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Abstract 83 

Forecasts of future forest change are governed by ecosystem sensitivity to climate change, but 84 

ecosystem model projections are under-constrained by data at multidecadal and longer 85 

timescales.  Here, we quantify ecosystem sensitivity to centennial-scale hydroclimate variability, 86 

by comparing dendroclimatic and pollen-inferred reconstructions of drought, forest composition 87 

and biomass for the last millennium with five ecosystem model simulations.  In both 88 

observations and models, spatial patterns in ecosystem responses to hydroclimate variability are 89 

strongly governed by ecosystem sensitivity rather than climate exposure.  Ecosystem sensitivity 90 

was higher in models than observations and highest in simpler models.  Model-data comparisons 91 

suggest that interactions among biodiversity, demography, and ecophysiology processes dampen 92 

the sensitivity of forest composition and biomass to climate variability and change.  Integrating 93 

ecosystem models with observations from timescales extending beyond the instrumental record 94 

can better understand and forecast the mechanisms regulating forest sensitivity to climate 95 

variability in a complex and changing world. 96 

 97 
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Introduction 98 

Exposure to 21st-century climate change is expected to profoundly impact global forest 99 

composition, diversity, and structure (Dawson et al. 2011; Keeley et al. 2019), but the sensitivity 100 

of ecosystems to climate variability at multi-decadal to centennial time scales is poorly 101 

constrained by instrumental observations.  Multiple observational studies that employ 102 

subcontinental- to continental-scale data networks across a broad range of timescales have 103 

sought to empirically estimate the sensitivity of forest ecosystems to climate variability.  The 104 

sensitivity of tree growth rates, biomass accumulation, and ecophysiological processes to 105 

interannual climate variability is well-documented by dendroecological data, with compelling 106 

evidence that forest sensitivity to climate depends on forest age and is non-stationary across 107 

space and time (Charney et al. 2016; Klesse et al. 2018; Thom et al. 2019; Peltier & Ogle 108 

2020).  On glacial-interglacial timescales, networks of fossil pollen records show that 109 

temperature variations are the primary driver of forest composition and species distributions 110 

(Shuman et al. 2004; Nolan et al. 2018), while over the last several thousand years, hydroclimate 111 

variability has strongly affected forest composition and structure in temperate forests of the 112 

northeastern and upper midwestern United States (Booth et al. 2012; Shuman et al. 2019).   113 

Terrestrial ecosystem models used to forecast responses to climate change often have 114 

difficulty reproducing broad-scale and long-term responses to environmental variability, despite 115 

being well-grounded in empirical evidence and ecological theory (Friedlingstein et al. 2006, 116 

2014; Matthes et al. 2016).  These models mechanistically connect ecophysiological processes 117 

and climate variability to past and present changes in forest composition and structure but are 118 

subject to uncertainty in external forcings (e.g., drivers), process representation, and 119 

parametrization that complicates data-model comparisons (Figure 1) (LeBauer et al. 2013; 120 

Matthes et al. 2016; Dietze 2017; McLachlan & PalEON Project 2018).  Each model includes 121 
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hypotheses about the primary processes and ecosystem characteristics governing forest change, 122 

various simplifying assumptions, and tradeoffs between computational tractability and process 123 

complexity (De Kauwe et al. 2013; Walker et al. 2014; Medlyn et al. 2015).   Previous data-124 

model comparisons have returned mixed evidence about whether models underestimate or 125 

overestimate the sensitivity of forest processes such as net primary productivity (NPP) and 126 

mortality to climate change (Schimel et al. 2015; Walker et al. 2015; Rollinson et al. 2017).  As 127 

a result, projections of forest compositional and structural responses to climate change have high 128 

uncertainty, which propagates to increased uncertainty in science-based adaptation planning 129 

(Friedlingstein et al. 2014).  130 

Several challenges have traditionally hindered the joint analysis and integration of 131 

terrestrial ecosystem models and paleoecological data to better constrain modeled responses to 132 

climate variations at multi-decadal and longer timescales.  First, the raw observations collected 133 

from fossil pollen records (counts of individual pollen taxa) have no direct counterparts in 134 

ecosystem models.  Bayesian hierarchical models are providing new process-based approaches to 135 

infer emergent ecosystem properties from fossil pollen records, such as forest composition, 136 

diversity, percent cover, and biomass (Raiho et al. in prep; Blarquez & Aleman 2016; Dawson et 137 

al. 2016), but the number of state variables that can be estimated from paleoecological data 138 

remains small relative to the number of latent (i.e., unobservable) variables simulated by 139 

ecosystem models (Fig. 1).  Second, pre-instrumental model-data comparisons are complicated 140 

by reliance on driver datasets derived from general circulation models (GCMs). GCMs generally 141 

capture macroscale spatial patterns and low-frequency trends in climate but are unable to fully 142 

capture the complexity and stochasticity of local to regional-scale weather phenomena at the 143 

subdaily resolution needed to drive ecosystem models, resulting in systematic spatial and 144 
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temporal biases in model simulations (Anav et al. 2013; Matthes et al. 2016; Dietze et al. 2018).  145 

Third, the native temporal resolution varies between paleodata and models and requires a 146 

temporal standardization.  Due to these challenges, the predicted sensitivity of ecosystem model 147 

state variables such as forest composition and biomass to climate change is largely unvalidated 148 

by observations at multidecadal and longer timescales, resulting in wide divergence among 149 

terrestrial ecosystem models in their 21st-century projections (Friedlingstein et al. 2006, 150 

