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ABSTRACT: The performance of a new historical reanalysis, the NOAAÐCIRESÐDOE Twentieth Century Reanalysis
version 3 (20CRv3), is evaluated via comparisons with other reanalyses and independent observations. This dataset provides
global, 3-hourly estimates of the atmosphere from 1806 to 2015 by assimilating only surface pressure observations and
prescribing sea surface temperature, sea ice concentration, and radiative forcings. Comparisons with independent obser-
vations, other reanalyses, and satellite products suggest that 20CRv3 can reliably produce atmospheric estimates on scales
ranging from weather events to long-term climatic trends. Not only does 20CRv3 recreate a ÔÔbest estimateÕÕ of the weather,
including extreme events, it also provides an estimate of its conÞdence through the use of an ensemble. Surface pressure
statistics suggest that these conÞdence estimates are reliable. Comparisons with independent upper-air observations in the
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Northern Hemisphere demonstrate that 20CRv3 has skill throughout the twentieth century. Upper-air Þelds from 20CRv3
in the late twentieth century and early twenty-Þrst century correlate well with full-input reanalyses, and the correlation is
predicted by the conÞdence Þelds from 20CRv3. The skill of analyzed 500-hPa geopotential heights from 20CRv3 for 1979Ð
2015 is comparable to that of modern operational 3Ð4-day forecasts. Finally, 20CRv3 performs well on climate time scales.
Long time series and multidecadal averages of mass, circulation, and precipitation Þelds agree well with modern reanalyses
and station- and satellite-based products. 20CRv3 is also able to capture trends in tropospheric-layer temperatures that
correlate well with independent products in the twentieth century, placing recent trends in a longer historical context.

KEYWORDS: Synoptic-scale processes; Surface pressure; Surface observations; Data assimilation; Reanalysis data;
Decadal variability

1. Introduction

A detailed understanding of past weather and climate, in-
cluding variability and trends, is essential to better understand
and predict ongoing changes in climate and weather statistics.
Historical observational datasets intended to accomplish this
are spatially and temporally incomplete, and often have in-
homogeneity issues (Brönnimann et al. 2013; Cram et al. 2015;
Jones et al. 1999; Parker et al. 1997; Rennie et al. 2014; Thorne
et al. 2017; Noone et al. 2021). Reanalyses can provide com-
plete and consistent atmospheric Þelds by objectively com-
bining historical observations with modern numerical weather
prediction model forecasts, while accounting for estimated
errors in both (Kalnay et al. 1996). Most reanalyses, however,
only go back to circa 1950 or 1979 to use the most compre-
hensive observing network while avoiding inconsistencies
arising from major changes in it, such as the introduction of
extensive upper-air observations or satellite data (Bengtsson
et al. 2004; Bosilovich et al. 2011; Kinter et al. 2004; Kistler
et al. 2001; Zhang et al. 2012).

By assimilating only long-term surface observations, his-
torical reanalyses can avoid some of these inconsistencies and
extend further back in time. In partnership with the interna-
tional Atmospheric Circulati on Reconstructions over the
Earth initiative (ACRE; Allan et al. 2011), the University of
Colorado BoulderÕs Cooperative Institute for Research in
Environmental Sciences (CIRES) and the National Oceanic
and Atmospheric Administration (NOAA) were the Þrst to
generate a dynamically consistent ÔÔsparse inputÕÕ global at-
mospheric reanalysis, the Twentieth Century Reanalysis
(20CR), based on only surface pressure observations. The
preliminary Þrst version spanned 1908Ð58 to demonstrate the
feasibility of a surface-pressure-only reanalysis (Compo et al.
2006; Whitaker et al. 2004). The second version, 20CRv2,
spanned from 1871 to the present and was kept up to date until
2012 (Compo et al. 2011). The follow-up, 20CRv2c, improved
upon 20CRv2 and extended the reanalysis period to 1851Ð
2014. The European Centre for Medium-Range Weather
Forecasts (ECMWF) subsequently generated a sparse-input
reanalysis, the ECMWF Twentieth Century Reanalysis (ERA-
20C), assimilating both surface pressure and marine winds and
extending back to 1900 (Poli et al. 2016). Their most recent
historical reanalysis, the Coupled ECMWF Reanalysis of the
Twentieth Century (CERA-20C), spans 1901Ð2010 and
uses a coupled oceanÐatmosphere forecast model to also
assimilate subsurface ocean proÞle observations (Laloyaux
et al. 2018).

The latest version of the Twentieth Century Reanalysis has
been generated by NOAA, CIRES, and the U.S. Department
of Energy (DOE). This NOAAÐCIRESÐDOE 20CR version 3
(20CRv3), uses a newer, higher-resolution model, assimilates a
larger set of observations, and includes an improved data as-
similation system relative to its predecessor 20CRv2c. The
20CRv3 system further extends the reanalysis period to 1836Ð
2015, with an experimental extension spanning 1806Ð35.
Slivinski et al. (2019a) provide an in-depth description of the
system that generated the 20CRv3 reanalysis product, as well
as preliminary evaluations of a subset of the 20CRv3 product
(mainly via comparisons with 20CRv2c). Here, we provide a
Þrst evaluation of the entire 1806Ð2015 time span of the
20CRv3 dataset through comparisons with independent ob-
servations, full- and sparse-input reanalyses, and satellite
products. The focus is on the synoptic and climatic behavior
of a few key atmospheric variables from the surface to the
upper atmosphere; further work will provide more exhaustive
evaluations.

By going back to 1806, one can potentially study trends
in the longest instrument-based reanalysis generated to
date. However, one must Þrst understand the accuracy and
reliability of the dataset rel ative to other products and
observations. To that end, this work provides an initial
evaluation of the 20CRv3 dataset on weather and climate
scales, but in-depth investigations of particular phenomena
and variability are left for f uture research. This work is
organized as follows:Section 2 reviews relevant details of
20CRv3 and introduces the other reanalyses and observa-
tional datasets used for comparison.Section 3 investigates
an extreme weather event in the nineteenth century, il-
lustrating that 20CRv3 has efÞcacy for evaluating the dy-
namics of past weather when data density is sufÞcient.
Section 4 considers synoptic-scale performance metrics,
including errors in surface pressure and upper-air geo-
potential heights. Section 5 focuses on climate time scales
and discusses long-term structures of mass, circulation, and
precipitation in 20CRv3. Section 6 concludes with a dis-
cussion of implications.

2. Data and methods

The 20CRv3 system consists of a numerical weather pre-
diction model, an observational dataset, and an assimilation
method. We review this system brießy; further details are given
by Slivinski et al. (2019a). Using an 80-member ensemble
Kalman Þlter, the 20CRv3 system assimilates only surface
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pressure observations from the open, unrestricted, and publicly
available International Surface Pressure Databank (ISPD)
version 4.7 (Compo et al. 2019; Cram et al. 2015), into the U.S.
National Centers for Environmental Prediction (NCEP) Global
Forecast System (GFS) model, version 14.0.1, with a spectral hor-
izontal resolution of T254 (effectively 60 km at the equator) and a
vertical atmospheric resolution of 64 levels up to about 0.3 hPa. Sea
surface temperature (SST) Þelds are prescribed from two eight-
member ensembles: version 3 of the Simple Ocean Data
Assimilation with sparse input (SODAsi.3), reanalysis for 1836Ð
1980 (Giese et al. 2016); and the Hadley Centre Sea Ice and Sea
Surface Temperature dataset, version 2.2 (HadISST2.2), for 1981Ð
2015. These SST Þelds, originally available as 5-day averages, were
interpolated to daily resolution for 20CRv3. Sea ice concentration
Þelds are prescribed from monthly HadISST2.3 (Titchner and
Rayner, 2014) interpolated to daily resolution. Solar radiation is
determined from the Total Solar Irradiance (TSI) Reconstruction
based on the Naval Research Laboratory TSI (NRLTSI2;
Coddington et al. 2016), and time-varying atmospheric con-
stituents of volcanic aerosols (Crowley and Unterman, 2013),
stratospheric ozone (Cionni et al. 2011), and atmospheric car-
bon dioxide (CO2) levels (Saha et al. 2010) are also speciÞed.
Output subsurface land Þelds (such as soil moisture), surface
Þelds, and atmospheric Þelds are provided at 3-hourly resolution.

