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REVIEW

Targeting platelet inhibition receptors for novel therapies: PECAM-1 and 
G6b-B
Eva M Soriano Jerez 1,2, Jonathan M Gibbins1, & Craig E Hughes 1

1Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK and 2Institute of Experimental Biomedicine, University 
Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany

Abstract
While current oral antiplatelet therapies benefit many patients, they deregulate the hemostatic 
balance leaving patients at risk of systemic side-effects such as hemorrhage. Dual antiplatelet 
treatment is the standard approach, combining aspirin with P2Y12 blockers. These therapies 
mainly target autocrine activation mechanisms (TxA2, ADP) and, more recently, the use of 
thrombin or thrombin receptor antagonists have been added to the available approaches. 
Recent efforts to develop new classes of anti-platelet drugs have begun to focus on primary 
platelet activation pathways such as through the immunoreceptor tyrosine-based activation 
motif (ITAM)-containing collagen receptor GPVI/FcRγ-chain complex. There are already 
encouraging results from targeting GPVI, with reduced aggregation and smaller arterial 
thrombi, without major bleeding complications, likely due to overlapping activation signaling 
pathways with other receptors such as the GPIb–V–IX complex. An alternative approach to 
reduce platelet activation could be to inhibit this signaling pathway by targeting the inhibitory 
pathways intrinsic to platelets. Stimulation of endogenous negative modulators could provide 
more specific inhibition of platelet function, but is this feasible? In this review, we explore the 
potential of the two major platelet immunoreceptor tyrosine-based inhibitory motif (ITIM)- 
containing inhibitory receptors, G6b-B and PECAM-1, as antithrombotic targets.
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Historical Perspective

The immunoreceptor tyrosine-based inhibition motif (ITIM) com
prises a conserved sequence of amino acids that were initially 
identified in the cytoplasmic tails of selected receptors on the 
surface of immune cells [1]. The ITIM consensus sequence (L/I/ 
V/S)xYxx(L/V) (single letter abbreviation where x can denote any 
amino acid) [1,2] is commonly found in pairs separated by 15 to 
30 amino acid residues. ITIMs were named due to their role 
opposing the activity of immunoreceptor tyrosine-based activa
tion motif (ITAM) bearing receptors in immune cell function 
[3,4]. The ITAM consensus sequence (YxxL/Ix6-12YxxL/I) is 
distinct from the ITIM most notably for being a dual tyrosine 
containing sequence [5,6]. However, in more recent years, 
a related motif, the hemITAM, has also been described (consen
sus sequence DEDGYxxL) [7].

The first ITIM was identified in 1990s in the cytoplasmic tail 
of the immunoglobulin G (IgG) receptor in B cells FcγRIIB 
(CD32B) and shown to negatively regulate cell activation, prolif
eration, endocytosis, phagocytosis, and degranulation. Activation 
of FcγRIIB was reported to oppose the activation of the ITAM- 

bearing receptors FcγRIIA (CD32A) and the B-cell receptor 
(BCR) [8–10]. Since then, ITIM-containing receptors have been 
identified in several cell types of the hematopoietic lineage such 
as mast cells, NK cells, T cells, macrophages, megakaryocytes, 
and platelets [11].

Since ITIM receptors were discovered, some controversy has 
surrounded whether they possess inhibitory function alone, or 
whether they can also positively regulate pathways. This was 
recently reviewed by Coxon et al. [12]. Briefly, the similar, but 
distinct immunoreceptor tyrosine-based switch motif (ITSM) has 
been described as an ITIM-like motif, with a consensus sequence 
was defined as TxYxxV/I [13]. An ITSM can potentially confer 
activatory and/or inhibitory properties to a receptor in specific 
cells and scenarios [13], depending on the associated signaling 
proteins. ITSMs were identified for the first time in the signaling 
lymphocyte adhesion molecule (SLAM) CD150. The small SH2- 
containing adaptor protein SH2 domain protein 1A (SH2D1A) 
binds to the CD150 ITSMs and regulates the association of 
receptors with SH2-containing molecules, and in this way serves 
as a signaling ‘switch’ for activation or inhibition [13]. Notably, 
all identified ITIM-containing receptors on platelets bear an ITIM 
consensus sequence followed by an ITSM, which gives them the 
potential for both inhibitory and activatory roles.

