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Abstract: Cell-based regenerative therapies involving stem or progenitor cells are considered as possible therapeutic 

modalities to treat non-communicable and degenerative diseases. Recently, regenerative outcomes of cell-based 

therapies have been linked to paracrine factors and extracellular vesicles [EVs] released by the transplanted cells 

rather than the transplanted cells themselves. EVs contain a cargo that includes microRNAs [miRNAs], mRNAs, as 

well as proteins. Their role in mediating intercellular communication has been acknowledged in several studies. 

However, the regenerative potential of the miRNAs, mRNAs, and proteins that are present in EVs is a matter of 

ongoing scientific debate. In this review, we discuss EVs as an alternative to stem cell-based therapy to treat some of 

the non-communicable and degenerative diseases. Moreover, we also propose that pre-treatment of the cells could 

help to produce EVs enriched with particular miRNAs, mRNAs, and/or proteins that could support the successful 

regeneration of a targeted organ. 
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1. INTRODUCTION 

 In the last four decades, the average human life 
expectancy at birth has increased by about 10 years [1-3]. 
However, simultaneously, a 9 years gap between the total 
life expectancy and healthy life expectancy has also been 
reported [1]. This gap between life expectancy and healthy 
life expectancy indicates that a large number of people 
around the world are living with medical conditions. Non-
communicable and age-related degenerative diseases are 
considered the major contributors to these morbid 
conditions [1-3]. There are several symptomatic treatments 
available to treat non-communicable or degenerative 
diseases. However, till now there is no effective 
therapeutic modality that could help to regenerate affected 
organs. Often, organ transplantation is the only option, 
whereas scarcity in donor organs and immunologically 
mediated graft loss following transplantation are the major 
drawbacks [4, 5].  

Several in vitro, in vivo, and clinical studies have been 
conducted with a large variety of stem cell types including 
induced pluripotent stem cells [iPSCs], mesenchymal stem 
cells [MSCs], hematopoietic stem cells [HSCs], blast cells, 
and progenitor cells. Their promising regenerative 
outcomes are considered as hope to resolve the issue of 
organ donor scarcity in the near future [6-15]. 
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However, several studies have suggested that the 
regenerative outcomes of cell therapy, especially of MSCs 
based regenerative therapy, are largely mediated by 
paracrine factors rather than by engraftment and 
differentiation of the transplanted cells [16-18]. This 
emphasizes the regenerative potential of stem cell-derived 
paracrine factors and extracellular vesicles [EVs]. This 
opened a new opportunity in the field of regenerative 
medicine and led to multiple studies exploring the 
potential of stem cell secretome and EVs as cell-free 
regenerative therapeutics. 

Release of EVs by reticulocytes into the extracellular 
space was observed and reported in 1980s [19, 20]. Until 
1996, before exploring the role of EVs in stimulating an 
adaptive immune response [21], they were considered as 
cell debris without biological relevance [22]. After that 
discovery, EVs received considerable attention due to their 
ability to mediate intercellular communication.  

Based on their biogenesis, EVs can be divided into 
exosomes, microvesicles, and apoptotic bodies [Figure 1] 
[22]. Exosomes are released by cells upon fusion of 
multivesicular endosomes with the plasma membrane [23] 
and range in size from 30-120 nm in diameter [24]. 
Microvesicles originate from the cell surface by direct 
outward budding and fission of the plasma membrane [24]. 
They are more heterogeneous compared to exosomes and 
range from 50-1000 nm in diameter [25]. Among different 
types of EVs, apoptotic bodies that are generated through a 
process known as apoptotic cell disassembly, represent the 
largest EVs with an average diameter of 1-5 μm [26].  

Figure 1 Different types of extracellular vesicles (EVs) and their biogenesis. 
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EVs contain a cargo that includes microRNAs [miRNAs], 
mRNAs, and proteins which play a vital role in 
maintaining intercellular communication [26, 27]. In 
recent years, the regenerative potential of EVs [especially 
exosomes and microvesicles] has also received 
considerable attention. In this review, the regenerative 
potential and future prospects of EVs as cell-free 
therapeutics will be discussed. 

