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Combining cues to judge distance and direction in an
immersive virtual reality environment

Peter Scarfe University of Reading, Earley Gate, Reading, UK

Andrew Glennerster University of Reading, Earley Gate, Reading, UK

When we move, the visual direction of objects in the
environment can change substantially. Compared with
our understanding of depth perception, the problem the
visual system faces in computing this change is relatively
poorly understood. Here, we tested the extent to which
participants’ judgments of visual direction could be
predicted by standard cue combination rules.
Participants were tested in virtual reality using a
head-mounted display. In a simulated room, they judged
the position of an object at one location, before walking
to another location in the room and judging, in a second
interval, whether an object was at the expected visual
direction of the first. By manipulating the scale of the
room across intervals, which was subjectively invisible
to observers, we put two classes of cue into conflict, one
that depends only on visual information and one that
uses proprioceptive information to scale any
reconstruction of the scene. We find that the sensitivity
to changes in one class of cue while keeping the other
constant provides a good prediction of performance
when both cues vary, consistent with the standard cue
combination framework. Nevertheless, by comparing
judgments of visual direction with those of distance, we
show that judgments of visual direction and distance are
mutually inconsistent. We discuss why there is no need
for any contradiction between these two conclusions.

Introduction

Three-dimensional representation in a moving
observer

The coordinates of three-dimensional (3D) vision
can seem misleadingly simple. Two coordinates define
the visual direction of a point as viewed, for example,
by the cyclopean eye, the third defines the distance of
the point along that line of sight. Most research in the
field of 3D vision focuses on the cues that contribute
to the estimation of distance and depth presumably
because, for a static observer, such as is typical for

most psychophysical experiments, the estimation of
visual direction seems simpler and less to do with the
representation of the 3D world around us. However,
for a moving observer in a static world, or a static
observer viewing moving objects, the situation is quite
different (Wexler et al., 2001). Objects change both
their depth and their visual direction and, in both cases,
if an observer is to perceive a stable 3D world, they
must take account of changes in the visual direction of
objects just as much as they do for changes in object
depth.

There is good evidence that people are able to update
their estimate of the visual direction of previously
viewed objects when they move to a new location (Foo
et al., 2005; Klatzky et al., 2003; Klier et al., 2008;
Loomis et al., 1998; Medendorp, 2011; Rieser & Rider,
1991; Siegle et al., 2009; Thompson et al., 2004). To do
this accurately requires two things: first, an estimate of
the translation of the observer, which may come from a
range of cues in addition to vision, including audition,
proprioception, and somatosensory information, all
of which must be integrated together (Mayne, 1974;
Siegle et al., 2009); second, it requires an ability to use
this information appropriately to update the observer’s
representation of the scene and the observer’s location
in it (whatever form that representation might take).
Loomis et al. describe this as updating a “spatial image”
(Giudice et al., 2011; Loomis et al., 2007).

Here, we focus on the role of two quite distinct
potential signals about visual direction that might
contribute to the spatial updating process. One is purely
visual and the other involves information about the
distance between the optic center of the eye/camera in
two or more locations. First, we describe what we call
physical-based cues. In the field of photogrammetry
(Hartley & Zisserman, 2000; Shapiro et al., 1995), in
which the 3D layout of a static scene is recovered from
a series of images as a camera moves through the scene,
the 3D structure of the scene can be reconstructed but
only up to scale. In other words, the metric or Euclidean
structure of the scene can be recovered from the images
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alone, but it is not possible to make any comment about
the overall scale of the reconstruction until information
is provided about the distance between two or more
optic centers along the path of the camera/eye. Such
information could come from proprioception; for
example, information from the leg muscles indicating
that the observer had walked a meter or, equivalently,
information about the interocular separation that,
in combination with vergence information, indicates
fixation distance (Backus & Matza-Brown, 2003;
Brenner & van Damme, 1998; Howard, 2008; Mon-
Williams et al., 2000; Richards &Miller, 1969; Swenson,
1932; Tresilian & Mon-Williams, 2000; Tresilian et al.,
1999).

It is this scaling information that is missing from
a purely visual, photogrammetric reconstruction. If
people build a scaled reconstruction of the scene,
including the location of a target that they have to track,
and if we assume that they have access to proprioceptive
information about how far they have walked then, in
theory, a participant with this information could close
their eyes and continually judge the direction of the
target as they moved in the environment (Frissen et
al., 2011; Loomis et al., 1992; Loomis & Philbeck,
2008; Siegle et al., 2009). We describe this strategy as
using physical-based cues, because it is entirely based
on a scaled reconstruction of both the scene and of
the participant’s location in that reconstruction. These
two factors together determine the physical-based
direction of the target. Although many separate factors
may contribute to this estimate, we treat them as all
contributing to a single cue. This practice is consistent
with the standard definition of a cue as “any sensory
information that gives rise to a sensory estimate” (Ernst
& Bulthoff, 2004, p. 163).

