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Abstract 

While aquaculture ponds are potentially important sources of atmospheric N2O, the 

magnitude and variability of N2O concentrations and fluxes both within and across the ponds 

remain poorly understood. In this study, we examined the small‐scale spatial variations of 

dissolved N2O concentrations in water and N2O fluxes across the water‐air interface from 

three mariculture ponds in a subtropical estuary in southeast China. Our results showed that 

the dissolved concentrations and diffusive fluxes of N2O in the shrimp ponds ranged between 

2.3–19.2 nM and 16.4–589.7 nmol m−2 hr−1, respectively, over the culture period. Significant 

variations of N2O concentrations and fluxes were observed within the ponds, with higher 

values being observed in the aeration area that could be attributed to the high rates of 

nitrification in the water column, as well as sediment N2O production and diffusive flux into 

the overlying water. Also, N2O concentrations and fluxes varied significantly among the three 

ponds as a result of the difference in N‐NO3
− and N‐NH4

+ concentrations in the water 

column. The large fine‐scale spatial variations of N2O concentrations and fluxes observed in 

our aquaculture ponds suggested that management practices such as aeration and bait feeding 

could largely affect the extent that aquaculture activities have on N2O emissions and climate 

change through their influence on the physicochemical environment (e.g., oxygen and N‐

NH4
+ concentrations) of the ponds. 
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1 Introduction 

Nitrous oxide (N2O) is a long‐lived potent greenhouse gas (GHG) with a global warming 

potential that is approximately 300 times higher than that of carbon dioxide (CO2) over a 100‐

year time scale (Intergovernmental Panel on Climate Change [IPCC], 2013). It is also 

considered as the single most important ozone‐depleting gas (Ravishankara et al., 2009). 

Since the Industrial Revolution, the global mean atmospheric N2O concentration had 

increased steadily by approximately 121% to 331.1 ± 0.1 ppbv in 2018 (World 

Meteorological Organization [WMO], 2019). Quantifying the magnitude of and the effects of 

human activities on N2O emissions from various ecosystems has thus become a top priority 

for improving the estimation of global N2O budgets. 

In general, N2O is mainly produced either as an intermediate product during the stepwise 

reduction of NO3
− (by heterotrophic denitrification), as a by‐product during the autotrophic 

oxidation of ammonia and hydroxylamine, or as a product of nitrifier denitrification during 

the reduction of nitrite under anoxic conditions (Butterbach‐Bahl et al., 2013; Dalsgaard et 

al., 2014; Sutka et al., 2006). Nitrogen and oxygen availability has been reported to be an 

important factor controlling the processes of N2O production (e.g., Beaulieu et al., 2011; 

Dalsgaard et al., 2014; Gruber & Galloway, 2008; Murray et al., 2015). Due to the vast 

application of N fertilizers in farmlands, agricultural activity is widely considered to be one 

of primary anthropogenic sources of N2O (S. Liu et al., 2017; McCarl & Schneider, 2001; Wu 

et al., 2018), accounting for about 60% of the global anthropogenic N2O emission 

(IPCC, 2013). As an indispensable part of global agriculture, the aquaculture industry has a 

wide distribution around the world, particularly in the developing countries (Food and 

Agriculture Organization [FAO], 2017). The emission of N2O from aquaculture systems has 

received increasing attention recently (Z. Hu et al., 2012, 2014; Liu et al., 2016; Paudel et 

al., 2015; P. Yang, Bastviken, et al., 2017; Yogev et al., 2018). The total N2O‐N emission 

from the world's aquaculture systems was estimated to be to 90 Gg in 2009, accounting for 

approximately 0.5% of the global N2O‐N emission (Williams & Crutzen, 2010). The 

contribution of aquaculture systems to the annual anthropogenic N2O‐N emission is expected 

to increase to about 6% by 2030, assuming a 7–10% annual growth rate of the industry (Z. 

Hu et al., 2012). However, these estimates are highly uncertain since the contribution of N2O 

emissions from coastal mariculture ponds is largely unknown. Mariculture is an important 

component of global aquaculture that is commonly practiced in the coastal areas 

(FAO, 2017). According to the statistical records of the FAO, the total surface area of global 

mariculture ponds is around 23,332 km2 (Verdegem & Bosma, 2009). In spite of the 

importance of quantifying N2O fluxes from mariculture systems for constructing global N2O 

budget and national emission inventories, there is a paucity of studies examining the 
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https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0042
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0033
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0041
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https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0026
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0015
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0023
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0025
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magnitude and controlling factors of N2O exchange across the water‐air interface of 

mariculture ponds. 

