errors instead of the RMSE to evaluate the forecasts. Fifth, we study

alternative forecast horizons between one month and one year, reaching similar conclusions.

Finally, we perform the analysis at the individual stock level, consider the alternative esti-

mator for the d parameter of Geweke & Porter-Hudak (1983), alternative intra-day sampling

frequencies, alternative rolling estimation windows, bandwidths, and a correction for asyn-

chronous trading. Our conclusions remain unchanged.

Our advice to the academic and professional community, thus, is to rely on long-memory

beta forecasts whenever possible. Naturally, to consider long memory, one needs to be able

to observe a sufficiently long sample of historical returns. Therefore, for newly listed or very

young firms it is very difficult to accurately estimate the d parameters and make forecasts

based on long-memory models. In this case, Welch’s (2019) simple RWW estimator, which

also works quite well for small stocks, emerges as a viable alternative.

Our paper contributes to the literature on beta estimation. Hollstein & Prokopczuk

(2016) consider both I(0) and I(1) beta forecasts, but do not take into account models

that account for long memory. Further contributions that deal with beta estimation include

Buss & Vilkov (2012), Levi & Welch (2017), Hollstein et al. (2019), and Welch (2019). We

complement these studies by explicitly considering long-memory processes to make beta

forecasts. To the best of our knowledge, we are the first to show that forecasting beta with

long-memory models yields superior forecasts compared to both I(0) and I(1) models.5

The literature has proposed several variations of models with heterogeneous agents (e.g.,

Müller et al., 1993; LeBaron, 2001; LeBaron, 2006; Alfarano & Lux, 2007; Corsi, 2009). In

these models, agents incur heterogeneous planning and investment horizons. The interaction

of different agents creates long memory both in total volatility and in systematic risk factors

(Kamara et al., 2016; Brennan & Zhang, 2020). Heterogeneous agents’ interactions, thus,

are one (although not the only) possible mechanism generating the long memory in beta.

5Consistent with our main results, the complementary, concurrent study of Hollstein (2020) shows that the
FI model also performs well for beta forecasting in an international setting.
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We organize the remainder of this paper as follows. Section 2 introduces the data and

shows summary statistics. We present results about long memory in betas in Section 3. In

Section 4, we examine the impact of our findings for the forecasting of betas. Section 5

contains the economic implications of our findings and presents the results of several further

analyses. In Section 6, we draw conclusions. The Online Appendix provides a further

extensive set of robustness checks.

2 Data and Methodology

2.1 Data

Our main dataset covers U.S. stocks for the sample period from January 1996 to December

2014.6 Following Hollstein et al. (2020), for our main analysis we restrict our attention to

stocks for which we have high-frequency data. We collect high-frequency price data from

the Thomson Reuters Tick History (TRTH) database. On average, the stocks for which

high-frequency data are available represent 84 percent of the entire market capitalization of

ordinary common U.S. stocks.

In order to process the final high-frequency dataset, we follow the data-cleaning steps

outlined in Barndorff-Nielsen et al. (2009). First, we use only data with a time stamp

during the exchange trading hours, i.e., between 9:30AM and 4:00PM Eastern Standard

Time. Second, we remove recording errors in prices. To be more specific, we filter out prices

that differ by more than 10 mean absolute deviations from a rolling centered median of 50

observations. Afterwards, we assign prices to every 30-minute interval using the most recent

entry recorded that occurred at most one day before. Finally, we follow Bollerslev et al.

(2016) and supplement the TRTH data with data on stock splits and distributions from

CRSP to adjust the TRTH overnight returns.

6For a robustness check we also use the entire CRSP dataset and a time period starting from 1926. We
present the results in Section 5.3. These are qualitatively similar to those of our main analysis.
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2.2 Beta Estimation

Following Andersen et al. (2006), we use the realized beta estimator to obtain betas. We

utilize intra-day high-frequency log-returns, sampled at intervals of 30 minutes to estimate

βi,t =

∑O
τ=1 ri,τrM,τ∑O
τ=1 r

2
M,τ

,

where O is the number of high-frequency return observations during the time period under

investigation.7 βi,t is the beta estimate for asset i using data until the end of month t. ri,τ

and rM,τ refer to the return of asset i and the market return at time τ , respectively. For the

main analysis, we consider the time series of nonoverlapping monthly realized beta estimates.

The choice of sampling frequency underlies a delicate trade-off (Patton & Verardo, 2012).

On the one hand, using low-frequency data could result in noisy estimates of beta (Andersen

et al., 2005). On the other, pushing the analysis to a very high frequency introduces a

number of microstructure issues (Scholes & Williams, 1977; Epps, 1979). To balance these

effects, we focus our main analysis on a sampling frequency of 30 minutes. In Section A.2.9

of the Online Appendix, we show that our main results are robust to the choice of sampling

frequency.

2.3 Long-Memory Estimation

Our estimation of the order of integration d of a beta time series relies on the 2ELW

estimator as introduced in Shimotsu & Phillips (2005) and Shimotsu (2010). Given a time

series yt we can obtain this estimator as follows. We first consider the tapered local Whittle

7Note that this formula resembles the expanded formula for the covariance, while neglecting both the drift
term and the risk-free rate. Andersen et al. (2006) note that the effect of the drift term vanishes as
the sampling frequency increases, which effectively “annihilates” the mean. Empirically, for example, the
average 30-minute return of the S&P 500 index amounts to 0.0017 percent. The average daily riskless
interest rate during our sample period amounts to 0.01 percent, which is equivalent to an average risk-free
rate as low as 0.0007 percent over 30-minute intervals. Thus, at this sampling frequency, both the drift and
the risk-free rate can indeed be neglected.
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estimator by Velasco (1999), which is obtained by

d̂V el = argmind∈(−0.5,2)

[
log

(
3

m

m∑
j

λ2d
j I
∗
y (λj)

)
− 2d

3

m

m∑
j

logλj

]
.

Here, I∗y (λj) is the cosine-bell tapered periodogram of the series at frequency λj with j =

3, 6, . . . ,m. Furthermore, m is the bandwidth parameter, which determines the number of

frequencies used for estimation. Larger m imply less variance of the estimates but then

the estimator will be biased in case the underlying process exhibits short-run dependencies.

We follow Shimotsu (2010) and consider m = T 0.7 in the following and report qualitatively

similar results for alternative bandwidths of m = T 0.65 and m = T 0.75 as a robustness check

in Section A.2.10 of the Online Appendix.

Under some mild assumptions, this estimator is consistent and asymptotically normal

for d ∈ (−0.5, 2). However, as the estimator considers only every third frequency of the

periodogram its variance exceeds that of the standard local Whittle estimator by Robinson

(1995). To account for this, the estimate is adjusted in the second step using

d̂2ELW = d̂V el −
L′(d̂V el)

L′′(d̂V el)
, with

L(d) = log

(
1

m

m∑
j=1

I∆dy−µ(d)(λj)

)
− 2d

1

m

m∑
j=1

logλj.

Here, I∆dy−µ(d)(λj) is the periodogram of the demeaned series. Since the arithmetic mean ȳ

is inconsistent for d > 0.5, Shimotsu (2010) suggests using µ(d) = ȳ if d < 0.5, µ(d) = y1 if

d > 0.75, and µ(d) = ω(d)ȳ + (1 − ω(d))y1 with ω(d) = 0.5[1 + cos(4πd)] if d ∈ [0.5, 0.75].

This two-step estimator then has the same limiting variance as the standard local Whittle

estimator while being consistent and asymptotically normally distributed for d ∈ (−0.5, 2).

Consequently, the 2ELW estimator can be used to distinguish short-memory series (d = 0),

stationary long-memory series (0 < d < 0.5), nonstationary long-memory series (0.5 <

d < 1), and difference-stationary series (d = 1) such as the random walk. This is an
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Figure 1: In this figure, we present the time series of monthly nonoverlapping realized beta esti-
mates for Apple, Boeing, Exxon Mobil, and Microsoft. In parentheses, we present the companies’
ds based on the 2ELW estimator.

advantage over the standard local Whittle estimator, which can only be used for inference

for −0.5 < d < 0.75, as it has a nonnormal limit distribution otherwise.

3 Long Memory in Beta

3.1 Estimation Results

In Figure 1, we first present the realized beta time series of four exemplary companies:

Apple, Boeing, Exxon Mobil, and Microsoft. For all companies, the beta time series contain

several local trends and cycles, which are typical for long-memory processes. Thus, based

on this first visual inspection, one is tempted to suspect that there could be long memory in

the beta time series. Indeed, the d estimates for all four companies exceed 0.4.

Analyzing the memory of beta in our sample more systematically, the left panel of Table

1 shows the average estimated d across the realized beta series of all stocks with more than
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Standard Adjusted for Breaks in Mean
¯̂
di sd(d̂i) vs. di = 0 vs. di = 1

¯̂
di sd(d̂i) vs. di = 0 vs. di = 1

βi 0.555 0.158 0.971 0.996 0.509 0.172 0.963 0.997

Table 1: This table presents average estimates of the memory parameter of realized beta across

all stocks (
¯̂
di) using the 2ELW estimator of Shimotsu & Phillips (2005) and Shimotsu (2010).

Additionally, sd(d̂i) displays the standard deviation of the estimates across stocks and vs. di = 0
and vs. di = 1 indicate the relative frequency with which the null hypotheses di = 0 and di = 1,
respectively, are rejected at the 10 percent level. The left panel reports the results for the original
series and the right panel reports results after adjusting the series for structural breaks using the
procedure of Lavielle & Moulines (2000).

0.0 0.2 0.4 0.6 0.8 1.0
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1
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3
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D
e
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Standard
Adjusted for Breaks in Mean

Figure 2: Density plot showing the distribution of the estimated beta memory parameters across
stocks. For estimation we consider the Gaussian kernel and choose the bandwidth according to
Silverman (1986).

100 monthly observations (for N = 1,752 stocks we have sufficient data) using the 2ELW

estimator. Additionally, we present the standard deviation of the estimates across stocks

and the relative frequency with which the d estimates of different stocks are significantly

different from 0 and 1, respectively, at the 10 percent level. To illustrate the variation in d

across stocks, Figure 2 additionally plots the corresponding density of the estimates.

Table 1 reveals that the average d is approximately 0.555 and Figure 2 shows that while

there is some variation across stocks, most of them have a d between 0.4 and 0.8. A formal
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statistical test also confirms that for more than 96 percent of the stocks it holds that 0 <

d < 1 at the 10 percent level. At the 1 percent level this is still true for more than 92 percent

of the stocks.

As a firm’s business may change over time, some of the considered companies could exhibit

a structural break in the realized beta series. When the underlying process is stationary,

i.e., d < 0.5, but exhibits structural breaks in mean, then the local Whittle estimator and

therefore also the 2ELW estimator is positively biased (e.g., Diebold & Inoue, 2001; Granger

& Hyung, 2004). One way to account for this would be to use the estimators by Iacone (2010)

or Hou & Perron (2014), as these remain consistent when structural breaks are present.

However, as we also show in simulations in the Online Appendix, these are negatively biased

for sample sizes smaller than 500, making them unsuitable for our application. To examine

the robustness of our results, we therefore use an alternative two-step procedure. We first

estimate the points at which the series exhibit structural breaks in mean using the procedure

by Lavielle & Moulines (2000) and then apply the 2ELW estimator estimator for the cleaned

series.8

The results are shown in the right panel of Table 1 and are visualized by the dashed

line in Figure 2. We find that the average d̂ decreases slightly to 0.509, implying that some

stocks do indeed exhibit structural breaks in their beta time series. However, the reduction

is small and for more than 96 percent of the stocks the null that d = 0 can still be rejected.

Our results stand in contrast to those by Andersen et al. (2006), who argue that betas

are integrated of a much smaller order, often even I(0). There are two main reasons for this

difference in results.

First, Andersen et al. (2006) base their main analysis on daily data, which leads to noisy

estimates of beta, as also acknowledged by the authors themselves. Deo & Hurvich (2001)

8Bai & Perron (1998, 2003) suggest estimating breaks in mean by minimizing the residual sum of squares
(RSS) of βt = µs + et, where µs is the mean in segment s with s = 1, . . . , S and S being determined by
means of the BIC. Lavielle & Moulines (2000) extend this approach by adding a penalty term to the BIC
criterion, which is then BIC = RSS(S) + 4S log(T )T 2d−1. This leads to a more parsimonious breakpoint
selection, as for long-memory time series the standard procedure indicates too many breakpoints.
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and Arteche (2004) show that for perturbed series any inference on the order of integration

is biased such that the series appear to be less integrated. Our beta estimates based on

intra-day observations, on the other hand, are less noisy, implying that the true order of

integration can be better detected. To further illustrate this, one might think of comparing

the 2ELW estimates to estimates made by noise robust estimators such as those of Sun &

Phillips (2003) or Frederiksen et al. (2012). However, these are positively biased when the

sample size is smaller than 500, making them inappropriate for our setup. As an alternative

we show in Table A.15 of the Online Appendix that changing the bandwidth m in the 2ELW

estimation leads to similar estimates of d. As demonstrated by Hurvich et al. (2005), this

would not be the case if the series were seriously perturbed.

