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Wild bee populations are threatened by current agricultural practices in many parts 
of the world, which may put pollination services and crop yields at risk. Loss of pol-
lination services can potentially be predicted by models that link bee abundances with 
landscape-scale land-use, but there is little knowledge on the degree to which these sta-
tistical models are transferable across time and space. This study assesses the transfer-
ability of models for wild bee abundance in a mass-flowering crop across space (from 
one region to another) and across time (from one year to another). The models used 
existing data on bumblebee and solitary bee abundance in winter oilseed rape fields, 
together with high-resolution land-use crop-cover and semi-natural habitats data, 
from studies conducted in five different regions located in four countries (Sweden, 
Germany, Netherlands and the UK), in three different years (2011, 2012, 2013). We 
developed a hierarchical model combining all studies and evaluated the transferability 
using cross-validation. We found that both the landscape-scale cover of mass-flower-
ing crops and permanent semi-natural habitats, including grasslands and forests, are 
important drivers of wild bee abundance in all regions. However, while the negative 
effect of increasing mass-flowering crops on the density of the pollinators is consis-
tent between studies, the direction of the effect of semi-natural habitat is variable 
between studies. The transferability of these statistical models is limited, especially 
across regions, but also across time. Our study demonstrates the limits of using sta-
tistical models in conjunction with widely available land-use crop-cover classes for 
extrapolating pollinator density across years and regions, likely in part because input 
variables such as cover of semi-natural habitats poorly capture variability in pollinator 
resources between regions and years.

Keywords: Brassica napus, mass flowering crops, model predictions, permanent semi-
natural habitats, transferability in ecology, wild pollinators
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Introduction

Pollination by wild animals is a key ecosystem service that is 
highly important for 35% of the world’s crops (Klein et al. 2007), 
and wild insects are especially important in supporting yields 
(Garibaldi et al. 2013, Rader et al. 2016, Dainese et al. 2019). 
However, pollination could be jeopardized since some pollina-
tors (wild and domestic) are declining in some regions of the 
world (Potts et al. 2010, Dupont et al. 2011, Bartomeus et al. 
2019, Powney  et  al. 2019) due to habitat loss and current 
intensive agricultural practices (Winfree et al. 2011). To sup-
port wild pollinators and reduce the risk for economic vulner-
ability induced by low pollination levels (Gallai et al. 2009), 
it is recommended to change the landscape-scale land use to 
ensure the availability of nesting and overwintering habitats 
and pollen and nectar resources supplied by wild and culti-
vated flowering plants (Carvell et al. 2006, Smith et al. 2014, 
IPBES 2016). Linking landscape-scale land-use to availability 
of resources for pollinators across space and time (Baude et al. 
2016), or more often proxies such as cover of habitat assumed 
to be rich in resources for pollinators, is therefore a key aspect 
of applied ecological research on pollinators.

Ecological models have great potential for supporting 
environmental policy and decision-making (Addison  et  al. 
2013, IPBES 2016). The application of models for decision-
making often requires generating predictions for locations 
and time periods that are distinct from those for which the 
available empirical data was recorded (i.e. extrapolation). 
Despite the critical role of model transferability, i.e. how well 
models generalize to new contexts, is poorly studied.

Transferring models from one region to another (requir-
ing spatial transferability), or from past to present or future 
scenarios (requiring temporal transferability), is particularly 
important when there is data deficiency, limited research fund-
ing and urgent need to forecast species’ responses to changes 
in land use and/or climate. In ecology, transferability of mod-
els has started receiving significant attention in the applica-
tion of species distribution models (SDM) (Barbosa  et  al. 
2009, Wenger and Olden 2012, but see Yates et al. 2018). 
Knowing to what degree models are transferable to differ-
ent contexts is not only a prerequisite to increase ecological 
understanding but helps to evaluate and communicate the 
uncertainty associated with the predictions (Houlahan et al. 
2017). For mobile ecosystem service providers such as polli-
nators (Woodcock et al. 2019), the study of transferability is 
in its infancy. This is surprising given the increasing interest 
in society for taking action to support pollinating insects, and 
the increasing availability of models and suitable datasets.