The mariculture industry in China is the largest in the world (Gu et al., 2017), comprising 

over 17% of the global mariculture volume and approximately 33% of the total production 

value in 2014. Aquaculture is the most dominant method of shrimp production in the 

subtropical estuarine zones of China (P. Yang, Bastviken, et al., 2017). Mariculture shrimp 

ponds are generally semiartificial ecosystems that are heavily managed by practices such as 

stocking, feeding, harvesting, and aeration (Chen et al., 2016; P. Yang et al., 2018). These 

ponds are inherently heterogeneous over multiple spatiotemporal scales as a result of 

differences in topographic features, environmental conditions, and management actions (P. 

Yang et al., 2019). However, the fine‐scale spatial variations of N2O fluxes both within and 

between ponds and their temporal changes remain poorly characterized. Detailed in 

situ measurements of N2O dynamics across various spatial and temporal scales are crucial for 

improving our understanding of GHG fluxes in ponds and developing more accurate 

approaches for upscaling aquaculture N2O emissions from point measurements to the whole 

pond or even regional scale. 

In this research, the small‐scale spatial variations of dissolved N2O concentration and flux 

across the water‐air interface of three shrimp ponds in a subtropical estuary in southeast 

China were investigated to shed light on the N2O dynamics in the aquaculture ponds and its 

implications for flux upscaling to the regional scale. The specific objectives of this study 

were to (1) characterize the spatiotemporal variations of N2O concentrations and fluxes 

within and between the mariculture ponds; and (2) examine the main factors governing the 

differences in pond N2O concentrations and fluxes across space and time. 

2 Materials and Methods 

2.1 Study Area 

Our field measurements were conducted in the mariculture ponds in the Shanyutan wetland in 

the Min River Estuary in southeast China (Figure 1; P. Yang et al., 2019), which covered a 

total area of approximately 234 ha (P. Yang, Lai, et al., 2017). The study area was influenced 

by a subtropical monsoonal climate, with annual mean temperature and precipitation of 

19.60°C and 1,350 mm, respectively (Tong et al., 2010). The native Cyperus 

malaccensis (shichito matgrass), Phragmites australis (common reed), and the 

invasive Spartina alterniflora (smooth cordgrass) were the dominant vegetation species in the 

area. The shrimp ponds were created by removing the original marsh vegetation (P. Yang, 

Bastviken, et al., 2017). The wetland was influenced by semidiurnal tides, with the surface 

soil being submerged during the two flood tide periods (Tong et al., 2010). 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0018
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0076
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0008
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0079
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0078
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-fig-0001
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0078
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0077
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0056
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0076
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0056
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2.2 Shrimp Pond System and Operation 

Three shrimp (Litopenaeus vannamei) ponds were randomly selected within a radius of 

200 m in our study area, with the geographical coordinates of Pond I, Pond II, and Pond III 

being 26°01′48″N and 119°37′37″E, 26°01′44″N and 119°37′48″E, and 26°01′41″N and 

119°37′52″E, respectively. Shrimp production was generally carried out in the coastal shrimp 

ponds during the period from June to November. Before shrimp production, the ponds were 

filled with seawater pumped from the adjacent estuary (P. Yang et al., 2018). During the 

culture period, the ponds had no drainage or addition of water, except occasional introduction 

of freshwater by rainfall. The shrimps were regularly fed with commercial pellets 

(Hangsheng and Tianma Chia Tai Feed Co., Ltd., Fuzhou, China) twice a day (07:00 a.m. and 

16:00 p.m., local standard time) manually from a boat. The feed dosage decreased in the 

following order: July and August > September and October > June and November. In order to 

increase the oxygen level in water, three to five 1,500‐W paddlewheel aerators were operated 

in each pond four times a day (00:00–03:00, 07:00–09:00, 12:00–14:00, and 18:00–20:00). 

According to the spatial variations of microtopographic features, water depth, and 

management practices, the shrimp ponds were divided into three different zones, namely, 

Zone N, which was a nearshore area with sparse submerged vegetation, Zone F, which was a 

deepwater area used for feeding, and Zone A, which was a shallow‐water area subjected to 

aeration activities (Figure 1c). Please refer to Zhang et al. (2019) and P. Yang et al. (2019) 

for more details about the overall setup and the three spatial zones of these shrimp ponds. 

Details about the management practices in these shrimp ponds can be found in P. Yang, Lai, 

et al. (2017) and P. Yang et al. (2018). 

