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In recent years, machine learning (ML) has been
proposed to devise data-driven parametrisations of
unresolved processes in dynamical numerical models.
In most cases, the ML training leverages high-
resolution simulations to provide a dense, noiseless
target state. Our goal is to go beyond the use
of high-resolution simulations and train ML-based
parametrisation using direct data, in the realistic
scenario of noisy and sparse observations.

The algorithm proposed in this work is a two-step
process. First, data assimilation (DA) techniques are
applied to estimate the full state of the system from a
truncated model. The unresolved part of the truncated
model is viewed as a model error in the DA system. In
a second step, ML is used to emulate the unresolved
part, a predictor of model error given the state of the
system. Finally, the ML-based parametrisation model
is added to the physical core truncated model to
produce a hybrid model.

The DA component of the proposed method
relies on an ensemble Kalman filter while the ML
parametrisation is represented by a neural network.
The approach is applied to the two-scale Lorenz
model and to MAOOAM, a reduced-order coupled
ocean-atmosphere model. We show that in both cases
the hybrid model yields forecasts with better skill
than the truncated model. Moreover, the attractor of
the system is significantly better represented by the
hybrid model than by the truncated model.
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1. Introduction
The Earth climate system is one example of a natural system that is reasonably well represented
through known physical laws and that has been intensively observed for decades (see, e.g., [1]).
Physical laws, in the form of ordinary (ODEs) or partial differential equations (PDEs), are
implemented through numerical models providing the time evolution of the system’s state.
Although weather and climate predictions have constantly improved, and will likely continue
to do so, uncertainties will ineluctably remain. Those usually fall into two major classes: (i) the
internal variability driven by the sensitivity to the initial conditions, and (ii) the model errors.
The former has to do with the amplification of the initial condition error and arises even in
perfect models - it is mitigated by using data assimilation (DA) [2]. The latter is present even
if one would perfectly know the initial conditions and has to do with the incorrect and/or
incomplete representation of the laws governing the system. The two sources of errors are
inevitably entangled and it is difficult to separate them in practice.

Machine learning (ML) was recently shown to be effective in reducing model error, in
particular that originating from unresolved scales. This has been achieved using two approaches.
The first consists in learning a subgrid parameterisation of a model from existing physics-
based expensive parametrisation schemes [3,4], or from the differences between high- and
low-resolution simulations [5–8]. In those approaches, the unresolved part of the model is
represented by a ML process while the core of the model is derived from ODEs. The second
approach is to emulate the entire model using observations. With spatially dense and noise-free
data, this approach has been based on sparse regression [9], echo state networks [10,11], recurrent
neural networks [12], residual neural network [13] or convolutional neural networks [14,15]. The
challenging problem of partial and/or noisy observations has been addressed using dedicated
NN architecture [16] or in combination with data assimilation methods [17–21].

This work presents a new method to obtain a data-driven parameterisation of a model’s
unresolved scale. In particular, we aim at producing a hybrid model combining the physics-based
core (encoding the best of our knowledge of the resolved scales physics) with the data-driven
parameterisation. By leveraging the use of DA, our method efficiently handles noisy and sparse
observations.

2. Objectives and definitions

(a) Statement of the problem
We consider an autonomous chaotic dynamical system, seen as our reference “truth”, represented
by the ODE

dz(t)
dt

= f(z(t)), (2.1)

with z(t)∈RNz being the system’s state at time t. From an arbitrary state z(t) on the system’s
attractor the model can be integrated forward for one time step δt, to get:

zδt =M(z, δt), (2.2)

where zδt = z(t+ δt).
Let us formally define a projection operator Π :RNz 7→RNx such as x=Π(z), with x being

the projection of the full state into a reduced dimension state: Nx <Nz . For example, Π can
be a subsampling operator retaining only a subset of z or a downscaling operator from a
high-resolution state to a lower resolution. From Eq. 2.2, we also define xδt =Π(zδt).