Managing landscape configuration and composition to 
secure complementary flowering and nesting sources is key 
to support pollinating insects (Smith et al. 2014). Statistical 
models predicting pollinator abundance usually include the 
cover of different types of land use in the landscape sur-
rounding insect-pollinated crops (Holzschuh  et  al. 2016, 
Dainese  et  al. 2019, Martin  et  al. 2019). Semi-natural 
habitats (SNH), including permanent grasslands and for-
ests, provide stable food and nesting resources through 

time (Svensson  et  al. 2000, Öckinger and Smith 2007, 
Osborne et al. 2008, Knight et al. 2009). In contrast, arable 
crops are frequently disturbed by ploughing and pesticide 
use, although mass flowering crops (MFC) can provide very 
significant food resources for pollinators in short bursts dur-
ing parts of the year (Holzschuh et al. 2013, Rundlöf et al. 
2014). The cover of semi-natural habitat, usually represented 
only by grasslands, and mass-flowering crops are thus often 
used as explanatory variables in models investigating pollina-
tor abundance (Holzschuh et al. 2016, Shaw et al. 2020).

Studies to inform statistical models predicting pollinator 
abundance are often carried out at multiple sites that vary 
in landscape composition, but the ability of the resulting 
models to predict abundance under novel spatial or tempo-
ral circumstances has seldom been investigated (but see De 
Palma et al. 2016).

When extrapolating findings from one region to another, the 
quality of the predictions might be reduced for several reasons. 
First, there are probably substantial differences in factors not 
explicitly considered in the model, such as agronomic condi-
tions, local pollinator species or climate, differences in the phe-
nology of mass-flowering crops, or the quality of a land-cover 
type in terms of resources for pollinators, such that their varia-
tion has a different impact on bees across studies. Secondly, the 
new conditions may be outside the range of the original con-
ditions (including their combinations). These considerations 
apply not only when extrapolating to another region, but also 
when extrapolating to another year. For instance, inter-annual 
variability in the explanatory variables (e.g. land cover and the 
degree it is indicative of pollinator resources) or in the response 
variable can be influenced by weather differences, introducing 
further unexplained variability.

Here, we aim to address this knowledge gap by assess-
ing the transferability of pollinator models across different 
regions and years for a well-defined, well-studied system that 
is relevant to pollinator management. We use existing data on 
bumblebee and solitary bee abundance in winter oilseed rape 
fields collected over several years in four different countries to 
address the following questions:
1. Does cover of mass-flowering crops and semi-natural hab-

itats in the landscape show consistent effects on wild bee 
abundance in oilseed rape fields across space (region) and 
time (year)?

2. Based on predictive performance, to what extent are hier-
archical models predicting wild bee abundance across 
space and/or time transferable, and how well can we pre-
dict wild bee abundance in one region and year using a 
model that was developed for other regions or years?

Methods

Data preparation

(a) Pollinators
The data used in the present study consist of wild bee obser-
vations in winter oilseed rape Brassica napus which included, 
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where reported, the varieties Excalibur, DK Expower and 
Compass. Our dataset includes data from six datasets from 
five different European regions, from four different countries 
(Sweden – including two different regions, Scania (Skåne 
in Swedish) and Skara; Germany; the Netherlands; and the 
United Kingdom). The original datasets come from four dif-
ferent studies, meaning that three datasets collected data in 
the same systematic way. Data were collected during three 
different years (2011, 2012, 2013) (Fig. 1). Hereafter, we 
refer to the original datasets as each region–study–year, since 
several, but not all regions had more than one study–year 
combination per region. See the Supporting information for 
a description of the original datasets, including the original 
design, sampling methods and the data selected for this study.

From each raw dataset, we selected two groups of wild 
pollinators known to forage and pollinate in oilseed rape 

crops (Supplementary Table 2, from Kleijn et al. 2015), and 
we divided them between Bombus spp. and non-Bombus 
spp. wild bees, the latter referred hereafter as ‘solitary bees’. 
The group of solitary bees includes bees that are solitary 
with few exceptions since it includes solitary bees such as 
Andrena spp., Osmia spp., Lasioglossum spp., Eucera spp. 
and eusocial bees such as Halictus spp. and Lasioglossum 
spp., as well as those bees categorized as ‘wild bees’ or ‘soli-
tary bees’ from original datasets when the species level was 
not reported.