2.3 Collection and Analysis of Surface Water Samples 

Six sampling campaigns were carried out during the aeration period of 12:00–14:00 at 

monthly intervals during the entire aquaculture period between June and November 2017 

according to the timing of the main management practices. Since no clear difference in N2O 

concentration was found between the surface and bottom waters in the shallow shrimp ponds 

(with depths ranging from 1.4–1.8 m) (unpublished data), only the surface water samples 

were collected at 0‐ to 20‐cm depth for analysis. In each sampling campaign, three transects 

that ran across the three zones were selected in each pond for determining the N2O 

concentration and saturation in water (Figure 1c). Water samples were collected at 20‐cm 

depth using a custom‐made sampler equipped with a rubber cork, flushed into the 55‐ml 

preweighted serum glass bottles for two to three times, and then completely filled to the top 

of the bottles. About 0.2 ml of saturated HgCl2 solution was added to the bottles for inhibiting 

bacterial activity (Borges et al., 2018), and the glass bottles were then immediately sealed 

with an open‐topped screw cap equipped with a halobutyl rubber septum to exclude any air 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0079
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-fig-0001
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0083
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0078
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0077
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0079
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-fig-0001
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0006
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bubbles (Borges et al., 2018; X. F. Wang, He, et al., 2017; Xiao et al., 2019). The water 

samples were subsequently stored in an ice‐packed cooler, transported back to the laboratory, 

and analyzed within 48 hr. N2O concentration was measured using a gas chromatograph 

(Shimadzu GC‐2014, Kyoto, Japan) equipped with an electron capture detector, after 

calibration with three N2O gas standards with concentrations of 0.3, 0.4, and 1.0 ppm, 

respectively. The N2O detection limit was 0.02 ppm, and the measurement reproducibility 

was ±4.5% in 24 hr. The dissolved N2O concentrations in water were determined based on the 

headspace equilibration method and Henry's law constant. Dissolved N2O concentration 

(nmol N2O L−1) and saturation (%) in water were calculated following B. Hu et al. (2018). 

2.4 N2O Flux Calculation 

The diffusive N2O fluxes (FW‐A, nmol m−2 hr−1) across the water‐air interface were calculated 

based on the gas transfer coefficient method following Equation 1 (Jahne et al., 1987; 

MacIntyre et al., 1995; Xiao et al., 2017): 

 (1) 

where k was the gas exchange velocity (cm hr−1) and ΔC was the difference in N2O 

concentration between the air and water. The k value was influenced by wind speed and 

normalized to a Schmidt number of 600 (Jahne et al., 1987; MacIntyre et al., 1995; Xiao et 

al., 2017). Wind speed was measured and recorded by an automatic weather station at the 

Min River Estuary Ecological Station in the Shanyutan Wetland. The k values from Cole and 

Caraco (1998) were applied in this research as their field environment was similar to ours. 

2.5 Measurement of Ancillary Data 

The in situ water temperature and pH at 20‐cm depth were measured with a portable 

pH/mV/Temperature meter system (IQ150, IQ Scientific Instruments, USA). Dissolved 

oxygen (DO) and salinity were determined by a DO meter (550A YSI, USA) and a salinity 

meter (Eutech Instruments‐Salt6, USA), respectively. Surface water samples (20‐cm depth) 

were collected from the three zones using an organic glass hydrophore, transferred into 150‐

ml polyethylene bottles, immediately transported back to the laboratory in an ice‐packed 

cooler, stored at 4°C, and analyzed within 1 week. 

In the laboratory, approximately 100 ml of water sample was filtered through a 0.45‐μm filter 

(Biotrans™ nylon membranes) and analyzed for inorganic N (N‐NH4
+ and N‐NO3

−) using a 

flow injection analyzer (Skalar Analytical SAN++, Netherlands). Meteorological data 

including air temperature, atmospheric pressure, wind speed, and precipitation were obtained 

from the automatic weather station. 

2.6 Statistical Analyses 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0006
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0063
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0071
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0022
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-disp-0001
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0027
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0039
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0072
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0027
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0039
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0072
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0011
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Data were presented as means ±1 standard error. Three‐way analysis of variance (ANOVA) 

was performed to analyze the effects of zone, pond, and month and their interactions on N2O 

concentrations and fluxes across the water‐air interface in the mariculture ponds. Stepwise 

regression analysis was conducted to determine the most important factors governing N2O 

concentrations and fluxes across the water‐air interface in the shrimp ponds. Spearman 

correlation analysis was performed to examine the relationships between N2O concentration 

(or N2O flux) and various environmental variables. All statistical analyses were carried out 

using the SPSS statistical software package (Version 17.0, SPSS Inc., USA), and results were 

considered significant at the 0.05 level. 