Consider now a scale-truncated model,Mr, that provides an imperfect description of Eq. (2.2)
in the reduced space RNx ,

xr
δt =M

r(xr, δt), (2.3)
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where the superscript r stands for “resolved”. When initialised from the projection of the truth
into the reduced space (i.e. no initial condition error: xr = x), the difference between the 1-time
step predictions from Eqs. (2.2) and (2.3) defines the model error due to the neglected scales in the
resolved model

εm(z, δt) = xδt − xr
δt =Π ◦M(z, δt)−Mr(Π(z), δt). (2.4)

The objective of this work is to complement the resolved model (2.3) by an empirical
representation of the unresolved scales based on a neural network (NN) trained on incomplete
and noisy data. We will hereafter denote the NN-based unresolved scale representation by g(x,θ).
The vector θ is the set of trainable parameters of the NN and is determined by minimising the
loss function

L(θ) =Ez∼pZ
[
g(Π(z),θ)− εm(z, δt)

]2
, (2.5)

where pZ is the invariant probability density function (assumed to exist) on the attractor.
We construct the hybrid modelMh, parametrised by θ, such that

xh
δt =M

r(x, δt) + g(x,θ) =Mh(x, δt). (2.6)

Our objective is to optimally estimate the parameters θ so that the hybrid model is the most
accurate representation of the true underlying dynamics.

Apart from trivial cases, the loss function in Eq. (2.5) cannot be computed: xδt is unknown and
pZ is generally intractable. Assuming ergodicity of the true dynamics, we can however estimate
it by a Monte-Carlo approach such that:

L(θ)≈ 1

K

K−1∑
k=0

[
g(xk,θ)− εm(zk, δt)

]2
, (2.7)

where z0:K−1 = {z0, z1, · · · , zK−1}, zk = z(tk), is a set of samples of pZ , typically extracted
from a time series of modelled state variables and xk =Π(zk). Such samples are usually not
independent (due to the underlying dynamics being deterministic), and only provide a biased
approximation of pZ . Furthermore, the need to sample the whole attractor implies treating time
series significantly longer than the decorrelation time (i.e. K very large in general) .

(b) Framework of the study
The loss function, Eq. (2.7), cannot be minimised directly because some of its key entries are
unavailable, in particular, obviously, the true process Eq. (2.2) and the time series z0:K−1. The
available terms in the loss function are:

The truncated model. The truncated model, our best available knowledge about the true process,
is usually very complex (high dimensional, nonlinear and with diagnostic variables). Hence, we
shall assume that its gradient, ∇xMr, cannot be computed analytically. We will thus focus on
developing a (model) adjoint-free approach that is more flexible and suitable to high dimensional
nonlinear scenarios where deriving and maintaining an adjoint model is a difficult and costly
task [22]. When the gradient can be computed, other efficient methods exist [21].

Observations. Observations are incomplete and noisy and are obtained through:

yk =Hkxk + εok, (2.8)

where xk is the true state in the reduced space, yk ∈RNy and Hk ∈RNy×Nx are the observation
vector and operator respectively at tk, while εok is the observation error, assumed to be
uncorrelated in time and normally distributed with mean 0 and a variance-covariance matrix
(σo)2 INy

, where INy
is the identity matrix of size Ny ×Ny and σo is the standard deviation.

For simplicity, the observation error standard deviation is taken constant and the observation
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operator linear. Both assumptions can be relaxed without major drawbacks even if it can induce
practical difficulties. The ideal, most favourable, situation in which the full system’s state is
observed in the reduced space with no error is referred as the "perfect observation" case: yk = xk.
For convenience, we further assume that observations are available regularly at multiples of the
model time step such that ∆t= tk+1 − tk =Ncδt, Nc ∈N∗. This also accounts for the fact that, in
general, the observation sampling period is longer than the integration time step of the numerical
model.

3. Method

(a) Loss function approximation
Let us assume that an estimation of xk (k ∈ {0, · · · ,K}) is available at observation times, every
∆t=Ncδt, so that

xk+1 =Π ◦M(Nc)(zk, δt), (3.1)

whereM(Nc) is the composition of the model Nc times, and similarly for the truncated model,
xr
k+1 =M

r(Nc)(xk, δt). Since observations are not available at each time step (Nc > 1), the model
error εm is not known at each time step neither, and the loss function Eq. (2.7) cannot be exactly
computed. In the following, we will present two key simplifying assumptions that will lead to a
tractable approximation of the loss function.