The experimental extension spanning 1806Ð35 uses an
identical system, with SST Þelds for 1815Ð35 speciÞed from the
eight-member ensemble of SODAsi.3 and for 1806Ð14 speci-
Þed as the 30-yr average climatological Þelds from HadISST2.1
for years 1861Ð90 (to be consistent with previous iterations of
20CR; seeGiese et al. 2016). At the time of production, 1804
was the Þrst year with at least one observation globally every
six hours (mainly from stations in western Europe and occa-
sionally North America). With a 16-month spinup period, 1806
is the Þrst full year available in the extension.

To evaluate the performance of 20CRv3, its Þelds are
compared with a variety of atmospheric reanalyses and ob-
servational datasets.Fujiwara et al. (2017) organize reanalyses
into three general categories: full input, conventional input, and
surface input. Full-input reanalyses assimilate all available sur-
face and upper-air conventional observations as well as satellite
observations as they become available in time. Conventional-
input reanalyses assimilate surface and upper-air conventional
observations, but not satellite data; we do not consider any
conventional-input reanalyses here. Surface-input reanalyses
assimilate only surface conventional observations (such as sur-
face pressure and marine winds.)

In addition to reanalyses, 20CRv3 is also compared with
independent upper-air, station-based, satellite-based, and
satellite-station blended observational datasets of upper-air
Þelds, precipitation, and lower-tropospheric temperature. A
summary of all reanalyses and datasets used in this study is
shown in Table 1. This list is far from exhaustive; seeFujiwara
et al. (2017) for more details.

3. Case study: The Great Blizzard of 1888

A key feature of 20CRv3 is its 3-hourly resolution for the
span of 210 years, allowing users to investigate weather

extremes from across the nineteenth to twenty-Þrst centuries
in a consistent framework. Several studies have shown how
well previous versions of 20CR were able to reconstruct indi-
vidual weather events (e.g.,Brönnimann et al. 2013; Gergis
et al. 2020; Lorrey and Chappell 2016; Moore and Babij 2017;
Stucki et al. 2015). Slivinski et al. (2019a)investigated how well
the 20CRv3 system represents the 1915 Galveston Hurricane,
and found that 20CRv3 has the strongest intensity (i.e., lowest
central pressure) of the four historical reanalyses considered
there: 20CRv2c, 20CRv3, ERA-20C, and CERA-20C. Here,
we investigate an extratropical winter storm that impacted
North America in the nineteenth century and has been the
focus of several previous studies (Kocin 1983, 1988; Michaelis
and Lackmann 2013), but 20CRv3 could be used to study a
variety of weather extremes back to 1806 (e.g., the 1816 year
without a summer; Brugnara et al. 2015; Skrynyk et al. 2021).

The Great Blizzard of 1888 was a historic snowstorm impacting
the northeast United States between 11 and 14 March 1888, de-
livering up to 125 cm of snow across parts of New England along
with strong winds and low temperatures (Kocin and Uccellini
2004; Kocin 1983, 1988). For reference, in the original develop-
ment of the Northeast Snowfall Impact Scale (NESIS), the
Blizzard of 1888 received a score of 8.34, while the Superstorm of
March 1993 received a value of 12.52, and the Blizzard of January
1996 received a score of 11.54.Michaelis and Lackmann (2013)
downscaled 20CRv2 using the Weather Research and Forecasting
(WRF) Model and were able to reconstruct offshore cyclogenesis
and heavy snowfall, albeit with a signiÞcant position error. Here,
we illustrate the ability of the 20CRv3 system to reconstruct this
storm at its output resolution. Figure 1 shows synoptic maps over
North America for 0000 UTC 13 March 1888. Figure 1a shows
ensemble mean sea level pressure (SLP), the locations of obser-
vations assimilated within the previous 24 h, and conÞdence.
ConÞdence of an atmospheric Þeld is deÞned as in (Slivinski et al.
2019a) but for a single time t:

conf(t) 5 12
spreadens(t)
spreadclim(t)

, (1)

where spreadens is the standard deviation of the ensemble of
analyzed Þelds from 20CRv3 valid for the given date and time,
and spreadclim is the temporal standard deviation of the
20CRv3 ensemble mean Þeld, over the given month, day, and
hour, for 1981Ð2010. This metric is intended to provide infor-
mation on the ensemble spread (not on mean biases), while
normalizing out the effects of intrinsic variability. A value of
zero in this metric corresponds to conÞdence equal to that of a
climatological estimate, while negative (positive) values cor-
respond to less (more) conÞdence than a climatological esti-
mate. In particular, negative values can occur when the
instantaneous ensemble spread is larger than the ensemble
meanÕs temporal variability. This does not necessarily imply
poor performance of the data assimilation system, unless long-
term averages of conÞdence are regularly below zero (see
section 3.1 ofSlivinski et al. 2019a). Figure 1b shows ensemble
mean 500-hPa geopotential height (Z500) and its conÞdence
Þeld. Figures 1c and 1dshow ensemble mean 2-m air temper-
ature and 6-hourly accumulated precipitation, respectively.

15 FEBRUARY 2021 S L I V I N S K I E T A L . 1419

�8�Q�D�X�W�K�H�Q�W�L�F�D�W�H�G���_���'�R�Z�Q�O�R�D�G�H�G���������������������������������3�0���8�7�&



T
A

B
LE

1.
S

um
m

ar
y

of
re

an
al

ys
es

an
d

ob
se

rv
at

io
na

ld
at

as
et

s
di

sc
us

se
d

in
th

is
st

ud
y.

D
at

as
et

R
ef

er
en

ce
C

at
eg

or
y

D
es

cr
ip

tio
n

N
O

A
A

Ð
C

IR
E

S
20

C
R

v2
,v

2c
C

om
po

et
al

.(
20

11
)

S
ur

fa
ce

-in
pu

tr
ea

na
ly

si
s

P
ro

du
ce

d
by

N
O

A
A

Ð
C

IR
E

S
.A

va
ila

bl
e

gl
ob

al
ly

fr
om

18
71

to
20

12
(2

0C
R

v2
)o

r
fr

om
18

51
to

20
14

(2
0C

R
v2

c)
.

N
O

A
A

Ð
C

IR
E

S
Ð

D
O

E
20

C
R

v3
S

liv
in

sk
ie

ta
l.

(2
01

9a
)

S
ur

fa
ce

-in
pu

tr
ea

na
ly

si
s

P
ro

du
ce

d
by

N
O

A
A

Ð
C

IR
E

S
Ð

D
O

E
.

A
va

ila
bl

e
gl

ob
al

ly
fr

om
18

36
to

20
15

(e
xp

er
im

en
ta

le
xt

en
si

on
fr

om
18

06
to

18
35

).
E

R
A

-2
0C

P
ol

ie
ta

l.
(2

01
6)

S
ur

fa
ce

-in
pu

tr
ea

na
ly

si
s

P
ro

du
ce

d
by

E
C

M
W

F
.A

va
ila

bl
e

gl
ob

al
ly

fr
om

19
00

to
20

10
.

C
E

R
A

-2
0C

La
lo

ya
ux

et
al

.(
20

18
)

S
ur

fa
ce

-in
pu

tr
ea

na
ly

si
s

P
ro

du
ce

d
by

E
C

M
W

F
.A

va
ila

bl
e

gl
ob

al
ly

fr
om

19
01

to
20

10
.

N
N

R
1

K
al

na
y

et
al

.(
19

96
)a

nd
K

is
tle

r
et

al
.(

20
01

)
F

ul
l-i

np
ut

re
an

al
ys

is
P

ro
du

ce
d

by
N

C
E

P
Ð

N
C

A
R

.A
va

ila
bl

e
gl

ob
al

ly
fr

om
19

48
to

th
e

pr
es

en
t.