ITIM-Containing Receptors in Megakaryocytes and 
Platelets

Three ITAM-containing receptors have been described in 
human megakaryocytes and platelets: GPVI/FcRγ-chain, 
FcγRIIA and CLEC-2 (hemITAM); and five ITIM-containing 
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receptors (Figure 1). Platelet Endothelial Cell Adhesion 
Molecule-1 (PECAM-1) or CD31 was thought to be the only 
ITIM-containing receptor in megakaryocytes and platelets [14] 
until proteomics and transcriptomics studies revealed other 
structurally distinct ITIM-containing receptors: Carcino 
Embryonic Antigen-related Cell Adhesion Molecule 1 
(CEACAM-1) and CEACAM-2, are both expressed at low 
levels on platelet surface; TREM-like transcript-1 (TLT-1), 
which is the most highly expressed and is stored in the α- 
granules [15] and released upon platelet activation; Leukocyte- 
Associated Immunoglobulin-like Receptor-1 (LAIR-1), which 
is present on a variety of immune cells, while it is found on 
megakaryocytes, this protein has not been detected in platelets 
[16]; and G6b-B. G6b-B is uniquely expressed in the platelet/ 
megakaryocyte lineage [17]. In this review we explore the 
potential of the ITIM-containing receptors as antithrombotic 
targets focusing on G6b-B and PECAM-1, since these have 
been more extensively characterized in this context [12], but 
the principles and ideas discussed herein may apply to 
a number of other platelet ITIM receptors.

ITAM-ITIM Signaling

After ligand binding, the ITAM receptors GPVI/FcRγ-chain, and 
FcγRIIA, are tyrosine phosphorylated on the ITAM tyrosine 
residues, by Src family kinases (SFK, Fyn and Lyn) [18]. GPVI 
has a conserved proline-rich region (PxxP) where SFKs bind and 
become activated [18]. SFK phosphorylation takes place in lipid 
rafts, to where GPVI translocates upon ligand engagement 
[19,20]. This allows the recruitment and activation of the tyrosine 
kinase Syk which binds to the ITAM tyrosines via its tandem SH2 
domains (Figure 2). Src and Syk kinases are also required for 
activation of the hemITAM receptor CLEC-2. A hemITAM tar
gets a similar downstream signaling pathway.

Once activated, Syk propagates the signal by phosphorylating 
the transmembrane scaffolding protein, linker for activation of 
T-cells (LAT). LAT has many tyrosine residues that allow the 
binding of different kinases, such as PI3K (p85/p110) via the SH2 
domains of the p85 subunit and adaptor molecules, such as Grb- 
2-associated binding protein-1 (Gab1). Therefore, LAT phosphor
ylation allows the formation of a multi-protein complex that leads 
to the activation of phospholipase Cγ2 (PLCγ2) [21] and, as 
a consequence, intracellular calcium increases leading to 

secretion and affinity modulation of the integrin αIIbβ3. This 
allows the binding of fibrinogen, platelet aggregation and throm
bus formation. Secondary agonists, including ADP, TxA2 and 
serotonin, among others, are released from activated platelets 
and bind G protein-coupled receptors to activate surrounding 
resting platelets, synergizing to enhance the response.