 

2. POTENTIAL USES OF EVS IN REGENERATIVE 
THERAPY 

 Cell-cell communication through EVs is a bi-
directional process [28]. Usually, the biogenesis and the 
content of EVs are closely linked to the cross-talk between 
cells and their niche. Cells of origin and the physiologic or 
pathologic condition of the microenvironment regulate the 
content of the EVs and subsequently their biological 
functions [29]. Following secretion, EVs carry signaling 
molecules [miRNAs, mRNA, and proteins] to adjacent or 
distant cells and play an important role in maintaining cell-
cell communication [30]. The EVs originating from a 
particular cell type can regulate the phenotype and fate of 
the recipient cells by transferring cell surface receptors, 
genetic material, and/or transcriptional regulators [31, 32]. 
The regenerative potential of EVs from different cell types 
has been studied in vitro and in vivo. In the following, we 
will discuss the potential of EVs in treating selected 
pathological conditions including cardiac, liver, and 
neuronal degeneration [Figure 2].  

2.1. Cardiac Regeneration 

 In the last few decades, myocardial infarction has been 
recognized as one of the major causes of mortality and 
morbidity worldwide. It also has a significant impact on the 
socio-economic status and quality of life of the survivors 
[33]. Cell-cell communication or cross-talk between 
different cell types including cardiac progenitor cells, 
cardiomyocytes, endothelial cells, and fibroblasts play vital 
roles in cardiac regeneration and protection of the ischemic 
myocardium. To maintain homeostasis within heart tissue, 
cardiomyocytes send messages to cardiac progenitor cells, 
endothelial cells, and fibroblasts while receiving reciprocal 
signals from these cell types [34].  

 Endothelial progenitor cells [EPCs] and MSCs have the 
potential to protect the ischemic myocardium [35]. 
Recently, it has been established that EVs are the key 
component of cell-cell communication and the cardiac 
regenerative outcomes of the cell-based therapy are due to 
cell-secreted paracrine factors embedded within EVs [33, 
36, 37]. In this context, the protective effects of hiPSC- and 
cardiomyocyte-derived EVs on ischemic myocardium have 
been reported [34, 38]. However, the molecular mechanisms 
behind the EV-mediated myocardial protection are still 
illusive.    

 Previously, it has been hypothesized that proteomic 
deficiencies during ischemia-reperfusion injury may be 
linked to the loss of adenosine triphosphate [ATP]/ 
nicotinamide adenine dinucleotide hydrogen [NADH], 
resulting in increased oxidative stress and cell death [39, 
40]. Increased ATP and NADH levels, decreased oxidative 
stress, increased phosphorylated protein kinase B [p-Akt] 
phosphorylated glycogen synthase kinase-3 [p-GSK-3] 
beta, and reduced C-Jun N-terminal kinase [p-c-JNK] within 
one hour after reperfusion in ischemic mice hearts treated 

with MSC-derived EVs [MSC-EVs] have been reported. 
Furthermore, 24 h post-reperfusion, a significant reduction 
in local and systemic inflammation, and a 45% reduction in 
infarct size were observed in MSC-EVs treated animals. 
Higher contractility and relaxation have also been observed 
during a 28 days follow-up. However, the effect was 
confined to the intact EVs only [40]. In another study, it has 
been found that cluster of differentiation [CD] 81, CD9, and 
Alix markers containing purified EVs reduced infarct size in 
the mouse of myocardial ischemia-reperfusion injury model 
[37]. 

 Several in vitro and in vivo studies have linked the 
presence of miRNAs in EVs to the protection of 
cardiomyocytes, and induction of angiogenesis [34, 41]. In 
an in vivo study, intravenously injected apoptotic human 
umbilical vein endothelial cell [HUVEC]-EVs induced a 
reduction of inflammatory atherosclerotic plaques [42]. This 
regenerative outcome was further linked to the presence of 
miR-126 in the EV fraction that induced the cardiac 
protection by increasing the expression of stromal cell-
derived factor 1 [SDF-1] in recipient cells [42]. In vitro 
protection of cardiac progenitor cells [CPCs] under ischemic 
condition by miR-126 and miR-210 enriched EVs have been 
acknowledged in another study [43]. Similar observations 
have been reported for the EVs containing miR-210, miR-
132, and miR-146a released by cardiosphere-derived cells 
and CPCs [41, 44]. Recently, multilayered composite 
membranes of biomaterials have been reported to increase 
the secretion of EVs from EPCs in which a higher amount 
of miR-126 [45]. The results of this study suggest that the 
culture of stem cells on the multilayered composite 
membrane of biomaterials could help to produce EVs with 
higher angiogenic potential.   