E
R

A
-4

0
U

pp
al

a
et

al
.(

20
05

)
F

ul
l-i

np
ut

re
an

al
ys

is
P

ro
du

ce
d

by
E

C
M

W
F

.A
va

ila
bl

e
gl

ob
al

ly
fr

om
19

57
to

20
02

.
JR

A
-5

5
K

ob
ay

as
hi

et
al

.(
20

15
)

F
ul

l-i
np

ut
re

an
al

ys
is

P
ro

du
ce

d
by

th
e

Ja
pa

n
M

et
eo

ro
lo

gi
ca

l
A

ge
nc

y
(J

M
A

).
A

va
ila

bl
e

gl
ob

al
ly

fr
om

19
58

to
th

e
pr

es
en

t.
E

R
A

-I
nt

er
im

D
ee

et
al

.(
20

11
)

F
ul

l-i
np

ut
re

an
al

ys
is

P
ro

du
ce

d
by

E
C

M
W

F
.A

va
ila

bl
e

gl
ob

al
ly

fr
om

19
79

to
20

19
.

E
R

A
5

H
er

sb
ac

h
et

al
.(

20
20

)a
nd

H
er

sb
ac

h
et

al
.(

20
16

)
F

ul
l-i

np
ut

re
an

al
ys

is
P

ro
du

ce
d

by
E

C
M

W
F

.A
va

ila
bl

e
gl

ob
al

ly
fr

om
19

79
to

th
e

pr
es

en
t.

IG
R

A
2

D
ur

re
et

al
.(

20
16

)
U

pp
er

-a
ir

co
nv

en
tio

na
lo

bs
er

va
tio

ns
F

ul
ld

at
as

et
pr

od
uc

ed
by

N
O

A
A

N
at

io
na

l
C

en
te

rs
fo

rE
nv

iro
nm

en
ta

lI
nf

or
m

at
io

n
(N

C
E

I)
.T

he
Li

nd
en

be
rg

,G
er

m
an

y,
st

at
io

n
us

ed
in

th
is

st
ud

y
is

av
ai

la
bl

e
fr

om
19

05
to

th
e

pr
es

en
t.

G
P

C
P

v2
.3

A
dl

er
et

al
.(

20
03

,2
01

8)
G

lo
ba

ls
at

el
lit

e-
st

at
io

n
bl

en
de

d
pr

ec
ip

i-
ta

tio
n

da
ta

se
t

P
ro

du
ce

d
un

de
r

th
e

W
or

ld
C

lim
at

e
R

es
ea

rc
h

P
ro

gr
am

(W
C

R
P

)
an

d
its

G
lo

ba
lE

ne
rg

y
an

d
W

at
er

C
yc

le
E

xp
er

im
en

t(
G

E
W

E
X

).
A

va
ila

bl
e

gl
ob

al
ly

fr
om

19
79

to
th

e
pr

es
en

t.
C

R
U

T
S

v4
.0

3
H

ar
ris

et
al

.(
20

20
)a

nd
H

ar
ris

an
d

Jo
ne

s
(2

02
0)

G
lo

ba
ls

ta
tio

n-
ba

se
d

pr
ec

ip
ita

tio
n

da
ta

se
t

P
ro

du
ce

d
by

th
e

U
ni

ve
rs

ity
of

E
as

tA
ng

lia
C

R
U

.A
va

ila
bl

e
gl

ob
al

ly
ov

er
la

nd
fr

om
19

01
to

20
19

.
P

R
IS

M
ht

tp
://

pr
is

m
.o

re
go

ns
ta

te
.e

du
R

eg
io

na
ls

ta
tio

n-
ba

se
d

pr
ec

ip
ita

tio
n

da
ta

se
t

P
ro

du
ce

d
by

th
e

P
R

IS
M

C
lim

at
e

G
ro

up
of

O
re

go
n

S
ta

te
U

ni
ve

rs
ity

.A
va

ila
bl

e
ov

er
th

e
co

nt
in

en
ta

lU
ni

te
d

S
ta

te
s

fr
om

18
95

to
th

e
pr

es
en

t.
A

W
A

P
Jo

ne
s

et
al

.(
20

09
)

R
eg

io
na

ls
ta

tio
n-

ba
se

d
pr

ec
ip

ita
tio

n
da

ta
se

t
P

ro
du

ce
d

by
th

e
A

W
A

P
.A

va
ila

bl
e

ov
er

A
us

tr
al

ia
fr

om
19

00
to

th
e

pr
es

en
t.

R
S

S
M

ea
rs

an
d

W
en

tz
(2

00
9)

S
at

el
lit

e-
ba

se
d

te
m

pe
ra

tu
re

lo
w

er
tr

op
os

ph
er

e
P

ro
du

ce
d

by
R

S
S

.A
va

ila
bl

e
fo

r
70

8S
Ð

82
8N

fr
om

19
79

to
th

e
pr

es
en

t.
U

A
H

C
hr

is
ty

et
al

.(
20

17
)

S
at

el
lit

e-
ba

se
d

m
ea

n-
la

ye
r

te
m

pe
ra

tu
re

P
ro

du
ce

d
by

th
e

U
A

H
.A

va
ila

bl
e

fo
r

82
8S

Ð
82

8N
fr

om
19

79
to

th
e

pr
es

en
t.

1420 J O U R N A L O F C L I M A T E V OLUME 34

�8�Q�D�X�W�K�H�Q�W�L�F�D�W�H�G���_���'�R�Z�Q�O�R�D�G�H�G���������������������������������3�0���8�7�&

http://prism.oregonstate.edu


While the conÞdence shading inFigs. 1a and 1bdemonstrates the
spread of the ensemble,Fig. 2 provides further evidence of the
ensemble variability by illustrating the SLP and precipitation Þelds
from the Þrst 20 ensemble members; this set is representative of the
full 80-member ensemble. A storm is evident in all ensemble
members shown here, but the variability within the ensemble sug-
gests that there is more uncertainty in precipitation than in SLP.

Comparisons with preexisting reconstructions demonstrate
that the overall structure and location of the storm in 20CRv3
are realistic (Fig. 3). The real-time U.S. Daily Weather Map, a
reconstruction created by Kocin (1983), and the 20CRv3 Þelds
valid at 1200 UTC 13 March 1888 compare well with each other.
Note that this is 12 h later than the Þelds shownFigs. 1and 2,
after the storm began to move offshore, in order to compare with
the U.S. Daily Weather Maps (which are only available once per
day at 1200 UTC). Though the 20CRv3 ensemble mean is

arguably an imperfect estimate of an extreme weather event
since ensemble averaging tends to dampen gradients in position-
dependent features, there is still good agreement across all three
reconstructions, particularly in the location of the storm.

This example illustrates how well 20CRv3 can represent
historic extreme weather events at the surface on subdaily
scales. In the remainder of the paper, we investigate how well
20CRv3 performs on synoptic to climatic scales from the sur-
face to high levels of the atmosphere.