Second, Andersen et al. (2006) rely on graphical investigation of the first 36 autocor-

relations instead of consistent estimation of the memory parameter. Particularly in small

samples (Andersen et al., 2006 consider T = 148) this type of inference may lead to false

conclusions. We illustrate this by means of a small simulation study for which we report the

results in Table A.1 of the Online Appendix. We simulate fractionally integrated noise,

i.e., (1 − B)dyt = εt, with B being the backshift operator, for memory parameters of

d = 0.2, 0.4, 0.6 and sample sizes of T = 100, 148, 228, 1000. The table reveals that on

average only 24 percent of the first 36 autocorrelations of an I(0.4) process with T = 148 are

significantly larger than zero. From this result one might falsely infer that the series exhibit

short memory. In contrast, the simulation results show that the 2ELW estimator is also

unbiased in small samples, implying that the correct order of integration can be detected.

For further details on the simulation setup and results we refer to Section A.1 of the Online

Appendix.9

We therefore conclude that realized betas are highly persistent and are best described by

9Table A.1 also presents results for the estimators by Sun & Phillips (2003), Iacone (2010), Frederiksen et al.
(2012), and Hou & Perron (2014) to validate our claim that these are biased in small samples. Additionally,
the table presents results for the log periodogram estimator, which we consider for a robustness check (also
presented in the Online Appendix). This estimator is also unbiased, but exhibits a larger variance than the
2ELW estimator.
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either pure long-memory processes or a combination of break and long-memory process.

3.2 Beta Decomposition

Since beta is actually a combination of different components, it might be interesting to

investigate which of these drives the persistence. For that purpose, consider the following

decomposition

βi,t = σi,M,tσ
−2
M,t = ρi,M,tσi,tσM,tσ

−2
M,t = ρi,M,tσi,tσ

−1
M,t, (1)

where σi,M,t is the realized covariance of asset i and the market M at time t, ρi,M,t is their

realized correlation, and σi,t is the realized volatility. Consequently, Equation (1) shows

that the realized beta series evolve as the product of realized correlation, realized volatility,

and the inverse of realized market volatility. Leschinski (2017) shows theoretically that

the products of stationary long-memory series (i.e., 0 < d < 0.5) with nonzero mean are

integrated with the maximum memory of the series. This would mean that one of the

components needs to exhibit the same degree of memory as realized beta while the others

could exhibit a smaller d, even d = 0. However, for approximately 73 percent of the stocks

it holds that d > 0.5, meaning that the beta series exhibit nonstationary long memory. In

these cases, it is theoretically unclear how products of such series behave. We therefore also

estimate the order of integration of realized correlation, realized volatility, and the inverse

of realized market volatility using the 2ELW estimator.10

The results are shown in Table 2.11 Again, we consider the possibility of structural breaks

and also report results when adjusting for these. The realized correlation and the inverse of

realized market volatility on average exhibit a d of approximately 0.57 and 0.59, respectively,

10We obtain the realized volatility for stock i and the market (i = M) as σi,t =
√∑O

τ=1 r
2
i,τ , the realized

covariance as σi,M,t =
∑O
τ=1 ri,τrM,τ , and the realized correlation as ρi,M,t =

σi,M,t

σi,tσM,t
.

11We Fisher-transform the realized correlation series to guarantee that there is no bias due to the restricted
character of the variable. If we use the original series, the results are similar.
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Standard Adjusted for Breaks in Mean
¯̂
di sd(d̂i) vs. di = 0 vs. di = 1

¯̂
di sd(d̂i) vs. di = 0 vs. di = 1

ρi,M 0.565 0.139 0.976 0.996 0.559 0.142 0.975 0.997

σi 0.598 0.154 0.991 0.967 0.598 0.154 0.991 0.967

σ−1
M 0.588 - 1.000 1.000 0.585 - 1.000 1.000

Table 2: This table presents average estimates of the memory parameter of realized correlation
(Fisher-transformed), and volatility across all stocks (N = 1752), as well as that of the inverse
of the market volatility, using the 2ELW estimator of Shimotsu & Phillips (2005) and Shimotsu
(2010). sd(d̂i) displays the standard deviation of the estimates across stocks and vs. di = 0 and
vs. di = 1 indicate the relative frequency with which the null hypotheses di = 0 and di = 1,
respectively, are rejected at the 10 percent level. The left panel reports the results for the original
series and the right panel reports results after adjusting the series for structural breaks using the
procedure of Lavielle & Moulines (2000).

while the d of realized volatility is even slightly higher on average, with 0.60. Again, tests

indicate that for almost all stocks the order of integration is different from 0 and 1 for all

three components.

When adjusting for structural breaks, the d of the realized correlation decreases slightly,

while the d of realized volatility does not. Consequently, it is rather breaks in realized

correlation than breaks in volatility that drive the breaks observed in the realized betas.

When comparing the actual estimate of d to the estimate of the memory of the realized beta

series, it can be seen that all three components exhibit a slightly higher degree of persistence.

Thus, it seems that no single component, but rather all of them, drives the persistence in

realized betas.

4 Forecasting

Having shown that betas have consistent long-memory properties, the natural next ques-

tions to ask are: Can we leverage the long-memory properties in betas to make better

forecasts? How big are the errors when inaccurately imposing I(0) or I(1) dynamics for

forecasting betas? In this section, we set out to answer these questions. For this purpose,

we compare pseudo out-of-sample forecasts for the realized beta series of models accounting
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for the long-memory characteristics with those for short-memory and difference-stationary

processes.

4.1 Forecasting Methodology

For forecasting using long-memory models we follow the approach proposed by Hassler

& Pohle (2019). Given the estimated order of integration of a series, we first remove the

persistence by filtering. Then we calculate the mean of the series. In a next step, we forecast

the filtered data accounting for potential short-run dependencies. Finally, we reintegrate the

series to obtain a forecast.

In more detail, given a historical window of T betas of stock i, we first compute the d̂th

difference

∆d̂i,Tβi,t = (1− L)d̂i,Tβi,t =
t−1∑
j=0

(
d̂i,T
j

)
(−1)jβi,t−j, with t = 1, . . . , T,

where d̂i,T is the estimate of the 2ELW estimator with a bandwidth of m = T 0.7 for stock i

from an estimation window ending at T . Again, we report qualitatively similar results for

m = T 0.65 and m = T 0.75 in Section A.2.10 of the Online Appendix.

We then set out to calculate the conditional mean µi,T of the series, which is complicated

by the long-memory characteristics. As discussed above, the arithmetic mean cannot be

considered for nonstationary long-memory series as it does not exhibit a finite variance. We

therefore consider the approach by Robinson (1994) to estimate µi,T . For this purpose, we

perform the following regression

∆d̂i,Tβi,t = ψi,tµi,T + ηi,t, with ψi,t =
t−1∑
j=0

(
d̂i,T
j

)
(−1)j,

where ηi,t is the error term that contains possible short-run dynamics. This allows us to
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calculate the residuals

εi,t = ∆d̂i,Tβi,t − ψi,tµ̂i,T ,

which are not fractionally integrated any longer, but might exhibit short-run dependencies.

We can optionally account for these using an ARMA(p, q) model

εi,t = φi,1εi,t−1 + . . .+ φi,pεi,t−p + θi,1ζi,t−1 + . . .+ θi,qζi,t−q + ζi,t, with t = 2, . . . , T,

where ζi,t is the mean zero error term and p and q are determined by means of the BIC with

a maximum lag length of 12[(T/100)0.25]. This allows us to forecast the residuals h steps

ahead

ε̂i,T+h = φ̂i,1ε̂i,T+h−1 + . . .+ φ̂i,pε̂i,T+h−p + θ̂i,1ζ̂i,T+h−1 + . . .+ θ̂i,q ζ̂i,T+h−q.

For ε̂i,T+h, the hat indicates that it is a forecast and h denotes the forecast window in months.

In a case without short-run dependencies we simply set ε̂i,T+h = 0. We then reintegrate the

series to account for the long-memory characteristics by calculating Ẑi,t = ∆−d̂i,T ε̂i,t for

t = 1, . . . , T +h, respectively t = 2, . . . , T +h. Forecasts of the original sequence then evolve

as

β̂i,T+h = µi,T + Ẑi,T+h.

The resulting forecasts for h-month betas can be computed as the averages of the point

forecasts during the next h months.

This approach allows us to forecast stationary as well as nonstationary series while also

accounting for potential short-run dynamics. We denote the model with short-run compo-

nents by FIARMA in the following to emphasize that there is a difference from the standard

ARFIMA models, as introduced by Granger & Joyeux (1980) and Hosking (1981), which
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only allow modeling and forecasting stationary series with d < 0.5. We refer to the model

without short-run dependencies simply as FI.

As difference-stationary and short-memory competitor models, we consider the random

walk model, for which β̂T+h = βT , as well as AR(p) and ARMA(p, q) models, respectively.

We estimate the latter models based on

βi,t = ai + φi,1βi,t−1 + . . .+ φi,pβi,t−p + θi,1ei,t−1 + . . .+ θi,qei,t−q + ei,t, with t = 2, . . . , T.

For the AR model we set θi,1 = . . . = θi,q = 0. Again, we choose p and q according to the

BIC with a maximum lag length of 12
[
(T/100)0.25].

Another popular way to model and forecast long-memory time series is to use the HAR

model of Corsi (2009). For the realized beta series, it evolves as

βi,t = ai + φ1,iβi,t−1 +
φ2,i

5

5∑
j=1

βi,t−j +
φ3,i

22

22∑
j=1

βi,t−j + ei,t, (2)

where ei,t is a mean zero error term. While the HAR model does not formally belong to

the class of long-memory models, when applied to return volatility time series, this model

has been shown to be able to reproduce long-memory patterns.12 We therefore also consider

forecasts made by this model in the following. Finally, we also consider a random walk

model based on the weighted slope-winsorized estimator of Welch (2019) (RWW). For this

estimator, one first has to winsorize the individual stock returns between−2 and +4 times the

contemporaneous market return. The second step of the Welch (2019) estimator consists of

computing the beta estimates with exponentially decaying weights (with a decay parameter

equal to 2/(252*14)).13,14

12Baillie et al. (2019), though, show that HAR models generally cannot capture the full scale of long memory.
It is thus possible that the model performs less well than the FI and FIARMA alternatives.

13Note that we adjust the decay parameter of Welch (2019) to be consistent with the 30-minute high-
frequency data, for which we have 14 observations per day. We consider an alternative version of the
Welch (2019) estimator, which exactly follows the author’s implementation, in Section 5.

14To keep the presentation manageable, we focus on these seven models. In Section 5.2, we consider several
alternatives. The results are qualitatively similar to those presented here.
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To examine the out-of-sample forecast accuracy of the different approaches, we perform

the analysis using the root mean squared error (RMSE), a loss function commonly applied

in the literature

RMSEi,h =

√√√√ 1

Υ

Υ∑
T=1

(βi,T+h − β̂i,T+h)2,

where Υ is the number of out-of-sample observations of realized and predicted betas of one

stock. βi,T+h is the realized beta and β̂i,T+h denotes a beta forecast. The RMSE criterion is

suitable since it is robust to the presence of (mean zero) noise in the evaluation proxy, while

other commonly employed loss functions are not (Patton, 2011).15 We test for significance

in RMSE differences univariately using the modified Diebold–Mariano (DM) test proposed

by Harvey et al. (1997) and additionally with the model confidence set (MCS) approach of

Hansen et al. (2011). The MCS approach is designed such that it contains the best model

based on a certain level of confidence.

To further mitigate the impact of errors-in-variables in the forecast evaluation proxy, we

build portfolios. To do so, we follow Fama & MacBeth (1973) and Hollstein & Prokopczuk

(2016). That is, each month we use the (realized) beta estimate for each firm obtained

during the second-to-last nonoverlapping beta estimation window.16 In doing so, we use a

common sorting variable for all forecast approaches. That is, we employ one method to sort

and then forecast betas for the same portfolios with different methodologies. We build 50

value-weighted portfolios. Figure 3 depicts the average market capitalization of the stocks

15The results when using the mean absolute error (MAE) criterion instead of the RMSE are qualitatively
similar.

16We do so to ensure that (i) there is a spread in the market betas of the different portfolios. (ii) Using a
sorting variable that is independent of the predictor variables is important to avoid discriminating against
any of the predictors. Otherwise, the stocks with the highest positive and negative noise for the estimator
upon which the betas are sorted are likely to end up in the extreme portfolios and that noise cannot be
fully diversified. For stocks with missing estimates for the sorting variable, we set it to 1.
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Figure 3: This figure depicts the average market capitalizations (in Billions of USD) of the stocks
sorted into the 50 portfolios. The stocks are sorted each month (in ascending order) based on
the (realized) beta estimate for each firm obtained during the second-to-last nonoverlapping beta
estimation window. We sort them into 50 portfolios based on breakpoints derived from stocks
traded at the New York Stock Exchange (NYSE), which have a sorting beta between 0.2 and 2.
The minimum number of stocks in any portfolio at any time is 11. On average, each portfolio
contains 22 stocks.

in the different portfolios.17 All portfolio forecasts are based on the beta time series of the

stocks newly allocated to these portfolios.

