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Abstract 

Aquatic ecosystems are affected by multiple environmental stressors across spatial and temporal scales. 12 

Yet the nature of stressor interactions and stressor-response relationships is still poorly understood. This 

hampers the selection of appropriate restoration measures. Hence, there is a need to understand how 14 

ecosystems respond to multiple stressors and to unravel the combined effects of the individual stressors 

on the ecological status of waterbodies. Models may be used to relate responses of ecosystems to 16 

environmental changes as well as to restoration measures and thus provide valuable tools for water 

management. Therefore, we aimed to develop and test a Bayesian Network (BN) for simulating the 18 

responses of stream macroinvertebrates to multiple stressors. Although the predictive performance may 

be further improved, the developed model was shown to be suitable for scenario analyses. For the 20 

selected lowland streams, an increase in macroinvertebrate-based ecological quality (EQR) was predicted 

for scenarios where the streams were relieved from single and multiple stressors. Especially a combination 22 

of measures increasing flow velocity and enhancing the cover of coarse particulate organic matter showed 

a significant increase in EQR compared to current conditions. The use of BNs was shown to be a promising 24 

avenue for scenario analyses in stream restoration management. BNs have the capacity for clear visual 

communication of model dependencies and the uncertainty associated with input data and results and 26 

allow the combination of multiple types of knowledge about stressor-effect relations. Still, to make 

predictions more robust, a deeper understanding of stressor interactions is required to parametrize model 28 

relations. Also, sufficient training data should be available for the water type of interest. Yet, the 

application of BNs may now already help to unravel the contribution of individual stressors to the 30 

combined effect on the ecological quality of water bodies, which in turn may aid the selection of 

appropriate restoration measures that lead to the desired improvements in macroinvertebrate-based 32 

ecological quality. 
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 36 

1. Introduction 

The ecological status of water bodies is affected by multiple stressors acting over multiple spatial and 38 

temporal scales (Allan et al., 1997; Frissell et al., 1986; Roth et al., 1996), such as increasing water 

temperature, changes in flow, reduction of morphological heterogeneity and increasing nutrient loads 40 

(Friberg, 2010; Tockner et al., 2010). Moreover, these stressors may interact, having synergistic, 

antagonistic or additive effects on the ecological status of freshwater bodies (Jackson et al., 2016; Piggott 42 

et al., 2015). The combined effects of these multiple interacting stressors are, however, still poorly 

understood (Folt et al., 1999; Jackson et al., 2016), since stressor-response relationships observed in 44 

controlled experiments are specific to organisms, stressors and environments and are therefore difficult 

to extrapolate to the field (Jackson et al., 2016).  46 

The lack of understanding of the combined effects of multiple interacting stressors may also explain why 

knowledge of the effect of specific management interventions on ecological water quality is still limited 48 

(Palmer et al., 2005; Pander and Geist, 2013). Consequently, a high proportion of restoration measures 

are ineffective, even now (dos Reis Oliveira et al., 2020; Palmer et al., 2010). Hence, to increase the 50 

effectiveness of restoration measures, we first need to increase our knowledge of how ecosystems 

respond to multiple stressors and to unravel the contribution of the individual stressors to their combined 52 

effect on the ecological status of waterbodies.  

Model simulations provide the opportunity to relate the state of an ecosystem to environmental changes 54 

as well as to restoration measures and simultaneously provide understanding of the underlying ecological 
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interactions. Consequently, models may be used to predict the effects of management interventions on 56 

ecosystem states in space and time and thus provide valuable tools for water management. Over the last 

decades, several ecological prediction models have been developed, ranging from mechanistic 58 

representations of environmental processes to food web models and statistical data-driven models 

(Janssen et al., 2015). For the latter, techniques have been used such as decision trees, artificial neural 60 

networks, generalised linear and additive models, fuzzy logic models and Bayesian Networks (BNs) 

(Pistocchi, 2018). The construction of such statistical ecological prediction models can be data-driven, 62 

knowledge-based or a combination of both (Mouton et al., 2009; van Echelpoel, 2020). A review of the 

advantages and drawbacks of selected modelling techniques indicated that BNs are promising tools for 64 

the combined application of expert knowledge and ecosystem measurements (de Vries et al., 2020a; van 

Echelpoel, 2020). 66 

BNs are causal network models in which nodes depict (environmental) factors and in which dependencies 

between nodes are expressed as probabilistic relationships (McCann et al., 2006). The main advantage of 68 

this type of model is that the full range of available knowledge on cause-effect relations can be used, 

originating from experts, mechanistic modelling output, literature and experimental and observed data 70 

(Landuyt et al., 2013; McCann et al., 2006), integrating the scattered knowledge on cause-effect relations 

in water bodies. Moreover, in these models, samples with incomplete datasets can still provide knowledge 72 

(Barton et al., 2012). The uncertainty associated with the input data is explicitly accounted for, and the 

predicted outcome is reported as likelihoods (Uusitalo, 2007). In addition, BNs provide a visualisation of 74 

the causal relationship between the predictors, which helps with communication of the model. Limitations 

of this model type are the lack of representation of feedback-loops, and the requirement for discretising 76 

continuous data (Uusitalo, 2007). However, for evaluating stressor-effect relations in water bodies we 

considered that the numerous advantages of BNs outweighed these drawbacks. The aim of the present 78 

study was therefore to develop and test a Bayesian Network for simulating responses of stream 
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macroinvertebrates to multiple stressors. Since we anticipated that stressor-effect relationships would be 80 

context-specific, model predictions were approached using water-type and region-specific relationships 