For statistical analysis, we pooled pollinator observa-
tions by summing up counts across transects and rounds, 
resulting in one value per field. Since the original datasets 
differed in the number of rounds and transects, we standard-
ized by selecting two transects and two rounds in all studies 
during the highest flower abundance. We standardized the 

Figure 1. Overview of the dataset for the current study. Study species, bumblebees and solitary bees; and high-resolution land use maps used 
to calculate the proportion of land-use variables around the focal field of pollinator observations in winter oilseed rape Brassica napus. Our 
dataset includes six datasets from five different European regions, from four different countries: Sweden – including two different regions, 
Skara (a) and Scania (Skåne in Swedish) (b); the Netherlands (c); Germany (d); and the United Kingdom (e). Pollinator observations data 
from Skåne was from two separate studies, and three datasets representing three different countries collected data for the same study. Data 
were collected during three different years (2011, 2012, 2013).
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response variable to the same units of pollinator density in 
the field, corresponding to the number of bees per meter per 
15 min. This resulted in non-integer response variables, and 
we therefore used models assuming a normal distribution. 
To achieve normality and homoscedasticity of the residuals 
(Zuur  et  al. 2010), all observations were Loge transformed 
prior to analysis.

(b) Land use maps including detailed vegetation classes
High-resolution (25 × 25 m pixel size) land use rasters from 
Germany, Netherlands and Sweden, were created using 
Integrated Administration and Control System (IACS) data. 
These data contain both reference and agricultural parcels, 
where a reference parcel could contain one or more agricul-
tural parcels (Sagris  et  al. 2015). As IACS data only cover 
arable land, other land cover data were used to fill the gaps 
between the IACS data. CORINE land cover data (CLC 
2012_Version 18.4) were used to fill gaps in Germany and 
the Netherlands. Gaps in Sweden were filled using more 
detailed land use information (Svenska Marktäckedata 
(SMD), Naturvårdsverket 2014). Land use codes were har-
monized across datasets to 213 land use categories. The IACS 
data was retrieved from partners of the EU LIBERATION 
project, see further Supporting information for a description 
of the Geographical Information System methods used, and 
information on which land-use classes were used in the sta-
tistical modeling.

We focused on two land-use cover variables: percentage 
of winter oilseed rape and percentage of semi-natural habi-
tats, which included forest and permanent, non-intensively 
managed grasslands (Supporting information). We extracted 
those land-use metrics in a 500 m buffer for solitary bees 
and a 1000 m buffer for bumblebees, both around the 
centroid of each field, based on their foraging distances 
(Osborne  et  al. 2008, Zurbuchen  et  al. 2010). Analyses 
were limited to the datasets for which we had land cover 
maps for the buffers, providing nine datasets (combinations 
of region–study–year) for bumblebees and ten for solitary 
bees. UK bumblebees were thus not included in the analysis, 
as the UK land use information only allowed a 500 m buf-
fer (see Supporting information), and Sweden – Skara was 
removed from the analysis for solitary bees since the fields 
from that study contained much lower variation in oilseed 
rape cover within the 500 m buffers (ranging from 0.6 to 
3.3%), compared to other regions (0.2–35%), to allow com-
parisons with the rest of the groups. To avoid study-specific 
approaches to land-use crop-cover classification, such as 
different interpretations of the term ‘grassland’, which may 
or may not include temporary grassland, we used a com-
mon methodology to create the spatial data and compute 
the landscape-scale land-use variables. Here, we refer to 
grassland as a permanent semi-natural habitat including the 
categories of pasture, mown meadow, forest pasture, mosaic 
pasture, natural grassland, grassland, meadow, semi-natural 
area), but not leys. Leys were included in a separate category 
(among the 213 categories), which did not contain mass 
flowering crops nor grasslands.

Data analysis

Statistical analyses were performed using R ver. 3.5.3 
(<www.r-project.org>). We developed a model that com-
bines all studies and we evaluated the transferability of a 
given model using a cross-validation approach.