2014). Fourth, terrestrial ecosystem models vary widely in represented processes, which can 151 

challenge intermodel comparisons but also provide insight into key governing ecological 152 

processes when data-model discrepancies emerge. 153 

Here, we seek to establish the patterns of forest ecosystem and climate variability in the 154 

north-central and northeastern US for the last millennium (850-1850 C.E.) and identify the 155 

mechanisms underpinning both forest ecosystem sensitivity and observed data-model 156 

discrepancies. In these analyses, we test hypotheses about the relative importance of 157 

hydroclimate exposure, defined as the magnitude of drought variability, and ecosystem 158 

sensitivity as determinants of the variability seen in forest ecosystems. We also hypothesize that 159 

ecosystem models will be overly sensitive to hydroclimate variability due to insufficient 160 

representation of ecophysiological and demographic processes that can dampen climate 161 

responses. To this end, we present a novel series of data-model and model-model comparisons 162 

that are designed to overcome traditional barriers to data-model intercomparison for pre-163 

instrumental times. Our analyses combine dendroclimatic indices of drought, recently published 164 

Bayesian spatiotemporal estimates of forest composition and biomass derived from pollen that 165 

provide independent checks on last-millennium simulations from five terrestrial ecosystem 166 

models for the northeastern and upper midwestern United States.  The data-model comparisons 167 
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discriminate among differing representations of forest processes such as productivity and 168 

demography, while the model-model comparisons help diagnose causal relationships among 169 

ecological processes, changes in forest states, and climate variability (Fig. 1).  To test hypotheses 170 

while also overcoming known geographic biases in the model simulations of ecosystem state 171 

such as forest composition that source back to biases in the climate model drivers (Matthes et al. 172 

2016), we develop a new variability metric that we apply to the data and model-derived products 173 

that focuses on comparisons among variability of hydroclimate, composition, and biomass (Fig. 174 

1). Our results indicate that at centennial timescales, spatial patterns in the variability of forest 175 

composition and biomass are regulated by ecological factors such as ecotonal position and 176 

complexity rather than climate exposure as defined by the local magnitude of climate variability. 177 

 178 

Materials & Methods 179 

Overview 180 

We employ a combination of data-model and model-model comparisons (Fig. 1) in which 181 

we combine paleoclimatic and paleoecological datasets to draw inferences about past variations 182 

in hydroclimate and forest composition and biomass.  The temporal domain of this study is 850-183 

1850 AD and is bounded by the temporal extent of the climate drivers available for our model 184 

simulations (850 AD) and time of EuroAmerican settlement-era tree surveys (ca. 1850 AD).  In 185 

our study, ‘data’ refers to observation-based statistical models of past drought, forest 186 

composition, and biomass, reconstructed from tree rings, historical tree surveys, and networks of 187 

fossil pollen records.  These data-based inferences are fully independent of the ecosystem model 188 

simulations.  Model-based comparisons are from the PalEON Ecosystem Model Intercomparison 189 

Project (PEMIP) (Rollinson et al. 2017), which used spatially and temporally downscaled past 190 

climate simulations from the Fifth Coupled Model Intercomparison Project (CMIP5) as drivers.  191 
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Comparisons among ecosystem model simulations and empirical data rely on normalized values 192 

compared in environmental space, rather than geographic space, in order to reduce the effects of 193 

any bias in the climate drivers in our analyses and to focus on sensitivity of ecosystems to 194 

climate variability (Supplemental Figure 1).    195 

 196 

Observational Datasets 197 

The empirically inferred datasets leverage recent advances in pollen-vegetation modeling 198 

(Dawson et al. 2016), a form of proxy system modeling (Evans et al. 2013) in which ecosystem 199 

state variables such as composition and biomass are estimated along with associated 200 

observational uncertainties.  Of the three inferred datasets used here, two were derived from 201 

networks of fossil pollen records provided by individual data contributors and the Neotoma 202 

Paleoecology Database and were calibrated against historical surveys of forest composition and 203 

structure from the early stages of EuroAmerican settlement (Liu et al. 2011; Dawson et al. 2016; 204 

Goring et al. 2016; Kujawa et al. 2016; Paciorek et al. 2016).  Pollen-based inferences are based 205 

on statistical pollen-vegetation models (PVMs) called STEPPS and ReFAB, and represent 206 

fractional vegetation composition and total woody biomass, respectively, for 12 tree genera that 207 

are common elements of upper Midwest forests. STEPPS is a Bayesian hierarchical spatio-208 

temporal model that infers fractional forest composition from networks of fossil pollen records 209 

(Paciorek & McLachlan 2009; Dawson et al. 2016, 2019b; Trachsel et al. 2020).  STEPPS 210 

employs a process-based representation of pollen dispersal and production, with taxon-specific 211 

parameterizations. STEPPS is calibrated using spatial datasets of pollen samples and forest 212 

composition data, here from the settlement era (Paciorek & McLachlan 2009; Dawson et al. 213 

2016), then run for fossil pollen assemblages for other time intervals to produce posterior 214 

estimates of past forest composition. Using this framework, STEPPS: (i) explicitly characterizes 215 
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uncertainty in data and processes, with posterior distributions of process parameters and state 216 

variables such as forest composition, and (ii) borrows information across space and time, 217 

allowing for spatially comprehensive estimates of composition. For both the upper Midwestern 218 