SFKs, such as Fyn and Lyn, also phosphorylate tyrosine resi
dues in ITIM/ITSMs and are therefore also able to mediate 
activation of the ITIM-receptor. This phosphorylation provides 
docking sites for SH2 domain(s) of phosphatases, such as the 
tyrosine phosphatases SHP1/SHP2 and the inositol phosphatase 
SHIP1/SHIP2 [22]. These two phosphatase families lead to inac
tivation of various components of the ITAM stimulated pathway 
[22]. The association of proteins with ITIM receptors can also 
sequester the proteins away from their action site, such as 
PECAM-1 that recruits p85, preventing its translocation into 
lipid rafts. This reduces the association of PI3K with Gab1 and 
LAT [23] that are located in lipid rafts, leading into a reduction on 
PI3K signaling (Figure 2). Contrastingly, ITIM-bearing receptors 
have been also implicated in the positive regulation of integrin 
outside-in signaling, which is dependent on associated proteins 
[24–27] which we speculate may be consistent with the presence 
of an ITSM.

Although PECAM-1 and G6b-B are both ITIM-bearing recep
tors on platelets they are reported to differ in how and when they 
function. G6b-B is highly phosphorylated and associated with 
SHP1/SHP2 on resting platelets, while PECAM-1 phosphoryla
tion is undetectable under resting conditions [28]. This might 
suggest that G6b-B would be important to prevent unwanted 
activation, whereas PECAM-1 may be more important to restore 
resting conditions in response to platelet activation.

PECAM-1

PECAM-1 or CD31 is a 130-kDa transmembrane glycoprotein 
belonging to the immunoglobulin (Ig) gene superfamily [29,30] 
and was the first ITIM-containing receptor identified on platelets 
[14]. PECAM-1 expression has been detected on the surface of 
both vascular endothelial cells, and a number of hematopoietic 
cells, including platelets, monocytes, neutrophils, T-cells, and 
B-cells [31]. Proteomic studies have reported that PECAM-1 is 
expressed at ~9,400 copies per platelet in human [32], and ~5,500 
copies in mouse [33], although other studies in human platelets 

Figure 1. ITAM- and ITIM-bearing receptors 
on resting platelets. Immunoreceptor tyrosine- 
based activation motif (ITAM)-bearing platelet 
receptors are represented on the left together 
with the hemITAM receptor, CLEC-2. On the 
right, immune-receptor tyrosine-based inhibi
tory-motif (ITIM)-bearing platelet receptors are 
shown with their characteristic features: IgV-like 
domains, one in the case of G6b-B and six on 
PECAM-1; a transmembrane domain (TMD), 
a proline-rich region (PRR), an immune- 
receptor tyrosine-based inhibitory-motif (ITIM), 
and an immune-receptor immunoreceptor tyro
sine-based switch-motif (ITSM). On PECAM-1 
D1 and D2 are implicated for homophilic inter
action, meanwhile, D6 for heterophilic binding.
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suggest expression levels ranging from 5,000–20,000 copies per 
cell [32–34] (Table I). A key function of platelet PECAM-1 is to 
inhibit signaling downstream of the collagen receptor GPVI, and 
other platelet activation pathways, such as those mediated by 
ADP and thrombin [35], thereby inhibiting platelet aggregation 
and thrombus formation in vitro [36] and in vivo [37].

Structure

The Pecam1 gene is found on human chromosome 17. It is 
a single-copy gene of 65 kb composed of 16 exons [38]. The 
gene is expressed as multiple isoforms in different cell types as 
a result of alternative splicing of encoding exons of the cytoplas
mic domain; the most prevalent isoform in human platelets is the 
Δ15 isoform, which lacks exon 15 [39]. The PECAM-1 extra
cellular domain (574 amino acids) is comprised of six Ig constant 
2 (IgC2)-like domains (each encoded by a single exon) and is 
highly glycosylated with nine potential N-glycosylation sites 
[29,40]. The mature protein contains a short transmembrane 
domain of 19 amino acid residues and a 118 amino acid cyto
plasmic domain encoded by eight different exons (exons 9–16) 
[38] (Figure 1).