4. Synoptic skill evaluation

a. Surface pressure statistics

To investigate the overall performance, we initially consider
background errors in surface pressure. The root-mean-squared

FIG . 1. Synoptic maps from 20CRv3 for 0000 UTC 13 Mar 1888 (the Great Blizzard of 1888). (a) Ensemble mean
sea level pressure (contours; interval 5 hPa), observation locations from previous 24 h (teal circles), and conÞdence
(shading). (b) Ensemble mean geopotential height at 500 hPa (contours; interval 50 gpm) and conÞdence (shading).
(c) Ensemble mean 2-m air temperature with the 08C contour thickened. (d) Ensemble mean precipitation (mm)
accumulated over the prior 6 h.
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errors (RMSEs) between independent surface pressure ob-
servations that have not yet been assimilated and the 20CRv3
ensemble mean background equivalents provide a simple
metric for how well the system is performing. We refer to this
as the ÔÔactualÕÕ error:

RMSEactual 5

"
1

Nobs
�

Nobs

i5 1
(xo,i 2 xb,i )

2

#1/2

, (2)

where i indexes all Nobs observations considered (here, in a
given region for a single year), xo,i is the ith observation, and
xb,i is the ensemble mean background Þeld interpolated to the
ith observation time and location. By comparing to expected
errors, we can determine how well the uncertainty of the sys-
tem is being estimated as well. Here, ÔÔexpectedÕÕ errors are
calculated as the root mean of the sum of the observation error
s 2

o,i and the estimated background error (variance of the
background ensemble interpolated to the observationÕs loca-
tion and time) s 2

b,i :

RMSE exp 5

"
1

Nobs
�
Nobs

i5 1
s 2

o,i 1 s 2
b,i

#1/2

: (3)

As shown by Desroziers et al. (2005), if the observation and
background errors are uncorrelated and unbiased, then RMSEactual

should be equivalent to RMSEexp.
Figure 4 shows observationÐforecast difference statistics for

surface pressure and the associated expected RMSEs for three
zonal regions and for the full experimental and production
span of 20CRv3, 1806Ð2015. Here the Northern Hemisphere
(NH) is deÞned as 208Ð908N, the tropics as 208SÐ208N, and the
Southern Hemisphere (SH) as 908Ð208S. The RMSEs generally
decrease in time and are consistent with the expected errors
even as the available pressure observations vary over four or-
ders of magnitude, demonstrating a high level of performance
in this metric and an improvement over the performance of
20CRv2c due to the upgrades in forecast model and data as-
similation algorithms (see Slivinski et al. 2019a, their Fig. 12
and related discussion). This also suggests that the prescribed
observation errors are realistic, though the disagreement
(particularly when the expected errors are larger than the ac-
tual errors) suggests that there is still room for improvement;
this will be investigated in future tests.

There is a strong negative correlation between the RMSE
and the log of the number of observations assimilated (Fig. 4),
demonstrating that the errors generally decrease as the ob-
servation network density increases. This motivates global and
regional data rescue efforts, particularly in regions that are
currently data sparse (e.g.,Allan et al. 2011; Brönnimann et al.
2019a; Williamson et al. 2018; https://climatehistory.com.au); it
is estimated that there could be millions of pressure observa-
tions that exist but are currently unavailable for assimilation
(i.e., they have not yet been scanned or digitized). If early
paper record observations were digitized and made available
for assimilation, Fig. 4 suggests that errors could be signiÞ-
cantly decreased in the corresponding time periods. The con-
tinued decrease in actual error in the tropics and Southern

Hemisphere also suggests that even now, the observation
networks in these regions are not dense enough for the error to
have saturated at its minimum level.

b. Modern upper-air comparisons

In Fig. 5we evaluate the skill of Z500 estimates in 20CRv3, a
large-scale variable that governs atmospheric circulation pat-
terns (such as troughs and ridges), with respect to ERA5, the
latest full-input reanalysis from ECMWF ( Hersbach et al.
2020; Hersbach and Dee 2016). ERA5 assimilates nearly all
available observations including extensive satellite-based, ra-
diosonde, aircraft, and other conventional upper-air and sur-
face observations. To compare with the available operational
forecast errors, which are unavailable poleward of 808, here we
deÞne ÔÔNHÕÕ as 208Ð808N and ÔÔSHÕÕ as 808Ð208S. In both the
NH and SH, 20CRv3 has smaller root-mean-squared differ-
ences (RMSDs) with respect to ERA5 than 20CRv2c, and
similar to Fig. 4, RMSDs are more consistent with the en-
semble spread in 20CRv3. This is in contrast to 20CRv2c,
whose small ensemble spread relative to its RMSD suggests
overconÞdence, likely due to the imperfect covariance inßation
algorithm used in the 20CRv2c system that was updated for
20CRv3 (Slivinski et al. 2019a). The seasonal variability in
20CRv3 differences relative to ERA5 has also been diminished
from 20CRv2c in the NH. For reference, the 1981Ð2010 cli-
matological variability (standard deviation over time) in the
20CRv3 ensemble mean Þeld is 79.24 m averaged over the
Northern Hemisphere and 91.09 m averaged over the Southern
Hemisphere.

To put these numbers in context, we also compare with the
2019 annual average errors of operational forecasts of Z500 for
2-, 3-, and 4-day leads. The 20CRv3 analysis errors for 1979Ð
2015 are comparable to modern 3Ð4-day operational forecast
skill in the NH, and 4-day forecast skill in the SH, consistent
with the expected skills predicted by Compo et al. (2006). The
degraded performance in the SH for the period 1980Ð85 may
be due to a lack of observations in this period (see the small
drop in number of assimilated observations inFig. 4c around
1980), causing the errors and the ensemble spread of 20CRv3
to increase. However, this may also affect the performance of
the benchmark ERA5, as there are fewer satellite and con-
ventional upper-air observations available in the Southern
Hemisphere in this time period than in more recent periods.
This reduction in skill is consistent with Fig. 1 of (Hersbach
et al. 2020), which shows a slight decrease in the range of 365-
day mean anomaly correlations of Z500 forecasts for ERA5 in
the Southern Hemisphere from about 1982Ð85 and consider-
able interannual variability in the quality of its Z500 Þelds
before 1987.

c. Mid-twentieth-century surface and upper-air
comparisons

Next, we compare surface and upper-air Þelds from 20CRv3
with the Japanese 55-year Reanalysis Project (JRA-55;Kobayashi
et al. 2015). Figure 6 shows maps of local anomaly correlation
between 20CRv3 and JRA-55 for SLP, Z500, and 300-hPa geo-
potential heights (Z300). Anomaly Þelds are computed for each
reanalysis relative to its climatology over the stated time period
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and interpolated to a 18 3 18grid; correlations in time are then
computed for each grid point. Correlations are high in the
Northern Hemisphere even before considerable satellite data are
available for use in JRA-55 (1958Ð78; left column), though the
extent of high correlation regions decreases higher in the atmo-
sphere. While JRA-55 mainly assimilates conventional surface
and upper-air data in this period, note that sparse satellite ob-
servations from the Vertical Temperature ProÞle Radiometer
(VTPR) are included from 1973 to 1979 (see appendix A of

Kobayashi et al. 2015). The correlation increases during the era of
signiÞcant satellite observations (1979Ð2015; right column), par-
ticularly in the Southern Hemisphere, likely due to the lack of
available observations in high southern latitudes prior to 1979
(Bromwich et al. 2007).

Stippled regions illustrate where 20CRv3 has low conÞ-
dence. The high pattern correlation between the 20CRv3
conÞdence Þelds and the local anomaly correlation Þelds sug-
gest that 20CRv3 uncertainty estimates are a good predictor of

FIG . 2. Sea level pressure (contours; interval 5 hPa with the 1010-hPa contour thickened) and 6-h accumulated
precipitation (shading) for the Þrst 20 ensemble members of 20CRv3, 0000 UTC 13 Mar 1888.
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skill relative to JRA-55, at the surface as well as at upper levels.
Note that the low correlations in the high southern latitudes
may be inßuenced by poor performance of JRA-55 before 1979
in the Southern Hemisphere (Kobayashi et al. 2015); in addi-
tion, several studies have shown that full-input reanalyses often
disagree in this region, especially before 1979 (Bromwich et al.
2007; McDonald and Cairns 2020). While this does not provide
evidence regarding which reanalysis is more accurate, the
20CRv3 conÞdence Þelds can provide guidance as to expected
regions of disagreement. In particular, the 20CRv3 conÞdence
Þelds can provide useful information independent of the veri-
fying dataset: the region of low conÞdence in SLP for the pe-
riod 1979Ð2015 in the eastern tropical PaciÞc (Fig. 6b) also
corresponds to low correlations between 20CRv3 and ERA5
SLP (not shown). Indeed, the full Þeld of SLP anomaly cor-
relation between 20CRv3 and ERA5 (not shown) is quite
similar to the correlation between 20CRv3 and JRA-55 (Fig. 6b).

d. Comparisons with independent upper-air observations

Upper-air skill prior to 1958 can be evaluated by compari-
sons with independent upper-air observations. We begin with
observations at Lindenberg, Germany (52.228N, 14.128E), the
station with the longest observational record available in the
Integrated Global Radiosonde Archive, version 2 (IGRA2;
Durre et al. 2016), from 1905 to the present. The observations
are taken from a mix of kite, airplane, balloon, and radiosonde
platforms (Adam and Dier 2005; Stickler et al. 2010). Even in
the early twentieth century, the analyzed Z500 anomalies from
both 20CRv3 and 20CRv2c correlate highly with observed
anomalies (Fig. 7). Errors decrease in time for both systems,
but RMSDs with 20CRv3 are consistently smaller than in
20CRv2c, and correlations with these observations are higher.