USA (UMW; Minnesota, Wisconsin, Michigan) (Dawson et al. 2019a) and the northeastern 219 

USA (NEUS) (Trachsel et al. 2020), STEPPS has been used to estimate centennially resolved 220 

forest composition for the late Holocene (250 B.C. to 1750 A.D) at a 24 km grid; here we use the 221 

results from 850 to 1750 AD.  222 

  ReFAB also employs a similar approach to STEPPS but focuses specifically on 223 

estimating total aboveground woody biomass (Raiho et al. in prep). ReFAB is calibrated using 224 

the relationship between settlement-era multivariate pollen counts and biomass from PLS 225 

surveys (Paciorek et al. 2019). Parameter estimates from calibration are then used to reconstruct 226 

centennially resolved biomass for 77 sites in the UMW for the last 10,000 years (Raiho et al. in 227 

prep). ReFAB can characterize the uncertainty in sediment pollen age estimates, calibration 228 

parameters, the relationship between species composition and total aboveground woody biomass, 229 

and species-level allometries. 230 

  The Living Blended Drought Atlas (LBDA) provides yearly estimates of summer (mean 231 

June, July, August) Palmer Severity Drought Index (PDSI) for North America, based on 232 

networks of tree-growth chronologies (Cook et al. 2010; Woodhouse et al. 2010). We used PDSI 233 

as our measure of hydroclimate variability because it is an important predictor of forest dynamics 234 

in this domain and can also be calculated directly from the meteorological forcings used for the 235 

ecosystem model simulations (Clifford & Booth 2015; Cook et al. 2015).  LBDA PDSIs are 236 

provided at 0.5-degree spatial grid resolution. Due to varying temporal extent of tree-growth 237 
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chronologies, the temporal extent of the LBDA varies.  The earliest years in this spatial domain 238 

ranged from 0 to 1671 AD, while the latest year was 2005 (Supplemental Figure 1).   239 

 240 

Modeling Datasets 241 

  PEMIP model simulations here are composed of five ecosystem models with dynamic 242 

vegetation (ED2; LINKAGES; LPG-WSL; LPJ-GUESS; and JULES-TRIFFID) run at 254 243 

locations across the eastern and midwestern US at 0.5-degree spatial resolution (Rollinson et al. 244 

2020). These models vary in how they characterize forest composition and carbon dynamics and 245 

range from species-based with little ecophysiological process representation (e.g., LINKAGES) 246 

to detailed ecophysiology and cohort representation, but reliance on plant functional types 247 

(PFTs; e.g. ED2, Table 1). LPJ-GUESS and LPJ-WSL both included stochastic fire disturbances 248 

in their simulations, while other models such as ED and LINKAGES include processes of tree 249 

mortality that assume landscape-scale equilibrium (Rollinson et al. 2017). 250 

PEMIP climate drivers were temporally downscaled and bias-corrected from existing past 251 

climate simulations to meet the external forcing needs of the ecosystem model ensemble 252 

(Supplemental Figure 1) (Kumar et al. 2012; Rollinson et al. 2017). CCSM4 output from the 253 

Paleoclimate Modeling Intercomparison Project, Phase III (PMIP3) past millennium simulations 254 

and the Coupled Model Intercomparison Project, Phase 5 (CMIP5) historical simulations were 255 

downscaled to 0.5-degree spatial resolution and 6-hourly temporal resolution using standard 256 

protocols (Kumar et al. 2012; Rollinson et al. 2017). After the 6-hourly PEMIP climate driver 257 

datasets were created, they were then temporally averaged to meet the specific driver 258 

requirements of individual ecosystem models, which vary in temporal resolution.  ED2 and 259 

JULES-TRIFFID use the full suite of 6-hourly drivers for temperature, precipitation, shortwave 260 

radiation, longwave radiation, surface pressure, specific humidity, wind speed, and carbon 261 
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dioxide concentration.  Meteorological drivers for the two LPJ variants include daily 262 

temperature, precipitation, and shortwave radiation plus longwave radiation for LPJ-WSL.  263 

LINKAGES only requires monthly average temperature and precipitation.  Soil texture used to 264 

parameterize locations in model simulations was extracted from the Harmonized World Soil 265 

Database (Wei et al. 2014).   Monthly temperature and precipitation were combined with soil 266 

water holding capacity computed from model driver soil texture and depth to calculate PDSI, 267 

following (Cook et al. 2015), but using the Thornthwaite equation for evapotranspiration 268 

(Thornthwaite & Mather 1957; Pelton et al. 1960).  We used the Thornthwaite equation so that 269 

the calculation of PDSI was independent of internal model dynamics, including 270 

evapotranspiration, which can vary widely among ecosystem models, even when given the same 271 

temperature and precipitation drivers, due to differences in model structure and parameterization.   272 

From the ecosystem models, we extracted fractional forest composition and total aboveground 273 

biomass, which can be directly compared to paleoecological observations, and four variables that 274 

are latent, i.e., unobservable in the paleoecological record (Fig. 1): gross primary productivity 275 

(GPP), net primary productivity (NPP), net ecosystem exchange (NEE), and leaf area index 276 