(de Vries et al., 2020b). To this end, a BN model was developed which included the links between 82 

macroinvertebrate-based ecological quality and stream characteristics for a single water type, the 

temperate, sandy lowland streams within the North-western European plain. The availability of an 84 

extensive dataset with measurements of multiple stressors and ecological responses for Dutch lowland 

streams enabled us to develop this BN-model. The developed model was then applied to predict the 86 

influence of stream restoration management scenarios on ecological quality as represented by 

macroinvertebrates. 88 
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2. Methods  90 

2.1 Study area 

The studied lowland streams were located on the ice-pushed ridges in the Veluwe area in the centre of 92 

the Netherlands (Figure 1). The land use in the catchments consisted of agricultural fields, urban areas 

and deciduous and coniferous woodlands. Mean annual rainfall in the study area was 850 mm and daily 94 

temperature varied between -16 and 29 °C. The flow velocities in the groundwater- and precipitation-fed 

streams varied strongly (10-80 cm/s). The stream bottoms consisted of sand and gravel. 96 
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Figure 1. Study area with sampling sites in the selected streams. 98 

2.2 Macroinvertebrate and environmental data 

The data was collected by the Dutch Water Authority ‘Vallei and Veluwe’ during regular monitoring 100 

programmes over the period 1981-2017. In total, 208 sites in the upper courses of the lowland streams 

were selected. At these sites macroinvertebrate abundance data was collected as a part of regular 102 

monitoring programs. For each macroinvertebrate sample the ecological quality ratio (EQR) was 

calculated according to the Dutch assessment system, which expresses the ecological quality of a water 104 

body (ranging from 0-1.0) as a fraction of the reference situation (1.0) (Van der Molen et al., 2016). In 

addition, for each macroinvertebrate sample, the mean preference score (ranging from 1-5) for several 106 

environmental variables of all species present in that sample was calculated using relative abundance 

frequencies. To this end, an environmental preference dataset was used (Verberk et al., 2012). 108 

Environmental variables that were monitored at the same locations and at the same moment as the 

macroinvertebrate samples included water temperature, dissolved oxygen concentration, stream 110 

velocity, shading, total phosphorous concentration, biological oxygen demand, chlorophyll concentration, 

stream gradient, silt cover, macrophyte cover, coarse particular organic matter cover, and the presence 112 

of wood and gravel. However, not all variables were measured at all sites and on all occasions and 

therefore only environmental monitoring data was included when macroinvertebrate abundance data 114 

and at least a single environmental variable were monitored simultaneously. This resulted in a set of 933 

samples (Figure 1).  116 

2.3 BN theory  

In short, BNs consist of causal network structures in which nodes, representing important system 118 

variables, are related to each other through arrows, representing dependencies (Charniak, 1991). The 

state of a node is determined by the states of its parent nodes. This approach is described by Bayes’ 120 
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theorem, in which prior probabilities are updated given the likelihood of the data to generate a posterior 

probability distribution (Ellison, 2004). The type of relation between a node and its parent nodes, as well 122 

as the associated uncertainty, are recorded in a conditional probability table (CPT).  

CPTs can be based on multiple types of data, including expert knowledge, process-based modelling 124 

output, literature-based values, experimental and observational data. Observational data is preferred, but 

when gaps are present in the dataset, other types of evidence may be used to quantify the relationships 126 

between the nodes. CPT relations that are initially based on expert knowledge can also be trained by using 

field observations. Hence, BNs have the advantage of being able to deal with incomplete datasets, and of 128 

providing ways to combine different sources of knowledge (Uusitalo, 2007). 

A BN captures relations between a set of variables, which may be uncertain, probabilistic, or imprecise. 130 

When the predictions are used in decision making, the explicit reporting of the associated uncertainty and 

the variability in the model results provides an advantage of this approach over deterministic methods 132 

that lack this reporting (McCann et al., 2006). Another advantage of BNs is that calculations can be made 

in the two directions of the arrows between the nodes: the values of child nodes can be calculated given 134 

the values of the parent nodes and vice versa. Consequently, BNs can be used to predict the outcome of 

scenarios given a set of causal variables, but also as diagnostic tools to deduce the probabilities of causes 136 

given the observed consequences, by using the dependencies in the model structure backwards (Barton 

et al., 2012; McCann et al., 2006).  138 

2.4 Model development 

A five-step model development process was adopted (Marcot et al. 2006) following several guidelines 140 

(Aguilera et al., 2011; Chen and Pollino, 2012; Landuyt et al., 2013). 1) Model structure: An influence 

diagram was set up showing the causal relations between the environmental variables and the 142 

macroinvertebrate-based EQR. 2) Model parametrisation: The CPTs picturing the relationships between 
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the nodes in the model structure were defined using expert knowledge, and model-based and literature-144 

based relationships. In this step also continuous variables were discretized. 3) Model training: The CPTs 

were trained using observations. 4) Model testing: Model performance was tested using independent 146 

observations. 5) Model application: A final model version for application was trained using all available 

data.  148 

Figure 2. Model structure of the BN relating the macroinvertebrate-based EQR to environmental 150 

variables. BOD: Biological Oxygen Demand, CPOM: Coarse particular organic matter, DO: Dissolved 

oxygen concentration, FQ: Food quality. 152 

Model structure (step 1) 

The constructed BN represents a causal network of the environmental factors that influence 154 

macroinvertebrate assemblages. The chosen outcome variable was the EQR. The development of the 

early stages of the model structure was described in Skeffington et al., 2014s. Based on literature and 156 
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input from stream macroinvertebrate experts, the key environmental factors that influence the EQR in 

this specific water type and region were selected, including temperature, oxygen concentration, flow 158 

velocity, food quality and substrate variability (Sandin and Johnson, 2004; Verberk et al., 2012; 