The PECAM-1 cytoplasmic tail contains two tyrosine residues 
(conserved at positions 663, and 686 in human), that serve as sites 
for phosphorylation and the docking of cytosolic signaling mole
cules; a palmitoylation site (C595), and a proline-rich region 
(PRR) [41]. Y663 and Y686 are located within the ITIM and 
ITSM, respectively. The PECAM-1 ITIM sequence is VQY663 
TEV and it is separated by 17 amino acid residues from the ITSM 
sequence, TVY686SEV [42] (Table I). The PECAM-1 cytoplas
mic tail is associated to the lipid membrane by two separated 
regions [43]. Serine 702 phosphorylation releases the ITSM motif 
from the membrane allowing its phosphorylation by Lyn and the 

sequential ITIM phosphorylation provides a docking site for SH2 
domain phosphatases [43]. Interestingly, Y663 is much less effi
ciently phosphorylated by either Src or Csk kinases than Y686 is 
[44,45] suggesting that its phosphorylation may be a rate-limiting 
step in PECAM-1–mediated signal transduction.

Ligands

Homophilic Binding

PECAM-1 has been shown to be activated upon homophilic binding 
forming large clusters [46]. This interaction is involved in the 
maintenance of vascular endothelial cell barrier function [47]. 
Through the use of domain deletions, and human/mouse domain 
swapping experiments, it has been shown that Ig-like domains 1 and 
2 are responsible for this homophilic interaction (Figure 1) and 
consequent cell signaling, in addition to the level of surface expres
sion [46,48–50]. Furthermore, homophilic binding interactions are 
dependent on the sialylation state of the PECAM‐1 ectodomain 
[51]; this binding in human PECAM-1 may be promoted by 
α2,3-linked sialic acid residues whereas α2,6 sialic acids have 
been proposed to inhibit homophilic binding [52].

Heterophilic Binding

PECAM-1 has also been described to bind other molecules 
(heterophilic binding) including glycosaminoglycans [53], 
integrin αVβ3 [46,54,55] and CD38 on lymphocytes [56] but 
the functional relevance of these interactions is unknown. The 
only ligand for which a physiological role has been identified 
is the neutrophil-specific CD177/PR3 complex [57], which 
binds Ig-like domain 6 (Figure 1) triggering neutrophil trans
migration [58].

Figure 2. ITAM-ITIM activation. (A) ITAM- 
bearing receptor (GPVI/FcRγ-chain/CLEC-2/ 
FcγRIIA) are activated by their respective 
ligands (collagen/podoplanin/antibodies). (B) 
Receptors are then translocated to lipid rafts 
where SFKs phosphorylate them. Syk is 
recruited, activated, and subsequently propa
gates the signal through the LAT signalosome, 
where p85/p110 are recruited to form PI3K. 
This results in PLCγ2 activation and further 
platelet activation. (C) On the bottom, ITIM- 
bearing receptor activation (PECAM-1/G6b-B) 
recruits SFK, phosphorylating the ITIM/ITSM 
motifs, providing docking sites for the phos
phatases (SHP1/2 and SHIP1/2). This results in 
relocation of molecules, such as p85, away from 
lipid rafts and therefore a reduction in the acti
vation of Syk and the LAT signalosome, leading 
to platelet inactivation/maintenance of the rest
ing state.
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G6b-B

G6b-B is a transmembrane protein expressed exclusively on 
megakaryocytes and platelets, with approximately ~14,000 copies 
per platelet in human [32], and ~30,000 in mouse [33], making it 
one of the most highly expressed platelet cell surface proteins 
(Table I). G6b-B constitutively inhibits platelet activation by the 
ITAM-bearing receptors GPVI and CLEC-2 [59].

Structure

In the human genome Mpig6b gene is located on chromosome 6 
and composed of 6 exons which encode a 26 kDa protein com
prised of 241 amino acids [60]. G6b-B is also a member of the 
immunoglobulin superfamily and is expressed as several splice- 
variants [60]. G6b-A and B contain transmembrane regions while 
the remaining three (C, D, E) are secreted isoforms [60]. G6b-B is 
the only family member that contains a transmembrane region, 
along with a cytoplasmic region containing the ITIM and an 
ITSM, and therefore the only isoform capable of intracellular 
signaling. The G6b-B ITIM/ITSM is constitutively phosphory
lated by SFKs on residues that act as docking sites for the SH2 
domains of the cytoplasmic protein tyrosine phosphatases SHP-1 
and SHP-2 [17,60,61]. This leads to their activation, and the 
subsequent deactivation of tyrosine kinases such as Syk and of 
downstream signaling pathways.