 In addition to miRNAs, EV cargo also contains multiple 
proteins. Under physiological conditions, [SDF-1]/ C-X-C 
motif chemokine receptor [CXCR4] signaling has been 
reported to be involved in enhanced endothelial sprouting 
from human embryoid bodies [46]. This result signifies the 
role of CXCR4 in regulating initial vessel formation which 
is highly important for cardiac regeneration. In another 
study, EVs from MSCs transduced with lentiviral CXCR4 
have been found to promote functional cardiac restoration 
[increased angiogenesis, reduced infarct size, and improved 
cardiac remodeling] in vivo via upregulating the expression 
of insulin- like growth factor 1 alpha [IGF-1α] alpha, pAkt, 
vascular endothelial growth factor [VEGF], as well as by 
downregulating the levels of active caspase 3 in 
cardiomyocytes [47]. Further studies are needed to reveal 
and specify the role of EVs from different sources or the 
components of EVs in cardiac regeneration.  

2.2. Liver Regeneration 

 Hepatic fibrosis is a process that results from 
imbalanced accumulation and degradation of the 
extracellular matrix [48]. It is triggered by chronic liver 
injuries. If untreated, it may cause life-threatening liver 
cirrhosis and hepatocellular carcinomas. Chronic 
inflammation of hepatic cells is frequently caused by viral 
infections, alcoholic liver disease, non-alcoholic fatty liver 
disease, and autoimmune attack. Liver cirrhosis an end-
stage sequela of fibrosis is one of the major causes of 
morbidity and mortality worldwide. At present, there is no 
pharmaceutical option for treating hepatic fibrosis, and 
liver transplantation is considered the only curative 
treatment for end-stage cirrhosis [5]. However, scarcity in 
the donor organs even in the developed countries as well 
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as low survival rates of grafts following liver 
transplantation are the major limitations of this treatment 
modality. These obstacles intensified the need of new 
medical therapies to attenuate or reverse hepatic fibrosis.  

 Several in vitro and in vivo studies have demonstrated 
the hepatic regenerative potential of EVs from different 
cell types. In vitro inhibition of growth and survival of 
HepG2 hepatoma and primary hepatocellular carcinoma 
cells in the presence of human adult liver stem cells 
[HLSC]-EVs have been reported earlier [49]. Furthermore, 
intra-tumor administration of HLSC-EVs have shown 
regression of ectopic tumors in severe combined 
immunodeficiency [SCID] mice [49]. These 
hepatoprotective effects of HLSC-EVs were linked to a 
horizontal transfer of miRNAs from EVs to the target cells 
[49]. In another study, EVs from bone marrow [BM]-
MSCs also induced apoptosis of HepG2 and Kaposi's cells 
as well as necrosis in Skov-3 in vitro in addition to an 
inhibition of progression of established tumors in vivo 
[50].  

 EVs from different cell sources have also been shown 
to have the potential to minimize ischemia-reperfusion and 
toxin-induced hepatic injury. It was reported that EVs 
from human induced pluripotent stem cell [iPSCs] derived 
MSCs reduced the levels of the hepatic injury markers 
aspartate aminotransferase [AST] and alanine 
aminotransferase [ALT], multiple pro-inflammatory 
proteins including tumor necrosis factor [TNF]-alpha, 
interleukin [IL]-6, high mobility group box 1 [HMGB1] as 
well as the apoptotic markers caspase-3 and bax [51]. 
Moreover, EVs increased the expression levels of 
oxidative markers, such as glutathione [GSH], glutathione 
peroxidase [GSH-Px], and superoxide dismutase [SOD] 
[51]. In a toxicity-induced [n-acetyl-p aminophenol or 
hydrogen peroxide] in vitro injury model, EVs from 
hepatic stellate cells [HSC] LX-2 and HST-T6 also 
improved the viability, and inhibited the apoptosis, and 
reduced cleaved caspase-3 expression as well as the 
leakage of lactate dehydrogenase [LDH], ALT, and AST 
from hepatocytes in a dose-dependent manner [52].  