Verdonschot et al., 1998). These factors score the response to the environmental variables on a scale from 160 

0-1, thus giving the user the opportunity to see which stressor is most limiting for a high EQR. The optimal 

values of these key factors were based on water-type and region-specific preferences of the reference 162 

macroinvertebrate assemblage (Verdonschot et al., 2000). Next, predictors of those environmental 

variables that span local to regional spatial scales were included, resulting in the model structure depicted 164 

in Figure 2. The selection of the included variables was made to cover all relevant processes from reach- 

to catchment scale, but at the same time aimed to limit model complexity. In addition to the 166 

environmental variables, five nodes were included that represent the average preference score of the 

observed macroinvertebrate assemblage for the variables flow velocity, CPOM, silt, gravel and wood. 168 

These scores are based on a preference database that lists species-specific preferences for environmental 

variables, based on experimental and distribution data (Verberk et al., 2012), and range from 1 (low 170 

preference) to 5 (high preference). Inclusion of these nodes served as an additional source of information 

about the quality of a water body based on the preferences of the local macroinvertebrate assemblage.  172 

Model parametrisation (step 2) 

Initially, the relationships between the nodes in the model were based on literature, mechanistic 174 

modelling outcomes and expert judgement (Table A.1). When possible, a relationship was expressed as 

an equation. Discretisation was either based on equal intervals or on equal frequency to assure an even 176 

spread of data (Chen and Pollino, 2012). The number of discretisation classes for each node was either 4, 

5 or 6, balancing a minimum resolution to picture environmental processes with sufficient data availability 178 

per class.  
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Training and testing of the network (step 3 and 4) 180 

Step 3) and 4) were combined in a k-fold cross-validation context (Marcot, 2012). The dataset was split 

into 3 parts, of which 2 parts were used for training the network and 1 part for testing the network 182 

performance. For a stable validation outcome among trained model variations, subsets of data for cross-

validation can be made using stratified classes. Although this was not applied here, the subsets of data 184 

did have a similar distribution of EQR classes. Model training and testing was done for 3 consecutive runs, 

where in each run another part of the dataset was used for testing. The resulting metrics were then 186 

averaged for overall model performance. Cross-validation was performed on several model variations to 

test the influence of differences in structure and parametrisation on the prediction performance, i.e. 188 

discretisation method, number of discretisation classes and the inclusion/exclusion of nodes representing 

macroinvertebrate preference data (Table 1). Sensitivity analysis of the network was performed to 190 

identify the factors that had the strongest influence on the target node. 

It was thought more valuable to compare the model results as a continuous EQR-value to observed 192 

continuous values, as the use of EQR classes would not be informative enough in practice. Conventional 

metrics such as the number of correctly classified instances only use the classified output of the model, 194 

expressed as discrete values, and are therefore less suitable for testing the performance of the model in 

predicting the actual continuous EQR. Therefore, in this study, performance was tracked using the 196 

correlation between the observed and predicted EQR-scores (Marcot, 2012), although the performance 

might be more strictly assessed than by using class-based metrics. The EQR scores used were expected 198 

values predicted by the target node, which is the average of the discretized classes weighted by the 

probability of occurrence. 200 
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To develop and test the BN model, the Netica BN software was used as a modelling shell (Norsys, 1998). 

This software provides a graphical user interface, can handle input of continuous data, provides ways to 202 

perform sensitivity analysis and can work in batch mode to more easily run the model for multiple sites. 

Scenario analysis (step 5) 204 

Based on the performance analysis, the best performing model variation was selected. Next, this model 

was trained with all available data (Marcot, 2006) (Table A.3) and subsequently applied to predict the 206 

influence of stream restoration management scenarios on macroinvertebrate-based ecological quality. To 

this end, sites were relieved from either one or multiple stressors (Table 2), in which only combinations 208 

of scenarios that targeted at least two different key factors were considered. A comparison was made 

between the effect of removing single and multiple stressors per stream or stream stretch. 210 

Table 1. Tested model settings. 

Model setting Tested settings 

Number of discretisation classes 4, 5, 6 

Discretisation method Equal Interval, Equal Frequency 

Trait preference nodes Present, absent 

 212 

Table 2. Restoration scenarios. T: Temperature, S: Shading, V: Flow velocity, TP: Total phosphorous 

concentration, CPOM: Coarse particular organic matter, Sub: Substrate. 214 

Scenario Stressor alleviation 

T Decrease temperature to 10 °C 

S Increase shading to 100%  

V Increase flow velocity to 0.5 m/s 

TP Decrease TP to 50 µg/L 

CPOM Increase CPOM cover to 70% 

Sub Add presence of wood and gravel 

T+V Adjust temperature and velocity 

T+CPOM Adjust temperature and CPOM 

T+Sub Adjust temperature, wood and gravel 
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S+V Adjust shading and velocity 

S+CPOM Adjust shading and CPOM 

S+Sub Adjust shading, wood and gravel 

V+TP Adjust velocity and TP 

V+CPOM Adjust velocity and CPOM 

V+Sub Adjust velocity, wood and gravel 

TP+CPOM Adjust TP and CPOM 

TP+Sub Adjust TP, wood and gravel 

CPOM+Sub Adjust CPOM, wood and gravel 

All All of the above scenarios combined 

 