4.2 Forecast Results

The results of the various beta forecasts can be found in Table 3. We use a rolling

estimation window of 100 observations along with a (monthly overlapping) forecast window

of 6 months (Chang et al., 2012; Hollstein & Prokopczuk, 2016).18 Table 3 presents the

average RMSE across all stocks, the number of times the model yields the lowest RMSE

17As a further precaution against ending up with many portfolios populated only by small and illiquid stocks,
we derive the sorting breakpoints only from stocks traded at the New York Stock Exchange (NYSE), which
have a sorting beta between 0.2 and 2 (3.5% of (mostly small) NYSE stocks have betas below 0.2 and
2.1% betas above 2). The portfolios are then allocated based on these breakpoints, using all stocks. When
simply using name breakpoints and no restrictions on beta, the market capitalization distribution is more
uneven in that the extreme portfolios contain even smaller stocks on average. The (untabulated) results,
though, are qualitatively similar. In addition, we present qualitatively similar results for individual stocks
in Section A.2.6 of the Online Appendix. Finally, untabulated results for alternative numbers of portfolios
are also qualitatively similar.

18Qualitatively similar results for forecast horizons of 1, 3, and 12 months and estimation windows of 75 and
125 months can be found in Sections A.2.5 and A.2.10 of the Online Appendix, respectively.
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RW RWW AR ARMA HAR FIARMA FI

RMSE 0.1484 0.1277 0.1405 0.1290 0.1300 0.1232 0.1185

Best 0 6 0 0 2 25 17

In MCS 21 46 27 43 49 50 50

vs. RW 0 17 5 11 12 25 27

vs. RWW 0 0 0 1 3 10 9

vs. AR 1 4 0 27 13 24 24

vs. ARMA 0 0 0 0 2 12 16

vs. HAR 0 1 0 0 0 10 9

vs. FIARMA 0 0 0 0 0 0 2

vs. FI 0 0 0 0 0 2 0

N 50 50 50 50 50 50 50

Table 3: This table illustrates the forecast performance of the models for six-month beta forecasts
from a rolling estimation window of 100 observations. The first row shows the average RMSEs of
different models across all 50 portfolios. The row “Best” indicates the number of times a model
achieves the lowest RMSE for a certain portfolio. “In MCS” denotes the number of portfolios
for which an estimator is in the Hansen et al. (2011) model confidence set. Furthermore, the
rows denoted by “vs. X” correspond to modified DM-tests (Harvey et al., 1997), providing the
number of times the column-model yields a significantly lower RMSE than the row-model. We
examine statistical significance toward the 10 percent level. Finally, N is the number of investigated
portfolios.

when forecasting the realized beta of one of the portfolios, and the number of portfolios for

which a model makes it into the Hansen et al. (2011) model confidence set. The remainder

of the table indicates the number of stocks for which the column-model is significantly better

than the row-model. We examine statistical significance toward the 10 percent level.

Table 3 reveals that the FI model performs best across all considered models. It has the

lowest RMSE on average and is the model with the lowest RMSE for 17 of the 50 portfolios.

Second best is the FIARMA model, which even turns out best for 25 of the portfolios. The

HAR model, on the other hand, performs substantially worse, indicating that it does not

work well in capturing the long-memory characteristics of the stocks’ betas. The models that

do not account for the long-memory characteristics of the beta time series, on the other hand,

are only the most accurate for 6 of the portfolios (for all of which the Welch, 2019 estimator
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performs best).19 The differences in RMSE are economically large. When moving from the

RW model to using the FI model, the RMSE decreases by 20.1 percent. For RWW, AR, and

ARMA, the improvements are 7.2 percent, 15.7 percent, and 8.2 percent, respectively.

The outperformance of the long-memory models is often also statistically significant. The

FI and FIARMA are the only models which are in the model confidence set for every single

portfolio. Furthermore, in single comparisons, the FI forecasts are significantly better for

27 of the 50 portfolios when compared to RW (9 when compared to RWW); compared to

AR and ARMA forecasts these numbers are 24 and 16, respectively. On the other hand,

the forecasts by the RW, RWW, AR, and ARMA models are never significantly better than

those of the FI and FIARMA models. Consequently, we can conclude that accounting for

long-run dependence substantially improves the forecasts for realized betas.

Our finding that the FI model yields a significantly lower RMSE than the RW model

for almost all stocks has broad implications. Hollstein et al. (2020) show that a RW model

outperforms other predictors based on daily data as well as the Buss & Vilkov (2012) option-

implied beta. Thus, the FI forecasts appear to be preferable not only to other time-series

models but also to a broader set of potential estimators.20

To further investigate the causes of the differential forecast performance of the models,

we follow Mincer & Zarnowitz (1969) and decompose the time-series mean squared error

(MSE) in the following fashion

MSEi = (β̄i − ¯̂
βi)

2︸ ︷︷ ︸
bias

+ (1− bi)2σ2(β̂i)︸ ︷︷ ︸
inefficiency

+ (1− ρ2
i )σ

2(βi)︸ ︷︷ ︸
random error

. (3)

bi is the slope coefficient of the regression βi = ai + biβ̂i + ei and ρ2
i is the coefficient of

determination of this regression. A bias indicates that the model is misspecified and the

prediction is, on average, different from the realization. Inefficiency represents a tendency

19Further untabulated analyses reveal that the FI and FIARMA models perform even better when based on
the time series of the noise-reduced Welch (2019) estimator instead of that of the plain realized beta.

20In untabulated results, we confirm this also empirically: the FI model outperforms estimators based on
daily return data as well as option-implied estimators.
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RW RWW AR ARMA HAR FIARMA FI

Bias 0.0020 0.0004 0.0010 0.0004 0.0016 0.0007 0.0006

Inefficiency 0.0112 0.0042 0.0050 0.0035 0.0040 0.0054 0.0018

Random Error 0.0135 0.0128 0.0157 0.0148 0.0138 0.0132 0.0132

Table 4: This table shows the Mincer & Zarnowitz (1969) decomposition of the MSE as of Equation
(3). The MSE is based on six-month forecasts of the realized beta series performed with a rolling
estimation window of 100 observations. All numbers represent the average across 50 beta-sorted
portfolios.

of an estimator to systematically yield positive forecast errors for low values and negative

forecast errors for high values or vice versa. The remaining random forecast errors are

unrelated to the predictions and realizations.

Table 4 presents the results of the MSE decomposition. Again, the numbers represent the

averages across all portfolios. We find that the RW model has the highest bias and highest

inefficiency components. Thus, particularly for high- and low-beta stocks, the RW approach

generates sizable measurement errors. Welch’s (2019) RWW approach improves upon the

performance of RW in both dimensions. For the AR and ARMA models, the bias component

is small. The inefficiency is also dramatically smaller compared to the RW model. However,

the random error component, which is the largest component for all models, is highest for

the AR and ARMA models.

The FI and FIARMA models are approximately unbiased. The FI model yields the

lowest overall inefficiency component, which indicates that the model does well in particular

for stocks with the most extreme betas. Finally, the two models also yield low random

errors. Accounting for short-run dynamics in addition to long memory in betas appears to

only affect the inefficiency component. On the other hand, the HAR model is not among

the group of best models in any of the dimensions.
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5 Additional Analyses

5.1 Economic Implications: Beta Portfolios

An economic criterion on which to assess different beta estimation approaches that is

important is a model’s performance in portfolio formation. Therefore, we also evaluate

the estimators based on their ability to create ex-post spreads in realized betas (Daniel &

Titman, 1997).21

For each forecast approach, we separately sort the stocks into 10 portfolios based on their

respective current beta forecasts at the end of each month. We then calculate the ex-post

realized beta of each portfolio. A good predictor should generate a monotonically increasing

pattern in ex-post betas. Furthermore, the spread between the realized betas of high and

low beta forecast portfolios should be large.

We present the results in Table 5. Consistent with the results in the previous section,

we find that the long-memory FIARMA and FI models yield the lowest ex-post realized

beta for their respective low-beta portfolio 1. Both generate a realized beta of 0.43. The

difference-stationary random walk model, on the other hand, generates an ex-post realized

beta of 0.49. The ARMA model yields an ex-post beta of 0.46. Considering the high-beta

portfolio (10), the results are similar. The models that account for long memory yield the

highest ex-post realized betas, while those of short-memory and difference-stationary models

are somewhat lower. Consequently, the FIARMA and FI models also yield the highest 10–1

portfolio spreads, although, admittedly, the realized beta spreads of most other approaches

are generally also within a two-standard-error range.

5.2 Alternative Models

Due to its great importance, there are numerous approaches and models to forecast beta.

For ease of presentation in our main analysis, we compare the performance of the long-

21We thank an anonymous referee for suggesting this test design to us.
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1 2 3 4 5 6 7 8 9 10 10− 1

RW 0.489 0.623 0.744 0.838 0.921 0.990 1.078 1.177 1.307 1.550 1.061

(0.014) (0.015) (0.010) (0.011) (0.021) (0.029) (0.038) (0.046) (0.046) (0.052) (0.047)

RWW 0.475 0.622 0.747 0.840 0.922 0.983 1.075 1.168 1.282 1.533 1.058

(0.014) (0.013) (0.010) (0.010) (0.020) (0.030) (0.037) (0.045) (0.046) (0.054) (0.047)

AR 0.479 0.578 0.700 0.798 0.903 0.980 1.051 1.142 1.251 1.479 1.000

(0.021) (0.017) (0.012) (0.011) (0.016) (0.028) (0.035) (0.044) (0.047) (0.047) (0.041)

ARMA 0.462 0.584 0.709 0.810 0.908 0.984 1.077 1.164 1.275 1.522 1.061

(0.021) (0.016) (0.010) (0.009) (0.021) (0.032) (0.039) (0.039) (0.046) (0.049) (0.041)

HAR 0.460 0.605 0.735 0.845 0.935 1.009 1.116 1.208 1.318 1.560 1.100

(0.021) (0.015) (0.009) (0.011) (0.024) (0.029) (0.044) (0.041) (0.044) (0.030) (0.040)

FIARMA 0.432 0.588 0.708 0.816 0.904 0.993 1.081 1.179 1.302 1.560 1.128

(0.019) (0.014) (0.011) (0.010) (0.020) (0.039) (0.046) (0.052) (0.051) (0.051) (0.038)

FI 0.432 0.588 0.705 0.813 0.899 0.987 1.076 1.173 1.299 1.556 1.124

(0.019) (0.014) (0.011) (0.010) (0.018) (0.036) (0.042) (0.049) (0.051) (0.052) (0.040)

Table 5: This table presents the ex-post realized betas of portfolios sorted by the different beta
forecasts. That is, at the end of each month we sort the stocks into 10 portfolios based on the
beta forecasts. We do so separately for each forecast approach. Subsequently, we calculate the
ex-post realized beta of each portfolio, as well as that of the high-minus-low (10–1) portfolio. In
parentheses, we present the robust Andrews (1991) standard errors, using a quadratic spectral
density and data-driven bandwidth selection. We omit stars to indicate significance, because all
ex-post realized betas are statistically significant at the 1 percent level.

memory models only to the performance of the most popular competitors, RW, RWW, AR,

and ARMA. In this section we now consider other approaches that have been proposed in the

literature. First, for the analysis in this section we exactly follow Welch’s (2019) suggestion

and base the RWW model on one year of daily return data and a decay parameter equal to

2/252.22

Furthermore, Andersen et al. (2005) consider an AR(1) process to model beta in a state–

space framework. Hollstein & Prokopczuk (2016) investigate the forecast performance of RW,

AR(1), and ARMA(1,1) models in a state–space framework and find that the RW model

performs somewhat better than the AR(1) and ARMA(1,1) models. Thus, in this section

we also consider the forecasts from RW, AR(1), and ARMA(1,1) models when estimated as

22In untabulated analyses we also tried the shrinkage estimators of Vasicek (1973) and Levi & Welch (2017).
Both underperform the simpler RWW model and, consequently, also the FI and FIARMA models.
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a state–space system. The measurement equation for all three models is

βi,t = β̃i,t + ξi,t,

where β̃i,t is the unobserved true beta. It evolves according to one of the following transition

equations for the different models

β̃RWi,t = β̃i,t−1 + vi,t,

β̃ARi,t = γi + φiβ̃i,t−1 + vi,t, and

β̃ARMA
i,t = γi + φiβ̃i,t−1 + θivi,t−1 + vi,t.

We estimate these models using the Kalman filter (Pagan, 1980; Black et al., 1992) and then

perform forecasts as for the standard models.