(LAI).  277 

 278 

Analyses 279 

Analyses focused on the comparison of empirical data and ecosystem model outputs of 280 

centennial-scale variability in forest composition and biomass driven by drought variability over 281 

the last 1,000 years. Our analytical approach involved three key stages to maximize 282 

commensurability between observations and model output: 1) temporal homogenization of all 283 

variables to a common centennial resolution; 2) development of a common normalized 284 

variability metric for ecosystem and drought variability to facilitate comparison across  different 285 
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variables, and 3) use of hydroclimate sensitivity as the basis for all model-data and model-model 286 

comparisons to minimize the potential effects of biases in the climate model drivers.  287 

 288 

i. Temporal Homogenization  289 

 For annually resolved datasets in our study, including the LBDA and all model output 290 

and drivers, a generalized additive model (GAM) was used to generate time series with the 291 

similar centennial-scale smoothing as the pollen inferred observational datasets.  In this process, 292 

the response variable for analysis (e.g. drought, biomass, GPP) was modeled as a function of 293 

time (year) using a thin-plate regression spline with one knot per 100 years (e.g. 10 knots for a 294 

1,000 year window) using the gam function in the mgcv package in R (Wood 2017; Simpson 295 

2018).  To capture the temporal uncertainty similar to that generated in the PVMs, we generated 296 

a 1000-member posterior distribution of each predicted variable through time using the error and 297 

covariance of the intercept and spline parameters.  We then extracted the predicted values at 100-298 

year intervals corresponding to the windows captured by the STEPPS and ReFAB output. 299 

 300 

ii. Variability Metric 301 

 To facilitate comparisons among variables with different units such as composition and 302 

biomass, we developed a base metric for all analyses, consisting of the normalized mean 303 

temporal variability of each dataset (eq. 1).   304 

equation 1: 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦! = ln "!
#

 305 

equation 2: 𝑑!,% = -𝑥!,% − 𝑥!,%&'- 306 

Mean temporal variability at each location (𝑑!) for each variable (e.g., composition, biomass, 307 

PDSI) was calculated as the mean of the absolute first differences between adjacent time points 308 
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(𝑡, 𝑡 − 1) extracted from centennially resolved time series for each location (𝑖) (eq. 2).  The use 309 

of first differences is a discretization of the first derivative and describes the rate of change at 310 

each timestep.  Each first-difference calculation was based on the mean of the posterior draws 311 

from the STEPPS or ReFAB PVM or to the GAMs fitted to the LBDA data and ecosystem 312 

model variables.  We normalized variability by dividing the mean first differences for each 313 

location (𝑑!) by the variable mean for that dataset across the entire spatiotemporal domain (𝑥).  314 

For forest compositional data, the variability metric was calculated using the taxon or plant 315 

functional type (PFT) with the highest fractional composition at each location, with the choice of 316 

taxon or PFT allowed to vary among sites.  For all analyses and presented results, normalized 317 

variability is log-transformed to meet standard statistical assumptions of Gaussian distributions 318 

and homoscedasticity (eq. 1).   319 

 320 

iii. Hydroclimate Sensitivity 321 

  After the normalized temporal variability was calculated for PDSI and all ecosystem 322 

variables, sensitivity to hydroclimate variability was defined as the slope of a linear regression 323 

between variability as the independent variable and variability of the ecosystem response 324 

variable such as composition or biomass.  These analyses always used the appropriate 325 

observational or modeled PDSI variability (i.e., LBDA for the pollen-inferred compositional 326 

variability; calculated PEMIP driver PDSI variability for the model-simulated compositional 327 

variability) to ensure internal consistency between climatic forcing and ecosystem response.  328 

 329 

Results 330 

In the observational data, variability in forest composition or biomass in the northeastern 331 

US (NEUS) and upper midwestern US (UMW), did not correlate to drought variability (Table 1, 332 
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Figs. 2, 3) in contrast with the hypothesis that high exposure to climate variability should lead to 333 

increased compositional variability. Neither the full spatiotemporal domain (Table 1) nor the 334 

UMW (Fig. 3, sensitivity slope = 0.010 SE 0.018) showed a significant relationship between 335 

reconstructed drought and composition variability, although the NEUS showed weak sensitivity 336 

(Fig. 3, sensitivity slope = 0.065 SE 0.027).  Reconstructed biomass variability (Fig 2., biomass 337 

reconstructions not available for the NEUS, (Paciorek et al. 2019)) also was uncorrelated to 338 

drought variability (Table 1) and instead showed the highest variability at the historic prairie-339 

forest ecotone (Fig. 2) (Goring & Williams 2017).  In pollen-based reconstructions, composition 340 

and biomass variability were weakly but positively related (Fig. 3c, R2=0.09, slope=0.479 SE 341 

0.187) and locations with higher taxonomic richness tended to have higher variability 342 

(Supplemental Fig. 2). 343 

  Modeled ecosystem sensitivity to drought variability was generally similar to or higher 344 

than observations, with less-complex models tending to have a too-high predicted sensitivity 345 

relative to the empirical reconstructions (Fig. 3).  Composition variability was more sensitive to 346 

drought variability than in reconstructions for three of five ecosystem models (ED2, LPJ-WSL, 347 

and TRIFFID), with the data-model discrepancy most pronounced in models with fewer plant 348 

types or taxa (Fig. 3a, Table 1).  JULES-TRIFFID, which had only two tree PFTs (deciduous and 349 

evergreen), had the highest drought sensitivity (composition slope = -8.633 SE = 1.075, 350 

composition sensitivity slope 0.411 SE = 0.022).  LPJ-WSL and ED2, with respectively six and 351 

five PFTs, had similar mean compositional variability (LPJ-WSL slope = -7.829 SE = 0.943, 352 