G6b-B consists of a single variable-type Ig-like (IgV) domain 
which is N-glycosylated (1 site in humans and 2 in mice), a PRR 
(proline-rich region) in the juxtamembrane region, an ITIM and 
an ITSM [17,60,62] (Figure 1). The separation between the ITIM 
and ITSM on G6b-B is 26 amino acids [60] and their sequences 
are LLY194ADL and TIY220AVV, respectively (Table I).

Ligands

G6b-B has been described to bind the extracellular matrix 
heparan sulfate (HS), a subgroup of glycosaminoglycan defined 
by a basic disaccharide unit [63] and heparin [64]. Data from 
size-exclusion chromatography and X-ray crystallography suggest 
that ligand binding induces ectodomain dimerization [63]. 
However, this dimerization is not enough to cluster G6b-B 

sufficiently into higher-order oligomers to induce robust down
stream signaling [63]. HS chains of vessel-wall perlecan may 
facilitate further G6b-B phosphorylation and downstream signal
ing via the tyrosine phosphatases SHP1 and SHP2, resulting in 
the inhibition of platelet activation [63].

Potential as Therapeutic Targets

In order to be an ‘ideal therapeutic target’, a molecule should 
satisfy a number of properties: to be biologically relevant for the 
pathological process that requires modulation; specific to the 
target disease, biologically available and accessible, low sequence 
variability, minimum side effects (i.e. playing roles in multiple 
pathways), and toxicity; drugability, ability to bind a drug; and the 
potential to be combined with other therapies to obtain 
a synergistic effect [65]. In this section we will explore which 
of these properties PECAM-1 and G6b-B meet (Table II).

PECAM-1

The antithrombotic potential of PECAM-1 is suggested by studies 
showing its ability to reduce platelet activation. Previous work has 
shown that PECAM-1 activation by antibody cross-linking has no 
effect on the early signaling events of GPVI activation, such as FcRγ- 
chain and Syk phosphorylation [23]. However, approximately 80% of 
PECAM-1 is located outside of lipid rafts [66] and this seems to be 
relevant after PECAM-1 activation, when SHP2 recruits p85, 
a regulatory subunit of PI3K, reducing the association of PI3K with 
Gab1 and LAT which are located within lipid rafts [23]. This leads to 
a reduction of PI3K signaling and platelet activation decreases as 
a consequence. Additionally, PECAM-1 was shown to decrease plate
let responses beyond ITAM signaling alone [35,67,68]. Other cross- 
linking experiments showed that PECAM-1 cross-linking reduced 
GPIb-IX-V complex levels on the platelet surface leading to reduced 
binding of thrombin at the platelet surface and thereby lower levels of 
thrombin-stimulated platelet activation [69].

The antithrombotic effects of PECAM-1 are relatively weak, par
ticularly in comparison to PGI2 and NO [70], and this inhibition can 
also be overcome at higher concentrations of the platelet agonists 
[71,72], which may be beneficial to reduce the risk of bleeding. One 

Table I. Summary table comparing the main features of PECAM-1 and G6b-B.