The first consists in assuming ∆t to be short enough so that the state evolved by the truncated
model is independent of the model error due to the unresolved scale so that the model error is
an additive term to the truncated model forecast after a ∆t time integration. The second in that
the variability of εm is small within∆t. The combination of these two hypotheses is known as the
linear superposition assumption, and can be formalised as:

xk+1 ≈ xr
k+1 +Nc × εm(zk, δt). (3.2)

Note that the same approximation was made in a similar setting by [8].
The optimisation can now be performed using the approximate loss function:

L(θ)≈La(θ) =
1

KN2
c

K−1∑
k=0

[
Ncg(xk,θ)− (xk+1 − xr

k+1)
]2
. (3.3)

The modified loss function, Eq. (3.3) can be computed without knowing the full state zk but only
its projection xk. La can be minimised using a gradient descent algorithm as long as the gradient
of g(xk,θ) can be computed, which is standard for any neural network library.

(b) Description of the algorithm
In order to minimise the loss function defined in Eq. (3.3), a sequence of x0:K has to be available.
Two cases are considered: the first is the aforementioned "perfect observations" case, in which
we have a complete and noise-free sequence of a state variable xk in the reduced space. This
ideal situation will set the upper-bound performance in the algorithm evaluation that follows.
The second case is the more realistic case of noisy (yet unbiased) and possibly incomplete
observations. Here, a complete sequence x0:K is obtained by processing the incomplete and noisy
observations using DA [2]: the observations yk are combined with the forecast from the truncated
model xr

k in order to provide the analysed state vector xa
k. The DA method used in this work is the

Finite-Size Ensemble Kalman Filter (EnKF-N) [23] implemented in the DAPPER framework [24].
Even if the proposed algorithm is general and suitable for any DA algorithm, the EnKF-N has
been chosen because of its efficiency. In particular, the inflation factor, a needed fix to mitigate the
impact of sampling errors in the ensemble-based DA methods, is automatically estimated (thus
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avoiding long tuning). This inflation factor accounts also implicitly and partially for the effect of
the model error.

The correction xa
k − xr

k made by DA is called analysis increment and was used to estimate
model error due to unresolved scales in sequential DA in [25,26]. An analysis increment is
composed of a correction both for the model error (which is what the hybrid model aims at
estimating) and for the initial conditions error (which cannot be represented by the hybrid model).
There is also an additional uncertainty due to the observation errors. The initial conditions and
the observations errors are two sources of uncertainties called the data uncertainties. If they are
too large, relatively to the model error, they could bias the estimation of the loss function given
in Eq. (3.3) causing the hybrid model to overfit on these data and to lack generalisation to other
initial conditions. To mitigate this problem, the time series xa

0:K estimated by DA is filtered using
a simple low-pass filter (a rolling mean) producing a smoothed time series xs

0:K . This filter is
expected to correct for data uncertainty provided that the observation error is uncorrelated in
time, and thus contains high-temporal frequencies. On the other hand, this filtering could remove
the fastest scales of the unresolved part of the model. Although it has been assumed in the linear
superposition assumption that these high-frequencies can be neglected, we do not know a priori
to which extent, which can lead to possibly hamper the forecast skill. The scale separation between
the model error acting on long time scales and the initial errors acting on faster scales has been
used in previous studies either to estimate the model error in DA [18] or to improve the forecast of
a NN model [11]. Finally, note that the filtering can be adapted separately for the fast and the slow
variables contained in xk. This is, for instance, the case in coupled atmosphere-ocean models, and
is addressed in section 5.

Algorithm 1 Summary of the algorithm used to determine the hybrid model
Input: Observations y0:K ,

truncated modelMr,
NN architecture g(x,θ).

Output: state vector estimation xs
0:K ,

optimal value of θ.
1: if y0:K is perfect then
2: xs

0:K = y0:K

3: else
4: Use a DA algorithm (e.g. EnKF-N) to estimate the state vector series xa

0:K

5: Filter the components (or a subset of components) of xa
0:K using a low-pass filter to

produced the smoothed field xs
0:K

6: end if
7: compute the target for the NN: εmk = (1/Nc)(x

s
k+1 −M

r(xs
k, Ncδt))

8: Determine θ (training of the NN) using the dataset (xs0:K−1; ε
m
0:K−1)

9: return (xs
0:K ,θ)

In both perfect and imperfect observations cases, the loss function La(θ) is minimised using
a standard NN training procedure: if g(xk,θ) is represented by a NN, xk as the inputs and θ as
weight, the problem is equivalent to a supervised regression problem in which the targeted output
of the neural network is εmk = (1/Nc)(xk+1 − xr

k). The algorithm is summarised in Algorithm 1.