3. Results 216 

The first steps in developing the model were constructing the network structure and then informing it 

with literature- and expert-based knowledge (step 1 and 2). In the third step, the knowledge-informed 218 

network was trained using actual monitoring data. Training the network with monitoring data resulted in 

adjusted probabilities, directly affecting 17 nodes, with a maximum change in probabilities of 60%. For 220 

instance, there was a relatively high number of high-gradient streams in the dataset. Consequently, the 

corresponding probabilities were adjusted such that for any new datapoint without observations for 222 

stream gradient, the model assumed a higher prior probability that it is a high gradient stream. This in 

turn altered the prediction of the status of the target node, the ecological quality expressed by the EQR. 224 

This adjustment is reflected by the larger bar in the top right node of Fig. 3b compared to Fig. 3a. 
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 226 

 Figure 3. BN model for relating the macroinvertebrate-based EQR to environmental variables a) before 

and b) after training with monitoring data. Node bar plots describe the prior probabilities of states. For 228 

node colours, see Fig. 2. Node states are listed in Table A.2. 
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In step 4 of the model development, the network was tested using a part of the dataset applying a 3-fold 246 

cross-validation. The performance of the tested model variations (Table 4) was expressed as correlations 

between the observed and the predicted EQR scores and showed scores up to 0.35, expressing a relatively 248 

Number 
of 
classes 

Trait 
preference 
nodes 
included 

Discretisation 
method 

  Equal 
interval 

Equal 
frequency 

4 N 0.25 0.26 

 Y 0.24 0.28 

5 N 0.27 0.26 

 Y 0.27 0.29 

6 N 0.25 0.32 

 Y 0.27 0.35 

 

Table 4. Performance of model variations from the 

model evaluation as spearman rank correlation 

between observed and predicted EQR scores. 

Correlations are averaged over three pairs of 

training & test data sets. For all correlations 

p≤0.05. Trait preference nodes indicate preference 

for environmental factors as indicated by the 

observed assemblage. 

 

Figure 4. Sensitivity analysis for the best performing model 

variation. For abbreviations, see Table 2. 
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poor predictive performance. The model variation performing best was obtained by incorporating 6 

discretisation classes, using equal frequency discretisation, and including the trait preferences nodes.  250 

The sensitivity analysis shows the influence of the environmental factors on macroinvertebrate-based 

EQR, the target node, in decreasing order (Fig. 4), revealing that temperature, velocity and CPOM had the 252 

strongest influence, whereas the factors macrophytes, stream gradient and total phosphorous 

concentration had a very limited influence.  254 

 

Figure 5. Comparison of mean EQR model predictions and mean EQR observations for the studied streams. 256 

Boxes are inter-quartile ranges (IQR, 25th to 75th percentile) with whiskers extending to -/+ 1.5 * IQR. 

Statistical pairwise differences were calculated using Wilcoxon test, *: p <= 0.05, **: p <= 0.01, ***: p <= 258 

0.001, ****: p <= 0.0001. 
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 260 

Figure 6. Observed flow velocity (m/s) and average abundance-weighted flow-preference score for the 

macroinvertebrate assemblages present in samples from the streams Egelbeek and Zwaanspreng. 262 

Preference scores range from 1 to 5. The colours of the points indicate the observed EQR. 

264 
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This best performing model variation was subsequently applied to compare the model EQR predictions 

with the observed EQR per stream (Fig. 5), showing that in half of the cases, the EQR was predicted well. 266 

This concerned mainly streams with a relatively low EQR. In contrast, in the other half of the streams, 

having a relatively high observed ecological water quality, the predicted EQR was lower than the observed 268 

EQR. In these underpredicted cases, either the model judged the environmental variables too severely, or 

the observed EQR was overrepresenting the actual ecological quality, as a result of a too optimistic 270 

underlying assessment system. To gain more insight into these underpredictions, the two most deviating 

cases, the Zwaanspreng and Egelbeek, were considered in more detail. To this end, the average 272 

preference score of the macroinvertebrate assemblage was calculated for each sample for the factor flow 

velocity, one of the most influential environmental variables (Fig. 4) and the only factor for which enough 274 

preference data was available (Fig. 6). The mean flow velocity preference scores for these samples was 

relatively high (mean preference score: 3.6 out of 5), and also the flow velocity was generally high (mean 276 

0.31 m/s). Likewise, the observed EQR was also high (mean 0.81). This points to the model having 

underpredicted the EQR of these sites, based on the factor flow velocity. However, flow velocity is only 278 

one of the factors determining the EQR and therefore, also other factors might have contributed to the 

underestimated EQR. However, as there is insufficient data available for the actual assemblage preference 280 

for the other environmental factors, we could not evaluate the contribution of these factors to the 

underpredictions of the EQR.  282 

In the scenario analysis (step 5), the model was used to predict the effect of relieving the stream from 

single and multiple stressors on the target node, the EQR. For all streams combined, significant differences 284 

in EQR were observed when compared with the current conditions (Fig. 7a). Yet, for scenarios involving 

the relief of a single stressor, more negative than positive effects were observed. In contrast, when a 286 

combination of stressors was removed, the majority of scenarios showed positive effects on the EQR. In 

some of the streams, the effects of taking away the stressors could not be predicted (not shown), which 288 
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might be due to inconsistencies between the observed and the scenario-based variables in the model, 

where nodes receive contradicting input. When the scenario effects were considered per individual 290 

stream, there was a high variation in the results (Fig A1). Nevertheless, for half of the streams clear 

management effects were still observed. To illustrate this, the Hierdense beek and Tongerense beek were 292 

considered in more detail, because these streams showed the clearest effects of stressor relief and had 

the largest dataset, respectively. Moreover, the specificity of the predictions was increased when the 294 

samples were grouped in stream stretches that represent a specific waterbody subtype within similar 

surrounding conditions, as can be seen for the upstream stretch of the stream Hierdense beek (Fig. 5). For 296 

this stretch of the Hierdense beek and for the stream Tongerense beek several positive effects of 

management scenarios were observed (Fig. 7b, 7c). Relieving the stream from most single stressors and 298 

stressor combinations increased the EQR. In contrast, scenarios involving an increase in velocity showed 

negative effects on the EQR, except when this measure was combined with increased CPOM cover, where 300 

a strong positive effect was seen. Especially the combined approaches that increased CPOM cover and 

flow velocity or CPOM cover and substrate quality (wood and gravel presence) had a positive effect on 302 

the mean EQR of both streams.  