To the best of our knowledge, long-memory models in a state–space framework have only

been proposed for the stationary d < 0.5 case (Chan & Palma, 1998; Dissanayake et al.,

2016). Since we mostly deal with nonstationary time series here, these models are likely

inappropriate. Therefore, we do not consider a state–space variant of these models. As an

alternative, we examine a variation of the FI model, in which we fix the parameter at 0.5

(Hassler & Pohle, 2019), referring to the model as FI(0.5). 0.5 approximates the average d

obtained for our sample (the cross-sectional mean after adjusting for breaks is 0.509). The

estimation of the memory parameter is nontrivial and point estimates often still have large

confidence intervals. By fixing the d at a certain level, one essentially trades off the estimation

noise for slight inaccuracy in the resulting persistence parameter. It is an empirical question

whether this approach works better or worse than that involving actual estimation of the d

parameter.

Finally, we also consider a HAR model augmented by jump betas, as in Andersen et al.

(2007).23 The main motivation for examining these models is that discontinuous processes

23We thank an anonymous referee for suggesting that we should analyze this model.
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RW RWW AR ARMA HAR HARJump FIARMA FI FI(0.5)

RMSE 0.1264 0.1426 0.1348 0.1358 0.1301 0.1610 0.1233 0.1185 0.1206

Best 12 1 0 4 1 0 13 5 14

In MCS 48 34 40 39 45 28 50 50 50

vs. RW 0 0 0 0 1 1 4 3 2

vs. RWW 17 0 9 9 11 1 15 17 8

vs. AR 21 1 0 0 6 2 13 14 9

vs. ARMA 20 1 13 0 6 2 14 14 11

vs. HAR 4 0 4 4 0 1 10 8 6

vs. HARJump 14 0 7 9 15 0 19 19 17

vs. FIARMA 1 0 0 0 0 0 0 2 5

vs. FI 0 0 0 0 0 0 2 0 3

vs. FI(0.5) 2 0 1 0 0 0 3 3 0

N 50 50 50 50 50 50 50 50 50

Table 6: In analogy to Table 3, this table illustrates the forecast performance of different additional
models for six-month beta forecasts from a rolling estimation window of 100 observations. RW,
AR, and ARMA are estimated in a state–space framework. RWW relies on a 12-month daily
estimation window, FI(0.5) uses a FI model with d fixed at 0.5, and HARJump denotes a HAR
model augmented by jump betas. The first row shows the average RMSEs of different models across
all 50 portfolios. The row “Best” indicates the number of times a model achieves the lowest RMSE
for a certain portfolio. “In MCS” denotes the number of portfolios for which an estimator is in the
Hansen et al. (2011) model confidence set. Furthermore, the rows denoted by “vs. X” correspond
to modified DM-tests (Harvey et al., 1997), providing the number of times the column-model yields
a significantly lower RMSE than the row-model. We examine statistical significance toward the 10
percent level. Finally, N is the number of investigated portfolios.

can point to spurious long memory. It is thus possible that short-memory processes aug-

mented with discontinuous components perform well for forecasting. We refer to this model

as HARJump. To estimate the jump betas for each stock, we follow the approach of Boller-

slev et al. (2016). We additionally include 3 lags of the jump betas over different historical

horizons, similar to the approach for the HAR model of Equation (2).24

Table 6 shows the forecast results for these models and for comparison again the results

of the FI and FIARMA models considered earlier. In line with the results of Hollstein &

Prokopczuk (2016), we find that the performance of the RW model improves when estimated

24Following the advice of an anonymous referee, we have also examined the Corsi & Renò (2012) HAR
model with jumps and leverage. Our untabulated analysis reveals that this model performs worse than the
simpler HARJump model. This is likely because, as opposed to volatility, we are not aware of evidence
pointing toward a leverage effect for beta.
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within a state–space framework, as it on average now produces more accurate forecasts than

the AR and ARMA models. However, the models that account for long-range dependencies

still perform substantially better. The “original” RWW model also does not perform better

than the FI and FIARMA models.

The HARJump model performs worse rather than better than the plain HAR model.

The FI and FIARMA models yield substantially lower average RMSEs. Thus, it seems to be

important to use true long-memory processes. Short-memory processes augmented by jump

components do not suffice. Finally, it is noteworthy that the results for the FI(0.5) model

are only slightly worse than those for the FI model considered earlier. Thus, fixing d at 0.5

instead of using estimates appears to be a practical and well-performing approach for beta

forecasting.

5.3 Entire CRSP Dataset

In our main analysis, based on the need to have high-frequency data for liquid instru-

ments, we restrict our dataset to firms with available high-frequency data and start in 1996.

In this section, we examine whether the results found for this sample can also be generalized

to a broader sample of stocks and for a longer sample period. We extend our dataset to

consider the entire CRSP dataset starting from 1926. As intra-day observations are only

available from 1996 onward, we calculate betas from daily returns. Since monthly beta es-

timates based on daily returns are too noisy, we follow Andersen et al. (2006) and consider

quarterly estimates instead.25

Table 7 shows the estimated order of integration of the series averaged across all stocks

for which more than 100 observations are available (N = 3,153). Again we present results

when investigating the original series as well as when adjusting for structural breaks.

We find that the average d estimate decreases from 0.56 to 0.38 when considering the

25Since the zero-approximation to the risk-free rate becomes less reliable for daily returns, we deviate from
the description in Equation (1) by using excess returns to estimate realized betas based on daily data.
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Standard Adjusted for Breaks in Mean
¯̂
di sd(d̂i) vs. di = 0 vs. di = 1

¯̂
di sd(d̂i) vs. di = 0 vs. di = 1

βi 0.382 0.157 0.916 0.999 0.331 0.181 0.841 0.999

Table 7: In analogy to Table 1, this table presents average estimates of the memory parameter of

realized beta across all stocks (
¯̂
di) using the 2ELW estimator of Shimotsu & Phillips (2005) and

Shimotsu (2010). The results are for the entire CRSP sample (3,153 stocks) and quarterly betas
calculated from daily data. sd(d̂i) displays the standard deviation of the estimates across stocks
and vs. di = 0 and vs. di = 1 indicate the relative frequency with which the null hypotheses di = 0
and di = 1, respectively, are rejected at the 10 percent level. The left panel reports the results for
the original series and the right panel reports results after adjusting the series for structural breaks
using the procedure of Lavielle & Moulines (2000).

expanded sample of daily returns. This also holds when only considering the same stocks as

in our main analysis, for which the average d estimate is now 0.46, and even when considering

the same stocks and same time period as for our main analysis, where the average d is 0.50.

Consequently, the observed reduction in d is in part due to the expanded sample with partly

less liquid stocks and a longer time period. However, the change in the recording frequency

also plays a role. As already discussed in Section 3.1, decreasing the recording frequency

increases the level of noise in the realized beta time series. This then leads to a negative

bias of the 2ELW estimator, which explains the reduction of the memory estimate.26 Even

though the d estimates appear to be slightly negatively biased, more than 84 percent of the

stocks still have a d that is significantly greater than zero. For 99 percent, we can reject the

null hypothesis of difference-stationarity.

In Table 8 we present the forecast results. As in the previous subsection RWW is based

on one year of daily returns and Welch’s (2019) original weighting scheme. In addition, based

on the result that d is on average close to 0.4, we also consider a FI(0.4) estimator where we

fix the parameter to 0.4 for all stocks instead of estimating it.

The forecast results echo our finding of long memory of betas in the CRSP dataset. We

find that the FI(0.4) model performs overall best, closely followed by the FI and FIARMA

26In Section A.2.9 of the Online Appendix, we explore this issue further by considering alternative intra-day
sampling frequencies of 15 minutes and 75 minutes. There, we already find that increased noise in realized
betas derived from 75-minute data biases the d estimates negatively.
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RW RWW AR ARMA HAR FIARMA FI FI(0.4)

RMSE 0.2168 0.1787 0.1890 0.1829 0.1801 0.1738 0.1738 0.1722

Best 0 8 0 0 0 11 2 29

In MCS 2 48 12 30 39 49 48 50

vs. RW 0 34 25 29 31 35 36 35

vs. RWW 0 0 0 0 1 4 4 7

vs. AR 0 3 0 15 8 30 27 30

vs. ARMA 0 2 0 0 5 22 14 21

vs. HAR 0 2 0 0 0 12 11 12

vs. FIARMA 0 0 0 0 0 0 0 3

vs. FI 0 0 0 0 0 0 0 4

vs. FI(0.4) 0 0 0 0 0 1 0 0

N 50 50 50 50 50 50 50 50

Table 8: In analogy to Table 3, this table illustrates the forecast performance of the models for
six-month beta forecasts from a rolling estimation window of 100 observations. The first row shows
the average RMSEs of different models across all 50 portfolios. The row “Best” indicates the
number of times a model achieves the lowest RMSE for a certain portfolio. “In MCS” denotes
the number of portfolios for which an estimator is in the Hansen et al. (2011) model confidence
set. Furthermore, the rows denoted by “vs. X” correspond to modified DM-tests (Harvey et al.,
1997), providing the number of times the column-model yields a significantly lower RMSE than
the row-model. We examine statistical significance toward the 10 percent level. Finally, N is the
number of investigated portfolios.

models. For 29 out of the 50 portfolios the FI(0.4) estimator yields the lowest average

RMSE.27 The FI(0.4) model is in the model confidence set in every single instance, while

the difference-stationary RW model is only for 2 portfolios and the AR and ARMA models

only for 12 and 30 of the 50 portfolios, respectively. The HAR model performs reasonably

well, being in the model confidence set for 39 of the 50 portfolios.

The RWW model yields an average RMSE that is 3.6 percent higher than that of the

FI(0.4) model and is in the model confidence set for 48 of the 50 portfolios. However, the

simple Welch (2019) RWW estimator appears to work well for small stocks. An untabulated

analysis reveals that for equally weighted portfolios the RWW estimator performs almost as

27Indeed, we find that a FI(0.5) estimator performs slightly worse than the FI(0.4) estimator. Thus, even
though the d estimates appear to be slightly downward biased, the average underlying parameter seems to
be closer to 0.4 than to 0.5.
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well as the FI and FI(0.4) models. In addition, for considering long memory, we need to be

able to observe a sufficiently long sample of historical returns. Therefore, for newly listed

or very young firms it is very difficult to accurately estimate the d parameters and make

forecasts based on long-memory models. Thus, for small stocks and those with only a short

return history, the RWW estimator appears to be a viable alternative.

5.4 Further Analyses and Robustness Tests

In Section A.2 of the Online Appendix, we present the results of further analyses and

robustness tests. We study market-neutral anomaly portfolios in Section A.2.1, the relation

between the memory of beta and industries in Section A.2.2, and the determinants of fore-

cast errors in Section A.2.3. An analysis of hedging errors is in Section A.2.4. We consider

alternative forecast horizons in Section A.2.5 and an analysis based on individual stocks in

Section A.2.6. The results of a cross-sectional analysis are in Section A.2.7. Additionally, we

use an alternative long-memory estimator (Section A.2.8), alternative sampling frequencies

(Section A.2.9), alternative estimation windows and bandwidths in the long-memory esti-

mation (Section A.2.10), and impose a correction for asynchronous trading (Section A.2.11).

None of these robustness tests changes our main conclusions. The results are all qualitatively

similar to those presented in the main part of the paper.

6 Conclusion

In this paper, we analyze the memory of beta. We first document that the betas of

virtually all stocks exhibit long-memory properties. We further show that accounting for

these long-memory properties is very important for forecasting. A pure long-memory FI

model outperforms all other short-memory and difference-stationary models. Accounting

long memory is also important economically: the FI and FIARMA models perform best in

portfolio formation exercises.
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We also document that setting the memory parameter to d = 0.5 on average yields results

that are almost as well as (or even better) when first estimating the d parameters. In Section

A.3 of the Online Appendix, we provide a simple R-algorithm for making forecasts with this

model.
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The Memory of Beta

Online Appendix

JEL classification: G12, C58, G11
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A.1 Simulation Study

To investigate the performance of different approaches for estimating the memory param-

eter d in small samples, we perform a small simulation study. For this purpose we simulate

data according to

(1−B)dyt = εt,

where ε ∼ N(0, 1). To account for the high persistence in the series we consider a burn-in

period of 250 observations.

We then infer on the order of integration of the series using various approaches. These

include the two-step exact local Whittle estimator by Shimotsu (2010) (2ELW) as considered

in this paper, the log periodogram estimator by Geweke & Porter-Hudak (1983) (GPH) as

considered in Section A.2.8, the structural break robust estimators by Iacone (2010) (trLW)

and Hou & Perron (2014) (HP), and the noise robust estimators by Hurvich et al. (2005)

(LWN) and Frederiksen et al. (2012) (LPWN). Additionally, we consider the approach by

Andersen et al. (2006) to infer on the order of integration. They investigate the autocorrela-

tion function of the beta series and perform Ljung–Box tests on the residuals when estimating

an AR(p) model to the realized beta series where p is determined by means of the AIC.