PECAM-1 G6b-B

Molecular weight 130 kDa 26 kDa (unglycosylated) 
32 kDa (glycosylated)

Structural motifs Extracellular domain (574 aa) Extracellular domain (125 aa)
6 IgV - like 
(each encoded by a single exon)

single IgV - like domain

9 glycosylation sites N-glycosylated
Transmembrane domain (19 aa) Transmembrane domain (21 aa)
Cytoplasmic domain (118 aa) Cytoplasmic domain (78 aa)
Palmitoylation site (C595)
Proline-rich region (PRR) Proline-rich region (PRR)

ITIM sequence VQY663TEV LLY194ADL
ITSM sequence TVY686SEV TIY220AVV
Reported ligands Homophilic Binding

PECAM-1 binds to itself mediated by IgV - like domains 1 and 2
Heterophilic binding Heparin
glycosaminoglycans (GAG) 
integrin αVβ3 
CD38 on lymphocytes 
CD177/PR3 complex on neutrophils

Heparan Sulfate (HS)

Copies per platelet
Human ~9,400 

Ranging from 5,000–20,000
~14,000

Mouse ~5,500 ~30,000
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argument is that it could play a role in the context of atherosclerosis 
when the loss of healthy endothelium results in a decrease of PGI2 and 
NO concentrations [70]. However, targeting PECAM-1 may reduce 
the risk of bleeding, which is the major risk factor with current 
antithrombotic therapies [73,74].

Importantly, the biological relevance of PECAM-1 in the 
regulation of platelet reactivity has been emphasized in human 
studies. PECAM-1 expression levels on the human platelet 
surface have been estimated to be ~9,400 copies per cell, in 
a proteomic study [32], and between 5,000 and 8,800 copies 
per cell in other studies [75]. However, these levels vary 
extensively up to 20,000 copies per cell in around 20% of the 
population, and high levels of expression are associated with 
a decrease in platelet response to CRP-XL, ADP and thrombin 
[35]. Whether these latter individuals are less likely to suffer 
thrombosis remains to be studied. Additionally, further studies 
on allelic isoforms of PECAM-1 have established a relationship 
between some alleles and cardiovascular diseases (CVD). 
There are three main polymorphisms located in domains that 
are crucial for homophilic binding (Ig-like domain 1, L98V), 
heterophilic binding (Ig-like domain 6, S536N), and signal 
transduction (cytoplasmic domain, R643G) [76]. These poly
morphisms were identified in four major human PECAM-1 
alleles (L98S536R643 and V98N536G643, associated with muta
tions within the 3′UTR, a2479 or g2479), which have been 

related with myocardial infarction and coronary artery disease, 
respectively [76]. Deep vein thrombosis has also been asso
ciated with the L98V polymorphism of PECAM-1 [77]. This 
relationship between some alleles and a link with CVD empha
sizes the potential importance of PECAM-1 in regulating 
hemostasis and thrombosis.

In vivo studies using Pecam1 deficient transgenic mice have 
been used to explore the role of this protein in thrombopoiesis, 
hemostasis and thrombosis. Pecam1 knockout mice showed 
a delay in the kinetics of recovery of platelet number following 
antibody-induced thrombocytopenia, which was attributed to 
altered migration of megakaryocytes [78]. Nevertheless, mega
karyocyte maturation, proplatelet, and platelet formation are 
normal in Pecam1 deficient mice which have normal platelet 
counts [78,79]. Other in vivo studies on PECAM-1 knockout 
mice, have shown its contribution to thrombus size and stability. 
Thrombus size following laser injury to arterioles in PECAM- 
1-deficient mice formed more rapidly and were larger [37]. 
Notably, the impact of overexpressing PECAM-1 on thrombosis 
and hemostasis has not been explored. As high levels of 
PECAM-1 on human platelets are associated with diminished 
platelet activation [35], it would be particularly interesting to 
determine whether these latter individuals are less prone to 
thrombosis. These studies would support the notion that stimula
tion of PECAM-1 could be used as a therapy.

Table II. Summary table comparing PECAM-1 and G6b-B potential as therapeutic targets.