Figure 8 further demonstrates that 20CRv3 is able to predict
its own skill by showing the RMSDs of analyzed Z500 anom-
alies with respect to the Lindenberg observations as a function
of ensemble spread, for 20CRv3 and 20CRv2c. Only the latter

two time periods considered inFig. 7are shown inFig. 8, as it is
unclear whether large errors in the early time period are due to
instrumental errors in the observations or errors in the re-
analysis, and the smaller number of observations does not al-
low for calculation of robust statistics. The gray diagonal line
shows the expected RMSD for perfect observations, and the
gray shaded area shows where the RMSD would be expected
to fall for observations with error between 15 and 25 m
(Wartenburger et al. 2013) assuming accurate ensemble
spread. Thus, when the scatterplot lies above the gray swath,
the reanalysis is overconÞdent (ensemble spread is too small);
when the scatterplot lies below the gray swath, the reanalysis is
underconÞdent (ensemble spread is too large). In the mid- to
late twentieth century, 20CRv2c was nearly always overconÞ-
dent in this Þeld while 20CRv3 more accurately represents
uncertainty (1952Ð80) or is underconÞdent (particularly in the
more recent period from 1981 to 2001).

To investigate whether these results hold in other locations
and at other levels in the latter half of the twentieth century,
geopotential heights from eleven other stations from IGRA2
are analyzed at 300, 500, and 850 hPa. Station names, locations,
and maximum available time periods that include complete
metadata are listed inTable 2. The RMSD and correlation with
respect to 20CRv3 for each station at each level are also in-
cluded, as well as the local variability (as measured by the
standard deviation of all observed anomalies). The RMSDs are
consistently smaller than the local variability, and the corre-
lations are generally high, though in both measures, the per-
formance of 20CRv3 worsens in the tropics and at higher
levels, as also seen in (Compo et al. 2011). Figure 9 demon-
strates that these errors are often well predicted by the 20CRv3
ensemble spread, even at 300 hPa. Similar toFig. 8, Fig. 9
shows RMSDs of 20CRv3 analyzed Z300, Z500, and Z850
anomalies with respect to the labeled IGRA station observa-
tions as a function of 20CRv3 ensemble spread, for level-
dependent observation errors deÞned in (Wartenburger et al.

FIG . 3. Comparison of historical reconstructions valid at 1200 UTC 13 Mar 1888. (a) Real-time U.S. Daily Weather Map.
(b) Reconstruction by Kocin (1983) showing fronts, surface observations, and area of reconstructed precipitation (shading). (c) 20CRv3
ensemble mean analysis of 6-h accumulated precipitation (shading), sea level pressure [contours; interval 4 hPa as in (b)], and 10-m wind
(vectors).
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2013). As in Fig. 8, there are several cases where 20CRv3
is over or underconÞdent. However, the 20CRv3 analyzed
anomalies are interpolated to the instrument release time and
location, and thus do not account for balloon drift, which is
likely to inßuence the results (McGrath et al. 2006).

5. Climatic skill evaluation

The previous section illustrates the performance of 20CRv3
for synoptic variability. Here we evaluate the performance
of long-term, climatic structures of mass, circulation, and
precipitation.

a. Vertical structure of mass and circulation

To investigate possible systematic biases in 20CRv3 throughout
the atmosphere, we compare its vertical proÞles of long-term
means of temperature and zonal wind with those from two full-

input reanalyses, JRA-55 and ERA5, during the period 1979Ð2015
(Fig. 10). On average, 20CRv3 is warmer than both JRA-55 and
ERA5 by about 18Ð1.58C from 600 to 300 hPa and below 900 hPa,
pointing to a possible model bias in this version of the GFS
(though this bias may be due to incorrectly tuned parameters in
the model used at this resolution). Also note that midtroposphere
(around 800Ð600 hPa) tropical biases, in both variables, are of
opposite sign between the two full-input reanalyses, with magni-
tudes of about 0.58C and 0.5 m s2 1. In particular, 20CRv3 is cooler
than JRA-55 by less than 0.58C between about 208S and 208N and
from 800 to 600 hPa, but warmer than ERA5 in the same region,
while ERA5 is cooler than JRA-55 by 0.58Ð1.08C (Fig. 10e);
similar patterns hold in the same regions for zonal wind. In ad-
dition, note that the differences south of 608S and below 600 hPa
are larger between ERA5 and JRA-55 than between 20CRv3 and
ERA5. In both zonal wind and temperature, 20CRv3 has much
larger differences in the upper atmosphere than in the middle to
lower atmosphere, possibly demonstrating the limitations of a
system that assimilates only surface observations.

Relative to similar comparisons (see Fig. A1 of Compo
et al. 2011) between the earlier version 2 of 20CR, ERA-40
(Uppala et al. 2005), and NCEPÐNCAR Reanalysis 1 (NNR1;
Kalnay et al. 1996; Kistler et al. 2001), the 20CRv3 upper-
atmosphere differences in tropical and extratropical tem-
perature appear to be larger, but the high-latitude differences
in temperature are much smaller (Fig. 10). The structure of
the zonal wind differences are different in Fig. 10than shown by
Compo et al. (2011), but the magnitudes of the differences are
smaller between about 400 and 100 hPa. It is possible that the
improved representation of the upper atmosphere in high
latitudes will also correct systematic upper-level cold biases
in vertical temperature stratiÞcation for the Arctic detected
in previous versions of 20CR in the period 1934Ð40 (seeKlaus
et al. 2018, their Fig. 7). The possible causes of these differences
between 20CRv3 and full-input reanalyses will be studied in
future work.

To provide further context for the numbers in Fig. 10, Fig. 11
shows the global mean absolute biases (MAB) of long-term
temperature and zonal wind between 20CRv3, JRA-55, ERA5,
and the ensemble mean of a set of 50 nonassimilating atmo-
spheric model simulations, denoted ÔÔAMIP.ÕÕ The latter were
integrated using an older version of the GFS than 20CRv3 and
are provided on a 18 3 18grid with 64 vertical levels. They have
prescribed SST and sea ice concentration Þelds (Hurrell et al.
2008), time-varying greenhouse gases based on observed data
from 1979 to 2005 and RCP6 estimates thereafter (Meinshausen
et al. 2011), and time-varying CMIP5 ozone (Cionni et al. 2011).
Though the AMIP curves in Fig. 11 use a different version of
the GFS and different SSTs than 20CRv3, they provide
general magnitudes for biases one would expect from a model
simulation relative to a full-input reanalysis. These curves
demonstrate that the 20CRv3 biases relative to ERA5 and to
JRA-55 are consistently smaller than the respective AMIP
biases, with exceptions for surface temperature (where all the
biases are between 18and 1.58C), and above 150 hPa in both
variables. In addition, the magnitudes of the 20CRv3 biases
relative to ERA5 in temperature are similar to or smaller
than the magnitudes of the absolute differences between

FIG . 4. Actual (solid black) and expected (dashed) annual Þrst-
guess RMSE of surface pressure averaged for (a) the Northern
Hemisphere (208Ð908N), (b) the tropics (208SÐ208N), and (c) the
Southern Hemisphere (908Ð208S). The annual average number of
observations assimilated within a 6-h window is shown in blue
(right-hand axis). The Pearson correlation (r) between the actual
error and log of the number of observations is also given. Note that
the left-hand y axis differs in (c).
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JRA-55 and ERA5 below 700 hPa, and in zonal wind, are
similar below 850 hPa.