 304 
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 306 

Figure 7a. Model predictions of restoration scenarios for all streams combined (based on a total number 

of 9891 model runs, with a variable number of model runs per scenario due to inconsistencies). For 308 

scenario abbreviations, see Table 2. Asterisks indicate significant differences in EQR compared to the 

current conditions (CC) (Wilcoxon test). 310 
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 312 

Figure 7b. Model predictions of restoration scenarios for the Hierdense beek (upstream) (based on a total 

of 215 model runs). For scenario abbreviations, see Table 2. CC gives the model predictions for the current 314 

conditions. Asterisks indicate significant differences in EQR compared to the current conditions (Wilcoxon 

test). 316 
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Figure 7c. Model predictions of restoration scenarios for the Tongerense beek (based on a total number 318 

of 1552 model runs). For scenario abbreviations, see Table 2. Asterisks indicate significant differences in 

EQR compared to the current conditions (CC) (Wilcoxon test). 320 

4. Discussion 

The aim of our study was to develop and test a Bayesian Network for simulating macroinvertebrate-based 322 

ecological water quality based on the responses of stream macroinvertebrates to multiple stressors. The 

model was developed for a specific water type in a single region, where multiple stressors affected the 324 

stream ecosystem quality. Although surrounded by substantial margins of uncertainty (as seen in Fig. 7), 

the BN clearly showed the positive influence of restoration measures on the ecological quality of the 326 

studied lowland streams. Below we will discuss the performance of the BN in the scenario analyses, the 

complexity of predicting the effects of multiple stressors on macroinvertebrate-based ecological quality 328 

and how this approach can be applied in stream restoration management. 

4.1 BN model development 330 

BNs are promising as tools in restoration management, as they offer a way to include expert knowledge 

with associated uncertainties in combination with monitoring data and output from process-based 332 

modelling. In addition, the explicit expression of the associated uncertainty and the clear visualisation of 

the causal model structure are advantages of this technique, which make it a suitable tool to support 334 

water managers in decision making (Barton et al., 2012; Uusitalo, 2007). However, to be able to train the 

knowledge-informed network using observations, for each pair of connected nodes, there should be a set 336 

of data available that covers the full range of all possible combinations of node states (Cain, 2001). This is 

a requirement which may be difficult to comply with in practice, especially when the focus is on a specific 338 

water type.  
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In the development of our BN model, choices had to be made to deal with the inherent complexity of 340 

aquatic ecosystems. To this end, the main predictors of the macroinvertebrate-based EQR were selected. 

However, there was a trade-off between the desired model complexity and the availability of training 342 

data, where a lack of data would decrease model performance (see also Marcot et al., 2006). Hence, to 

select the optimal model variation, multiple model structures and parameterisations were tested. In the 344 

comparison of these slightly adjusted models, equal frequency discretisation gave better predictive 

performance than discretisation based on predefined class boundaries (however, compare Boets et al., 346 

2015). Although all discretisation methods imply a simplification of continuous data (Aguilera et al., 2011), 

using equal frequency discretisation ensures that each class of a node is represented equally in the data, 348 

which supports a better training of the conditional probabilities in the network. Also, the inclusion of the 

preference nodes slightly improved the predictions. 350 

Our results showed the impact of restoration measures in the scenario analysis compared to the current 

situation, but the overall absolute performance of the BN model was still limited. Especially for streams 352 

with a high observed ecological quality, the EQR was underpredicted by the model. This might be partly 

due to gaps in the dataset, consequently, it was not possible to train each knowledge-based CPT with 354 

observed data (Table A.3). A possible explanation may also be that the model only predicts the effects of 

changes in environmental factors on macroinvertebrates, whereas in reality, dispersal and biotic 356 

interaction filters also determine the macroinvertebrate assemblage composition and therefore the 

ecological quality of a specific site (Poff, 1997). In addition, the interactions between environmental 358 

factors are not completely understood and cannot be fully incorporated. Moreover, the model is static 

and therefore assumes that the assemblage is in equilibrium with the environmental conditions at each 360 

site (Austin, 2002), but this is not always the case (Belyea and Lancaster, 1999; Wiens, 1984). Together, 

these complexities, which are not well understood, could have influenced the performance of the model. 362 
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Therefore, the current model is not yet thought to be acceptable for application as such, given that 

predictions are not yet in accordance with the observations. With a more complete dataset, testing of 364 

additional model variations and an increased insight in stressor interactions to improve model relations, 

this model type might be further applied as a tool in restoration management.  366 

4.2 Multiple-stressor effects on macroinvertebrate-based ecological quality 

Waterbodies are generally subjected to multiple stressors (Birk, 2018). This creates a complex task for 368 

water managers who aim to improve the ecological status of stream ecosystems. In addition, stressor 

interactions may take place that either enhance the added effects of additional stressors (synergism) or 370 

decrease these combined effects (antagonism) (Folt et al., 1999). Such interactive effects are specific to 

stressors, organisms and environments and consequently are difficult to predict (Jackson et al., 2016). 372 

With this added complexity, simulating ecological quality remains a complex task, as our study showed. 