(c) Numerical experiment protocol
The performance of the algorithm is evaluated on twin experiments: a full modelM is used to
produce true states, synthetic observations, and to assess the forecast skill of the hybrid model.
The truncated modelMr is obtained by neglecting some components of the true model.
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A series of true states x0:K is produced using the true model after projection in the reduced
space. This series is used as perfect observations to obtain the so-called "perfect observation-
derived hybrid model". Then, synthetic observations are generated using the definition in
Eq. (2.8). Here, it is assumed that the observation operator and the observation error statistics are
perfectly known. This assumption is not needed for the functioning of the proposed algorithm
and could be relaxed at a future stage. Nonetheless, the assumption is done here to simplify
the interpretation of the results so the focus is on the truncated model error. Furthermore, the
observation error statistics can also be estimated within the DA process itself (see [40] for a review
of such methods), and thus be integrated into our combined ML-DA method.

The observations generated using Eq. (2.8) are used in Algorithm 1 to produce the so-called
"DA-derived hybrid model". Note that the perfect observation-derived hybrid model benefits
from the optimal information at a given time step (the state is completely observed without
noise). Given the conditions stated in section 2(b), it is expected to be the best possible model
and represents the benchmark against which we will test the DA-derived hybrid model.

(d) Evaluation metrics
The skill of each model is evaluated by running an ensemble of N f = 20 forecasts for N f

different initial conditions and for a time period τ : xf(l)(τ) (l= 1, · · · , N f ). TheN f different initial
conditions are chosen on the attractor of the true model (by running the model long enough before
setting the initial conditions), independent of the values of the time series x0:K used to perform
the DA and the NN training. This ensemble of forecast constitutes the so-called test dataset, as it
is not used to optimise nor to tune the algorithm. If tuning the algorithm is needed, the original
time series x0:K can be split in a training part (used to optimise the NN) and a validation part
(used to tune the NN algorithm).

As evaluation metric we will use the relative root mean square error (R-RMSE)

R-RMSE(τ, n) =

√√√√ 1

N f

N f∑
l=1

1

2Vn(xt)

(
x
f(l)
n (τ)− xt(l)n (τ)

)2
, (3.4)

where xf(l)n (τ) (resp. xt(l)n (τ)) is the forecast from the hybrid or the truncated model (resp. the true
model) at time τ for the n-th component of x and for the sample l corresponding to a simulation
for one particular initial condition. Vn(xt) is the n-th component of the variance over the time
dimension of the true model forecast time series xt. Note that if the truncated and/or the hybrid
models have the same variability as the true one (i.e. the same variance in time), the R-RMSE
converges to 1.

4. Application to the two-scale Lorenz model

(a) Description of the model
The two-scale Lorenz model [27], hereafter L2S, is given by the following set of ODEs:

dxn
dt

=ψ+
n (x) + F − c

b

9∑
m=0

um+10n

dum
dt

=
c

b
ψ−
m(bu) + h

c

b
xm/10,

ψ±
n (x) =xn∓1(xn±1 − xn∓2)− un,

(4.1)

where n= 0, · · · , Nx − 1 (Nx = 36) andm= 0, · · · , Nu − 1 (Nu = 360). The indices n are periodic,
e.g., x0 = xNx

. The values chosen for the parameters are the same as in [28]: the time scale ratio
c is set to 10, the space-scale ratio b= 10, the coupling h= 1 and the forcing F = 10. Time t is
expressed in model time unit, denoted MTU hereafter.
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This set of two-scale ODEs, considered as the true model, is integrated using a fourth-order
Runge-Kutta scheme with a time step of 0.005 MTU. The ODEs describing the evolution of x only
represent the truncated model and are obtained by setting the coupling c to 0. It is integrated
using a fourth-order Runge-Kutta scheme with a time step of 0.01 MTU.