 Efficacy of EVs from human foetal tissue-derived 
MSCs and umbilical cord [UC]-MSCs in treating hepatic 
fibrosis has also been reported earlier [53, 54]. However, 
the role of MSC- derived EVs in regulating molecular 
pathways involved in hepatic fibrosis remains to be 
explored. Transdifferentiation or activation of quiescent 
hepatic stellate cells [qHSCs] into proliferative and 
fibrogenic myofibroblast like activated HSCs [aHSCs] has 
been identified as the key cause of liver fibrosis [55, 56]. 
EVs from MSCs are rich in paracrine factors and their role 
in immunomodulation has been widely acknowledged 
[57]. EVs from MSCs have been shown to possess the 
potential to regulate the activation of HSCs and to reduce 
hepatic fibrosis [53, 54]. It has been hypothesized that the 
presence of antifibrogenic miRNAs [miR-15a, miR-15b, 
miR-16, miR-29a, miR-195] in the EVs might have the 
potential to regulate the expression of genes involved in 
the HSCs activation such as collagen 1 [Colla1], actin 
alpha 2 [Acta2], transforming growth factor beta receptor 
1 [Tgfbr1], and tissue inhibitors of metalloproteinases 
[Timp1] [56, 58, 59]. Furthermore, expression of the 
targeted miRNAs in the EVs from MSCs could be induced 
and used as a potential therapeutic modality. 

On the basis of all the research outcomes, it can be 
postulated that by inhibiting activation of hepatic stellate 

cells, EVs could show its hepatoprotective effect. 
Meanwhile, by minimizing oxidative stress, modulating 
immune response and increasing hepatocyte proliferation 
EVs could contribute to liver regeneration. 

2.3. Neuronal Regeneration 

 Acute ischemic stroke and neurodegenerative disorders 
such as Alzheimer's disease and Parkinson's disease are 
among the leading causes of death and disability in the 
world. The potential of cell-based regenerative therapy has 
been being studied in the last two decades. In recent years, 
the neuroregenerative potential of secretomes and EVs 
from different stem and progenitors has been explored [60-
62]. 

 Lower concentration of EVs [from murine adipose- 
derived [AD]-MSC have been found to protect human 
neuroblastoma SH-SY5Y cells and primary murine 
hippocampal neurons from chemically induced oxidative 
stress [61]. Similarly, increased remyelination and 
activated nestin-positive oligodendroglial precursors in the 
cerebral slice from C57BL/6 mice pups if exposed to a 
lower concentration of AD-MSC-EVs [61]. The authors 
concluded that AD-MSC-EVs could be beneficial in 
preventing neuro-inflammation and treating neuro-
degenerative disorders [61]. EVs from dental pulp stem 
cells [SHED] cultured on the laminin-coated three-
dimensional alginate micro-carriers have been found to 
prevent apoptosis in dopaminergic neurons in the presence 
of the toxic dopamine derivative 6-hydroxy-dopamine [6-
OHDA] [62].  

 In another study, an increased expression of miR-133b 
in the ipsilateral hemisphere of rats subjected to middle 
cerebral artery occlusion [MCAo] was seen when treated 
with MSCs. In the presence of ipsilateral ischemic tissue 
extracts from rats subjected to MCAo also induced the 
expression of miR-133b in MSCs and their exosomes in 
vitro. Furthermore, treatment with exosome-enriched 
fractions yielded from the MSCs induced expression of 
miR-133b in primary cultured neurons and astrocytes. The 
knock-down of miR-133b in MSCs confirmed that the 
increased miR-133b level in astrocytes is attributed to their 
transfer from MSCs. Exosome-enriched fractions from 
MSCs exposed to post-MCAo brain extracts also 
significantly increased the neurite branch number and total 
neurite length. This study revealed that MSCs 
communicate with brain parenchymal cells via exosomes 
and may regulate neurite outgrowth by transfer of miR-
133b to neural cells [63]. Knock-in and knock-down of 
miR-133b further confirmed that neurological recovery 
following a stroke in rats was mediated by the transfer of 
miR-133b containing exosomes from MSCs [64]. 

 Spinal cord injury [SCI] is a condition causing 
morbidity due to irreversible motor dysfunction and death 
as well. Several studies have reported the potential of EVs 
derived from different sources in improving motor 
function following SCI. Rong et al. [2019] reported the 
potential of neural stem cells derived EVs in reducing the 
extent of SCI and improving functional recovery of motor 
neurons in rats. This was further linked to the induced 
expression of autophagy proteins namely LC3B and 
beclin-1; boosted autophagosome formation; and reduced 
expression of apoptotic regulator Bax, apoptosis effector 
cleaved caspase-3, and pro-inflammatory paracrine factors 
TNF-α, IL-1β, and IL-6 [65]. BMSC-EVs have also been 
reported to improve motor function in the rat by reducing 
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neuronal death and inducing neuronal survival and 
regeneration. Furthermore, BMSC-EVs improved blood 
spinal cord barrier integrity by downregulating NF-κB 
signaling in pericytes [66]. In another in vivo study, 
UCMSC-EVs were found to improve SCI by reducing pro-
inflammatory cytokines expression and scar formation 
[67]. Notably, in a recent study, motor function 
improvement in SCI rats was linked to the presence of 
miRNA-29b in the exosomes [68]. Improved hind-limb 
movements and bladder control in chronic SCI dogs 
following multiple intravenous injections of BMMSC 
secretome further denote the neuro-regenerative potential 
of EVs [69]. 