Despite this complexity, the present BN scenario analyses showed that ecological quality can be improved 374 

when the streams are relieved from specific stressors or combinations thereof, whereas other restoration 

scenarios may prove to be less effective. For the studied streams, the strongest positive effect resulted 376 

from increasing flow velocity in combination with the presence of CPOM, whereas only improving flow 

velocity yielded no positive effect. This may be explained by the interaction between flow velocity and 378 

CPOM: only increasing stream velocity would not safeguard the variation in flow required for patches of 

coarse material to persist, providing necessary habitat for stream organisms (de Brouwer et al., 2019). To 380 

gain more insight in the interaction between flow velocity and CPOM cover, these key environmental 

factors could be included in the network in more detail than they are now. The added value of combining 382 

restoration scenarios was also observed for the scenarios that enhanced the presence of wood and gravel 

substrate and the cover of CPOM. In the scenarios where the streams are relieved from the individual 384 

stressors, already a positive impact is seen, but when the stream is relieved from both stressors 
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simultaneously, the macroinvertebrate-based ecological quality improves even more than expected 386 

based on the contributions of the single stressors, which could point at a positive synergistic interaction 

of stressor relief. Similarly, such interactive effects on macroinvertebrates have been observed for other 388 

environmental stressors (Beermann et al., 2018; Jackson et al., 2016). Yet, for the other combined 

scenarios in the present study where multiple stressors were adjusted, no interactive effects were 390 

observed. Indeed, also for other water bodies it was reported that additive effects of multiple stressors 

prevail (Gieswein et al., 2017). However, the current model is partly knowledge-informed and not 392 

completely based on data. This is especially the case for the target node, where the relationship picturing 

the combination of multiple stressors into a combined response was based on expert knowledge.  394 

To better quantify the interactions between the stressors of interest, additional statistical analyses could 

be carried out on a more extensive dataset (Feld et al., 2016; Glendell et al., 2019). In addition, 396 

experiments may help to disentangle the interactive effects of multiple stressors (Elbrecht et al., 2016; 

Verberk et al., 2016). Only when we have more knowledge about the nature and interactions of stressor-398 

response relationships for specific species and complete assemblages, can we develop modelling of 

multiple stressor impacts further. In turn, the application of models can show us where these knowledge 400 

gaps persist and where additional experiments might be needed to better understand underlying 

processes. Consequently, BNs and other approaches are complementary in their contribution to an 402 

increase of the understanding of multiple stressor effects.  

Apart from the interaction between stressors, other studies showed that choosing measures based on 404 

identifying multiple stressors covering the entire catchment proved to be more effective (dos Reis Oliveira 

et al., 2020; Feld et al., 2011; van Puijenbroek et al., 2019). This illustrates the significance of 406 

simultaneously considering multiple stressors over multiple scales for effective stream restoration.  
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In conclusion, the present model exercise demonstrated that applying different scenarios enhances the 408 

understanding of the effects of combinations of measures on macroinvertebrate-based ecological quality 

and may aid in selecting and prioritizing the most promising restoration measures, as discussed below. 410 

4.3 BNs as tools in restoration management 

Nowadays, in the practice of stream restoration, the selected measures are still strongly based on 412 

assumptions rather than proofs of their positive effects on the ecological status of stream ecosystem (dos 

Reis Oliveira et al., 2020), which was the main motivation to perform the present study. The application 414 

of the current BN model indeed enhanced the insights into the possible effects of management scenarios 

on the ecological quality as represented by macroinvertebrates. Hence, these model predictions may be 416 

used to inform water managers which measures to prioritize in restoration management to effectively 

alleviate stress. This increases the chance that the applied restoration measures do indeed lead to the 418 

desired improvement in the ecological status of stream ecosystems. Whereas we used the BN model to 

show the relative impact of (combinations of) restoration measures on macroinvertebrate-based 420 

ecological quality, such models can also be used ‘backwards’ in a diagnostic approach to find causes for 

observed symptoms (Feld et al., 2020; Trigg et al., 2000). 422 

Ideally, a model performing well, tailored to the study area, would give insight into which environmental 

factors would produce most effect. For the manager, the next step would be to identify how these 424 

variables might be targeted, by linking these to actual restoration measures. However, this prioritisation 

is often not just based on the outcome of the model. In these scenario analyses, the use of site-specific 426 

knowledge would permit the manager to decide which variables to prioritize, for example, knowledge of 

the possibility and cost of certain measures, and of restoration efforts and disturbances that have taken 428 

place in the past. 
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As shown here, scenario analyses can be especially informative in situations where multiple stressors are 430 

acting. In the case of a single dominant stressor, a specific measure may be more easily selected, but for 

a situation with a more even contribution of multiple stressors, selecting and prioritizing restoration 432 

measures may not be straightforward. In these cases, scenario analyses may help to choose a combination 

of measures to alleviate the pressure on the ecosystem and to improve the ecological water quality.  434 

The current model was designed and trained for a single area and water type. When applied to other 

areas, the main model structure can still be used as a starting point, although the choice for key 436 

environmental factors, parametrisation of the CPTs, calibration and validation should be carried out in a 

way tailored to the water type and region of interest. 438 

Ultimately, in the application of BNs, challenges remain with the abovementioned complexities. In 

addition, Kaikkonen et al. (2021) list the remaining challenges of BNs used in environmental management, 440 

such as models lacking validation, unclear discretisation methods, and lack of clarity about the source of 

expert knowledge. Indeed, most BN applications fail to test the predictive ability of the model (Death et 442 

al., 2015). As described here, discretisation and validation of the model outcomes is not straightforward. 