Table A.1 reports results for d = 0.2, 0.4, 0.6 and T = 100, 148, 228, 1000 averaged across

1000 repetitions. The table reveals that the 2ELW and GPH estimators are almost unbiased,

also for a small sample of size T = 100. We further find that the variance of the 2ELW esti-

mator is smaller than that of the GPH estimator, which is in line with the results presented

in Section A.2.8. Concerning the break robust estimators, it can be seen that both the HP

estimator is negatively biased and the trLW estimator is positively biased in sample sizes of

100, 148, and 228. The noise robust estimators, on the other hand, are positively biased for

sample sizes of 100, 148, and 228.

Andersen et al. (2006) investigate quarterly betas for which, due to the noise, the observed
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d = 0.2 d = 0.4 d = 0.6

T = 100 T = 148 T = 228 T = 1000 T = 100 T = 148 T = 228 T = 1000 T = 100 T = 148 T = 228 T = 1000
¯̂
d2ELW 0.22 0.21 0.21 0.20 0.43 0.42 0.41 0.40 0.62 0.63 0.62 0.61

sd(d̂2ELW ) 0.13 0.11 0.09 0.05 0.14 0.11 0.09 0.05 0.13 0.11 0.09 0.05
¯̂
dGPH 0.20 0.20 0.20 0.20 0.41 0.41 0.41 0.40 0.61 0.63 0.62 0.61

sd(d̂GPH) 0.16 0.13 0.11 0.06 0.17 0.13 0.12 0.06 0.16 0.13 0.11 0.07
¯̂
dHP 0.11 0.12 0.16 0.19 0.27 0.30 0.34 0.38 0.38 0.45 0.48 0.57

sd(d̂HP ) 0.19 0.16 0.12 0.06 0.24 0.20 0.15 0.06 0.33 0.28 0.24 0.08
¯̂
dtrLW 0.30 0.19 0.14 0.17 0.50 0.37 0.31 0.35 0.66 0.56 0.53 0.55

sd(d̂trLW ) 0.42 0.34 0.27 0.11 0.42 0.34 0.26 0.11 0.43 0.33 0.27 0.11
¯̂
dLWN 0.36 0.36 0.32 0.25 0.50 0.49 0.46 0.43 0.67 0.67 0.65 0.63

sd(d̂LWN) 0.29 0.26 0.21 0.09 0.21 0.17 0.13 0.06 0.17 0.14 0.11 0.06
¯̂
dLPWN 0.40 0.39 0.36 0.28 0.53 0.52 0.50 0.45 0.68 0.69 0.68 0.65

sd(d̂LPWN) 0.36 0.33 0.30 0.16 0.30 0.26 0.21 0.09 0.24 0.19 0.15 0.08

Sign. ac (%) 4.08 6.36 9.97 31.01 14.19 23.24 36.71 88.59 27.32 45.35 65.65 99.43

Ljung–Box 0.006 0.008 0.003 0.000 0.001 0.005 0.000 0.000 0.003 0.007 0.002 0.000

Table A.1: We simulate T observations of fractional white noise that is integrated of order I(d)
and then compare different approaches to infer on the memory parameter d. This table reports the
average d estimate and standard deviation (sd()) for the estimators by Shimotsu (2010) (2ELW),
Geweke & Porter-Hudak (1983) (GPH), Hou & Perron (2014) (HP), Iacone (2010) (trLW), Hurvich
et al. (2005) (LWN), and Frederiksen et al. (2012) (LPWN). Additionally, the table shows the
average percentage of the first 36 autocorrelations that are indicated to be significantly larger than
zero by 95 percent Bartlett confidence intervals. This is the technique Andersen et al. (2006)
use to decide on the order of integration of the series. They further consider Ljung–Box tests
on the residuals of AR(p) processes, where p is selected by the AIC. In case there is significant
autocorrelation in the residuals, the null is rejected, indicating that there is long memory in the
series. The last row reports the power of this approach for the simulated series, i.e., the relative
number of times the null hypothesis is rejected. All results are the averages over 1000 repetitions.

order of integration is decreased, such that the 2ELW estimator yields a d of 0.4 on average.

They then fractionally difference the series by 0.2, such that the resulting series should be

approximately I(0.2). For such a series, the simulations indicate that only 6 percent of the

first 36 autocorrelations are significantly greater than zero according to 95 percent Bartlett

confidence intervals. It is understandable that, based on such autocorrelation functions, the

authors conclude that realized betas exhibit a d of 0.2 or smaller. The simulations further

reveal that Ljung–Box tests on the residuals of an AR(p) with p selected by the AIC are not

particularly useful for detecting long-memory time series. The order p is simply chosen to

be high, such that the long-memory characteristics can be captured by the AR model.
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A.2 Further Analyses and Robustness Tests

A.2.1 Market-Neutral Anomaly Portfolios

An alternative economic criterion on which to assess different beta estimation approaches

that is important is a model’s performance in portfolio formation. Therefore, we also evaluate

the estimators based on their ability to create ex-post market-neutral anomaly portfolios

(Hollstein et al., 2019).

We generate anomaly long–short portfolios by sorting the stocks each month based on

NYSE breakpoints. We follow Lewellen & Nagel (2006) and build 25 independently sorted

size/value portfolios. The SMB portfolio is the difference between the average returns of

the 5 low-market-cap portfolios and those of the 5 high-market-cap portfolios. Similarly, the

HML portfolio is the difference between the average returns of the 5 high-book-to-market

portfolios and those of the 5 low-book-to-market portfolios. For momentum, we sort the

stocks into 10 portfolios based on their return over the past 12 months while skipping the

most recent month (Jegadeesh & Titman, 1993). WML denotes the difference between the

winner (high-momentum) and loser (low-momentum) decile portfolio returns. For beta,

idiosyncratic volatility, and leverage we sort the stocks into 5 portfolios and form high-

minus-low (5–1) portfolios. As before, we sort beta portfolios based on the estimate during

the second-to-last nonoverlapping beta estimation window. Detailed definitions of the other

sorting variables are in Appendix B.

For each beta estimator, we use the forecasts to compute the long and short portfolio beta

predictions. We set the weight υi,T+h so that it fulfills the condition β̂long
i,T+h−υi,T+hβ̂

short
i,T+h = 0.1

We thus create anomaly portfolios that are ex-ante market-neutral. Then we test whether

the ex-post realized beta of the anomaly portfolios is indeed 0 on average.

We present the results in Table A.2. Our main finding is that accounting for the long-

1The results are qualitatively similar when keeping the weight of the short side at 1 and instead weighting
the long side to make the portfolios market-neutral.
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RW RWW AR ARMA HAR FIARMA FI

SMB −0.003 0.053∗∗∗ 0.069∗∗ 0.043 −0.036 0.042 0.048

(s.e.) (0.021) (0.019) (0.031) (0.027) (0.033) (0.031) (0.029)

HML 0.002 −0.001 0.038 0.029 0.003 0.017 0.019

(s.e.) (0.012) (0.015) (0.032) (0.026) (0.027) (0.023) (0.023)

WML −0.017 0.025 0.105 0.087 0.072 0.072 0.071

(s.e.) (0.046) (0.037) (0.071) (0.067) (0.057) (0.052) (0.051)

Beta 0.059∗∗∗ 0.023 −0.025 0.003 0.044∗∗ 0.033∗ 0.029

(s.e.) (0.016) (0.015) (0.024) (0.022) (0.019) (0.019) (0.018)

iVol 0.012 −0.034∗∗ −0.065∗∗ −0.037 0.031 −0.011 −0.013

(s.e.) (0.015) (0.015) (0.028) (0.025) (0.021) (0.020) (0.021)

Lev 0.000 0.020 0.048∗∗ 0.040∗ 0.011 0.023 0.026

(s.e.) (0.014) (0.013) (0.023) (0.024) (0.030) (0.025) (0.024)

Table A.2: Market-Neutral Anomaly Portfolios: This table presents average ex-post 6-month
realized betas of ex-ante beta-neutral anomaly portfolios based on the different beta forecasts.
We generate anomaly long–short portfolios by sorting the stocks each month based on NYSE
breakpoints. We build 25 independently sorted size–value portfolios. The SMB portfolio is the
difference between the average returns of the 5 low-market-cap portfolios and those of the 5 high-
market-cap portfolios. Similarly, the HML portfolio is the difference between the average returns
of the 5 high-book-to-market portfolios and those of the 5 low-book-to-market portfolios. For
momentum, we sort the stocks into 10 portfolios based on their return over the past 12 months
while skipping the most recent month (Jegadeesh & Titman, 1993). WML denotes the difference
between the winner (high-momentum) and loser (low-momentum) decile portfolio returns. For
beta, idiosyncratic volatility, and leverage we sort the stocks into 5 portfolios and form high-
minus-low (5–1) portfolios. Beta portfolios are sorted on the realized beta 2 months prior to the
current month. We make the anomaly portfolios ex-ante beta-neutral by solving the condition
β̂long
i,T+h − υi,T+hβ̂

short
i,T+h = 0 and applying the resulting weight υi,t to the long side of the anomaly.

In parentheses, we present the robust Andrews (1991) standard errors, using a quadratic spectral
density and data-driven bandwidth selection. *, **, and *** indicate significance at the 10 percent,
5 percent, and 1 percent level, respectively.

memory property of beta is economically important in an anomaly portfolio setting. The FI

model performs best. It yields ex-post market-neutral portfolios for all anomaly variables.

The FIARMA model performs somewhat worse, leaving a significant exposure (at 10 per-

cent) for beta-sorted portfolios. The RW model, too, fails for beta portfolios. The RWW

model fails for size and idiosyncratic volatility portfolios. The short-memory models, on the

other hand, collectively leave significant market exposures for portfolios sorted on size, id-
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iosyncratic volatility, and leverage. Finally, the HAR model performs reasonably well, failing

only for portfolios sorted by beta.

A.2.2 The Memory of Beta and Industries

We continue the empirical analysis by examining to what extent the memory in beta

relates to different industries. For some industries, the business models, and with that the

constituent firms’ systematic risk, may be more persistent, while others experience more

frequent changes.

¯̂
d t−stat

Durables 0.5509 -0.19

Energy 0.5951 2.81

Healthcare 0.5042 -2.99

HiTec Equipment 0.5014 -4.59

Manufacturing 0.5945 4.31

NonDurables 0.5153 -2.67

Other 0.5697 2.02

Telephone 0.5047 -2.35

Utilities 0.5808 2.00

Wholesale 0.5223 -3.08

Table A.3: This table shows the average estimate of d in each industry. The t-stat corresponds to t-
statistics testing the null that the average d of the industry equals the average across all industries.
Standard errors are calculated with the heteroskedasticity and autocorrelation robust approach
by Andrews (1991), using a quadratic spectral density and data-driven bandwidth selection. The
names of the industries for which the average d is significantly higher or lower than this value at
the 10 percent level are printed in bold.

We present the results in Table A.3. Stocks in the Energy and Manufacturing industries

have on average the highest ds. Thus, these traditional industries tend to have higher

persistence in their systematic risk than many others. For the Healthcare, HiTec Equipment,

NonDurables, and Telephone industries, the opposite holds true. These industries have in

part been particularly prone to disruptions and creative destruction during the past two

decades. Thus, many of these firms and/or their market environment have experienced
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substantial changes, and past shocks to their systematic risk die out more quickly.

A.2.3 The Determinants of Forecast Errors

Having documented that accounting for long memory in betas substantially improves

the forecasts, we next analyze for which stocks one makes the biggest mistakes when using

short-memory or difference-stationary processes. To that end, we regress the difference in

absolute forecast errors on different firm characteristics. In more detail, we perform the

following regressions

abs(β̂RWi,T+h − βi,T+h)− abs(β̂FIi,T+h − βi,T+h) = a+ bxi,T + ei,T+h,

abs(β̂ARMA
i,T+h − βi,T+h)− abs(β̂FIi,T+h − βi,T+h) = a+ bxi,T + ei,T+h.

Here, β̂i,T+h are the forecasts made by the RW, ARMA, and FI models as presented in

Section 4.2 and xi,T contains the set of explanatory variables observed at time T .

We present the result for the forecast error differential between the RW model and the

FI model in Table A.4 and that between the ARMA(p, q) model and the FI model in Table

A.5.

In Table A.4, we start with the errors made when inadequately imposing a difference-

stationary RW model. First, we observe an economically large and statistically highly signif-

icant intercept term. This echoes our previous finding that the FI model yields substantially

lower forecast errors on average than the RW model. Second, consistent with what one

would intuitively expect, the slope coefficient on d is highly significantly negative. Thus, the

higher the memory in betas, the less inadequate becomes the RW assumption. However, a

one-standard-deviation increase in d from its average, while keeping all else equal, reduces

the average forecast error differential (implied by the intercept term) by only one third.