 Crossing the blood-brain barrier of therapeutic agents 
is the major challenge in treating neurodegenerative 
diseases. In this context, it has been demonstrated that EVs 
have the potential to cross the blood-brain barrier [70]. All 
these studies encourage further development of engineered 
exosomes as drug delivery vesicles or tracking tools for 
treating or monitoring neurological diseases. 

2.4. Wound Healing 

 The prevalence of acute and chronic wounds is 
continuously increasing and being a major cause of 
morbidity. Acute wounds are caused by thermal injury, 
trauma, excision of extensive skin cancer, deep fungal and 
bacterial infections, vasculitis, scleroderma, pemphigus, 
toxic epidermal necrolysis, etc. Chronic wounds include 
diabetic ulcers, bedsore, arterial [ischemic] ulcers, and 
venous ulcers. These diseases increase the health care cost 
and thus the economic burden. Importantly, conventional 
treatments for these conditions are often ineffective [71]. 
Several in vitro and in vivo studies using EVs from 
different sources have been conducted to explore their 
potential in treating acute and chronic wounds.  

 New blood vessel formation is essential in wound 
healing. Crosstalk between endothelial cells, paracrine 
factors, and extracellular matrix [ECM] proteins play a 
vital role in the process of regeneration. Interestingly, 
dose-dependent uptake of BM-MSC-EVs by endothelial 
cells and an increased tube formation was reported in vitro. 
This was linked to activation of important wound healing 
signaling pathways [Akt, extracellular signal-regulated 
kinase [ERK], and signal transducer and activator of 
transcription [STAT3]] and induced expression of a 
number of paracrine factors [ hepatocyte growth factor 
[HGF], insulin-like growth factor [IGF1], nerve growth 
factor [NGF], and SDF1] [72]. The presence of mRNA in 
the EPC-EVs has also been reported to induce 
angiogenesis in endothelial cells by regulating the 
phosphatidylinositol 3-kinase [PI3K]/Akt signaling 
pathway [73]. Among the EPCs subpopulations, EPCs 
with low activity of aldehyde dehydrogenase [Alde-Low 
EPCs] have been found to be biologically more active in 
repairing ischemic tissues [74]. Later it was reported that 
Alde-Low EPCs express a higher amount of hypoxia 
inhibition factor [HIF]-2 and its target gene CXCR4 [75]. 
Improved ability to repair an ischemic skin flap along with 
the significantly higher expression of CXCR4 and its 
ligand SDF1 in Alde-High EPCs in the presence of EVs 
from Alde-Low EPCs subpopulation was also reported 
[75]. These studies signify the role of EVs from Alde-Low 
EPCs in wound healing by regulating the cellular 
migration and blood vessel formation.  

 Preventing myofibroblast formation and accumulation 
is another major challenge in scar-free wound healing. 
EVs from umbilical cord-derived MSCs enriched in 
specific miRNAs such as miR-21, miR-23a, miR-125b, 
and miR-145 have been reported to play key roles in 
suppressing myofibroblast formation by inhibiting the 
transforming growth factor-beta 2 [TGF-β2]/SMAD2 
pathway [76]. Significantly accelerated re-
epithelialization, and increased expression of CK19, 
proliferating cell nuclear antigen [PCNA], collagen I 
[compared to collagen III] in deep second-degree burned 
rat skin treated with hUC-MSC-EVs was also shown. 
Induced wound re-epithelialization and reduced heat 
stress-induced apoptosis of cells in the hUC-MSC-EVs 
treated rat were further connected to the activation of 
Wnt/-catenin and Akt signaling pathways respectively 
[77]. Another study was conducted to reveal the potential 
of MSC-EVs in controlling overcrowding and dysplasia 
following stem cells expansion after a regenerative 
response. The researchers have reported that hUC-MSC-
EVs contain 14-3-3. Under high cell density conditions, 
14-3-3 regulates the binding of YAP and phosphorylated 
large tumor suppressor kinase [LATS] by forming a 
complex to promote the phosphorylation of yes-associated 
protein [YAP] followed by inhibition of Wnt4 /-catenin 
signaling cutaneous regeneration [78]. Outcomes of these 
studies indicate that that hUC-MSC-EVs not only induce 
wound healing by activating Wnt/-catenin signaling but 
also regulate YAP to control cutaneous regeneration. 