3 Results 

3.1 Spatial Variations of Water Physicochemical Parameters 

The spatial variations of water physicochemical variables within and among the ponds during 

the aquaculture period are shown in Figures 2 and 3. There were no significant differences in 

mean temperature, salinity, pH, and N‐NOx
− among the three sampling zones (p > 0.05; 

Figure 2 and Table S1 in the supporting information). However, there were significant 

differences in mean DO (Figures 2b and S1) and N‐NH4
+ (Figures 2f and S2) among the three 

zones of the ponds (p < 0.01; Table S1). Overall, the means of DO and N‐NH4
+ were 

significantly higher at Zone A than those at Zones F and N (p < 0.01). 

Most of the physicochemical properties of water, including water temperature, DO, and pH, 

were similar among the three ponds (p > 0.05; Figure 3 and Table S1; Zhang et al., 2019), 

except for salinity, N‐NOx
− and N‐NH4

+ (p < 0.01; Figure 3 and Table S1). Across all 

sampling campaigns, N‐NOx
− concentrations varied over the range of 24–350, 21–110, and 

23–140 μg L−1 in Ponds I, II and III, respectively, while N‐NH4
+ concentrations varied over 

the range of 0.1–0.7, 0.1–1.4, and 0.1–0.7 mg L−1, respectively, in the three ponds. Overall, 

the mean N‐NOx
− and N‐NH4

+ concentrations decreased significantly among the three ponds 

in the order: Pond II > Pond III > Pond I (p < 0.05; Figures 3c and 3d and Table S1). 

3.2 Spatial Variations of N2O Concentrations and Fluxes 
Within Ponds 

Across all sampling campaigns, dissolved N2O concentrations in Zones N, F, and A varied in 

the range of 4.65–20.31, 4.29–19.72, and 5.18–23.09 nmol L−1 (Figure 4), respectively, 

which corresponded to N2O saturations of 98–314%, 89–305%, and 108–358%, respectively. 

Average N2O concentration decreased significantly in the following order: Zone A 

(10.64 ± 0.58 nmol L−1) > Zone F (9.20 ± 0.50 nmol L−1) > Zone N (8.55 ± 0.48 nmol L−1) 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-fig-0002
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-fig-0003
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-fig-0002
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#support-information-section
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-fig-0002
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#support-information-section
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-fig-0002
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#support-information-section
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#support-information-section
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-fig-0003
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#support-information-section
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0083
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-fig-0003
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#support-information-section
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-fig-0003
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-fig-0003
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#support-information-section
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-fig-0004
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(p < 0.001; Table S2 and Figure S4a). The mean N2O saturations in Zones N, F, and A were 

157 ± 6.1%, 144 ± 5.9%, and 180 ± 7.6%, respectively. 

There were considerable spatial variations of N2O diffusion fluxes across the three zones of 

the ponds over the study period (p < 0.001; Table S2 and Figures 5a and S5). N2O fluxes in 

Zones N, F, and A varied over the range of 10.75–712.06, 0.24–666.80, and 25.06–

948.27 nmol m−2 hr−1 (Figure S5), respectively. Over the whole study period, Zone A 

exhibited a significantly higher mean N2O emission (231.56 ± 28.34 nmol m−2 hr−1) than 

Zones N (156.16 ± 20.11 nmol m−2 hr−1) and F (119.52 ± 18.13 nmol m−2 hr−1) (p < 0.001; 

Table S2 and Figure 5a). 

3.3 Spatial Variations of N2O Concentrations and Fluxes 
Among Ponds 

Across all sampling dates and zones, the N2O concentrations in Pond I, II, and III varied over 

the range of 4.85–14.42, 5.09–23.09, and 4.23–15.45 nmol L−1 (Figure 4), respectively. 

Average N2O concentrations differed significantly among the three ponds in the following 

descending order: Pond II (11.11 ± 0.69 nmol L−1) > Pond III (8.69 ± 0.42 nmol L−1) > Pond I 

(8.58 ± 0.35 nmol L−1) (p < 0.05; Table S2 and Figure S4b). N2O saturations in water varied 

from 104% to 310%, suggesting that the ponds were consistent N2O sources. 

N2O fluxes in Ponds I, II, and III varied over the ranges of 5.22–477.39, 6.63–948.27, and 

0.24–387.51 nmol m−2 hr−1, respectively (Figure S5). Overall, the average N2O flux differed 

significantly among the three ponds in the following descending order: Pond II 

(247.65 ± 33.25 nmol m−2 hr−1) > Pond I (134.54 ± 14.28 nmol m−2 hr−1) > Pond III 

(128.70 ± 13.06 nmol m−2 hr−1) (p < 0.01; Figure 5b and Table S2). 