Momentum, the bid–ask spread, idiosyncratic volatility, short interest, and leverage have

positive effects on the forecast error differential. It is well known that the betas of stocks with
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coef se t-stat p-value

Intercept 0.0482 0.0014 35.6091 0.0000

d −0.0176 0.0011 −15.9259 0.0000

β −0.0017 0.0011 −1.4521 0.1700

log(Market Cap) −0.0049 0.0011 −4.6082 0.0000

BtM 0.0020 0.0014 1.3682 0.2690

Investment −0.0027 0.0007 −3.8931 0.0000

Profitability −0.0025 0.0008 −3.1070 0.0030

Momentum 0.0074 0.0009 8.3117 0.0000

BAS 0.0043 0.0013 3.3480 0.0010

Turnover 0.0023 0.0019 1.2402 0.3370

iVol 0.0032 0.0011 2.8463 0.0060

iSkew 0.0002 0.0005 0.4083 0.6560

Short Interest 0.0033 0.0012 2.6895 0.0020

Leverage 0.0021 0.0009 2.4059 0.0170

Age 0.0011 0.0007 1.5973 0.1060

Durables 0.0048 0.0039 1.2508 0.1910

Energy 0.0049 0.0033 1.4868 0.1360

Healthcare 0.0015 0.0032 0.4606 0.6560

HiTec Equipment 0.0016 0.0030 0.5405 0.5800

Manufacturing −0.0018 0.0021 −0.8509 0.3880

NonDurables −0.0036 0.0026 −1.3917 0.1960

Telephone −0.0013 0.0045 −0.2821 0.8110

Utilities −0.0087 0.0020 −4.3542 0.0000

Wholesale 0.0048 0.0024 1.9582 0.0510

Table A.4: In this table, we run regressions of the difference in absolute forecast errors from the
RW and FI models on different firm characteristics. Firm characteristics (except for the dummy
variables) are winsorized (at the 1 and 99 percent levels) and standardized to have zero mean and
a volatility of one. The standard errors (se) are bootstrapped using the procedure of Cameron
et al. (2008). t-stat and p-value denote the corresponding t-statistics and p-values, respectively.
The names of the characteristics, which yield a statistically significant regression coefficient (coef)
at 10 percent, are printed in bold.

extreme momentum are highly time-varying (Grundy & Martin, 2001). Similarly, firms whose

stocks exhibit very high short interest are also prone to substantial changes in systematic risk.

For these stocks, in particular, it is therefore advisable to rely on the long-range dependencies
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when making forecasts. On the other hand, the stocks’ size, investment, and profitability

have a negative impact on the loss differential. In particular the betas of the smaller and

unprofitable stocks that invest little should therefore be predicted with long-memory models

rather than the random walk.

In Table A.5, we analyze the determinants of the ARMA and FI forecast error differen-

tials. Consistent with our previous results, we also detect a strongly statistically significant

intercept term of 0.0117. This intercept term is substantially smaller than that for the RW–

FI forecast error differential. The bid–ask spread, short interest, leverage, and age all have

a significant negative impact on the forecast error differential. On the other hand, turnover

has a positive impact. Illiquid firms that are not old and use high leverage might be more

prone to short-run changes in betas. Thus, the short-memory models perform a little less

poorly for these.

A.2.4 Hedging Errors

To account for the possibility that the ex-post realized betas are measured with error,

we follow Liu et al. (2018) and examine the out-of-sample hedging errors of the main ap-

proaches.2 We compute the hedging error for each stock as

Hi,T+1 = (ri,T+1 − rf,T+1)− β̂i,T+h(rM,T+1 − rf,T+1).

ri,T+1 is the return of stock i in month T +1. rf,T+1 and rM,T+1 are the risk-free rate and the

return on the market portfolio over the same horizon. β̂i,T+1 is the forecast for beta using

data up to month T . Liu et al. (2018) show that under certain assumptions the hedging error

variance ratio
var(Hi,T+1)

var(rM,T+1−rf,T+1)
is approximately equal to the mean squared error relative to

2Although set up as hedging exercise like that in Section A.2.1, the analysis is more closely related to the
statistical analysis of Section 4.2 of the main paper. This is because the hedging error variance ratio
presented below is a direct function of the MSE.
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coef se t-stat p-value

Intercept 0.0117 0.0012 9.8194 0.0000

d −0.0008 0.0006 −1.3609 0.1560

β −0.0001 0.0008 −0.1206 0.9090

log(Market Cap) 0.0005 0.0009 0.6190 0.5130

BtM −0.0001 0.0006 −0.1912 0.8730

Investment 0.0003 0.0006 0.5803 0.5530

Profitability 0.0003 0.0007 0.3855 0.7390

Momentum −0.0006 0.0005 −1.1634 0.2270

BAS −0.0021 0.0008 −2.5773 0.0080

Turnover 0.0051 0.0010 5.2143 0.0000

iVol 0.0010 0.0008 1.2100 0.2140

iSkew 0.0003 0.0002 1.1294 0.2620

Short Interest −0.0018 0.0006 −2.9454 0.0040

Leverage −0.0035 0.0007 −4.9695 0.0000

Age −0.0013 0.0006 −2.1408 0.0360

Durables −0.0012 0.0035 −0.3602 0.6990

Energy 0.0080 0.0033 2.4115 0.0160

Healthcare −0.0055 0.0023 −2.4314 0.0200

HiTec Equipment 0.0045 0.0028 1.6271 0.0920

Manufacturing −0.0023 0.0021 −1.0853 0.2680

NonDurables −0.0049 0.0018 −2.7636 0.0080

Telephone 0.0015 0.0034 0.4405 0.6360

Utilities −0.0040 0.0017 −2.2906 0.0290

Wholesale −0.0029 0.0021 −1.3864 0.1770

Table A.5: In this table, we run regressions of the difference in absolute forecast errors from the
ARMA and FI models on different firm characteristics. Firm characteristics (except for the dummy
variables) are winsorized (at the 1 and 99 percent levels) and standardized to have zero mean and
a volatility of one. The standard errors (se) are bootstrapped using the procedure of Cameron
et al. (2008). t-stat and p-value denote the corresponding t-statistics and p-values, respectively.
The names of the characteristics, which yield a statistically significant regression coefficient (coef)
at 10 percent, are printed in bold.

the true realized beta plus a term that is constant for all beta forecasts.3 We follow Liu

et al. (2018) and estimate the variance ratios using rolling 5-year windows to account for

3Because of these constant terms, one can strictly not interpret the levels of the hedging errors, but only
their differences across models.
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RW RWW AR ARMA HAR FIARMA FI

Mean 4.8277 4.8153 4.8366 4.8168 4.7990 4.7983 4.7987

∆RW −0.0123 0.0090 −0.0108 −0.0287∗∗∗ −0.0294∗∗∗ −0.0290∗∗∗

(−1.5149) (1.0002) (−1.3140) (−3.1339) (−3.9139) (−4.1694)

∆RWW 0.0123 0.0213∗∗∗ 0.0015 −0.0164 −0.0170∗∗∗ −0.0167∗∗∗

(1.5149) (3.3871) (0.2550) (−1.5986) (−3.0731) (−3.0949)

∆ARMA 0.0108 −0.0015 0.0198∗∗∗ −0.0179∗∗ −0.0185∗∗∗ −0.0182∗∗∗

(1.3140) (−0.2550) (5.9062) (−2.1839) (−5.7269) (−5.0750)

Table A.6: This table presents the ratio of hedging error variances to the market variance for
different approaches. For each stock, estimator, and month, we obtain the hedging error over the
next month as (ri,T+1 − rf,T+1) − β̂i,T+h(rM,T+1 − rf,T+1). We estimate the hedging error and
market variances using rolling 5-year windows and use the average ratio over time. The table
presents the average ratio of the hedging error variance to the market variance across all stocks.
Additionally, ∆RW and ∆ARMA report the differences between the hedging errors of RW and
ARMA, respectively, and the other models. In parentheses, we present the robust Andrews (1991)
t-statistics, using a quadratic spectral density and data-driven bandwidth selection, of a test for
equal average hedging errors. *, **, and *** indicate significance at the 10 percent, 5 percent, and
1 percent level, respectively.

the possibility that the variances in the numerator and denominator change over time. We

report the average ratio over time.

We present the results in Table A.6. These are consistent with our previous findings

relying on the RMSE. The average hedging errors of the FI and FIARMA model forecasts

are lowest. The differences in hedging errors are highly statistically significant compared to

the difference-stationary RW, RWW, and the short-memory ARMA models.4

A.2.5 Alternative Forecast Horizons

There are various different applications for which investors and company managers need

beta estimates. While a six-month forecast horizon appears plausible for both investors and

4Assuming that the MSE of the ARMA approach was 0.09 (which is approximately equivalent to a RMSE
of 0.3), the difference of −0.0182 between the hedging errors for ARMA and FI reported would correspond
to a decrease of 1 − 0.0718/0.09 = 20.22% when moving from ARMA to FI. Assuming that the MSE is
0.16 (RMSE≈ 0.4), the difference would still be 11.39%. Thus, we believe that the results are of economic
relevance.
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RW RWW AR ARMA HAR FIARMA FI

Panel A: One-Month Forecast Horizon

RMSE 0.1527 0.1409 0.1458 0.1432 0.1440 0.1404 0.1363

Best 1 9 1 0 4 14 21

In MCS 25 40 41 45 48 50 50

vs. RW 0 5 9 11 9 16 16

vs. RWW 0 0 4 4 1 8 11

vs. AR 0 0 0 8 3 12 12

vs. ARMA 0 1 0 0 1 7 5

vs. HAR 0 0 2 3 0 6 8

vs. FIARMA 0 1 1 0 0 0 6

vs. FI 0 0 1 0 0 0 0

N 50 50 50 50 50 50 50

Panel B: Three-Month Forecast Horizon

RMSE 0.1440 0.1283 0.1345 0.1282 0.1303 0.1241 0.1200

Best 1 3 0 0 3 24 19

In MCS 22 42 33 43 46 50 50

vs. RW 0 14 5 10 10 19 22

vs. RWW 0 0 2 3 1 9 9

vs. AR 0 1 0 22 10 21 24

vs. ARMA 0 0 0 0 1 4 8

vs. HAR 0 0 0 0 0 10 7

vs. FIARMA 0 0 0 0 0 0 2

vs. FI 0 0 0 0 0 0 0

N 50 50 50 50 50 50 50

to be continued on the next page

Table A.7: In analogy to Table 3, this table illustrates the forecast performance of the models for
one-, three-, and twelve-month beta forecasts from a rolling estimation window of 100 observations.
The first row shows the average RMSEs of different models across all 50 portfolios. The row
“Best” indicates the number of times a model achieves the lowest RMSE for a certain portfolio.
“In MCS” denotes the number of portfolios for which an estimator is in the Hansen et al. (2011)
model confidence set. Furthermore, the rows denoted by “vs. X” correspond to modified DM-
tests (Harvey et al., 1997), providing the number of times the column-model yields a significantly
lower RMSE than the row-model. We examine statistical significance toward the 10 percent level.
Finally, N is the number of investigated portfolios.
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Table A.7 (continued):

RW RWW AR ARMA HAR FIARMA FI

Panel C: Twelve-Month Forecast Horizon

RMSE 0.1593 0.1355 0.1559 0.1386 0.1455 0.1300 0.1266

Best 0 7 0 0 1 27 15

In MCS 34 48 28 46 50 50 50

vs. RW 0 17 2 7 6 22 21

vs. RWW 0 0 0 1 0 9 6

vs. AR 2 2 0 25 15 25 27

vs. ARMA 1 1 0 0 4 22 24

vs. HAR 0 0 0 2 0 8 7

vs. FIARMA 0 0 0 0 0 0 1

vs. FI 0 0 0 0 0 3 0

N 50 50 50 50 50 50 50

company managers to use, for some applications they may plan over shorter or even longer

periods. Thus, they also need forecasts over alternative horizons. Therefore, in this section,

we also consider forecasts for one-month, three-month, and twelve-month horizons.

Table A.7 presents the results. We find that the FI and FIARMA models perform best

independently of the forecast horizon. They yield the lowest average RMSEs, deliver the

best forecasts for at least two thirds of the portfolios, and are in the model confidence set for

every single portfolio for all forecast horizons. To summarize, using models that account for

long-run dependencies, instead of short-memory or difference-stationary alternatives, does

not only improve six-month forecasts but also those for shorter and longer horizons reaching

from one month to one year.