ED2 slope = -7.156 SE = 0.514), although LPJ-WSL was approximately twice as sensitive to 353 

hydroclimate variability as ED2 (Fig. 3a, Table 1, LPJ-WSL slope = 0.252 SE =0.018, ED2 354 

slope = 0.118 SE = 0.018).  LINKAGES, which simulated 15 individual species, had among the 355 
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lowest sensitivity to drought variability (Fig. 3a, Table 1, composition slope = -6.598 SE = 356 

0.478, composition sensitivity slope 0.074 SE = 0.018).   357 

  Ecosystem models with simpler representation of vegetation ecophysiology 358 

(LINKAGES, JULES-TRIFFID) also had a too-high sensitivity of biomass to drought variability 359 

relative to empirical reconstructions (Table 1, Fig. 3b).  Both LINKAGES and JULES-TRIFFID 360 

showed a tight positive coupling of biomass sensitivity to drought variability, which 361 

corresponded to strong correlations between biomass and composition variability (Fig. 3c).  362 

LINKAGES showed a one-to-one relationship between composition and biomass variability, 363 

which is much stronger than reconstructions (Fig. 3c). Of all the models, only LPJ-WSL was 364 

consistent with the data in showing a weakly negative relationship between biomass and PDSI 365 

variability (Fig. 3b) while also showing a positive correlation between biomass and composition 366 

variability (Fig. 3c).  367 

  Further analysis of latent variables in the ecosystem models confirmed that variations in 368 

modeled ecosystem sensitivity to hydroclimate variability is linked to model complexity of 369 

ecosystem composition and processes (Fig. 4).   There is a cascading series of linkages in 370 

physiological variables within and among taxa (Figs. 1, 4), in which gross primary productivity 371 

(GPP) is directly influenced by temperature and moisture availability, while other state variables 372 

such as net primary productivity (NPP), leaf area index (LAI), and aboveground biomass (AGB) 373 

are regulated by additional downstream processes that may decouple their variability from 374 

climate variability (Fig. 1).  Hence, in most models, GPP variability is the most sensitive to 375 

drought variability (Fig. 4, Supplemental Table 1).  In all models, sensitivity of forest 376 

composition to drought variability seems to be most closely linked to sensitivity of NPP.   NPP 377 

sensitivity tended to be higher in low-diversity models such as JULES-TRIFFID (Figure 4, 378 
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Supplemental Table 1).  Higher diversity through more tree types or taxa was associated with 379 

higher compositional variability and reduced sensitivity to drought (Figure 3, Table 1, 380 

Supplemental Figure 2).  381 

  Models with more detailed representation of plant ecophysiology and either demography 382 

or disturbance (e.g., ED2, LPJ-GUESS, LPJ-WSL) also tended to have lower biomass sensitivity 383 

to hydroclimate variability (Fig. 4) and agree more closely with observations (Fig. 3).  Biomass 384 

sensitivity to drought variability in our model ensemble was similar to NEE sensitivity in all 385 

models except LPJ-GUESS (Fig. 4, Supplemental Table 1).  LINKAGES and JULES-TRIFFID 386 

may be overly sensitive to hydroclimate variability for entirely different reasons. LINKAGES 387 

has a fairly simple representation of ecophysiological processes while being able to represent 388 

species-level demographic dynamics (Table 1).  In contrast, JULES-TRIFFID contains a 389 

sophisticated representation of ecophysiology but for only two tree PFTs and five PFTs total 390 

(Table 1).  The other models tend to be more intermediate cases, with intermediate to more 391 

sophisticated representations of both ecophysiology and vegetation dynamics.   392 

 393 

Discussion 394 

Over the last millennium (850-1850 A.D.), both paleodata networks and model 395 

simulations suggest that spatial patterns in forest composition and biomass variability in 396 

northeastern and upper midwestern United States are governed more by spatial variations in 397 

ecosystem sensitivity and less by spatial variations in exposure to climate variability.  Ecotonal 398 

regions such as the prairie-forest border have higher variability in composition and structure than 399 

areas of high PDSI variability (Fig. 2).  The intermodel comparisons suggest that added 400 

complexity allows slow-to-change variables such as composition and biomass to be insensitive to 401 

climate variability at centennial scales despite sensitivity of fast-changing ecophysiological 402 
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processes such as gross and net primary productivity (Fig. 4).  Incorporation of ecological 403 

processes and characteristics such as diversity and demography all tend to reduce simulated 404 

climate sensitivity and better align simulations with observations (Figs. 3, 4). 405 

These analyses represent a milestone towards the goal of more comprehensive and 406 

rigorous data-model comparisons for timescales and time periods extending beyond the 407 

instrumental record.  Common challenges for multi-centennial data-model comparisons include 408 