Selection of model variables: habitats valuable for food and 
nesting resources
Oilseed rape is the crop in which the pollinator data were col-
lected, and the most abundant early-flowering mass-flower-
ing crop (MFC) in most of the regions. This is why we chose 
‘oilseed rape’ instead of MFC in our models (see Supporting 
information for a correlation matrix between all habitats for 
each region, 500 m and 1000 m buffer). The variable cover of 
semi-natural habitats was created from summing the cover of 
grassland and forest, as a representation of permanent natural 
habitats in the region. Collinearity of variables in the model 
were checked using the variance inflation factor (VIF). All 
models presented VIF < 0.17, meaning no substantial col-
linearity between the variables (Dormann et al. 2013).

Hierarchical model: a single model for all regions,  
studies and years
To analyze the relationship between wild bee abundance 
and land-use types we built a single hierarchical model that 
combines all studies. We used the function lmer in R, from 
the package lme4 (Bates et al. 2015), to run a linear mixed 
effect model. We included oilseed rape and semi-natural hab-
itat cover as fixed effects without interaction. We included 
random intercepts for a grouping variable with levels cor-
responding to the individual combination of country, study 
and year. The full model also included random slopes for 
both oilseed rape and semi-natural habitat, and it was used 
to assess the importance of spatial and temporal variation in 
responses across the studies. To facilitate model convergence 
and allow meaningful comparisons among variables with dif-
ferent ranges, we standardized all landscape variables to zero 
mean and unit variance, across all studies, before analysis.

The full model was coded as follows (once for bumblebees 
and once for solitary bees):

lmer (loge(pollinator abundance) ~ oilseed rape + semi-natu-
ral habitat, (oilseed rape + semi-natural habitat | group)) where 
group corresponds to the combination of region, study and 
year.

To test the consistency in the effect of the land-use vari-
ables across the groups, we compared models with and 
without random slope. We tested four different models 
including only intercept (no random slopes), random slopes 
with only oilseed rape, random slopes with only semi-nat-
ural habitat, or random slopes with a combination of both 
variables (Supporting information). All models had oilseed 
rape and semi-natural habitat cover as fixed effects. We 
used the anova function to provide model comparison sta-
tistics for all these models using restricted maximum likeli-
hood (method = ‘REML’) (Zuur et al. 2009). We examined 
the competing models within ΔAIC ≤ 2 (Burnham and 
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Anderson 2002), and we chose the simplest model after 
checking that the added complexity of the complex model 
did not add considerable explanatory power compared to 
the simpler model. See Supporting information for the AIC 
values from the anova test results. We interpreted the results 
from the selected model for each bee group.

Transferability of the hierarchical model
We assess the spatial and temporal transferability of the 
model that was selected in the hierarchical model: a single 
model for all regions, studies and years (Supporting informa-
tion) by comparing the performance under different types of 
non-random cross-validation.

Cross-validation is a method that involves dividing data 
into training evaluation blocks (Roberts et al. 2017). Non-
random cross-validation means that any validation set differs 
from those used for training the model in the same way as an 
independent dataset (Wenger and Olden 2012).

We used three non-random approaches to partition the 
data: 1) fully stratified, or ‘balanced’, where all groups (all-
region and year combinations) are in both the training and 
evaluation set; 2) partitioning the dataset to assess tempo-
ral extrapolation (for the same region, testing from one year 
to another), with data from different years within the same 
region assigned to different partitions; and 3) partitioning the 
dataset to assess spatial extrapolation (given the same year, 
testing the prediction from one region to another) with data 
from different region–study combinations assigned to differ-
ent partitions. The transferability analysis includes only those 
datasets with data from both 2011 and 2012 for both pol-
linator groups. This gave a total of four regions from three 
countries, and two years in each region, resulting in eight 
groups (region–study–year combinations). The partitioning 
was done using the R package Groupdata2 (Olsen 2017). 
Constrained by the partitioning for the temporal extrapola-
tion, where we had a maximum of two years within a study, 
we used half of the data for training and half for evaluation.

We repeated the partitioning process 100 times for a fully 
stratified cross-validation, and 16 and 6 times for the tem-
poral and regional extrapolation, respectively (the maximum 
number of possible combinations). The grouping variable for 
both fully stratified and regional extrapolation was a factor 
consisting of the region–study–year levels, while for temporal 
extrapolation the grouping variable was a factor consisting of 
each combination of region–study. When predicting using 
the information from both fixed and random effects we thus 
simulate prediction within the same statistical population in 
the case of full stratification, prediction for new regions–year 
combinations in the case of regional extrapolation, and pre-
diction for new years (but within the same region) for tem-
poral extrapolation. We consider this most representative of 
how ecological models are likely to be used for extrapolation 
in practice.