b. Precipitation structure

Figures 12and 13 illustrate the extent to which the precipi-
tation Þelds in 20CRv3 could be used for long-term interannual
to multidecadal variability and trend studies. Figure 12 shows
the structure of the global precipitation Þeld averaged for
January 1979Ð2015 in 20CRv3 as well as differences between
20CRv3 and the satellite-station blend of the Global
Precipitation Climatology Project version 2.3 (GPCP; Adler et al.
2003, 2018), and the station blend of the Climatic Research Unit
Time Series version 4.03 (CRU TS;Harris et al. 2020; Harris and
Jones 2020), over land (Fig. 12d). For reference, the differences
between ERA5 and GPCP (Fig. 12c) and CRU TS (Fig. 12e) are
also shown. Over land, 20CRv3 differences are largest in high-
altitude regions, precipitation in most of North America is over-
estimated, and precipitation in Australia is underestimated.
Relative to GPCP, 20CRv3 also overestimates high-precipitation
regions in the tropics and the North Atlantic, and the tropical
convection zones differ (see the brown band across the tropical
oceans inFig. 12b). However, over Europe, the Sahel, and much
of Russia, the precipitation Þelds in 20CRv3 lie within the range of
magnitudes estimated via GPCP and CRU TS. Relative to CRU
TS, 20CRv3 is wetter over all of Europe and Asia and drier over
the Sahel; relative to GPCP, though, 20CRv3 is drier over Russia,
wetter over the Sahel, and has patchy differences over Europe.

Though the results in Fig. 12 point to likely biases in the
precipitation Þeld of 20CRv3, the interannual variability is

captured remarkably well in some regions. Figure 13 shows
time series of monthly (January and July) precipitation
averages over land for 20CRv3, 20CRv2c, GPCP, and CRU TS in
two regions: the western United States (WUS; 308Ð508N and 1408Ð
1008W) and Southern Australia (SAus; 508Ð268S and 1008Ð1608E),
shown in black boxes inFig. 12a. Additionally, two regional station-
based datasets are shown: PRISM for the western United States
(PRISM Climate Group, Oregon State University, http://
prism.oregonstate.edu, created 11 May 2020); and the gridded
dataset developed for the Australian Water Availability Project
(AWAP; Jones et al. 2009; http://www.bom.gov.au/cgi-bin/climate/
change/timeseries.cgi, accessed 11 May 2020). In January in both
regions, the correlations are remarkably high. While the correla-
tions are lower in July, especially over the western United States,
the correlations between the observational products and 20CRv3
are higher than the respective correlations with 20CRv2c in all
cases considered here. The lower correlations over the western
United States in July and Southern Australia in January are con-
sistent with (Compo et al. 2006), who predicted lower skill of the
reanalysis in summer months. Additionally, Gehne et al. (2016)
demonstrate that several global precipitation datasets (including
reanalyses and satellite-based products) disagree in their estimates
of precipitation over North America, despite the relatively dense
network of precipitation observations in this region. In general,
estimating large-scale convection in models and full-input rean-
alyses is difÞcult (Gehne et al. 2016; Stephens et al. 2010; Trenberth
et al. 2003, 2011), and gauge-based precipitation observations often
suffer from systematic biases due to wind, evaporation, and snow
undercatch, among others (Adam and Lettenmaier 2003; Peterson

FIG . 5. The 500-hPa geopotential height RMSDs between ERA5 and 20CRv2c (thick blue) and 20CRv3 (thick
red) ensemble mean Þelds for (a) the Northern Hemisphere (208Ð808N) and (b) the Southern Hemisphere (808Ð
208S). Root-mean ensemble variance is shown in thin blue and red lines. The 2019 annual-average operational
forecast errors for the given lead times are shown in gray swaths: the lower limit of each gray bar is the ECMWF
forecast error, and the upper limit is the NCEP forecast error (https://www.emc.ncep.noaa.gov/gmb/STATS_vsdb/
longterm/; accessed 29 Jan 2020). The 1981Ð2010 climatological variability in the 20CRv3 ensemble mean Þeld is
79.24 m averaged over the Northern Hemisphere and 91.09 m averaged over the Southern Hemisphere.
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et al. 1998; Rasmussen et al. 2011; Sevruk et al. 2009). In particular,
precipitation gauges tend to be in valleys, so CRU TS and
PRISM may be underestimating in winter WUS due to snow
undercatch. While this could explain the consistent difference
between 20CRv3 and the observational products in January
WUS, note that there is also a consistent difference in January
SAus. Despite this, the agreement of interannual variability on a
regional, monthly scale between 20CRv3 and three independent
precipitation datasets is encouraging.

c. Long-term variability in mass

Figure 10 demonstrated the likely biases in air tempera-
ture; here we demonstrate how well 20CRv3 can represent
multidecadal variability of a comparable mass variable, the
mean temperature of the lower troposphere deÞned as the 500Ð
1000-hPa atmospheric layer, relative to other full- and sparse-
input reanalyses and to satellite measurement products. The

mean layer temperature from each reanalysis is calculated using
the hypsometric equation (Wallace and Hobbs 1977):

T 5 (Z500 2 Z1000)3

g
Rd

ln
�

1000
500

� , (4)

where Z500 and Z1000 are the 500- and 1000-hPa geopotential
heights,g is gravitational acceleration, andRd is the speciÞc gas
constant for dry air.

We include two satellite products in this comparison: the
Remote Sensing Systems (RSS) Temperature Lower
Troposphere calculated via weighted measurements from
Microwave Sounding Units (MSU) and Advance Microwave
Sounding Units (AMSU) (hereafter denoted RSS; Mears and
Wentz 2009); and version 6 of the University of Alabama
HuntsvilleÕs Mean Layer Temperature record derived from

FIG . 6. Maps of local anomaly correlation between JRA-55 and 20CRv3 for (top) SLP, (middle) Z500, and
(bottom) Z300 over the years (left) 1958Ð78 and (right) 1979Ð2015. Heavy black contours represent correlation
values of 0.975; note the nonlinear color scale. Regions where the 20CRv3 conÞdence Þeld [as calculated by Eq.(1)
and averaged in time] for the given variable is less than 0.35 are stippled. The global average pattern correlation
between the conÞdence Þeld and the anomaly correlation Þeld is given for each panel.
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MSU and AMSU radiances (UAH; Christy et al. 2017). To
calculate their temperature of the lower-troposphere (TLT)
product, RSS calculates a weighted difference between single-
channel measurements from MSU2 and AMSU5, while UAH
calculates TLT as a linear combination of their calculated
temperatures in the midtroposphere, tropopause, and lower
stratosphere (Christy et al. 2017).

To consistently compare RSS and UAH to each other as well
as to the reanalyses, both RSS and UAH are regressed onto the
ERA5 T anomalies for 1979Ð2018. While the most accurate
method of comparing a satellite-based product to a reanalysis
would be to use a weighted vertical proÞle of the reanalysis
temperatures, the vertical structures of the weights used for
RSS and UAH differ; it is therefore impossible to consistently
compare all datasets simultaneously. For this reason, instead of
projecting the reanalysis data onto the two different satellite-
based observation spaces, we instead project the satellite data
into the ÔÔreanalysis spaceÕÕ ofT .

Figure 14shows annual anomalies inT relative to 1981Ð2010
for the maximum available region over the globe, 708SÐ828N.
By taking anomalies, the biases illustrated inFigs. 10and11are
effectively removed. Uncertainty swaths are included as twice
the ensemble standard deviation for the ensemble products
20CRv2c, 20CRv3, CERA-20C, and RSS. Note that, for RSS,
the central estimate is provided by version 4 of the data. The RSS
uncertainty swath was calculated by applying the above regres-
sion to the anomaly of each member of the v3.3 ensemble, since
there is currently no version 4 ensemble available. This ensemble
is only available until 2015, so the RSS spread for 2016 onward is
calculated as the average spread for 1998Ð2012. Finally, we Þnd
similar results using the levels 300Ð850 hPa (not shown), which
are arguably closer to the ÔÔlower troposphereÕÕ as deÞned in the
UAH and RSS weighting functions.