1) a need for process-informed statistical models of inference for paleoecological data, 2) 409 

generally lower temporal resolution in paleoecological data than in model simulations and with 410 

more latent variables than for the instrumental period, 3) biases in paleoclimatic simulations 411 

leading to biases in ecosystem model simulations, and 4) differences among models in driver 412 

datasets and represented processes.  The pollen-vegetation models used in our study include 413 

processes for pollen productivity and dispersal that translates relative pollen abundances into 414 

metrics of forest composition and biomass that can be directly compared to those produced by 415 

ecosystem models (Paciorek & McLachlan 2009; Dawson et al. 2016).  We further increased the 416 

commensurability between centennially resolved pollen-based quantifications of forest change 417 

and higher-frequency information from tree rings and ecosystem models by using GAMs to 418 

achieve time series with similarly temporally smoothed properties (Simpson 2018).  By focusing 419 

on time series variability rather than directly comparing magnitude and timing of change in 420 

specific geographic locations or taxonomic groupings we were able to overcome documented 421 

ecosystem model biases arising from driver, process, and parameter limitations (Matthes et al. 422 

2016; Dietze 2017).  Finally, we leveraged differences in process representation among models 423 

as a means of evaluating the importance of specific ecosystem processes for producing emergent 424 
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patterns of climate sensitivity that are consistent with paleoecological data (Medlyn et al. 2015; 425 

McLachlan & PalEON Project 2018). 426 

 Prior studies have indicated that forest composition and growth is sensitive to climate 427 

variability at annual to centennial scales (Shuman et al. 2004; Allen et al. 2010; Thom et al. 428 

2019), yet there is also increasingly strong evidence that tree-climate relationships are non-429 

stationary and subject to multiple interacting factors, leading to spatially complex forest 430 

responses to climate change (Girardin et al. 2016) and variations in climatic sensitivity across 431 

space and time (Rollinson et al. in press; Thom et al. 2019; Peltier & Ogle 2020; Wilmking et al. 432 

2020).  Several possible explanations exist for the reporting here of generally low sensitivity of 433 

forest composition and biomass to hydroclimate in reconstructions (Fig. 2).   First, this apparent 434 

insensitivity may be due to the temporal grain of this study. The centennially resolved temporal 435 

grain of our analyses limits detection of annual-scale growth variations, the effects of stochastic 436 

or short-lived extreme events such as sub-decadal to decadal drought (Breshears et al. 2005; 437 

Allen et al. 2010; Seidl et al. 2011), or disturbance events such as fire and pest outbreaks, unless 438 

these are large enough to cause stand-replacing mortality events.   Disturbance processes are 439 

often unrepresented in ecosystem models or treated as purely stochastic and with implicit 440 

assumptions of landscape-scale equilibria (Seidl et al. 2011; Fisher et al. 2018; McCabe & 441 

Dietze 2019). Of the ecosystem models used here, LPJ-WSL and LPJ-GUESS included fire in 442 

their simulations as a semi-mechanistic process following GLOBFIRM (Thonicke et al. 2001), 443 

which estimates burned area as a function of daily fire probabilities that are a function of fuel 444 

moisture and fuel load threshold. These models showed dampened biomass sensitivity to 445 

hydroclimate variability that was more closely aligned with observations (Fig. 4), but so did 446 

ED2, which lacked fire. Hence, process representation of fire or similar semi-stochastic 447 
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disturbances is not a clear differentiator among modelled estimates of ecosystem climate 448 

sensitivity.  449 

Second, apparent climate sensitivity might increase if the temporal extent was increased 450 

to include larger climate variations during the Holocene and last deglaciation.  Although the last 451 

millennium includes climatic events such as the Medieval Climate Anomaly and Little Ice Age 452 

(PAGES 2k Consortium 2013), these climate variations appear to have been muted relative to 453 

earlier hydroclimate and temperature variations (Fischer et al. 2018).  During the Holocene, 454 

hydroclimatic variability around the North Atlantic appears to have been an important driver of 455 

forest compositional changes and the collapses of individual tree species (Shuman et al. 2019).  456 

Large vegetation changes associated with the abrupt temperature variations of the Younger 457 

Dryas and last deglaciation are well documented (Williams et al. 2011), but the temporal extent 458 

of this study was constrained by the temporal extent of the last-millennium PMIP3/CMIP5 459 

simulations used to drive ecosystem models (Braconnot et al. 2011; Taylor et al. 2012). As the 460 

next generation of transient Holocene simulations become available, the conclusions reached 461 

here about low apparent sensitivity can be revisited.   462 

Third, this paper focuses on spatial patterns of climate and ecosystem variability, whereas 463 

most prior paleoecological studies have tended to focus on temporal variations (Shuman et al. 464 

2004; Booth et al. 2012).  Our analyses of low sensitivity are consistent with recent 465 

dendroecological studies of climate-driven rates of tree growth, which are quickly shifting from 466 

assumptions of stationary tree-climate relationships to demonstrations of spatially complex forest 467 

responses (Girardin et al. 2016) and variations in climatic sensitivity varies across space and 468 

time (Rollinson et al. in press; Thom et al. 2019; Peltier & Ogle 2020; Wilmking et al. 2020).  469 

By focusing on spatial variations in ecosystem variability over the last millennium, our analyses 470 
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suggest spatial variation in ecosystem properties are a more important regulator than spatial 471 

variations in climate exposure.  Finally, uncertainties in the proxy-based reconstructions may 472 

lower correlations as detrending techniques used to remove non-climatic signals such as age 473 

effects may dampen estimates of centennial-scale variability (Allen et al. 2018; Esper et al. 474 