Both models for solitary bees and bumblebees included 
oilseed rape and semi-natural habitat as fixed effects, but 
differed in their random structure: only random inter-
cepts for bumblebees, and random intercept and slope for 

semi-natural habitats for solitary bees. We evaluated both 
overall and group-specific response, meaning that group-
specific response takes into account the random effects, while 
the overall response does not, and therefore we can compare 
results to contrast the contribution of fixed and random 
effects to the predictive performance.

To evaluate the model fit to the new data (e.g. the agree-
ment between predictions of the training dataset with data 
from the evaluation dataset), we used three complementary 
quantitative goodness-of-fit measures: the mean absolute error 
(MAE), the root mean squared error (RMSE) and the coef-
ficients of determination R2. MAE and RMSE both describe 
the average model-performance error. While RMSE presents 
the advantage of a higher weighting of larger discrepancies, 
MAE is considered to be easier to interpret since it is on the 
same scale as the response variable and is the least ambiguous 
measure of average error (Willmott and Matsuura 2005). The 
coefficients of determination R2 indicates the proportion of 
variability explained by the model. We used unadjusted R2 
since the number of model parameters remains constant. We 
used the R package hydroGOF (Zambrano-Bigiarini 2017) 
to obtain the goodness-of-fit measures. For a better interpre-
tation of the results, data were back-transformed after the 
analysis. This was done both for the overall response and the 
group-specific response. 

Results

Datasets included a total of 841 bumblebee observations 
from 101 fields in 9 region–study–year combinations; and 
a total of 534 solitary bees from 87 field observations, in 10 
study–region–year combinations.

To assess whether the cover of mass-flowering crops and 
semi-natural habitats in the landscape show consistent effects 
on wild bee abundance across space and time, we analyzed the 
relationship between wild bees and the explanatory variables 
oilseed rape and semi-natural habitat by building a hierar-
chical model that contains all region–study–year combina-
tions, and obtaining a parsimonious random effects structure 
(the results of model selection for support of random slopes 
(Supporting information).

For bumblebee abundance, we had two models within our 
model selection criteria of ΔAIC ≤ 2, one model including 
random slopes for semi-natural habitat (AICSNH slope = 131.29) 
and a model with only random intercepts (AICrandom inter-

cepts = 132.74) (Supporting information). Both models had 
very similar estimates for the fixed effects, and the variance of 
the additional random term in the more complex model was 
close to zero (see Supporting information for model results), 
meaning that any of the two models could be used for the 
purpose of this paper. We selected the simplest model, the 
model including only random intercepts.

Bumblebee abundance decreased with an increasing cover 
of oilseed rape crops in the surrounding landscape within 
1 km radius (Table 1, Fig. 2a, 3a), an effect that was con-
stant across all region–study–year groups. The abundance of 
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bumblebees increased with the cover of semi-natural habi-
tats, but this was not consistent across all region–study–year 
groups (Table 1).

For solitary bee abundance, we chose the model with the 
lowest AIC value, which was the model including only semi-
natural habitats as a random slope (AICSNH slope = 114.01). 
No other models had ΔAIC ≤ 2 (Supporting information). 
Solitary bee abundance decreased with the cover of oilseed 
rape, and increased with the surrounding semi-natural habi-
tat cover, although these effects were not significant (Table 1, 
Fig. 2c–d, 3c–d).

We assessed the importance of spatial and temporal varia-
tion in responses across the studies with the full model, and 
we found that there was a higher interannual and spatial vari-
ation in the effect of semi-natural habitat than in the effect 
of oilseed rape (δ2

random slope SNH = 0.041; δ2
random slope OSR = 0.002) 

for bumblebees (Fig. 2a–b). A different pattern was found for 
solitary bees, where the interannual and spatial variation of 
the responses was lower for semi-natural habitats (Fig. 2d), 
but the variability in the effect of oilseed rape was higher 
than for bumblebees (δ2

slope SNH = 0.018; δ2
slope OSR = 0.017) 

(Fig. 2c).
Based on the predictive performance, we tested to what 

extent our model predicting wild bee abundance across 
space and/or time is transferable. We used a cross-validation 
method approach to study how well our model predicts. The 
baseline to compare our cross-validation results is predictive 
performance under the balanced stratification, which corre-
sponds to prediction within region–study–year combinations 
without further extrapolation. The results are shown in Fig. 4.