Biological relevance High High

Ability to inhibit platelet activation by GPVI, ADP and thrombin pathways by ITAM-like receptors pathway
Resting conditions Undetectable phosphorylation Constitutive phosphorylation
Specific to the 

target disease
High High

Knockout mice Normal platelet counts Low platelet count
Altered megakaryocytes migration Increase of metalloproteinase production
Normal megakaryocyte maturation Altered megakaryocyte maturation
Normal proplatelet formation Reduced proplatelet formation
Normal platelet formation Oversize platelets
Delay in the kinetics recovering platelet 
number
Rapidly formation and large thrombus Bleeding diathesis

Human studies High expression levels, lower platelet 
activation 
Alleles associated with cardiovascular 
diseases (L98S536R643 and V98N536G643)

G6b-B deletion and loss-of-function mutations lead to: 
Megakaryocytic disorders 
Myelofibrotic disorders

Antibody 
cross-linking

Decreases thrombus formation 
Reduces GPIb-IX-V complex levels on the 
platelet surface 
Reduced binding of thrombin at the platelet 
surface 
Lower levels of thrombin-stimulated platelet 
activation

Inhibition of platelet activation 
Inhibition aggregation in vitro

Specific to the 
target cell

Low High

Expression on Vascular endothelial cells Platelets 
MegakaryocytesHematopoietic cells
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T-cells 
B-cells

Platelets 
Monocytes

Risk of 
off-target effects
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Biologically available Platelet membrane and other cells Highly expressed on platelet membrane
Possible synergistic effect by combination? High High

Weak inhibition 
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ITAM therapies 
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Bispecific nanobody/affimer with PECAM-1?
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G6b-B

One of the advantages of G6b-B as a potentially effective and safe 
antithrombotic target relies on the fact that it is highly expressed 
on the cell surface and this is restricted to platelets and megakar
yocytes. Potentially, this provides high specificity and low risk of 
off-target effects in other cell types. G6b-B, as with PECAM-1, is 
a cell-surface receptor; which increases the chances of successful 
drug delivery, as the drug does not have to cross the membrane to 
reach the target.

The majority of studies on G6b-B function have been 
based on transgenic knockout mice. It has been shown that 
megakaryocytes lacking G6b-B have reduced proplatelet for
mation leading to oversize platelets, a low platelet count and 
bleeding [62]. In addition, G6b-B-deficient megakaryocytes 
display an increase of metalloproteinase production, respon
sible for cell-surface receptor shedding, such as GPVI [62]. 
This appears to be a compensatory mechanism to downregu
late the receptors regulated by G6b-B, since G6b-B constitu
tively inhibits platelet activation by ITAM-like receptors, 
GPVI and CLEC-2 (NB CLEC-2 lacks the cleavage site and 
therefore is not shed in G6b-B-deficient platelets) [59]. 
Furthermore, G6b-B is constitutively phosphorylated under 
resting conditions [17], indicating that it may play an impor
tant role preventing activation of circulating platelets. 
However, very few studies have explored the impact of G6b- 
B stimulation. Over 10 years ago, G6b-B cross-linking with 
polyclonal antibodies was shown to exert inhibition of both 
platelet activation and aggregation in vitro [80]. This points to 
its potential as a target for antiplatelet therapy. Further studies 
in this direction using in vivo models and with monoclonal 
antibodies or other tools would clarify whether G6b-B stimu
lation could lead to less reactive platelets, reducing the risk, 
or severity of thrombosis.

Studies on humans have shown that G6b-B deletion and loss- 
of-function mutations lead to megakaryocytic and myelofibrotic 
disorders [81], highlighting the importance of this receptor not 
only for platelet regulation but also for megakaryocyte function. 
Further studies should be performed to investigate whether, as 
with PECAM-1, there are differences in expression between indi
viduals. If there is a link between higher expression of G6b-B and 
a lower rate of thrombotic events, this would support the notion 
that stimulation of G6b-B could be used therapeutically.

How to Target PECAM-1 and G6b-B?

We can conclude therefore, that both, PECAM-1 and G6b-B are 
biologically relevant for hemostasis, thrombosis, and platelet 
responsiveness, and therefore worthy of consideration as targets 
for new antiplatelet therapy. A pertinent question then, would be 
how could we achieve PECAM-1 and G6b-B activation therapeu
tically/pharmacologically?