2018).  Despite lower PDSI variability in the LBDA than model drivers, we do not think that 475 

spatial variability in hydroclimate variability in the empirical dataset is too low to detect effects 476 

on ecosystem variability.  For example, hydroclimate data syntheses for the last 2000 years 477 

suggest opposite patterns of hydroclimate variations between Minnesota/Wisconsin and New 478 

England, which explain 30% of variance in the hydroclimate records (Shuman et al. 2019).  479 

Process-based ecosystem models are the main vehicle for forecasting climate-driven 480 

ecosystem dynamics across a range of timescales and in principle are better able to accommodate 481 

past and future no-analog climates (Williams & Jackson 2007; Veloz et al. 2012).  However, all 482 

ecosystem models face tradeoffs in their ability to represent taxonomic or functional diversity 483 

versus detailed ecophysiological processes that drive ecosystem change (Fisher et al. 2018).  484 

Process-based ecosystem models will never be able to capture the full complexity of ecosystems 485 

nor perfectly reproduce the patterns of climatological or ecological variability observed in the 486 

past due to observational uncertainties and incomplete constraints of many processes and 487 

parameterizations (Dietze 2017).  This paper has shown how multiple paleoecological data 488 

streams can be combined with harmonized paleoclimatic simulations and multiple terrestrial 489 

ecosystem models to gain new insight into a) how diversity and biological processes can dampen 490 

ecosystem sensitivity to drought variability at broad spatial scales and b) the importance of 491 

complex representations of these aspects of ecosystems to achieve better agreement with the 492 

data.  Nevertheless, these analyses followed a traditional approach in which past ecosystem 493 

Page 20 of 33Ecology Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

reconstructions and simulations were run independently and compared at the final stage of 494 

analysis. The next major step forward is to move to a full data-assimilation framework, in which 495 

paleoecological observations and simulations are combined to overcome systematic biases in 496 

model drivers, parameterization, and output to better evaluate paleoecological change using 497 

mechanistic process-based frameworks (McLachlan & PalEON Project 2018). Through this 498 

iterative process that draws upon an ever-growing and diversifying suite of observational data 499 

streams (Farley et al. 2018), we can better understand the mechanisms regulating forest 500 

sensitivity to climate variability across a broad range of timescales and thereby better forecast 501 

future forest dynamics in a complex and rapidly changing world. 502 
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Manuscript Tables 694 
Table 1: Comparison of 1) ecosystem model complexity, based on representation of diversity, 695 
demographic, and ecophysiological processes with 2) variability in forest composition (Comp) and 696 
biomass (Biom) and sensitivity to hydroclimate variability.  Variability is a normalized metric of total 697 
change in the centennially resolved time series. Sensitivity is presented as the slope and standard error of 698 
linear regression between composition or biomass variability and hydroclimate variability.  PFT = plant 699 
functional types. For sensitivity columns, * indicates slopes significantly different from zero (p<0.05); † 700 
indicates model slope significantly different from pollen (p<0.05). 701 

Data 
Source & 
Model 
Name 

Tree Diversity 
Representation 

Demographic 
Representation 

Vegetation 
Processes 

Comp. 
Var. 
(SD) 

Comp. 
Sens.  
(SE) 

Biom. 
Var. 
(SD) 

Biom. 
Sens.  
(SE) 

Pollen: 
STEPPS, 
ReFAB 

Genera: 12 trees relative 
abundance 

[implicit] -2.032 
(0.617) 

0.026 
(0.019) 

-7.798 
(0.770) 

-0.156 
(0.119) 

ED2 PFTs: 5 tree cohort photosynthesis, 
allocation, cross-
PFT competition, 
cross-cohort 
competition 

-7.156 
(0.514) 

0.118 
(0.018)*† 

-7.505 
(0.446) 

-0.079 
(0.027)* 

LINK- 
AGES 

Species: 15 tree individual cross-PFT 
competition, cross-
cohort competition 

-6.598 
(0.478) 

0.074 
(0.018)* 

-6.741 
(0.999) 

0.230 
(0.028)*† 

LPJ- 
GUESS 

PFTs: 6 tree, 1 
grass 

cohort photosynthesis, 
allocation, cross-
PFT competition, 
cross-cohort 
competition 

-7.290 
(0.452) 

0.056 
(0.018)* 

-7.379 
(0.597) 

-0.069 
(0.027)* 

LPJ- 
WSL 

PFTs: 5 tree, 1 
grass 

PFT photosynthesis, 
allocation, cross-
PFT competition, 
cross-PFT 
competition 

-7.829 
(0.943) 

0.252 
(0.018)*† 

-7.106 
(0.964) 

-0.020 
(0.027) 

JULES- 
TRIFFID 

PFTs: 2 Tree, 2 
grass, 1 shrub 

PFT Photosynthesis, 
allocation,  cross-
PFT competition 

-8.633 
(1.075) 

0.411 
(0.022)*† 

-8.639 
(0.952) 