The predicted abundances in the balanced stratifica-
tion cross-validation were closest to the observed abun-
dances (mean MAEbalanced stratification bumblebees = 0.36; mean 
MAEbalanced stratification solitary bees = 0.38). Although temporal 
and spatial extrapolation showed a higher mean error and 
a higher variance, these values were not too far from the 
balanced stratification (mean MAEtemporal extrapolation bumble-
bees = 0.40; mean MAEtemporal extrapolation solitary bees = 0.41; 
mean MAEspatial extrapolation bumblebees = 0.42 and mean 
MAEspatial extrapolation solitary bees = 0.41) (see Supporting infor-
mation for values of RMSE, MAE and R2).

The predicted abundances were 20% off the mean observed 
in the balanced stratification, with percentages ranging from 
16 to 28% between the studies for bumblebees, and between 

22 and 39% for solitary bees. For bumblebees, balanced 
stratification was followed by temporal extrapolation with an 
average of 24% off the mean, ranging between 19 and 31%, 
and finally by a not too far spatial extrapolation with an aver-
age of 25% off the mean, ranging between 17 and 38%. For 
solitary bees, temporal and spatial extrapolation predictions 
shared the same value of 33% off the mean observed, with 
percentages ranging from 24 to 40% (temporal) and 22 to 
45% (spatial) (Supporting information).

Mean R2 values were highest for balanced stratifica-
tion, especially so for the group-specific response (0.43 for 
bumblebees, and 0.26 for solitary bees), compared to the 
overall population-level (‘fixed-effect only’) response (0.25 
for bumblebees, and 0.11 for solitary bees). These values 
were followed by those of the overall temporal extrapola-
tion (0.23 for bumblebees, and 0.07 for solitary bees), and 
the spatial extrapolation for the overall and group-specific 
response (0.19 for bumblebees, and 0.05 for solitary bees). 
The group-specific temporal extrapolation values were lower 
than the spatial extrapolation values for bumblebees (0.03), 
but for solitary bees, temporal extrapolation values were very 
similar those obtained with spatial extrapolation (0.08). The 
R2 values were as expected usually higher for the group-spe-
cific than for the overall predictions, with one exception. In 
temporal extrapolation for bumblebees where values where 
higher for the overall (0.23) than for the group specific (0.03) 
predictions. This can be observed when predicting out-of-
sample and suggests that in this case the random effects lead 
to overfitting.

Discussion

We assessed the contribution of land-use cover variables in pre-
dicting wild solitary bee and bumblebee abundance in a mass-
flowering crop and the transferability of a statistical model 
predicting these effects. We found a negative relationship 
between the cover of oilseed rape and bee abundance for both 
bumblebees and solitary bees, a relationship that was more 
consistent across space and time for bumblebees as shown in 
our mixed-effects models. The effect of semi-natural habitat 
was variable across space and time, especially for solitary bees.

Oilseed rape is a rotational crop and its landscape-scale 
cover fluctuates from year to year. A potential mechanism 

Table 1. Results of the linear mixed effect models testing the effect of oilseed rape cover and semi-natural habitat cover (grassland and forest) 
on the abundance of bumblebees and solitary bees sampled in oilseed rape fields. Only selected models are shown. Number of field obser-
vations: 841 number of bumblebees (101 fields) and 534 number of solitary bees (87 fields). Number of groups (each country–study–year-
combination): 9 (for bumblebees), 10 (for solitary bees). Model estimates, standard error (SE), degrees of freedom (df) and p values are 
reported. p-values < 0.05 are shown in bold.