2.5. Bone Regeneration 

 The incidence of bone disorders has been increasing 
worldwide underlining the necessity of regenerative 
therapies for bone tissue. Like in other tissues, cell fate and 
bone regeneration are also influenced by EVs secreted by 
cells residing within the injured tissue. Lineage-specific 
expression of miRNA in ESCs in the presence of 
preosteoblast-EVs has been reported earlier [79]. Studies 
have also shown that EVs collected from both BM-MSCs 
regular culture medium and osteogenic differentiation 
medium have the potential to induce osteogenic 
differentiation of naive BM-MSCs [80, 81]. However, the 
lineage-specific differentiation of naive BM-MSCs in vitro 
and in vivo was higher in the presence of EVs isolated 
from osteogenic differentiation media [81]. EVs collected 
from both cell culture conditions have revealed a binding 
capacity to matrix proteins such as type I collagen and 
fibronectin [81]. These results suggest the potential future 
use of EVs to pretreat autologous cell populations prior to 
transplantation to improve the bone regenerative outcomes 
[81].  

 In another study, fracture healing in CD9[-/-] mice was 
accelerated by BM-MSCs derived EVs, despite having the 
lower levels of the bone repair-related cytokines such as 
monocyte chemotactic protein-1 [MCP-1], MCP-3, and 
SDF1 compared to the levels in BM-MSCs condition 
medium and EVs free condition medium [82]. This result 
highlights the role of miRNAs in accelerating the bone 
repairing capability of EVs. 

2.6. Graft versus Host Disease 

 Several studies reported MSCs as being immune 
evasive rather than immune privileged [83, 84]. Although 
there are controversies regarding the immunomodulatory 
properties of MSCs, several studies have acknowledged 
their potential in preventing life-threatening graft versus 
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host disease [GVHD] [85-87]. Similar to the regenerative 
and immunomodulatory potentials of MSCs themselves, 
immunomodulatory properties of MSC-derived EVs have 
also received remarkable attention [88-90].  

 In an in vivo study, the infusion of hUC-MSC-EVs into 
mice following allogeneic hematopoietic stem cell therapy 
[HSCT] showed a prophylactic effect and significantly 
reduced the mortality of the recipient mice. These EVs 
significantly reduced the numbers of cytotoxic/suppressor 
T cells and the expression of paracrine factors [IL-2, TNF-
α, and interferon [IFN]-γ] in the serum. Simultaneously, it 
increased the ratio between CD3+CD4+ and CD3+CD8+ T 
cells and elevated the expression levels of IL-10. [91]. In 
another study, BM-MSC-EVs have been shown to induce 
apoptosis of CD3+ cells including the CD4+ subpopulation. 
Furthermore, it increased proliferation and apoptosis of 
Tregs, the Treg/Teff ratio, and the levels of the 
immunosuppressive cytokine IL-10 in cell culture 
supernatants [92]. Reduced expression of IL-1β, TNF-α, 
and IFN-γ from the patient-derived PBMC or TNF-α and 

IFN-γ from patient-derived natural killer [NK] cells in the 
presence of MSC-EVs have also been reported in a clinical 
study [93]. Notably, the immunomodulatory properties of 
EVs are linked to the internalization of the EVs by the 

cells [94].  

 There are controversies on the reduction of GVHD by 
MSC-EVs [95]. However, the positive outcomes of the 
most of the studies necessitate to study the compositions 
[proteins, mRNA and miRNA] and immunomodulatory 
properties of EVs to find out the key components involved 
in the innate and adaptive immune regulation and to 
translate their uses in preventing GVHD [87, 96]. 