0.203 
(0.033)*† 

702 
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Manuscript Figures 703 

 704 
Figure 1: Overview of the unified conceptual framework (gray boxes) for parallel analysis of 705 
empirical data (blue boxes) and model output (red boxes).  For ecosystem models, we describe 706 
the latent climatic and ecosystem processes that are unobservable in paleoecological data and 707 
differences among models in complexity. Complexity here is organized into three categories:  1) 708 
diversity, ranging from a few plant functional types (PFTs) to many species; 2) demography, 709 
ranging from ‘big leaf’ models with no explicit treatment of forest demography to models with 710 
individual trees; and 3) ecophysiological processes. Changes in forest biomass emerge from 711 
latent ecophysiological processes including gross primary productivity (GPP), net primary 712 
productivity (NPP), net ecosystem exchange (NEE), and leaf area index (LAI).  713 
Ecophysiological processes are controlled by model representation of higher-level vegetation 714 
processes (Table 1).   Latent model drivers, processes, and states (red boxes) result in estimates 715 
of forest composition and biomass that can be compared to paleoecological data products (blue 716 
boxes).  Models vary in complexity due to design philosophy and tradeoffs between model 717 
complexity and computational speed. 718 
 719 

  720 
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 721 
Figure 2: Spatial distribution of inferred temporal variability for 850 to 1850 AD for a) drought 722 
(PDSI) from the Living Blended Drought Atlas (44), b) forest composition from the STEPPS 723 
pollen-vegetation model (8, 24), and c) forest aboveground biomass from the ReFab pollen-724 
biomass model (7).  All variability estimates were divided by mean to facilitate inter-variable 725 
comparison (Methods).  Spatial extents of compositional and biomass reconstructions are uneven 726 
across the study domain, as is the temporal extent of reconstructed drought variability 727 
(Supplemental Figure 1). Empirical comparisons of composition or biomass variability with 728 
drought variability are restricted to the common temporal extents for each location. In the log 729 
scale, negative values indicate locations with low variability whereas more positive values 730 
indicate high variability. 731 
  732 
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 734 

735 
Figure 3: Inferred (black, gray) and simulated (colors) sensitivity of variability of forest 736 
composition and biomass to ecohydrological variability (PDSI) (a,b) and of biomass variability 737 
to compositional variability (c).  Inferred variables suggest weak to no correlation (low 738 
sensitivity) between climate variability and ecosystem variability (composition and biomass).  In 739 
contrast, ecosystem models generally simulate higher sensitivity of ecosystems to climate 740 
variability.  Inferred compositional (STEPPS) and biomass (ReFAB) variability are positively 741 
correlated, while this relationship varied among models.  In the log scale, negative values 742 
indicate locations with low variability whereas more positive values indicate high variability. 743 
 744 
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 746 
Figure 4: Diagnosing the observed and latent relationships among ecohydrological variability 747 
and variability in forest composition, structure, and function in five terrestrial ecosystem models. 748 
Models in the top row (LPJ-GUESS, LINKAGES, ED2) have individual- or cohort-level 749 
representation of demography whereas those in the bottom row (LPJ-WSL, JULES-TRIFFID) do 750 
not simulate demography. All models showed positive correlations between composition and 751 
drought variability, but some models showed positive biomass sensitivities (LINKAGES, 752 
JULES-TRIFFID) while others were negative (ED2, LPJ-WSL, LPJ-GUESS).  In all models, 753 
composition sensitivity to hydroclimate variability was most similar to NPP whereas biomass 754 
sensitivity tended to mirror NEE. In the log scale, negative values indicate locations with low 755 
variability whereas more positive values indicate high variability.756 
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Supplemental Tables 757 
Supplemental Table 1: Sensitivity of latent state variability to hydroclimate (PDSI) variability 758 
in ecosystem models and pollen data products.  Sensitivity is presented as the mean and standard 759 
error slope from log-log regression; * indicates slopes significantly different from zero (p<0.05).  760 
LINKAGES does not simulate GPP. LAI output was not available for LPJ-WSL. 761 
Model GPP NPP NEE LAI Biomass Composition 

Pollen         -0.156 
(0.119) 

0.026 (0.019) 

ED2 0.201 
(0.028)* 

0.190 
(0.025)* 

0.008 
(0.024) 

0.203 
(0.024)* 

-0.079 
(0.015)* 

0.118 (0.017)* 

LPJ-WSL 0.320 
(0.033)* 

0.301 
(0.033)* 

0.010 
(0.034) 

  -0.020 
(0.034) 

0.252 (0.029)* 

LPJ-GUESS -0.022 
(0.031) 

0.038 
(0.034) 

-0.152 
(0.031)* 

-0.034 
(0.022) 

-0.069 
(0.020)* 

0.056 (0.015)* 

LINKAGES   0.186 
(0.027)* 

0.232 
(0.030)* 

0.222 
(0.031)* 

0.230 
(0.033)* 

0.074 (0.016)* 

JULES-
TRIFFID 

0.294 
(0.051)* 

0.365 
(0.051)* 

0.110 
(0.028)* 

0.295 
(0.035)* 

0.203 
(0.038)* 

0.411 (0.033)* 
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Supplemental Figures 763 

 764 
Supplemental Figure 1: Comparison of log normalized PDSI variability in empirically-inferred 765 
reconstructions from the Living Blended Drought Atlas (LBDA, 41, a, b) and model drivers (c).  766 
Due to the regional differences in the length of tree-ring chronologies available for PDSI 767 
reconstruction, the temporal extent of analyses involving LBDA drought is uneven across space.  768 
Overall, model drivers had greater PDSI variability than seen in the LBDA, but both datasets 769 
show greater variability in the western region of the study domain. 770 
 771 
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 773 
Supplemental Figure 2: Relationship between taxonomic richness and log normalized biomass 774 
(ReFAB) and composition (STEPPS) variability in pollen-inferred datasets. 775 
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