(b) Setup of the reference experiment
A so-called "reference experiment" is defined in this section. The true model is integrated
over approximately 1500 MTU after a spinup of 3 MTU to produce the true state, on which
observational noise is added. The EnKF-N is used to assimilate these observations using a large
number N = 50>Nx of ensemble members to reduce sampling errors. A noise is added to the
state vector after each forecast to approximately account for the model error due to the model
being truncated. It helps to avoid filter divergence and can be seen as additive inflation. This step
is necessary given that, due to model error, the forecast ensemble would be otherwise under-
dispersive. The noise is assumed Gaussian with zero mean and standard deviation σm = 0.06

optimised after tuning experiments (not shown here). In this reference experiment, the analysis
obtained from the DA is not filtered, yet the sensitivity to the filtering of the DA analysis is studied
in section 4(d).

The last step of the algorithm is to train a neural network to emulate the unresolved part of
the model on the 1500 MTU time series produced by DA. The NN architecture is composed of
convolutional layers (denoted “conv.” in Table 1) where the non-linear activation function is a
hyperbolic tangent (denoted "tanh"). Some additional parameters have been added, mainly to
regularise the training: a batchnorm layer at the input layer, which normalises the training batch,
and a L2-regularisation term on the parameters of the last layer. The parameters of the NN are
optimised using the "RMSprop" [29] optimiser over 100 epochs. For each epoch, batches of 33
training examples are used to optimise the weights, until all the examples are consumed: this is
a standard stochastic minimisation procedure [30]. Full details on the reference experiment are
given in Table 1, in the column labelled L2S.

(c) Results
The terminology of the experiments described in the following is recalled in table 2. In Figure 1,
both the true model and the DA-derived hybrid model (based on the reference experiment
described in section 4(b)) are initialised from an initial condition on the attractor, chosen to be
independent of the training set x0:K . The true and the hybrid model are run over 5 MTU, and
their difference is displayed. It can be noticed that both runs are very close until 2 MTU and that
the hybrid model has predictive skill until 3-4 MTU for this particular set of initial conditions.
Note that the Lyapunov time of the truncated model is 0.72 [33], meaning that the hybrid model
provides accurate forecasts until 3 Lyapunov times.

In Figure 2, the R-RMSE is averaged over 20 members corresponding to 20 initial conditions
and also across all the 36 components of x. R-RMSE is displayed as a function of time. Several
densities of observations have been considered: ifNy = 36 the full state is observed in the reduced
space at each observation time. If Ny < 36, Hk is a sub-sampling operator that draws randomly
Ny values from the state following a uniform distribution changing the observation locations at
each time step.

Results shown in Figure 2 (left panel) confirms that the DA-derived hybrid model has a
predictive skill, significantly better than the truncated model until 4 MTU. The effect of reduced
observation density is minor: the skill of the various hybrid models’ forecasts is very similar. This
shows the algorithm efficiency in handling sparse data to accurately train a NN model. This is a
key strength of our method; most of the other approaches that parametrise a part of the model
using ML assume dense observations, e.g. [3,4,7] (similarly to our perfect observation case).
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Table 1. Settings of the numerical experiments with the L2S “reference experiment” and with MAOOAM.

L2S MAOOAM
Parameter Symbol Value Value Note

climatological std σhf NA calculation in 5(b).
Model parameter

Size of the state Nx 36 36
Integration time step δt 0.01 MTU 1.6 min

Integration time T 1500 MTU 62 years.
Imperfect observation setting

Standard deviation σo 0.1 0.1σhf Ocean filtered.
Observation operator H INx

INx
Identity matrix

Time sampling ∆t 0.05 MTU 27 hours
Data assimilation

DA algorithm EnKF-N
Ensemble size N 50 50

Model additive noise σm 0.06 10−3σhf
1:20 Atmosphere only

Low-pass filtering size No 55 days Ocean only.
Neural Network

L2S MAOOAM
Type of Layer 1 Batchnorm Batchnorm [31]
Type of Layer 2 conv. dense
Size of Layer 2 43 100

Activation of Layer 2 tanh ReLU [32]
Filter size of Layer 2 5 -

Type of Layer 3 conv. dense
Size of Layer 3 28 50

Filter size of Layer 2 1 -
Activation of Layer 3 tanh ReLU

Type of Layer 4 conv. dense
Size of Layer 4 36 36

Activation of Layer 4 Linear Linear
L2 regularisation 0.07 10−4

Optimiser RMSprop RMSprop [29]
Number of epochs 100 100

batch size 33 128

Table 2. Numerical experiments terminology

Reference experiment Setup defined in table 1 (column L2S).
DA-derived hybrid model NN trained with data assimilation reanalysis obtained

from noisy and sparse observations.
Perfect-observation-derived
hybrid model

NN trained with perfect observations.