In the modern period, the decadal variability of
atmospheric-layer temperature from 20CRv3 correlates well
with that of other reanalyses and with satellite products. The

FIG . 7. The 500-hPa geopotential height analyzed anomalies from 20CRv2c (blue) and 20CRv3 (red) vs observed anomalies from upper-air
measurements at Lindenberg, Germany, for the (a) early twentieth century (1905Ð17; 1925Ð38), (b) mid-twentieth century (1952Ð80), and (c) late
twentieth century (1981Ð2001). Note that there are no available observations during the period 1918Ð24. Anomalies are calculated from 1973 to 2001
daily climatologies for the reanalyses and observations, respectively, with the annual cycle smoothed using a Fourier Þlter with three harmonics.
RMSDs between observed and analyzed anomalies, Pearson correlations, and the number of observations for each panel are also given.

FIG . 8. RMSDs between analyzed Z500 anomalies and observed Z500 anomalies at Lindenberg, Germany, from
20CRv2c (blue) and 20CRv3 (red) as a function of 20CR ensemble spread (where bin width is 1 m). The gray line
shows expected RMSD for perfect observations; gray shading shows region of expected RMSD for observation
errors between 15 and 25 m. Only points with 30 observations or more are plotted.
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high correlation is not solely a result of trends: detrended
correlations (Fig. 15 and Table 3) between 20CRv3 and the
other datasets remain higher than 0.8, with many higher than
0.9. The relatively low correlation between 20CRv3 and ERA5
over land suggests that ERA5 may not represent interannual
ßuctuations of this variable over land as well as 20CRv3, rel-
ative to the RSS satellite estimate. While intriguing, though,
these low correlations are not statistically signiÞcantly differ-
ent from the respective (higher) correlations over the oceans.
Zonal averages show similar correlations, though correlations
are generally lower in the Southern Hemisphere (Table 3).

Not only does 20CRv3 correlate highly with upper-air
reanalyses and satellite data products in the mid- to late
twentieth century and early twenty-Þrst century, it also has
reasonable correlations (above 0.8) with CERA-20C in the
early twentieth century (Fig. 15), though CERA-20C has a
stronger warming trend throughout the twentieth and early
twenty-Þrst centuries. The variability in 20CRv3 and in

20CRv2c in the last quarter of the nineteenth century behave
similarly, though they differ signiÞcantly from 1851 to 1870.
This difference in behavior will be explored further in future
work, but the conÞdence intervals for 20CRv2c are less reliable
than those for 20CRv3; note the artiÞcial jumps in the 20CRv2c
ensemble spread in 1871 and 1951 (Fig. 14) corresponding to
suboptimal parameter changes (seeSlivinski et al. 2019a).

The warming trend in 20CRv3 during 1835Ð65 may be an
effect of the slow recovery of the Earth system from multiple
volcanic eruptions between 1808 and 1835 (Brönnimann et al.
2019b), and the subsequent cooling from 1875 to 1905 is in-
triguing, though several merged SST/land temperature data-
sets commonly used to describe temperature variability
exhibit a similar trend ( Hegerl et al. 2018; Vose et al. 2012; Wen
et al. 2011). These trends also exist in the 20CRv3 time series
restricted both to land only and ocean only (not shown).
Additional work will be needed to determine the sensitivity of
these trends to the speciÞed SODAsi.3 SSTs, errors in the

TABLE 2. Station details and statistics for IGRA stations plotted in Fig. 9. RMSDs and correlations are calculated between the observed
anomalies and the 20CRv3 anomalies. Local variability is calculated as the temporal standard deviation across all observations in the
statistic.

Station Lat ( 8) Lon ( 8) Years No. of observations RMSD (m) Correlation Local variability (m)

Z300
Moscow 55.93 37.52 1956Ð2015 51 312 42.25 0.97 170.47
Vienna 48.25 16.36 1949Ð2015 47 035 39.09 0.96 146.64
Payerne 46.81 6.94 1943Ð2015 44 581 40.65 0.96 152.57
Buffalo 42.94 2 78.72 1948Ð2015 50 625 43.52 0.97 167.03
Salt Lake 40.77 2 111.96 1956Ð2015 43 658 38.2 0.96 136.59
Osan 37.08 127.03 1957Ð2015 71 787 48.48 0.92 120.56
Kowloon 22.33 114.17 1949Ð2015 42 032 30.01 0.67 39.83
Dakar 14.73 2 17.5 1949Ð2015 34 647 32.69 0.51 36.77
Niamey 13.48 2.17 1950Ð2015 29 211 30.09 0.39 30.15
Darwin 2 12.42 130.89 1943Ð2015 30 100 23.25 0.65 29.58
Sydney 2 33.95 151.17 1976Ð2014 10 247 48.44 0.9 109.58

Z500
Moscow 55.93 37.52 1956Ð2015 51 888 25.23 0.98 128.35
Vienna 48.25 16.36 1949Ð2015 47 955 22.73 0.98 103.73
Payerne 46.81 6.94 1943Ð2015 45 347 23.5 0.98 108.82
Buffalo 42.94 2 78.72 1948Ð2015 51 556 24.47 0.98 116.03
Salt Lake 40.77 2 111.96 1956Ð2015 40 353 23.05 0.97 90.83
Osan 37.08 127.03 1957Ð2015 73 371 29.12 0.93 80.89
Kowloon 22.33 114.17 1949Ð2015 42 380 18.88 0.76 28.81
Dakar 14.73 2 17.5 1949Ð2015 35 248 18.89 0.64 24.17
Niamey 13.48 2.17 1950Ð2015 29 582 18.43 0.53 21.08
Darwin 2 12.42 130.89 1943Ð2015 31 597 15.6 0.69 21.47
Sydney 2 33.95 151.17 1976Ð2014 10 680 31.35 0.92 78.11

Z850
Moscow 55.93 37.52 1956Ð2015 52 013 14.69 0.99 84.8
Vienna 48.25 16.36 1949Ð2015 47 973 13.37 0.98 64.13
Payerne 46.81 6.94 1943Ð2015 44 971 11.59 0.99 65.26
Buffalo 42.94 2 78.72 1948Ð2015 51 880 10.74 0.98 59.75
Salt Lake 40.77 2 111.96 1956Ð2015 43 970 13.83 0.96 51.17
Osan 37.08 127.03 1957Ð2015 73 024 15.56 0.93 40.86
Kowloon 22.33 114.17 1949Ð2015 41 725 9.51 0.92 24.53
Dakar 14.73 2 17.5 1949Ð2015 36 126 10.56 0.74 15.68
Niamey 13.48 2.17 1950Ð2015 30 052 10.12 0.72 14.63
Darwin 2 12.42 130.89 1945Ð2015 33 398 8.36 0.87 17.21
Sydney 2 33.95 151.17 1976Ð2014 11 332 18.79 0.93 52.57
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assimilated observations, and other factors. However, the
overall high correlations between 20CRv3 and other
products throughout the twentieth century suggest that the
multidecadal variability seen in the full 210-yr span of 20CRv3
is representative of the true variability on these time scales.

6. Conclusions

The latest Twentieth Century Reanalysis version 3, has been
evaluated on synoptic to climatic time scales via comparison
with independent observations, satellite products, and full- and
sparse-input reanalyses. Although the availability of compa-
rable datasets decreases further back in time, the results shown
here demonstrate that 20CRv3 can produce useful state esti-
mates for its full time span and that its internal estimates of
uncertainty are informative and reliable in the illustrated sit-
uations. In particular, 20CRv3 has smaller errors that are more
consistent with its expected errors than 20CRv2c.

In the late twentieth and early twenty-Þrst centuries,
20CRv3 represents several surface and upper-air Þelds and
their variability well, relative to satellite products, reanalyses,
and independent observations. Comparisons with a modern,
full-input reanalysis suggest that the upper-air skill of 20CRv3
in the late twentieth and early twenty-Þrst centuries is com-
parable to modern 3Ð4-day forecasts in both the Northern and
Southern Hemispheres.