3.4 Relationship Between N2O Concentrations/Fluxes and 
Environmental Variables 

Significant correlations were found between N2O concentrations (or fluxes) and DO 

concentrations across all three zones and ponds during each sampling campaign (p < 0.01; 

Figures S6 and S7). The mean N2O concentrations (or fluxes) were also positively correlated 

with the mean concentrations of N‐NOx
− (p < 0.01; Figures S8 and S9) and N‐

NH4
+ concentrations (p < 0.01; Figures S10 and S11) in water across all zones and ponds on 

each sampling campaign. The Spearman correlation coefficients between the surface water 

N2O concentrations (or fluxes) and environmental variables at the mariculture ponds during 

the aquaculture period are shown in Table S3. 

4 Discussion 
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4.1 Spatial Variations in N2O Emission Fluxes Between 
Ponds 

Nitrification and denitrification are the most important microbial processes influencing N2O 

production in aquatic systems (Beaulieu et al., 2011; D. Q. Wang, Tan, et al., 2015; Wenk et 

al., 2016) and are governed by various biotic and abiotic factors. Nitrogen (N) substrate and 

oxygen supply are some key factors controlling the N2O production processes (Dalsgaard et 

al., 2014; Liang et al., 2019; Massara et al., 2018; Yu et al., 2013). In general, a high nitrite 

(N‐NO2
−) concentration can stimulate nitrifier denitrification, which is largely responsible for 

N2O production in sediments (Murray et al., 2015), while a high N‐NH4
+ concentration can 

promote N2O production through hydroxylamine oxidation either in the sediment or the water 

column (Barnes & Upstill‐Goddard, 2011; J. N. Wang, Chen, et al., 2015). Meanwhile, 

heterotrophic denitrification, an important pathway of N2O production in sediments, is 

favored under low DO and high nitrate (N‐NO3
−) concentrations (Dalsgaard et al., 2014; Xia 

et al., 2018). As a result, large spatial variations of N2O fluxes have been reported in various 

aquatic ecosystems, including rivers (B. Hu et al., 2018; Rajkumar et al., 2008; Tan, 2014), 

reservoirs (Guérin et al., 2008; Musenze et al., 2014; X. F. Wang, He, et al., 2017), and lakes 

(Y. S. Liu et al., 2011; H. J. Wang et al., 2006; S. L. Wang et al., 2009) with various N 

loading and oxygen level. Notably, the availability of N substrates has been found to play an 

important role in governing the spatial variability of N2O fluxes within lakes in the 

subtropical and Antarctic regions (Y. S. Liu et al., 2011; H. J. Wang et al., 2006; S. L. Wang 

et al., 2009). Yet, to the best of our knowledge, such information is rare for shallow water 

ponds, especially those created for mariculture activities. 

One interesting finding of this study was that the average N2O fluxes differed significantly 

among the three ponds (Table S2), with the largest value being observed in Pond II 

(Figures 5b and S5). This spatial variability of N2O flux could be primarily ascribed to the 

differences in the physicochemical parameters of sediment and water. Among all the 

variables investigated in this study, only water N‐NOx
− and N‐NH4

+ concentrations differed 

significantly among the ponds (p < 0.01; Figure 3 and Table S1). The average water N‐

NOx
− concentration at Pond II was 1.3–3.9 times and 1.2–1.9 times higher than that at Ponds I 

and III, respectively. Similarly, the mean N‐NH4
+ concentration at Pond II was 1.2–2.1 times 

and 1.1–4.2 times higher than that at Ponds I and III, respectively. The significantly higher 

concentrations of N‐NOx
− and N‐NH4

+ observed in Pond II were likely related to the massive 

shrimp mortality in this pond during the later part of the culture period, which reduced the 

efficiency of feed utilization and contributed to the accumulation of nutrients in the water 

column. The larger supply of N substrates played an important role in sustaining a larger N2O 

efflux at Pond II, as compared to Ponds I and III. This was further confirmed by the 
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significant correlation observed between N2O concentrations (fluxes) with water N‐NOx
− and 

N‐NH4
+ concentrations (p < 0.01; Figures S8–S11). 