(d) Sensitivity studies
In Figure 2 (middle and right panels), the forecast sensitivity to different parameters is studied
using the R-RMSE at a lead time τ = 2MTU, averaged over 20 simulations, and over all
components of x. The middle panel shows the sensitivity to the observation sampling frequency.
For the perfect observation-derived and DA-derived hybrid models, the forecast skill is sensitive
to the value of ∆t. The forecast skill is significantly degraded for higher values of ∆t. This is
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Figure 1. Hovmøller plot of the true model (upper panel) and of the DA-derived hybrid model (middle panel) for the same

particular initial conditions over 5 MTU. The bottom panel shows the difference between the two simulations. The setup

of the experiment is detailed in Table 1.

Figure 2. Left: R-RMSE versus time for the perfect observations-derived hybrid model (green), the truncated model

(red) and the DA-derived hybrid model (other colours) for 3 different densities of observation. Observation standard

deviation, σo = 0.1, the time interval, ∆t= 0.05 MTUs, are as in the reference experiment; thus for Ny = 36 we

retrieve the reference experiment. Middle: R-RMSE at a lead time τ = 2 MTUs for the DA-derived hybrid models

(orange) and the perfect observation-derived hybrid models (green) for different observation sampling time ∆t as well as

the truncated model (red). Right: R-RMSE for the hybrid models trained with no filtering of DA analysis (orange) and

with a 0.05 MTU window filter (purple) for different observation error standard deviation σo. Black contour indicates the

reference experiment conditions described in Table 1.

probably due to the violation of the linear superposition assumption for high values of ∆t so that
the coupling between the resolved part and the unresolved part of the model, as well as the effect
of non-linearity of the unresolved part, are no longer negligible.

The right panel of Figure 2 examines the impact of the observational noise. The result of the
reference setting (where the analysis is not filtered before training the NN) is compared with
the case of filtering with a rolling mean of 0.05 MTU (i.e. 5 time steps). Without filtering, the
forecast skill deteriorates as the observation noise increases. Filtering the signal for small noise
deteriorates the forecast skill too. This means that some source of predictability lies in the fast
scales of this model (which confirms results from the middle panel, when it appears that shorter
time sampling for observation improves the forecast skill). This small temporal scale variability
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is damped by the filter, but also by the increase of the observational noise that tends to add
randomness on all scales, including the small ones. In this case, except for very strong noise,
filtering does not seem to improve drastically the forecast skill. Notably, even a strong noise in
the data has only a very small influence on the forecast skill of the hybrid model: when the noise
on the observation is multiplied by a factor 20, the error in the forecast at t0 + 2MTU is only
multiplied by a factor 1.3.

From the results on the 2-scales Lorenz model, we conclude that the algorithm is robust against
varying data spatial density, but is sensitive to their temporal distribution. Also, filtering the
analyses obtained from DA may appear useful for slow processes but can deteriorate the results
by filtering significant fast processes.

5. Application to a low-order coupled ocean-atmosphere model

(a) Description of the model
We consider here the Modular Arbitrary-Order-Ocean-Atmosphere Model (MAOOAM)
introduced by [34]. MAOOAM has 3 layers (2 for the atmosphere and 1 for the ocean) and is
a reduced-order quasi-geostrophic model resolved in the spectral space. Its state is composed of
na modes of the atmospheric barotropic streamfunction ψa,i and the atmospheric temperature
anomaly θa,i respectively, plus no modes of the oceanic streamfunction ψo,j and the oceanic
temperature anomaly θo,j respectively. The total number of variables is Nx = 2na + 2no. We
consider two versions of MAOOAM: the true model with dimension Nz = 56 (na = 20,no = 8)
corresponding to the configuration “atm. 2x-2y oc. 2x-4y” in [34] and the truncated model with
Nx = 36 (na = 10,no = 8) corresponding to the configuration atm. “2x-4y oc. 2x-4y” in [34]. The
truncated model is missing 20 high-order atmospheric variables (10 for the streamfunction and 10
for the temperature anomaly). Thus the truncated model does not resolve the atmosphere-ocean
coupling related to these high order atmospheric modes.