A.2.6 Individual Stocks

Next, we also present the results when directly using individual stocks instead of building

portfolios. We show these both for the six-month and the one-month horizon. The results

are in Table A.8. Consistent with our main results, the FIARMA and FI models also perform
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RW RWW AR ARMA HAR FIARMA FI

Panel A: Six-Month Forecast Horizon (Stocks)

RMSE 0.3002 0.2606 0.2631 0.2450 0.2569 0.2311 0.2314

Best 4 105 52 197 122 459 228

In MCS 450 773 987 1117 1131 1160 1154

vs. RW 0 510 417 627 533 776 771

vs. RWW 1 0 253 430 362 588 596

vs. AR 3 19 0 230 90 302 302

vs. ARMA 1 4 8 0 27 115 117

vs. HAR 1 10 10 45 0 80 60

vs. FIARMA 0 1 6 20 11 0 6

vs. FI 0 0 13 36 14 44 0

N 1167 1167 1167 1167 1167 1167 1167

Panel B: One-Month Forecast Horizon (Stocks)

RMSE 0.3251 0.3026 0.3006 0.2944 0.2949 0.2883 0.2870

Best 1 112 42 195 132 412 324

In MCS 463 931 1020 1157 1193 1208 1201

vs. RW 0 346 320 393 409 591 702

vs. RWW 3 0 116 176 170 269 316

vs. AR 4 41 0 190 127 311 284

vs. ARMA 0 19 14 0 62 150 145

vs. HAR 6 11 14 53 0 85 77

vs. FIARMA 1 3 3 25 12 0 20

vs. FI 0 5 9 36 15 16 0

N 1218 1218 1218 1218 1218 1218 1218

Table A.8: In analogy to Table 3, this table illustrates the forecast performance of the models
for individual stocks and six-, and one-month beta forecasts from a rolling estimation window of
100 observations. The first row shows the average RMSEs of different models across all stocks.
The row “Best” indicates the number of times a model achieves the lowest RMSE for a certain
stock. “In MCS” denotes the number of stocks for which an estimator is in the Hansen et al. (2011)
model confidence set. Furthermore, the rows denoted by “vs. X” correspond to modified DM-
tests (Harvey et al., 1997), providing the number of times the column-model yields a significantly
lower RMSE than the row-model. We examine statistical significance toward the 10 percent level.
Finally, N is the number of investigated stocks.
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best on a disaggregated basis.

The average RMSEs are largest for individual stocks. For the FI model, we observe

a reduction from 0.29 to 0.23 when moving from a six-month to a one-month window for

individual stocks. When building 50 portfolios instead, the average RMSEs decrease to 0.14

for the one-month horizon and 0.12 for the six-month horizon. Thus, building portfolios

appears to diversify measurement errors and reduce errors-in-variables. However, in any

case they seem to be larger for the one-month than for the six-month horizon.

A.2.7 Cross-Sectional Results

We also repeat the analysis in the cross-section. That is, we examine whether an estimator

significantly outperforms another in predicting the cross-section of future betas of individual

stocks. We present the results in Table A.9. We find that the cross-sectional results are

similar to those in the time series. The FI and ARFIMA models yield the lowest average

RMSEs and are in the model confidence set for the vast majority of periods.

A.2.8 Alternative Long-Memory Estimator

We base our main analysis on the 2ELW estimator, as we believe it is the most suitable

estimator in our setup. A popular alternative is the log periodogram estimator by Geweke

& Porter-Hudak (1983). Although the variance of log periodogram-based approaches com-

monly exceeds that of local Whittle-based approaches, they are often considered due to their

simplicity in application and calculation.

Table A.10 shows the average estimate of d when using the log periodogram estimator.

While the average estimates of d are almost equal, the relative number of stocks for which

d is significantly different from 0 and 1 decreases slightly due to the higher variance of the

estimates. However, still more than 90 percent of the stocks exhibit significant long memory

in beta. Thus, the results of the log periodogram estimator confirm that realized betas are

highly persistent.
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RW RWW AR ARMA HAR FIARMA FI

RMSE 0.3197 0.2703 0.2840 0.2645 0.2859 0.2495 0.2487

Best 3 20 3 3 14 42 37

In MCS 14 56 20 37 40 106 105

vs. RW 0 67 43 58 32 79 80

vs. RWW 5 0 16 25 16 41 40

vs. AR 20 49 0 86 25 81 76

vs. ARMA 7 25 0 0 12 53 50

vs. HAR 8 33 17 29 0 50 47

vs. FIARMA 3 13 2 2 2 0 9

vs. FI 3 11 2 3 3 14 0

N 122 122 122 122 122 122 122

Table A.9: This table illustrates the cross-sectional forecast performance of the models for six-
month beta forecasts from a rolling estimation window of 100 observations. The first row shows
the average RMSEs of different models across all stocks over the different time periods. The row
“Best” indicates the number of times a model achieves the lowest RMSE for a certain time period.
“In MCS” denotes the number of times at which an estimator is in the Hansen et al. (2011) model
confidence set. Furthermore, the rows denoted by “vs. X” correspond to modified DM-tests (Harvey
et al., 1997), providing the number of times the column-model yields a significantly lower RMSE
than the row-model. We examine statistical significance toward the 10 percent level. Finally, N is
the number of investigated months.

Standard Adjusted for Breaks in Mean
¯̂
di sd(d̂i) vs. di = 0 vs. di = 1

¯̂
di sd(d̂i) vs. di = 0 vs. di = 1

βi 0.557 0.181 0.942 0.940 0.507 0.197 0.915 0.951

ρi,M 0.550 0.160 0.955 0.958 0.550 0.165 0.953 0.953

σi 0.592 0.184 0.974 0.886 0.592 0.184 0.974 0.886

σ−1
M 0.446 - 1.000 1.000 0.281 - 1.000 1.000

Table A.10: In analogy to Tables 1 and 2, this table presents average estimates of the memory
parameter of realized betas, realized correlation (Fisher-transformed), and volatility across all stocks
(N = 823), as well as that of the inverse of the market volatility, using the log periodogram estimator
by Geweke & Porter-Hudak (1983). sd(d̂i) displays the standard deviation of the estimates across
stocks and vs. di = 0 and vs. di = 1 indicate the relative frequency with which the null hypotheses
di = 0 and di = 1, respectively, are rejected at the 10 percent level. The left panel reports the results
for the original series and the right panel reports results after adjusting the series for structural
breaks using the procedure of Lavielle & Moulines (2000).
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RW RWW AR ARMA HAR FIARMA FI

RMSE 0.1467 0.1264 0.1395 0.1277 0.1282 0.1206 0.1187

Best 0 10 0 0 3 24 13

In MCS 31 48 30 45 50 50 50

vs. RW 0 20 3 7 12 19 19

vs. RWW 0 0 0 0 3 5 4

vs. AR 1 3 0 23 13 23 22

vs. ARMA 0 0 0 0 2 15 16

vs. HAR 0 1 0 0 0 4 1

vs. FIARMA 0 0 0 0 0 0 2

vs. FI 0 0 0 0 0 8 0

N 50 50 50 50 50 50 50

Table A.11: In analogy to Table 3, this table illustrates the forecast performance of the models for
six-month beta forecasts from a rolling estimation window of 100 observations. FI and FIARMA
use d estimates by the log periodogram estimator instead of the 2ELW estimator. The first row
shows the average RMSEs of different models across all 50 portfolios. The row “Best” indicates
the number of times a model achieves the lowest RMSE for a certain portfolio. “In MCS” denotes
the number of portfolios for which an estimator is in the Hansen et al. (2011) model confidence
set. Furthermore, the rows denoted by “vs. X” correspond to modified DM-tests (Harvey et al.,
1997), providing the number of times the column-model yields a significantly lower RMSE than
the row-model. We examine statistical significance toward the 10 percent level. Finally, N is the
number of investigated portfolios.

Table A.11 repeats the analysis of Table 3 and shows the forecast performance of the FI

and FIARMA model when estimating d using the log periodogram estimator. For compari-

son, we also present the results for the RW, RWW, AR, ARMA, and HAR models. It can be

seen that compared to the results using the 2ELW estimator, the performance of the FI and

FIARMA models is similar. The forecasts by the FI model clearly outperform all forecasts

by models that do not account for long memory.

A.2.9 Alternative Sampling Frequencies

In our main analysis, our results are based on measures calculated with 30-minute data.

Since the sampling frequency influences the bias as well as the variance of the estimates, we

repeat our analysis for realized betas calculated from 15- and 75-minute data.
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Standard Adjusted for Breaks in Mean
¯̂
di sd(d̂i) vs. di = 0 vs. di = 1

¯̂
di sd(d̂i) vs. di = 0 vs. di = 1

Panel A: 15-Minute Data

βi 0.586 0.166 0.973 0.989 0.542 0.178 0.967 0.991

ρi,M 0.593 0.151 0.977 0.989 0.588 0.155 0.977 0.988

σi 0.604 0.153 0.993 0.958 0.604 0.153 0.993 0.958

σ−1
M 0.577 - 1.000 1.000 0.575 - 1.000 1.000

Panel B: 75-Minute Data

βi 0.509 0.154 0.971 0.998 0.464 0.176 0.945 0.998

ρi,M 0.518 0.129 0.980 0.999 0.503 0.132 0.979 0.999

σi 0.578 0.149 0.992 0.980 0.578 0.149 0.992 0.980

σ−1
M 0.581 - 1.000 1.000 0.576 - 1.000 1.000

Table A.12: In analogy to Tables 1 and 2, this table presents average estimates of the memory
parameter of realized betas, realized correlation (Fisher-transformed), and volatility across all stocks
(N = 823), as well as that of the inverse of the market volatility, using the 2ELW estimator of
Shimotsu & Phillips (2005) and Shimotsu (2010). The realized measures are now calculated from
15- and 75-minute data. sd(d̂i) displays the standard deviation of the estimates across stocks and
vs. di = 0 and vs. di = 1 indicate the relative frequency with which the null hypotheses di = 0
and di = 1, respectively, are rejected at the 10 percent level. The left panel reports the results for
the original series and the right panel reports results after adjusting the series for structural breaks
using the procedure of Lavielle & Moulines (2000).

Table A.12 shows that decreasing the frequency to 75-minute data decreases the estimated

memory in realized beta from 0.56 to 0.51. This is again due to an increase of the noise level

in the ex-post realized betas, which negatively biases the 2ELW estimator. When increasing

the recording frequency from 30- to 15-minute data the estimated d increases only slightly

to 0.59, implying that the amount of noise in the betas calculated from 30-minute data is

already small. Despite these smaller changes, it still holds for at least 94 percent of the

stocks that the order of integration of their betas is significantly different from 0 and 1.

Concerning the order of integration of the realized correlation series we observe a similar

pattern. For 75-minute data the estimate decreases from the original value of 0.57 to 0.52

and for 15-minute data there is a small increase to 0.59. The ex-post estimates of stock

and market volatility, on the other hand, seem to be less perturbed when decreasing the

recording frequency. Here, the estimated memory is almost the same for 15-, 30-, and 75-
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RW RWW AR ARMA HAR FIARMA FI

Panel A: 15-Minute Data

RMSE 0.1435 0.1231 0.1340 0.1244 0.1518 0.1159 0.1157

Best 0 6 0 0 4 25 15

In MCS 36 48 34 46 49 50 50

vs. RW 0 24 1 6 13 17 15

vs. RWW 0 0 0 1 2 4 5

vs. AR 2 2 0 23 11 19 22

vs. ARMA 0 1 0 0 3 15 16

vs. HAR 0 0 0 0 0 8 9

vs. FIARMA 0 0 0 0 0 0 1

vs. FI 0 0 0 0 0 5 0

N 50 50 50 50 50 50 50

Panel B: 75-Minute Data

RMSE 0.1604 0.1352 0.1514 0.1366 0.1365 0.1253 0.1254

Best 0 3 0 1 3 19 24

In MCS 24 46 26 40 50 50 50

vs. RW 0 26 4 9 16 24 23

vs. RWW 0 0 0 1 3 6 8

vs. AR 2 6 0 21 9 26 26

vs. ARMA 0 1 0 0 3 13 15

vs. HAR 0 0 0 0 0 3 4

vs. FIARMA 0 0 0 0 0 0 3

vs. FI 0 0 0 0 0 3 0

N 50 50 50 50 50 50 50

Table A.13: In analogy to Table 3, this table illustrates the forecast performance of the models for
six-month beta forecasts from a rolling estimation window of 100 observations. For the different
panels, the realized beta series are based on 15-minute and 75-minute data. The first row shows the
average RMSEs of different models across all 50 portfolios. The row “Best” indicates the number of
times a model achieves the lowest RMSE for a certain portfolio. “In MCS” denotes the number of
portfolios for which an estimator is in the Hansen et al. (2011) model confidence set. Furthermore,
the rows denoted by “vs. X” correspond to modified DM-tests (Harvey et al., 1997), providing
the number of times the column-model yields a significantly lower RMSE than the row-model. We
examine statistical significance toward the 10 percent level. Finally, N is the number of investigated
portfolios.
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minute data ranging from 0.59 to 0.60 for stock volatility and 0.57 to 0.59 for the inverse of

market volatility.

Table A.13 presents the forecast performance of the different models. We find that the

ranking of the models stays the same for all considered frequencies. The FIARMA and

FI models are the best independently of the sampling frequency. In addition, models that

account for long-range dependencies perform substantially better than those that do not.