4.2 Aeration Zones as N2O Emission Hotspots Within Ponds 

Mariculture ponds are often aerated on a daily basis to help increase oxygen supply to pond 

water. Previous studies have found that a large wind speed can increase gas transfer velocity 

across the water‐air interface and thus the rate of GHG efflux (Bates et al., 1998; B. Hu et 

al., 2018; Musenze et al., 2014; Nemoto et al., 2009). The results of our plot‐scale in 

situ experiments showed that considerable small‐scale spatial variations of N2O flux existed 

within mariculture ponds (Table S2), with larger flux being obtained at Zone A across all 

sampling dates (Figures 5a and S5). Importantly, our results suggested that the whole‐pond 

mean N2O fluxes could be underestimated if measurements were only done in the nearshore 

and feeding areas without considering the aeration zone. 

Aeration activities can induce the disturbance of pond water and subsequently increase the 

gas transfer velocity across the water‐air interface for diffusive transport at Zone A 

considerably. In addition, aeration activities can increase the DO level, which in turn can 

govern the N2O production rates by stimulating microbial nitrification (Y. S. Liu et al., 2011; 

Rosamond et al., 2012). Previous studies have reported that the N‐NH4
+ can be oxidized to N‐

NO3
− via nitrifier nitrification, with N2O being a byproduct, under a high DO level (Beaulieu 

et al., 2015; Liang et al., 2019; Maavara et al., 2019; Rosamond et al., 2011). As a result, the 

high concentrations of N‐NH4
+ and DO are considered to be favorable for N2O production 

associated with nitrification in aerobic aquatic systems (Cheng et al., 2019; Rosamond et 

al., 2012; Sturm et al., 2014; Whitfield et al., 2011). Culture aquatic animals, such as shrimps 

in our study, are generally fed several times a day (Chen et al., 2016; P. Yang et al., 2018). 

The mineralization of residual feeds and feces can produce a large amount of dissolved N‐

NH4
+ in the mariculture ponds (Figure 2e). Strong turbulence caused by aeration activities 

might have transported N‐NH4
+ rich water at the pond bottom to the pond surface, where the 

high DO level would support a higher nitrifier nitrification and hence a high N2O production 

in the water column at Zone A. In our study ponds, there were significant and positive 

relationships between N2O concentrations (fluxes) and (1) water DO concentrations (p < 0.01; 

Figures S6 and S7) and (2) N‐NH4
+ concentrations (p < 0.01; Figures S10 and S11), which 

supported the hypothesis that nitrification was one important pathway of N2O production in 

the pond water. 

Previous studies in marine systems have shown that the oxic‐anoxic interface is a site of 

intense N2O flux (Arevalo‐Martinez et al., 2015; Cohen & Gordon, 1978; Goreau et al., 1980; 

Ji et al., 2015). At this critically low, but nonzero, oxygen concentration at the oxic‐anoxic 

interface, N2O production from both nitrification and denitrification could be enhanced while 
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N2O consumption would be inhibited, resulting in an overall peak N2O emission (Ji et 

al., 2015). Similar results have been found in aquaculture ponds, with an enhanced N2O 

production under low DO conditions (Z. Hu et al., 2012, 2013; Liu et al., 2016). Even in a 

fully oxic water column, oxygen can be rapidly depleted in benthic sediments (Yu et 

al., 2013), leading to the dominance of anaerobic conditions and thus denitrification process 

in the subsurface sediment layers (Hinshaw & Dahlgren, 2013; Liang et al., 2019; Xia et 

al., 2018). Meanwhile, nitrification could cooccur at the oxic‐anoxic interface of pond surface 

sediments. Therefore, the high N2O emissions obtained at Zone A in the present study could 

at least in part be linked to the high N2O production from both nitrification and dentification 

under low‐O2 conditions at the sediment‐water interface. Once N2O was produced in the 

sediments, it could be transported readily into the overlying water of these shallow ponds 

through diffusion and aeration‐induced mechanical mixing. Further studies using controlled 

experiments should be carried out to test the above hypothesis. 

4.3 Mariculture Ponds as an Important N2O Emission Source 

Based on the gas transfer coefficient method, the mean diffusion N2O flux from the whole 

pond was estimated to be 169.1 nmol m−2 hr−1. Notably, the mean N2O emission from our 

ponds during the aquaculture period was markedly lower than the average of 

721 nmol m−2 hr−1 found in the Cyperus malaccensis marsh in an adjacent estuary during the 

summer and autumn periods (X. M. Wang et al., 2018). Our results suggested that the 

conversion of brackish marsh ecosystem to shrimp ponds could reduce N2O emissions during 

the aquaculture period. This was in agreement with the results of S. W. Liu et al. (2016), Wu 

et al. (2018), and P. Yang, Bastviken, et al. (2017), in which N2O fluxes reduced following 

the conversion of rice paddies or coastal marshes to aquaculture ponds. 