The classical way to address a molecular target would be to 
develop a small molecule suitable for oral therapy. Small mole
cules, however, tend to be less successful when targeting protein- 
protein interactions such as the homophilic binding of PECAM-1 
[82], but there are notable exceptions such as Tirofiban, and 
Maraviroc. Tirofiban binds to the platelet integrin αIIbβ3 and 
inhibits platelet aggregation, while Maraviroc inhibits interaction 
between human CCR5 and HIV-1 gp120 [83].

Another approach would be to use a monoclonal antibody 
that activates PECAM-1 or G6b-B to prevent platelet aggrega
tion. Specifically, a Fab or Fab2 fragment of a humanized 
antibody would most likely be required to avoid impaired 
interactions with the immune system. This approach has been 
applied successfully with Abciximab, the first anti-integrin 

αIIbβ3 antigen-binding fragment approved to inhibit platelet 
aggregation in cardiovascular disease [84]. The numbers of 
antibodies approved as therapeutic agents rise every year, 
with their success likely due to their high specificity, affinity 
and stability [85]. Nevertheless, a key disadvantage of antibody 
therapy is that they are not suitable for oral therapy. 
Nanobodies could be an alternative that may be suitable for 
oral therapy due to their proteolytic resistance thereby retaining 
their activity as they pass through the gastrointestinal tract. An 
example of this is V565, an anti-TNFα oral nanobody currently 
in phase II of clinical trials [86]. However, the first nanobody 
approved by the FDA in 2019, Cablivi™ is an intravenous 
therapy [87], although this may reflect the nature of the target 
disorder, thrombotic thrombocytopenic purpura, and that it is 
used in combination with plasma exchange and immunosup
pressive therapy [87]. A single nanobody may not cause clus
tering, however it would be possible to fuse them, for example, 
to generate a bispecific nanobody, binding both PECAM-1 and 
G6b-B. The incorporation of the G6b-B nanobody would allow 
selective activation of PECAM-1 on platelets over other cell 
types expressing PECAM-1.

A newer approach to target PECAM-1 or G6b-B would be 
affimers; non-antibody binding proteins derived from a scaffold 
engineered from human stefin A and a cystatin consensus sequence 
[88]. While affimers are in the early stages of development, promis
ing results have been accomplished stabilizing fibrin networks with 
potential reduction on bleeding risk, with a fibrinogen-binding 
affimer [89]. Activatory affimers targeting G6b-B/PECAM-1 
would be promising therapy, although this has yet to be attempted.

Further research is needed to explore these ideas, and fully 
determine the potential success of targeting these receptors to 
prevent thrombotic disease without causing substantial bleeding.

Concluding Remarks

In summary, new antiplatelet agents and targets that overcome 
current oral antiplatelet therapies side-effects are needed and 
are actively sought by pharmaceutical companies. One 
approach would be to target primary platelet activation path
ways such as the activation provided by the ITAM-containing 
receptors GPVI and CLEC-2. Here we have outlined how 
conversely targeting ITIM-containing receptors may provide 
an alternative approach for targeted platelet inhibition due to 
the role of these receptors in the downregulation of platelet 
ITAM-receptor signaling. There are already encouraging results 
targeting the GPVI pathway; the humanized Fc fusion protein 
of the GPVI ectodomain, commercially known as Revacept 
[90], and the human GPVI-blocking F(ab) ACT017 [91,92] 
both currently in phase II of clinical trials.

Targeting ITIM-containing receptors may provide a new selec
tive approach to downregulate ITAM dependent platelet activa
tion, and potentially activation mediated through other pathways. 
However, further studies are needed to shed light on the outcome 
of activating PECAM-1 and/or G6b-B and their potential as 
targets for antiplatelet therapy. Whether it would downregulate 
platelet activation, whether it may overcome current antiplatelet 
therapies preventing bleeding and whether this can be achieved 
therapeutically to prevent cardiovascular diseases are important 
questions for the future.
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