Better reporting of such challenges associated with these technical aspects may therefore improve future 444 

robustness of BN applications. In addition, recent technical developments might further increase the 

possibilities of BN applications, such as the use of hybrid networks that can represent continuous variables 446 

without the information loss associated with discretisation (Kaikkonen et al., 2021). 

The success of applying BNs for similar purposes in the future depends on the availability of high-quality 448 

data and the possibility to include a more fundamental understanding of the complexity of ecosystems, 

with context-specific knowledge on how interactions between multiple stressors affect 450 

macroinvertebrate assemblages. The current approach has contributed to an increased understanding of 
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the complexity of these aquatic ecosystems. Moreover, our study showed how BNs can be used in a 452 

scenario analysis to select and prioritize the most promising restoration measures. 

 454 

5. Conclusions 

In this study, the application of BNs for simulating the effects of multiple stressors on macroinvertebrate-456 

based ecological water quality was tested. Although the predictive performance can be further improved, 

our application illustrated how these models can be used to increase our knowledge of how ecosystems 458 

respond to multiple stressors. To make predictions more robust, a deeper understanding of stressor 

interactions is required. Also, sufficient training data should be available for the water type of interest. 460 

Still, BNs allow us to make steps in unravelling the contribution of the individual stressors to their 

combined effect on the ecological quality of water bodies. This in turn may aid the selection of appropriate 462 

restoration measures that lead to the desired improvements in ecological water quality.  
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 612 

Appendix 

Table A.1 Node description, type and equation. E: Expert knowledge-based relationship, L: literature-614 

based, M: relation taken from process-based model. Clip is a Netica function, returning x unless x<min, 

in which case it returns min, or x>max, returning max. 616 

Node name (unit) 

[Abbreviation] 

Node description Node 

type 

Knowledge 

base 

CPT equation 

Shading (%) [S] Percentage of the river 

area which is shaded 

Input  NA 
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Air temperature 

(°C) [T_air] 

Mean maximum July 

Air Temperature 

Input  NA 

Flow velocity (m/s) 

[V] 

Flow velocity Input  NA 

Stream gradient 
(m/km) [Sgr] 

Stream gradient  Input  NA 

Macrophytes (%) 

[M] 

Cover percentage of 

Macrophytes 

Input E M = ((−(
S

30
) + (

100

30
)) ∗

 ( clip(0,1, (
TP

200
))) ∗  ( clip(0,1, (−2 ∗

V) + 2)) )
1

3 ∗ 100  

Organic load (mg 

O2/L) [OL] 

Biological Oxygen 

Demand 

Input E OL =  (
Twater

3
) + (

A

50
) + (

M

25
)  

 

Max. DO (mg/L) 

[DO_max] 

Maximum Dissolved 

Oxygen at a given 

temperature 

Input L 

(Chapra, 

1997) 

DO_Max =  14.6096 −  (0.40455 ∗

 T_water) +  (0.0080231 ∗

T_water2)  −  (0.0000794339 ∗

 𝑇𝑤𝑎𝑡𝑒𝑟
3  

DO (mg/L) [DO] Actual Dissolved 

Oxygen Concentration 

Input L  

(Chapra, 

1997) 

DO =  DOMax −  OL + (2.66 ∗ V0.67) +

 (
M

50
) − (0.00266 ∗ A)  

Temperature (°C) 

[T_w] 

Water temperature Input M 

(Bartholow, 

2002) 

Tw =  4.81 −  0.0716 ∗  S +  0.822 ∗

 T𝑎𝑖𝑟  

Algae (µg chl-a/L) 

[A] 

Chlorophyll 

concentrations 

Input E 𝐴𝑙𝑔𝑎𝑒 =  350 ∗ ( 𝑐𝑙𝑖𝑝(0,1, (
𝑇𝑃

600
)) ∗

 (−(
𝑆

30
) + (

100

30
)) ∗

 (
1 

1+exp(−0.5∗(𝑇𝑤𝑎𝑡𝑒𝑟−15))
))

1

3  

P-tot (µg/L) [TP] Total phosphorus 

concentrations 

Input  NA 

Silt (%) [Si] Cover percentage of 

silt 

Input E 𝑆𝑖 =  (−(80 ∗ V) + 40) +

 clip(−10,10, (−(15 ∗ Sgr) + 10))  

CPOM (%) Cover percentage for 

Coarse Particulate 

Organic Matter 

Input E CPOM =  (−(200 ∗ V) + 105)  +

clip(−10,10, (−(15 ∗ Sgr) + 10))  

Gravel [G] Presence of gravel Input  NA 

Wood [W] Presence of wood Input  NA 
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Macroinvertebrates 

- Substrate [M_sub] 

Aggregated suitability 

score of substrate 

Key 

factor 

E M_Sub =  ((1 − |0.5 −
𝐶𝑃𝑂𝑀

100
|)  ∗  (1 −

(Si/100)) ∗  (clip(0,1, W))  ∗

(clip(0,1, G)))0.25  

Macroinvertebrates 

- Velocity [M_V] 

Aggregated suitability 

score for flow velocity 

Key 

factor 

E  

M_V =  clip(0,1, (4 ∗ V − 0.2)) 

Macroinvertebrates 

- Food Quality 

[M_FQ] 

Aggregated suitability 

score of food quality 

Key 

factor 

E M_FQ =  CPOM/100 

Macroinvertebrates 

- Dissolved Oxygen 

[M_DO] 

Aggregated suitability 

score of dissolved 

oxygen concentration 

Key 

factor 

E M_DO =  clip(0,1, (DO/7)) 

Macroinvertebrates 

- Temperature 

[M_T] 

Aggregated suitability 

score of temperature 

Key 

factor 

E 
MT =  clip (0,1, (− (

Tw

10
) + 2)) 

     

Macroinvertebrates 

[M] 

Aggregated suitability 

score for 

macroinvertebrates, 

taking geometric mean 

and applying weight to 

lower values. 