Due to the difference in noise of the ex-post realized beta estimates, however, the average

RMSE increases with decreasing sampling frequency. In line with the discussion above, this

effect is more pronounced when switching from 30- to 75-minute data than when going from

30- to 15-minute data. Table A.13 further reveals that changing the recording frequency

only leads to small changes when comparing the models against each other. Overall, the

main message of Section 4 of the main paper remains unchanged: accounting for long-range

dependencies significantly improves the forecasting performance for realized betas.
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RW RWW AR ARMA HAR FIARMA FI

Panel A: Rolling Window of 75 Observations

RMSE 0.1395 0.1210 0.1339 0.1250 0.1263 0.1182 0.1133

Best 0 4 0 0 0 20 26

In MCS 36 50 35 45 50 50 50

vs. RW 0 26 3 8 8 20 21

vs. RWW 0 0 0 0 0 5 6

vs. AR 1 3 0 30 5 24 27

vs. ARMA 0 0 0 0 0 15 20

vs. HAR 0 0 0 0 0 13 14

vs. FIARMA 0 0 0 0 0 0 2

vs. FI 0 0 0 0 0 3 0

N 50 50 50 50 50 50 50

Panel B: Rolling Window of 125 Observations

RMSE 0.1473 0.1303 0.1317 0.1214 0.1243 0.1138 0.1138

Best 0 1 0 2 1 19 27

In MCS 21 34 34 42 48 50 50

vs. RW 0 14 5 14 16 24 23

vs. RWW 0 0 0 9 7 14 15

vs. AR 1 1 0 18 8 19 20

vs. ARMA 0 1 0 0 2 11 11

vs. HAR 0 0 0 3 0 11 11

vs. FIARMA 0 0 0 0 0 0 2

vs. FI 0 0 0 0 0 1 0

N 50 50 50 50 50 50 50

Table A.14: In analogy to Table 3, this table illustrates the forecast performance of the models for
six-month beta forecasts from rolling estimation windows of 75 and 125 observations. The first row
shows the average RMSEs of different models across all 50 portfolios. The row “Best” indicates
the number of times a model achieves the lowest RMSE for a certain portfolio. “In MCS” denotes
the number of portfolios for which an estimator is in the Hansen et al. (2011) model confidence
set. Furthermore, the rows denoted by “vs. X” correspond to modified DM-tests (Harvey et al.,
1997), providing the number of times the column-model yields a significantly lower RMSE than
the row-model. We examine statistical significance toward the 10 percent level. Finally, N is the
number of investigated portfolios.
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Standard Adjusted for Breaks in Mean
¯̂
di sd(d̂i) vs. di = 0 vs. di = 1

¯̂
di sd(d̂i) vs. di = 0 vs. di = 1

Panel A: Bandwidth m = T 0.65

βi 0.575 0.171 0.963 0.988 0.521 0.190 0.949 0.988

ρi,M 0.561 0.143 0.973 0.996 0.562 0.150 0.973 0.992

σi 0.592 0.162 0.986 0.941 0.592 0.162 0.986 0.941

σ−1
M 0.567 - 1.000 1.000 0.559 - 1.000 1.000

Panel B: Bandwidth m = T 0.75

βi 0.539 0.146 0.977 1.000 0.499 0.157 0.972 1.000

ρi,M 0.551 0.129 0.983 1.000 0.544 0.131 0.983 0.999

σi 0.602 0.152 0.995 0.975 0.602 0.152 0.995 0.975

σ−1
M 0.621 - 1.000 1.000 0.618 - 1.000 1.000

Table A.15: In analogy to Tables 1 and 2, this table presents average estimates of the memory
parameter of realized betas, realized correlation (Fisher-transformed), and volatility across all stocks
(N = 823), as well as that of the inverse of the market volatility, using the 2ELW estimator of
Shimotsu & Phillips (2005) and Shimotsu (2010) with alternative bandwidths of m = T 0.65 and
m = T 0.75. sd(d̂i) displays the standard deviation of the estimates across stocks and vs. di = 0
and vs. di = 1 indicate the relative frequency with which the null hypotheses di = 0 and di = 1,
respectively, are rejected at the 10 percent level. The left panel reports the results for the original
series and the right panel reports results after adjusting the series for structural breaks using the
procedure of Lavielle & Moulines (2000).

A.2.10 Alternative Estimation Windows and Bandwidths

Our main analysis regarding the forecast performance of the models uses a rolling estima-

tion window of 100 observations. To show that the results are robust to other specifications

of the estimation window, Table A.14 presents the results for window sizes of 75 and 125

observations.

While the shorter estimation window allows for more stocks to be included in the anal-

ysis, it can be seen that the results are qualitatively similar for both the shorter and longer

estimation windows. The forecasts by the FI model perform the best and are never out-

performed by models that do not account for long-run dependencies. A longer estimation

window further improves the performance of the FI and FIARMA models.
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RW RWW AR ARMA HAR FIARMA FI

Panel A: Bandwidth m = T 0.65

RMSE 0.1467 0.1264 0.1395 0.1277 0.1282 0.1217 0.1172

Best 0 5 0 0 3 27 15

In MCS 20 48 30 44 50 50 50

vs. RW 0 20 3 7 12 25 26

vs. RWW 0 0 0 0 3 8 7

vs. AR 1 3 0 23 13 22 21

vs. ARMA 0 0 0 0 2 18 19

vs. HAR 0 1 0 0 0 10 8

vs. FIARMA 0 0 0 0 0 0 3

vs. FI 0 0 0 0 0 4 0

N 50 50 50 50 50 50 50

Panel B: Bandwidth m = T 0.75

RMSE 0.1467 0.1264 0.1395 0.1277 0.1282 0.1225 0.1197

Best 0 9 0 0 3 22 16

In MCS 22 47 27 46 50 50 50

vs. RW 0 20 3 7 12 23 22

vs. RWW 0 0 0 0 3 6 7

vs. AR 1 3 0 23 13 23 25

vs. ARMA 0 0 0 0 2 12 15

vs. HAR 0 1 0 0 0 6 6

vs. FIARMA 0 0 0 0 0 0 3

vs. FI 0 0 0 0 0 2 0

N 50 50 50 50 50 50 50

Table A.16: In analogy to Table 3, this table illustrates the forecast performance of the models
for six-month beta forecasts from a rolling estimation window of 100 observations. The FI and
FIARMA models are based on d estimates of the 2ELW estimator calculated with bandwidths of
m = T 0.65 and m = T 0.75. The first row shows the average RMSEs of different models across all
50 portfolios. The row “Best” indicates the number of times a model achieves the lowest RMSE
for a certain portfolio. “In MCS” denotes the number of portfolios for which an estimator is in the
Hansen et al. (2011) model confidence set. Furthermore, the rows denoted by “vs. X” correspond
to modified DM-tests (Harvey et al., 1997), providing the number of times the column-model yields
a significantly lower RMSE than the row-model. We examine statistical significance toward the 10
percent level. Finally, N is the number of investigated portfolios.
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Standard Adjusted for Breaks in Mean
¯̂
di sd(d̂i) vs. di = 0 vs. di = 1

¯̂
di sd(d̂i) vs. di = 0 vs. di = 1

βi 0.467 0.144 0.973 0.999 0.423 0.167 0.942 0.999

Table A.17: This table presents average estimates of the memory parameter of realized beta,

estimated with 2 lags, across all stocks (
¯̂
di) using the 2ELW estimator of Shimotsu & Phillips

(2005) and Shimotsu (2010). Additionally, sd(d̂i) displays the standard deviation of the estimates
across stocks and vs. di = 0 and vs. di = 1 indicate the relative frequency with which the null
hypotheses di = 0 and di = 1, respectively, are rejected at the 10 percent level. The left panel
reports the results for the original series and the right panel reports results after adjusting the
series for structural breaks using the procedure of Lavielle & Moulines (2000).

RW RWW AR ARMA HAR FIARMA FI

RMSE 0.1483 0.1417 0.1404 0.1289 0.1300 0.1232 0.1185

Best 0 0 0 1 2 25 22

In MCS 30 41 22 42 49 50 50

vs. RW 0 8 5 9 14 25 25

vs. RWW 1 0 0 5 6 14 15

vs. AR 1 16 0 28 13 24 24

vs. ARMA 0 0 0 0 2 13 16

vs. HAR 0 1 0 0 0 10 9

vs. FIARMA 0 0 0 0 0 0 2

vs. FI 0 0 0 0 0 2 0

N 50 50 50 50 50 50 50

Table A.18: In analogy to Table 3, this table illustrates the forecast performance of the models for
six-month beta forecasts from a rolling estimation window of 100 observations. The realized beta
series are estimated with 2 lags. The first row shows the average RMSEs of different models across
all 50 portfolios. The row “Best” indicates the number of times a model achieves the lowest RMSE
for a certain portfolio. “In MCS” denotes the number of portfolios for which an estimator is in the
Hansen et al. (2011) model confidence set. Furthermore, the rows denoted by “vs. X” correspond
to modified DM-tests (Harvey et al., 1997), providing the number of times the column-model yields
a significantly lower RMSE than the row-model. We examine statistical significance toward the 10
percent level. Finally, N is the number of investigated portfolios.

We also consider alternative bandwidths of m = T 0.65 and m = T 0.75 as a further robust-

ness check in Tables A.15 and A.16. These results are qualitatively similar to those for our

main bandwidth choice of m = T 0.7.
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A.2.11 Correction for Asynchronous Trading

In this section, we test the robustness of our results to accounting for potentially asyn-

chronous trading. That is, we repeat the analysis using a realized beta estimator with 2

lags.5

The results are in Tables A.17 and A.18. We find that the average d estimates are

somewhat smaller. This is in line with the findings of Hollstein et al. (2019) that adding lags

increases the noise in betas. The d estimates are nevertheless significantly different from 0

and 1 for more than 94% of the stocks. The forecast results are also qualitatively similar to

those of our main analysis.

5Adding lags follows the idea of Dimson (1979) and consists of adding further regression coefficients toward
market excess returns lagged by 1 and 2 periods. See Hollstein (2020) for details on the implementation of
the realized beta estimator with leads and lags.
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A.3 R-Algorithm for FI(0.5) Forecasts

The following algorithm can be used to forecast a time series using the FI(0.5) model

as considered in Section 5.2 in R. The function requires the LongMemoryTS package and

then generates h step ahead forecasts (as averages of the h point forecasts) of a time series

contained in the object series as demonstrated in the example.

require(LongMemoryTS)

FI.Forecast<-function(series,h){

T<-length(series)

d<-0.5

dif_series<-fdiff(series,d=d)

pi<-fdiff(rep(1,T),d=d)

mu<-coef(lm(dif_series~pi+0))

epsilon<-dif_series-pi*mu

epsilon<-c(epsilon,rep(0,h))

dif_epsilon<-fdiff(epsilon,d=-d)

point_forecasts<-(dif_epsilon+mu)[(T+1):length(dif_epsilon)]

horizon_forecast<-mean(point_forecasts)

return(horizon_forecast)

}

# Example for simulated series x

x<-FI.sim(T=200,q=1,rho=0,d=0.5)

FI.Forecast(x,h=1)
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Appendix

B Firm Characteristics

• Age (Zhang, 2006) is the number of years up to time t since a firm first appeared in
the CRSP database.

• Beta is the median beta estimate for a certain stock across all estimation approaches
considered.

• Bid–ask spread (BAS) is the stock’s average daily relative bid–ask spread over the
previous month.

• Book-to-market (BtM) (Fama & French, 1992) is the most current observation for
“book equity” divided by the market capitalization. Following the standard literature,
we assume that the book equity of the previous year’s balance sheet statement be-
comes available at the end of June and use the market capitalization at the end of the
corresponding fiscal year. Book equity is defined as stockholders’ equity, plus balance
sheet deferred taxes and investment tax credit, plus post-retirement benefit liabilities,
minus the book value of preferred stock.

• Idiosyncratic skewness (iSkew) (Boyer et al., 2009) is the iSkew of the residuals
εi,τ in the Fama & French (1993) 3-factor model ri,τ − rf,τ = αi,t + βMi,t (rM,τ − rf,τ ) +
βSi,tSMBτ + βHi,tHMLτ + εi,τ , using daily returns over the previous month.

• Idiosyncratic volatility (iVol) (Ang et al., 2006) is the standard deviation of the
residuals εi,τ in the Fama & French (1993) 3-factor model ri,τ − rf,τ = αi,t +βMi,t (rM,τ −
rf,τ )+βSi,tSMBτ+βHi,tHMLτ+εi,τ , using daily returns over the previous month. SMBτ

and HMLτ denote the returns on the Fama & French (1993) factors.

• Industry classifications employ the definition for 10 industry portfolios applied
by Kenneth French. “Durable” is Consumer Durables, “Energy” is the oil, gas,
and coal extraction industry, “Healthcare” is Healthcare, Medical Equipment, and
Drugs, “HiTec Equipment” is Business Equipment, “NonDurables” is Consumer Non-
Durables, “Telephone” is Telephone and Television Transmission, “Wholesale” is
Wholesale, Retail, Services, and “Other” contains Mines, Construction, Construction
Materials, Transport, Hotels, Bus Services, Entertainment, as well as Finance.

• Investment (Fama & French, 2015) is the change in total assets from the fiscal year
ending in year t − 2 to that ending in t − 1, divided by the total assets of year t − 2.
As for BtM, we assume that accounting data become available by the end of June of
year t.

• Leverage (Bhandari, 1988) is defined as one minus book equity (see “Book-to-
market”) divided by total assets (Compustat: AT). Book equity and total assets are
updated every 12 months at the end of June.
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