The true model is used to generate synthetic observations. The forecast skill and the long-term
properties of the truncated and the hybrid models will be evaluated by inspecting 3 crucial model
variables, called key variables, that are ψo,2, θo,2 and ψa,1 (i.e. the second components of ocean
streamfunction and temperature and the first component of the atmospheric streamfunction).
They account for 42%, 51%, and 18% respectively of the variability of a reanalysis of 2-dimensional
fields [35], and have been already used in previous studies (e.g. [36]). MAOOAM has also been
recently used to study coupled data assimilation methods [37,38]. Unsurprisingly, in MAOOAM
the ocean variables are considered the slow ones while the atmospheric variables are the fast ones.

(b) Experimental setup
We will express time in real time units (minutes, hours, days, ...) but, in practice, the model time is
non-dimensional. Consequently, the dimensioned time values presented hereafter are not round
numbers.

Given the diverse time scales and amplitudes of the MAOOAM variables, the noise parameters
are all scaled on a climatological standard deviation of high frequencies σhf ∈RNx , which is
defined as the temporal standard deviation of the state vector after filtering out slow variations
of a period longer than 1 month. This high-pass filter is carried out by subtracting the 1-month
running average.

The parameters of the experiments are presented in Table 1, in the column labelled MAOOAM.
The true model is integrated over approximately 62 years after a spinup of 30, 000 years, in the
same configuration as in [34]. In all experiments with MAOOAM, the state is fully observed every
27 hours (∆t= 27 hours) (corresponding to Nc = 1, 000). A small modification was made to the
observations from Eq. (2.8) to account for the fact that observations of the ocean are not at the same
scale as those of the atmosphere: before being assimilated, instantaneous ocean observations are
averaged over a 55 days rolling period centred at the analysis times. The EnKF-N is used as DA
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algorithm. The noise on the model forecast is added only to the atmospheric variables with a
standard deviation of σm = 10−3σhf

1:20. As mentioned in section 3(b), the analysis obtained from
the DA is filtered. The slow processes are expected to occur mainly in the ocean, so only the
ocean components of the state vector xa

0:K are filtered to produce xs
0:K . Differently from the L2S

model experiments, filtering the analysis has proven necessary to train the hybrid model using
MAOOAM.

The NN-architecture is a simple 3 layers multi-layer perceptrons; see Table 1 for full details. As
opposed to the L2S model, the state vector has no locality properties (because it is defined in the
spectral space), so the convolutional layers are not applicable (see the discussion about locality
in [20]). The training of the NN is performed in the same way as for the L2S experiments.

(c) Results
The forecast skill metrics are presented in Table 3 for the truncated model as well as for the perfect
observation-derived and the DA-derived hybrid models. Given the different time scales involved,
the forecast lead time of the key atmospheric variable ψa,1 is 1 day whereas the forecast lead
time of the two key oceanic variables ψo,2 and θo,2 is 2 years. It can be seen that both perfect
observation-derived and DA-derived hybrid models have superior skill to the truncated model.
The improvement is larger for the ocean, with a factor of 2 to 3, and is similar for both hybrid
models. Recall that the true model has here the same oceanic variables as the truncated model, so
there is no difference in the representation of the pure oceanic processes. The improvement is thus
fully due to an enhanced representation of the atmosphere-ocean coupling processes, the hybrid
model better representing the interplay between the unresolved fast atmospheric variables and
the slow oceanic variables.

The atmospheric key variable is improved to a lesser extent by the two hybrid models, and
the perfect observations-derived model is significantly better than the DA derived model. This
proves the limited capability of the hybrid model to represent a fast process, a situation further
exacerbated in the case of the DA-derived hybrid model, when only noisy and partial data are at
disposal. This result was indeed expected given the assumptions made on the unresolved term
of the model in section 3(a) when a slow variation of the unresolved term was assumed. The fast
processes are also less accurately represented because the sampling rate of the observations (27
hours) is well beyond the atmospheric time scale, and because of the presence of the observation
errors (when applied).