Response variable Random structure Land use variable Estimate SE df p-value

Bumblebee abundance (1|group) (Intercept) 0.88 0.13 7.30 < 0.001
% Oilseed rape −0.14 0.04 92.12 0.003
% Semi-natural habitat 0.16 0.05 97.69 0.002

Solitary bee abundance (1 + % Semi-natural habitat |group) (Intercept) 0.70 0.09 8.52 < 0.001
% Oilseed rape −0.05 0.04 82.84 0.216
% Semi-natural habitat 0.05 0.06 13.15 0.441
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underlying the negative effect of this mass-flowering crop on 
wild bee pollinators is the dilution of bees in the landscape 
(Riedinger  et  al. 2015, Holzschuh  et  al. 2016, Shaw  et  al. 
2020), as a result of local pollinator numbers reacting to a 
large area of floral resources in the landscape. Because all oil-
seed rape fields within a region will flower more or less at 
the same time, the dilution processes due to differences in 
oilseed rape cover will act directly upon the local density of 
foraging wild bees. Since the pollinator surveys took place at 
the moment of maximum flowering, this likely resulted in 
the shared similar effect of the cover of this crop between 

regions. The effect was stronger in bumblebees than solitary 
bees, a result in line with Holzschuh et al. (2016). The longer 
foraging ranges of the bumblebees, which makes them better 
able to respond to changes in the density of food resources, 
may explain this, even though we tried to account for that by 
choosing different landscape scales for bumblebees and soli-
tary bees. Another possible explanation could be that bees are 
negatively affected by pesticide use in the mass flowering crop, 
especially since oilseed rape is a crop where pesticide use is 
often high (Williams 2010, Zhang et al. 2017), which could 
negatively affect bee reproduction (Woodcock et al. 2017).

Figure 2. Slope responses from each combination of region–study for bumblebee abundance (a–b) and solitary bee abundance (c–d). We 
tested the effect of the surrounding oilseed rape habitat and permanent semi-natural habitats (grassland and forest), on bumblebees and soli-
tary bees sampled in oilseed rape fields. The dashed red line is the general trend across the studies. X axis shows the different studies; and Y 
axis shows the standardized slope value estimated using mixed effects models. 
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Semi-natural habitats, on the other hand, are less exposed 
to insecticides and other forms of disturbance (Senapathi et al. 
2017). We found positive, significant relationships between 
wild bee abundance and semi-natural habitat for bumble-
bees but not for solitary bees. For solitary bees, the effect of 
semi-natural habitats was not significant, possibly explained 
by the variability among region–study–year, as shown by 
the random slope. The lack of consistency of semi-natural 
habitats across regions and years (Supporting information) 
could be explained by differences in the quality and quantity 
of semi-natural habitats. Although we included grasslands 
and woodlands or forests since they provide key resources 
for bumblebees and solitary bees (Svensson,  et  al. 2000, 
Persson et al. 2018, Donkersley 2019), the effect of hetero-
geneity in forest and grassland management and composi-
tion on pollinators is less well understood. The effect of the 
amount and quality of semi-natural habitats at the landscape-
scale is highly affected by the wider landscape configuration 
and composition (Scheper  et  al. 2013, Martin  et  al. 2019, 

Sirami et al. 2019), which can lead to further inconsistency 
among regions and years.

Differences between bumblebees and solitary bees in 
response to the cover of semi-natural habitat were also shown 
in previous research (Shaw  et  al. 2020). Contrary to our 
results, Steffan-Dewenter et al. (2002) found that numbers 
of solitary bees, but not bumblebees increased with increas-
ing semi-natural grasslands in the landscape. This was pre-
sumably due to their requirements for nesting sites that 
are more restricted to these semi-natural habitats (Steffan-
Dewenter et al. 2002). Possibly, the higher species richness 
and differences in species composition between solitary bee 
communities in our study (Supporting information) may 
increase the heterogeneity of the response of this group to 
semi-natural habitats. The differences in species composi-
tion between the different studies, both between region and 
years, may be an important contributing factor to the hetero-
geneity of the responses to landscape-scale land-use. Better 
species-level coverage, and richer data, would allow running 

Figure 3. (a) Relationships between the standardized cover of oilseed rape and (b) semi-natural habitat (grassland and forest) (% in 1 km 
radius) and abundance of bumblebees. (c) Relationships between the cover of oilseed rape and (d) semi-natural habitat (% in 500 m radius) 
and abundance of solitary bees. The color indicates the different studies. The fitted lines are linear mixed model estimates for each region 
and year. The dashed line is the overall trend.
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multi-species models to capture some of this heterogeneity 
and increase transferability.