The magnitude of N2O flux in our ponds was lower than those observed in rivers in the 

temperate and tropical regions (B. Hu et al., 2018; Laini et al., 2011; Silvennoinen et 

al., 2008; Tan, 2014), as well as some reservoirs (Descloux et al., 2017; Guérin et al., 2008; 

X. F. Wang, He, et al., 2017) and lakes in the temperate and subtropical regions (Y. S. Liu et 

al., 2011; H. J. Wang et al., 2006; H. X. Wang, Zhang, et al., 2017) (Table 1). However, the 

N2O fluxes in our ponds were substantially higher than those in the majority of freshwater 

aquaculture ponds in China (Li et al., 2019; S. W. Liu et al., 2016; Wu et al., 2018) and 

Vietnam (Paudel et al., 2015) (Table 1). Furthermore, our observed N2O fluxes were more 

than 13‐fold higher than those observed in the reservoirs in Southeast Queensland in 

Australia (Musenze et al., 2014), substantially higher than those reported in a freshwater lake 

in Poyang Lake in China (H. X. Wang, Zhang, et al., 2017), and several lakes in Antarctica 

(Y. S. Liu et al., 2011) (Table 1). The mean N2O diffusive flux from our mariculture ponds 

was also comparable to that from the coastal Lake Nakaumi in Japan (Hirota et al., 2007) 
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(Table 1). Our results highlighted that mariculture shrimp ponds are important sources of 

atmospheric N2O that are often overlooked in assessing the regional and global N2O budgets. 

4.4 Implications of the Spatiotemporal Variations of N2O Flux 

Previous studies examining the spatial and temporal variations of GHG emissions from 

reservoirs and lakes have suggested that the lack of flux measurements at a high 

spatiotemporal resolution across and within aquatic ecosystems has contributed to the large 

uncertainties of regional to global estimates of GHG budgets (Musenze et al., 2014; 

Natchimuthu et al., 2017; H. Yang & Flower, 2012; H. Yang et al., 2011). The paucity of in 

situ field measurements of gas fluxes at small‐scale spatial resolution is also a possible cause 

for the biases in the estimation of large‐scale GHG emissions. Here, this study made the first 

attempt to characterize the small‐scale spatial variations of N2O fluxes from the estuarine 

mariculture ponds over the culture period. Overall, our results showed that the estuarine 

mariculture ponds were important atmospheric N2O sources with large spatial variations both 

within and among the ponds. The significantly higher N2O fluxes in the aeration area (Zone 

A) suggested that previous studies that only measured fluxes in the nearshore area (Zone N) 

could have largely underestimated the magnitude of N2O emissions from aquaculture ponds 

(Ma et al., 2018; Wu et al., 2018; P. Yang, Bastviken, et al., 2017). Accurate upscaling of 

N2O fluxes measured by chambers to the whole‐pond or even larger spatial scales requires a 

good coverage of a sufficient number of strategically located sites with representative N2O 

flux values. The significant within‐pond differences in mean N2O fluxes implied that the 

extrapolation of N2O emissions obtained from scattered spots in the ponds to the regional or 

global scale should be done cautiously. Meanwhile, the significant temporal variations of 

N2O fluxes (Figure 5) suggested that the extrapolation of fluxes based on field measurements 

made in a single month to seasonal or annual scales could also lead to considerable biases. 

Therefore, future studies should conduct flux measurements from as many sites as practicable 

over multiple months in order to produce more reliable estimates of N2O flux and enhance 

our understanding of N2O dynamics in mariculture ponds. 

4.5 Limitations and Future Outlook 

There was a certain degree of uncertainty associated with the N2O flux estimates derived in 

our work, similar to other previous studies that adopted the wind‐based gas transfer method. 

The N2O flux in our study was estimated based on the gas transfer velocity coefficient (kx) 

and the N2O concentration gradient between the surface water and the atmosphere. 

The kx values were derived from some empirical wind‐based models only without direct field 

measurements. Moreover, samples for the determination of dissolved N2O concentrations 

were taken at Zone A only during the aeration period but not the pre‐aeration and 

postaeration periods. Hence, there might be bias in our estimated fluxes without taking into 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-tbl-0001
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0043
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0044
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0074
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0075
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0037
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0069
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0076
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-fig-0005
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full account the temporal variability of kx and N2O concentration before, during, and after 

aeration in the ponds. Given this uncertainty, future research should be done to provide site‐

specific quantification of kx values as well as assess the effect of aeration on kx and dissolved 

N2O concentration in aquaculture ponds. 