2.7. Kidney Regeneration 

 The role of MSCs in preventing acute kidney injury by 
ameliorating renal dysfunction and repairing tubular 
damage has been acknowledged in several studies [97, 98]. 
However, the regenerative outcomes were facilitated by 
the paracrine effects of MSCs rather than their homing and 

Figure 2 Components of extracellular vesicles for tissue or organ-specific regenerative therapy. 
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differentiation to target cells [99]. In 2013, Tomasoni et al. 
reported that BM-MSC-EVs horizontally transfer IGF-1R 
mRNA to the tubular cells which enhanced tubular cell 
sensitivity to locally produced IGF-1 and prevent cisplatin-
induced damage of proximal tubular cells in vitro [100]. 
The role of hWJ-MSC-EVs in ameliorating 
ischemia/reperfusion- induced acute renal injury by 
inhibiting mitochondrial fission through delivering and 
restoring miR-30 expression in renal tissue has also been 
reported [101]. In another study, MSCs engineered with 
miRNAs [miR-10a, miR-127, and miR-296] maintained 
their pro-regenerative effects macrophage-mediated 
inflammation following acute ischemia/reperfusion-
induced renal injury is one of the major cause of renal 
damage [102, 103]. Recently, CCR2 positive MSC-EVs 
prevented ischemia/reperfusion-induced renal injury by 
suppressing the functions of C-C motif chemokine ligand 
[CCL2] that usually recruit or activate macrophage [104]. 
Thus, EVs from different cell sources could be developed 
as a therapeutic tool to treat kidney injuries. 

2.8. Human Islet Vascularization 

 Pancreatic islet transplantation is considered as one of 
the treatment modalities in type 1 diabetes patients whose 
blood glucose level is difficult to control [105]. However, 
poor graft vascularization limits the functional benefits of 
islet transplantation. Cantaluppi et al. [2012] have shown 
enhanced human islet vascularization in response to EPCs-
EVs in vitro and in vivo. The authors have shown that 
following internalization of EPC-EVs by islet endothelium 
and beta-cells, insulin secretion, survival, and 
revascularization of transplanted islets in SCID mice was 
induced. EPC-EVs induced in vitro proliferation, 
migration, resistance to apoptosis, and neovascularization 
of islet endothelial cells. The authors have further linked 
the presence of miR-126 and miR-296 in EPC-EVs to an 
induced revascularization and insulin secretion potential of 
EPC-EVs in islet endothelial cells. Microarray analysis of 
islet endothelium further confirmed EPC-EVs mediated 
upregulation of mRNAs that are involved in endothelial 
proliferation, differentiation, and angiogenesis. Activation 
of P13K-Akt and eNOS signaling pathways which are vital 
for vascularization was also reported in EPC-EVs treated 
islet endothelium [106]. 

2.9. Lung Repair and Regeneration 

 Studies also reported the influence of lung derived EVs 
on the modification of fate and function of marrow cells 
[107, 108]. These results suggest the use of lung cell-
derived EVs for priming the stem or progenitor cells prior 
to transplantation within a regenerative therapy. 
Furthermore, MSC-EV containing miR-34a, miR-122, 
miR-124, and miR-127 reported to improve the pulmonary 
hypertension in mice [109]. The potential of human MSC-
EVs in protecting the lung from E. coli endotoxin-induced 
acute lung injury in mice by expressing KGF mRNA in the 
injured alveolus has also been reported earlier [110]. 

3. LIMITATIONS OF USING EVS IN 
REGENERATIVE THERAPY 

 Within regenerative medicine, stem cells are being 
considered as a promising tool to treat incurable and 
difficult to treat diseases and conditions. However, in recent 
years, EVs have received substantial attention as potential 
cell-free surrogates to stem cell transplantation. EVs contain 
mainly miRNAs, mRNAs, and proteins that regulate bi-

directional cell-cell communication. EVs can be used 
directly to treat any diseases or to precondition stem cells 
prior to transplantation to improve their regenerative or 
lineage-specific differentiation potential. Despite having 
regenerative potential, the composition of EVs varies vastly 
which limits its successful and replicable therapeutic use. 
Moreover, bio-distribution of endo- and exo-genously 
administered EVs have not been studied extensively [111]. 
Another concern is related to the use of xenogeneic serum 
and feeder cells in the production of EVs. It has been 
reported that hESCs maintained with xenogeneic feeder 
layer cells secrete a higher amount of particular proteins 
[annexin II, beta-actin, guanine nucleotide-binding protein, 
enolase 1, and cofilin] secrete EVs with a cargo involved in 
cellular metastasis and immortality which is usually present 
in invasive cancers. and [112]. Furthermore, like stem cells, 
xenogeneic serum, and feeder cells could contaminate the 
EVs with xeno-antigens that could affect their regenerative 
potential [112]. Finally, the safety of EVs, delivery 
mechanisms, potency of the EVs, and regulatory issues 
[manufacturing, standardizing, and up-scaling] need to be 
extensively studied for their successful use in regenerative 
medicine.   