In Figure 3, the attractors of the different models are displayed in the phase space defined
by two key variable: ψo,2 and ψa,1. A significant difference can immediately be seen between the
attractors of the truncated and the true models: the truncated model visits areas of the phase space
that are not admitted in the real dynamics. Remarkably, these discrepancies are reduced by the
hybrid models both derived from perfect observation and from DA. Some states seem to remain
out of the true model attractor, however, but much fewer.

Quantitative characterisation of the attractors is presented in Table 4, which provides the 3
quartiles (including the median) for each key variable. For the truncated model and the hybrid
models, the difference of the quartiles is given relatively to the true model. For all the oceanic
variables the distribution of the values of both hybrid models is significantly closer to the true
distribution than for the truncated model. For the key atmospheric variable ψa,1, only the hybrid
model derived from perfect observations shows an improvement. It confirms the conclusion made
on the forecast skill that the hybrid model represents well the slow process, in particular oceanic
variables in this case, and that the fast processes are not fully retrieved, in particular in case of the
DA-derived hybrid model.

6. Conclusion
We have developed a novel method to build a hybrid model consisting of a physics-based
truncated model and a data-driven model of the unresolved processes. The approach is based
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Table 3. Forecast R-RMSE of hybrid and truncated MAOOAM models

R-RMSE(lead time τ ) ψo,2(2 years) θo,2(2 years) ψa,1(1 day)
Truncated 0.23 0.21 0.36

Perfect obs. hybrid 0.07 0.07 0.23
DA hybrid 0.10 0.06 0.28

Figure 3. Cross-section of the attractor for two key variables ψa,1 and ψo,2 in the true model (upper left), the truncated

model (upper right), the perfect-observation-derived hybrid model (lower left) and the DA-derived hybrid model (lower

right).

Table 4. Quartiles of the key variables for the MAOOAM model relative to the true model.

ψo,2 θo,2
Q1 M Q3 Q1 M Q3

True model 7.8 · 10−5 1.1 · 10−4 1.5 · 10−4 8.2 · 10−2 1.2 · 10−1 1.4 · 10−1

Truncated -229% -80% -26% -22% -10% -6%
Perfect obs. hybrid -55% -26% 0.6% 7% -2% -4%

DA hybrid -14% 9% 8% 8% -5% -0.2%
ψa,1

Q1 M Q3
True model 3.9 · 10−2 4.3 · 10−2 4.6 · 10−2

Truncated -12% -11% -11%
Perfect obs. hybrid -0.6% -2% 0.02%

DA hybrid -15% -14% -11%

on realistic assumptions that only noisy and incomplete observations are available at a lower
frequency than the model integration time step.
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With a two-scale low-order chaotic system [27], we showed that the hybrid model forecast skill
is sensitive to the observation frequency but very robust against high observational noise and
sparse spatial distribution. This is probably due to the fact that reduced observation frequencies
challenge the validity of the linear superposition assumption more than large observational noise
(see the discussion in Appendix of [39]). We then applied the method to the low-order coupled
ocean-atmosphere model MAOOAM [34] which contains multiple temporal scales. Forecast
skill and global statistics were significantly improved by the hybrid model compared with the
truncated model encouraging further studies to high-dimensional and more realistic scenarios.
Notably, the hybrid model derived from noisy observations has comparable forecast skill on the
oceanic variables to that of the hybrid model derived from perfect observations.

In view of operational systems, it should be noted that the proposed algorithm relies on two
existing data assimilation and neural networks training techniques that both scale well in high-
dimension (see, e.g., [41] and [42]). In principle, the present algorithm can be applied to larger
and more realistic problems. In particular, the fact that the method does not rely on the adjoint
of the truncated model is an advantage in terms of code maintenance. However, we foresee some
practical challenges: for instance, the computational architecture and the data types used for
physics-based numerical models and for machine learning algorithms can be very different (e.g.
multi-core supercomputers and graphics processing units). Training and running hybrid models
efficiently imposes heavy requirements on both the hardware and software and may come with
an overhead even if some tools are very promising [43].

The approach presented here can also accommodate the additional representation of the
remaining model error (i.e. the model error of the hybrid model): it could either be done within
the numerical model by parameterising the model error [21], or by training stochastic neural
networks [44].
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