In addition, the findings of this study were limited by other several factors, which should be 

carefully considered in future studies. First, our field measurement of N2O concentrations and 

fluxes was performed in one estuary during the mariculture period (from June to November) 

only, but not the entire year. The limited number of estuarine sites might constrain the spatial 

representativeness of our data at the regional and national scales. To obtain a more accurate 

estimate of N2O fluxes in mariculture ponds, long‐term observations at multiple estuaries in 

different regions should further be made. Second, this study did not quantify the diel 

variations of N2O concentrations and fluxes, which might introduce some uncertainties to our 

N2O estimates. Since diurnal variations of GHG emissions have been reported in lakes (e.g., 

Xing et al., 2004), such fine‐scale changes in N2O fluxes over time might also occur in our 

mariculture ponds. Third, our mariculture ponds and many other waterbodies in the 

southeastern coast of China are often affected by multiple typhoons every year. Considering 

the strong effect of wind speed on the k values across the water‐air interface (Lévy et 

al., 2012; Natchimuthu et al., 2016; Ye et al., 2017), previous studies have found that the 

typhoon‐associated strong winds can enhance GHG fluxes in aquatic ecosystems (Bates et 

al., 1998; Crosswell et al., 2014; Ye et al., 2017). Lastly, since the wind‐based gas transfer 

method may not be able to capture the full effect of aeration systems on pond N2O fluxes 

owing to the creation of significant turbulence, future studies should be conducted employing 

other alternative measurement techniques (e.g., eddy covariance) to quantify the water‐air 

exchange of N2O in mariculture ponds during the human‐induced aeration of water bodies. 

5 Conclusions 

This study analyzed the spatial variations of N2O concentrations in the water column and N2O 

flux across the water‐air interface, both within and among the mariculture ponds in the 

Shanyutan Wetland of Min River Estuary in southeast China. Our results showed that the 

estuarine mariculture ponds were an important atmospheric N2O source with large spatial 

variations. Pond aeration and N substrate supply played important roles in governing the fine‐

scale spatial variations of N2O fluxes. Our N2O flux measurements made at the aeration, 

feeding, and nearshore areas in multiple shrimp ponds generated new insights into the spatial 

variability of N2O fluxes and indicated the potential bias of whole‐pond flux estimates 

determined based on field data from a single site without considering the emission hotspots. 

There were also large spatial variations of N2O emission among individual ponds over the 

study period. The significant inter‐pond differences further indicated the high uncertainty of 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0073
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0030
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0045
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0080
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0003
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0012
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005605#jgrg21720-bib-0080
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extrapolating GHG fluxes determined from a few ponds to the regional scale. Overall, our 

results highlighted the importance and urgency of making flux measurements from as many 

sites and ponds as practicable over a long time period in order to reduce the uncertainty and 

improve the confidence of upscaling N2O emission data collected in the field to a larger scale. 
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Table 1. Comparison of N2O Concentrations (nmol L−1>) and Diffusive Flux (nmol m−2 hr−1) 

Across the Water‐Air Interface in Mariculture Ponds, Reservoirs, Lakes, and Rivers 

 

Note. Numbers in brackets are averages. “—” indicated no data. 

a N2O fluxes were measured by gas transfer equation method. 

b N2O fluxes were measured by a closed chamber technique. 
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Figure 1. (a) Location of the study area at Shanyutan Wetland of Min River Estuary, 

Southeast China, (b) a photo showing one of the studied ponds, and (c) a diagram showing 

the locations of sampling sites (red dots) within the pond. Zones N, F, and A are nearshore, 

feeding, and aeration areas, respectively (modified after P. Yang et al., 2019). 
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Figure 2. (a–f) Variations of environmental factors among the three zones in the mariculture 

ponds during the aquaculture period. Zones N, F, and A are nearshore, feeding, and aeration 

areas, respectively. The bars represent the means ±1 standard error (n = 9). 
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Figure 3. (a–d) Variations of environmental factors among the three mariculture ponds during 

the aquaculture period. The bars represent the means ±1 standard error (n = 9). 
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Figure 4. Within‐pond variations of N2O concentrations in the surface water (20‐cm depth) of 

the three studied shrimp ponds during the aquaculture period. 
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Figure 5. Spatial variations of N2O diffusive flux across the water‐air interface of shrimp 

ponds during the aquaculture period, when averaged by (a) nearshore, feeding, and aeration 

zones, and (b) Ponds I, II, and III. The bars represent the means ±1 standard error (n ¼ 9). 

Zones N, F, and A are nearshore area, feeding area, and aeration area, respectively. 