Using different cross-validation approaches to assess trans-
ferability across regions and years we demonstrate that trans-
ferability in space and time of these statistical models can be 
limited. Our study shows that one should expect consider-
able uncertainty when extrapolating results of models not 
only in space (in relatively close neighbor countries), but also 
in time (to predict from one single year to another). Model 
predictive power was low in general, likely due to the noisi-
ness of ecological data and the simplicity of the model. When 
looking at the overall response among the groups, predictions 

for bumblebees were slightly better when predicting across 
years within a region, rather than across the regions within 
a year. This would be expected given that we can assume 
higher differences between regions than years in the quality of 
semi-natural habitats, as suggested by our analyses, but also 
other aspects that could not be analyzed here, such as species 
composition.

Whether the extrapolated predictions are useful is con-
text-specific. For example, our 23% error prediction for 
temporal extrapolation might be too high for advising a par-
ticular farmer, but enough to develop a national policy. In 
this study, we want to point out that while the transferability 
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Figure 4. Cross-validation results for bumblebees (a–c) and solitary bee (d–f ) abundance. Graphical representation of the goodness-of-fit 
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of knowledge based on statistical models is very common, 
the transferability of statistical models is barely assessed and 
quantified (which is the aim of our paper). In the experi-
ence of the authors, extrapolating statistical models to new 
sites and years is increasingly on the table as stakeholders  
and policy makers request maps of populations and eco-
system services such as pollination, given land-use and/or  
climate inputs.

A conclusion of the transferability analysis is not only that 
more data is needed to generate better predictions, but more 
specifically that collecting more data from the regions where 
the models are to be applied is likely to be more useful – in 
particular for solitary bees.

The data used in this study, although limited, is one of the 
largest crop-specific pollinator datasets used for model train-
ing to date. More refined input data on the quality of the dif-
ferent habitats would allow building more complex models 
that could capture a higher share of the variance. Availability 
and consistency of such data are currently limiting, however, 
but promising approaches exist (Carrié et al. 2018).

For future studies, it is worthwhile investigating whether 
improved transferability can be achieved by stratifying by 
latitude, biogeographic region or similar amounts and types 
of semi-natural habitats or agricultural management, but 
that would require more datasets, e.g. through more sys-
tematic pollinator monitoring schemes (Carvell et al. 2017, 
Bartomeus and Dicks 2019, Garratt  et  al. 2019). Another 
important question is the extent to which mechanistic mod-
els that predict bumblebee or solitary bee abundance based 
on underlying ecological processes, can overcome the lack of 
transferability that we see in statistical models. Mechanistic 
models can capture details of the multi-scale dynamics of the 
system since these models predict increased pollinator abun-
dance over time in a landscape based on additional flower 
resources, and the dilution/concentration effects of changes 
in the quantity of jointly flowering resource patches. It is 
worthwhile noting that the latter effect was the most con-
sistent over space and time, but has for a long time not been 
included when modeling pollination potential (e.g. in the 
InVEST pollination model (Lonsdorf  et  al. 2009)). Newer 
models take this into account and show that this significantly 
improves model predictions (Nicholson et al. 2019).

Conclusions

Predictability of wild bee densities and therefore pollination 
service in a mass-flowering crop in response to landscape-scale 
land-use is limited, at least given the size of typical ecological 
studies as used in our analysis. We find that training models 
with data from the region for which predictions are required 
are recommended to improve model predictive performance. 
Our results show that including the dilution effect of simulta-
neously flowering crops on pollinator densities in the crops is 
both important for predicting pollinator visitation, and con-
stantly so over regions and years. At present, some of the most 
widely used models for pollinator mapping do not take this 

into account (e.g. invest pollination model, Lonsdorf et al. 
2009), but promising alternatives exist (Olsson et al. 2015, 
Haussler et al. 2017). Finally, the ability to robustly predict 
pollinator visitation to crops across regions and years should 
be more systematically used to assess both statistical and 
mechanistic models.
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