In the early to mid-twentieth century, 20CRv3 is evaluated
via comparisons with independent surface and upper-air ob-
servations, and with the full-input reanalysis JRA-55 in the
mid-twentieth century, which assimilates conventional surface,
upper-air, and early satellite observations. The errors in
20CRv3 generally increase further back in time, but these er-
rors are mainly predicted by the uncertainty in the 20CRv3
ensemble.

In the nineteenth century, 20CRv3 can reconstruct individ-
ual storms in the Northern Hemisphere and as in later time
periods, internal background statistics demonstrate good
agreement between the synoptic-scale errors in surface

pressure and the prediction of those errors from the back-
ground ensemble spread. These results, along with the evalu-
ations in the twentieth and early twenty-Þrst centuries, suggest
that 20CRv3 can provide reliable estimates of the illustrated
atmospheric Þelds on synoptic scales, as well as their uncer-
tainties, even in the nineteenth century.

Further, there is evidence that the interannual variability of
mass and precipitation Þelds from 20CRv3 on climatic scales is
also reliable. Comparisons with station-based precipitation
datasets over regional and monthly scales indicate that 20CRv3
captures variability remarkably well for 1901Ð2015, while
comparisons with a satellite-station blended product over
1979Ð2015 further support this assessment. Similarly, the large-
scale mass variable of 500Ð1000-hPa layer temperature shows
high correlations globally in the modern time period with three
full-input reanalyses and two satellite data products. It is in-
teresting to note the large differences in this variable between
20CRv2c and 20CRv3 prior to about 1875 in light of the ana-
lyses above, though previous work suggests that the conÞdence
estimates of 20CRv2c in this time period are less reliable than
those of 20CRv3. These results suggest that the interannual
variability of many Þelds from 20CRv3 and their uncertainty
estimates on global and regional scales may be reliable
throughout the twentieth and twenty-Þrst centuries, even for
difÞcult-to-estimate variables like precipitation, but caution is
still needed to interpret results in the nineteenth century.
Further comparisons with early observations are required to
more carefully evaluate 20CRv3 in this time period, when
there are as yet no other comparable instrument-based rean-
alyses. Additional evaluation of 20CRv3 in the nineteenth
century would allow us to place modern trends of these vari-
ables in a consistent, long-term context. Future work, currently
in progress, will allow further quantiÞcation of these results,
particularly on smaller regional scales.

While the overall performance of this dataset has improved
over previous versions of 20CR, there are several remaining
issues for potential users of the new 20CRv3 to keep in mind.
First, although variability of 20CRv3 Þelds appears to be well

FIG . 9. As in Fig. 8, but for (a) Z850, (b) Z500, and (c) Z300 anomalies from 20CRv3 and the labeled IGRA stations. Observation errors
are assumed to be between 8 and 20 m for Z850, between 15 and 25 m for Z500, and between 20 and 50 m for Z300. Locations of the
stations are shown in map inset. Exact latitude, longitude, and time period for each station plotted, as well as other statistics, are shown in
Table 2.
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represented, there are still mean biases in temperature, wind,
and precipitation, as well as in the location and orientation of
the tropical convergence zones. Second, there are substantial
biases in temperature and wind above 300 hPa, suggesting
that a reanalysis that assimilates only surface pressure may not
be adequate for upper-atmosphere studies. Finally, the
Southern Hemisphere Þelds are generally less accurate than
the Northern Hemisphere, and have less conÞdence. However,
there is evidence that acquiring more observations, particularly
by digitizing paper records in the eighteenth and nineteenth
centuries, could have strong effects on the performance of
future versions of 20CR.

In addition to further data rescue efforts, continued im-
provements to the 20CR system could provide much-needed
information to support model development. For example, use
of the 20CR system in sparsely populated regions, such as the
PaciÞc Islands, could extend understanding of rainfall dy-
namics and past weather and climate patterns arising from

convergence zones (Harvey et al. 2019; Lorrey et al. 2012).
These regions are poorly represented in models but produce
extreme conditions with strong impacts on society (Kruk et al.
2015; Lorrey and Fauchereau 2018) and would therefore ben-
eÞt strongly from improved model representation.

Despite remaining issues, this evaluation of the Þrst global,
3-hourly, instrument-based reanalysis spanning over 200 years
has demonstrated that the 20CRv3 system can skillfully rep-
resent mass, circulation, and precipitation Þelds, on synoptic to
climatic scales. Importantly, the ensemble-based approach also
adds reliable estimates of uncertainty that can often predict
this skill. Results demonstrate that 20CRv3 exhibits multi-
decadal variability in several Þelds, providing the opportunity
to place recent trends in a longer historical context.
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FIG . 13. Regionally averaged, land-only precipitation rate for (a) January in WUS (30 8Ð508N and 1408Ð1008W), (b) January in SAus (508Ð268S
and 1008Ð1608E), (c) July in WUS, and (d) July in SAus. The 20CRv3 ensemblemean is shown in red, 20CRv2c ensemble mean in blue, CRU TS
in black, GPCP in gold, and PRISM/AWAP in cyan (depending on region). The 2 s conÞdence intervals (calculated from the ensemble standard
deviation) are shaded for 20CRv2c and 20CRv3. Pearson correlations for comparable time periods included.
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Copernicus Climate Change Service 311a Lot1 for Collection
and Processing of In Situ Observations Data Rescue.
J. Luterbacher acknowledges Climate Science for Service
Partnership China Project (CSSP).
Use of the U.S. Daily Weather Map is courtesy of NOAA
Central Library Data Imaging Project. The 20CR homepage is
located at https://go.usa.gov/XTd. The scientiÞc results and
conclusions, as well as any views of opinions expressed herein,
are those of the authors and do not necessarily reßect the views
of the University of Colorado, NOAA, the Department of
Commerce, or any other organization associated with
this work.

Data availability statement. Data from the Twentieth
Century Reanalysis Project are freely accessible. Ensemble
statistics for many variables are available in netCDF4 format from
the NOAA Physical Sciences Laboratory at https://psl.noaa.gov/
data/gridded/data.20thC_ReanV3.htmlandNCARÕsResearchData
Archive (RDA) at https://doi.org/10.5065/H93G-WS83(Slivinski
et al. 2019b). Individual ensemble members are available from
NERSC at https://portal.nersc.gov/project/20C_Reanalysis/.
All observations contained in ISPDv4.7 are open and unre-
stricted, and the ISPDv4.7 dataset is available from NCARÕs

RDA: https://doi.org/10.5065/9EYR-TY90 (Compo et al.
2019). RSS upper-air temperature data is available from
Remote Sensing Systems athttp://www.remss.com/support/
data-shortcut/. UAH upper-air temperature data are available
from NCEI at https://doi.org/10.7289/V5MC8X31. GPCP and
CRU TS data have been provided by the NOAA/OAR/PSL,
Boulder, Colorado, from their website at https://www.psl.noaa.
gov/. The GFS-AMIP data are available from the PSL Facility for
Weather and Climate Assessments (FACTS) website athttps://
psl.noaa.gov/repository/facts/(Murray et al. 2020). The ERA-
Interim, ERA5, and CERA-20C datasets are courtesy
of ECMWF.

FIG . 14. Near-global (708S to 828N) average 500Ð1000-hPa layer temperatureT anomalies with respect to each
datasetÕs 1981Ð2010 climatology, estimated from geopotential heights in all reanalyses. The conÞdence intervals are
calculated as twice the ensemble standard deviation and shown for 20CRv2c, 20CRv3, CERA-20C, and RSS; see
text for description of issues in 20CRv2c uncertainty. UAH and RSS temperature in the lower-troposphere
products were each regressed onto ERA5 for the available 1979Ð2018 period.

FIG . 15. Correlations between near-global (708SÐ828N) de-
trended 500Ð1000-hPa layer temperaturesT for the given time
periods and land/sea masks. Correlations between ERA5,
RSS, and UAH are shown on the left in lighter colors for
clarity.
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