Final E 𝑀 =    ((𝑀𝑇 ∗
1

1+exp(−8∗𝑀𝑇)
) ∗

              (𝑀𝐷𝑂 ∗
1

1+exp(−8∗𝑀𝐷𝑂)
) ∗

              (𝑀𝐹𝑄 ∗
1

1+exp(−8∗𝑀𝐹𝑄)
) ∗

              (𝑀𝑉 ∗
1

1+exp(−8∗𝑀𝑉)
) ∗

             (𝑀𝑆𝑢𝑏 ∗
1

1+exp(−8∗𝑀𝑆𝑢𝑏)
))0.2  
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Table A.2 Overview of nodes and node states for model version performing best (using equal frequency 

discretisation) 620 

Node name  State      

 1 2 3 4 5 6 

Shading (%) <16.6 16.6-33.2 33.2-49.8 49.8-66.4 66.4-83 >83 

Air temperature (°C) 10-13 13-16.6 16.6-19.9 19.9-23.2 23.2-

26.5 

>26.5 

Flow velocity (m/s) <0.02 0.02-0.1 0.1-0.15 0.15-0.25 0.25-

0.33 

>0.33 

Macrophytes (%) <16.6 16.6-33.3 33.3-49.8 49.8-66 66-83 >83 

Organic load (mg O2/L) 0-0.7 0.7-1.05 1.05-1.62 1.62-2 2-2.79 >2.79 

Max. DO (mg/L) <8.3 8.3-9.6 9.6-10.9 10.9-12.2 12.2-

13.5 

>13.5 

DO (mg/L) <6.8 6.8-8 8-9 9-9.88 9.88-

10.7 

>10.7 

Stream temperature (°C) 1.4-9.2 9.2-10.5 10.5-11.5 11.5-12.9 12.9-

14.3 

>14.3 

Algae (µg chl-a/L) <58 58-117 117-175 175-233 233-292 >292 

P-tot (µg/L) <40.1 40.1-50.1 50.1-75.1 75.1-100 100-180 >180 

Silt (%) <20 20-40 40-60 60-80 >80  

CPOM (%) <20 20-40 40-60 60-80 >80  

Stream Gradient (m/km) 0-0.5 0.5-1 >1    

Gravel Present Absent     

Wood Present Absent     

Velocity preference <0.2 0.2-0.4 0.4-0.6 0.6-0.8 >0.8  

CPOM preference <0.2 0.2-0.4 0.4-0.6 0.6-0.8 >0.8  

Silt preference <0.2 0.2-0.4 0.4-0.6 0.6-0.8 >0.8  

Gravel preference <0.2 0.2-0.4 0.4-0.6 0.6-0.8 >0.8  

Wood preference <0.2 0.2-0.4 0.4-0.6 0.6-0.8 >0.8  

Macroinvertebrates 

(Sub) 

<0.2 

(Bad) 

0.2-0.4 

(Poor) 

0.4-0.6 

(Moderate) 

0.6-0.8 

(High) 

>0.8 

(Good)  

Macroinvertebrates (V) <0.2 

(Bad) 

0.2-0.4 

(Poor) 

0.4-0.6 

(Moderate) 

0.6-0.8 

(High) 

>0.8 

(Good)  

Macroinvertebrates (FQ) <0.2 

(Bad) 

0.2-0.4 

(Poor) 

0.4-0.6 

(Moderate) 

0.6-0.8 

(High) 

>0.8 

(Good)  

Macroinvertebrates (DO) <0.2 

(Bad) 

0.2-0.4 

(Poor) 

0.4-0.6 

(Moderate) 

0.6-0.8 

(High) 

>0.8 

(Good)  

Macroinvertebrates (T) <0.2 

(Bad) 

0.2-0.4 

(Poor) 

0.4-0.6 

(Moderate) 

0.6-0.8 

(High) 

>0.8 

(Good)  
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Macroinvertebrates <0.2 

(Bad) 

0.2-0.4 

(Poor) 

0.4-0.6 

(Moderate) 

0.6-0.8 

(High) 

>0.8 

(Good)  

 

 622 

Table A.3 Number of cases available per node to train model relations. Counted are the number of cases where an observation 
was available for the node of interest and all of its parent nodes. 624 

Node Number of cases 
available for training 

Shading (%) 59 
Air temperature (°C) 0 
Flow velocity (m/s) 722 
Macrophytes (%) 17 
Organic load (mg O2/L) 1 
Max. DO (mg/L) 0 
DO (mg/L) 1 
Stream temperature (°C) 916 
Algae (µg chl-a/L) 2 
P-tot (µg/L) 903 
Silt (%) 289 
CPOM (%) 320 
Stream gradient (m/km) 930 
Gravel 191 
Wood 287 
Velocity preference 25 
CPOM preference 0 
Silt preference 0 
Gravel preference 0 
Wood preference 0 
Macroinvertebrates (Sub) 0 
Macroinvertebrates (V) 0 
Macroinvertebrates (FQ) 0 
Macroinvertebrates (DO) 0 
Macroinvertebrates (T) 0 
Macroinvertebrates 0 

 

 626 
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