CONCLUSION 

 The use of EVs as cell-free therapeutics will help to 
minimize a lot of limitations related to the cell-based 
therapy. By analyzing the results from in vitro and in vivo 
studies on EVs, we attempted to categorize them on the 
basis of their contents and/or sources while considering 
their targeted regenerative potential. This categorization 
and enriching it with updated research outcomes will be 
very effective in selecting EVs to treat a particular tissue, 
organ, or ailment. Moreover, it will help the researcher to 
make decision in selecting individual or group proteins or 
genetic materials whose expression needed to be enhanced 
in EVs for targeted therapy. EVs are very small in nature 
that have the potential to cross the blood-brain barrier. 
Hence, beside carrying genetic materials or proteins they 
could be used as a carrier of bioactive drugs or 
components in near future. However, despite the high 
therapeutic potential, any future EV-based therapy must 
adhere to strict standards with clear safety and risk profile, 
and a defined mode of action. This could not only lead to a 
development of affordable cell-free therapeutics but also 
prevent unproven commercial direct-to-patient exploitation 
of EV-based therapies that could harm the patients and the 
credibility of the field. 

LIST OF ABBREVIATIONS 

Acta2   = actin alpha 2 

AD  = adipose derived  

aHSCs  = activated HSCs  

Akt  = protein kinase B 

ALT   = alanine aminotransferase 

AST   = aspartate aminotransferase 

ATP  = adenosine triphosphate 

BM   = bone marrow 

BMSC-EVs  = BM stem cells derived EVs 

CCL   = C-C motif chemokine ligand 

CD  = cluster of differentiation 

CK19  = cytokeratin 19 

Colla1  = collagen I  

CPCs   = cardiac progenitor cells  

CXCR  = C-X-C motif chemokine receptor 
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ECM   = extracellular matrix 

EPCs   = Endothelial progenitor cells  

ERK  = extracellular signal-regulated kinase 

EVs  = extracellular vesicles  

GSH  = glutathione  

GSK-3  = Glycogen synthase kinase-3 

GSK-3  = Glycogen synthase kinase-3 

GVHD   = graft versus host disease 

H2O2   = hydrogen peroxide 

HGF  = hepatocyte growth factor 

HIF  = hypoxia inhibition factor 

HLSC   = human adult liver stem cells  

HMGB1  = high mobility group box 1  

HSC   = hepatic stellate cells  

HSCs  = hematopoietic stem cells  

HSCT   = hematopoietic stem cell therapy  

HUVEC  = human umbilical vein endothelial cells  

hWJ  = human Wharton jelly 

IGF-1  = insulin like growth factor  

IL   = interleukin  

iPSCs   = induced pluripotent stem cells  

KGF   = keratinocyte growth factor 

LATS   = large tumor suppressor kinase 

LDH  = lactate dehydrogenase 

MCAo  = middle cerebral artery occlusion  

MCP-1  = monocyte chemotactic protein-1  

miRNA   = microRNA  

MSC-EVs  = MSC derived EVs   

MSCs   = mesenchymal stem cells  

NADH   = nicotinamide adenine dinucleotide 

hydrogen 

NF-κB   = nuclear factor kappa beta 

NGF  = nerve growth factor 

NK  = natural killer 

p-C-JNK  = C-Jun N-terminal kinase 

PCNA  = proliferating cell nuclear antigen 

PI3K  = phosphatidylinositol 3-kinase 

Px  = peroxidase 

qHSCs]  = quiescent hepatic stellate cells  

SCI  = spinal cord injury  

SCID  = severe combined immunodeficiency 

SDF-1   = stromal cell derived factor 1 

SHED   = stem cells from human 

extracted/exfoliated mesenchymal stem cells 

SOD   = superoxide dismutase  

STAT  = signal transducer and activator of 

transcription 

Tgfbr  = TGF- β receptor  

TGF-β  = transforming growth factor-beta 

Timp   = tissue inhibitors of metalloproteinases 

TNF   = tumor necrosis factor  

UC   = umbilical cord  

UCMSC-EVs  = UC MSCs derived EVs 

VEGF  = vascular endothelial growth factor 

YAP   = yes-associated protein 
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