The second set of cues we consider (and, again, we
group these together and consider them as a single
entity), are what we call texture-based cues. At the
opposite extreme from physical-based cues, we can
assume that people use only the images that arrive
that the eye to reconstruct their environment, as in
unscaled photogrammetry. In this case, if the entire
scene is doubled in size about the cyclopean point (so
everything gets larger and further away) and if there is
no information available to the system about the length
of the baseline (that is, distance between the camera/eye
locations, e.g. interocular separation), then there is
no way for the system to detect that the scene has
changed size. Participants can still navigate; they can
still tell where they are in the unscaled photogrammetric
reconstruction, and they can still judge the visual
direction of remembered objects in that reconstruction.
We describe this estimate as texture-based because,
when the room expands, so do all the textures (the
bricks on the wall, the tiles on the floor) and a
person’s judgment of the target visual direction is

entirely based on these, not the physical size of the
room.

The distinction between scaled and unscaled
reconstruction of a scene has some similarities to the
distinction between absolute and relative disparities,
although it is not identical. The absolute disparity
of a point is the binocular disparity between it and
the location where the two eyes are fixated, whereas
the relative disparity between two points is the
difference between their absolute disparities and so
is independent of the vergence angle of the eyes
(Harris, 2004; Howard & Rogers, 2002). However,
doubling interocular separation (or, equivalently in this
experiment, shrinking the scene by a factor of two
around the cyclopean point) doubles both the absolute
disparities and the relative disparities of points but it
only affects physical-based cues, not texture-based cues,
so the absolute/relative distinction does not map onto
the two cues we have described. The distinction between
scaled and unscaled reconstruction is important in
photogrammetry and it clarifies the information that
is available to the visuomotor system under different
assumptions.

When judging visual direction, if the scene expands
or contracts about the cyclopean point between 1) the
moment when the participant initially sees the target
and 2) the moment when they have to make a judgment
about the visual direction of the previously viewed
target (after having walked to a new location), then
physical-based and texture-based cues will conflict, but
crucially they both provide estimates in the same units
(visual angle) and so can be combined.

Previously, we have investigated the effect of these
two types of cue to distance using an immersive virtual
reality environment where the scene can expand or
contract around the observer’s cyclopean point. In
those experiments, we have demonstrated how these
cues could be combined according to the widely
accepted rules of cue combination (Glennerster et al.,
2006; Rauschecker et al., 2006; Svarverud et al., 2012;
Svarverud et al., 2010). However, in these instances we
have always examined them in relation to the perception
of depth. In the current work, we extend this analysis to
the perception of visual direction and, to anticipate our
results, we show again that performance in combined
cue situations for visual direction follows the pattern
expected by standard cue combination rules, just as it
did for perceived depth.

Here, we also compare judgments of direction
and distance from the two classes of cue, because
there are clear ways in which both types of judgment
could adhere to standard cue combination rules
yet produce perceptual estimates that are mutually
inconsistent. First, observers might differentially weight
the available cues when making each type of judgment.
Second, judgments of direction and distance might
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be differentially biased. By bias, we are referring to a
discrepancy between 1) the value of a property of the
external world (real or simulated) and 2) the person’s
estimate of that property. Elsewhere, this concept has
been termed external accuracy (Burge et al., 2010). A
similar conclusion about perceptual inconsistencies has
been advocated on the basis of evidence showing that
the integration of sensory cues does not necessarily
lead to the calibration of those same cues (Smeets et al.,
2006).

Aims of the current study

The current study had two aims. First, we examine
whether judgments of visual direction in freely moving
observers could be predicted using a simple weighted
averaging of the two types of cue we have described
(physical-based and texture-based), as has been
shown for judgments of distance (Svarverud et al.,
2010). We adopt the most widely accepted framework
for considering sensory cue combination (weighted
averaging) for this purpose (Landy et al., 1995; Maloney
& Landy, 1989). This posits that the goal of combining
sensory cues is to maximize the precision of the
combined cues estimate and construct a single unified
internal representation of the scene in units such as
depth (Landy et al., 1995). Second, we explore the
possibility that judgments of distance and direction
could be mutually inconsistent. Using immersive
virtual reality allows us to examine these aims in a
naturalistic spatial updating task, while parametrically
controlling the cues available to the observer (Scarfe &
Glennerster, 2015, 2019). Spatial updating has generally
been discussed in terms of a geometric representations
of space and an observer’s location in that space rather
than the weighted combination of conflicting estimates
of visual direction (e.g., Klatzky et al., 1998), although
see Nardini et al. (2008) for a similar approach to
weighting visual-only or proprioceptive-based cues but
applied to a homing task.

Methods

Participants

Nine observers took part in experiments, including
one author (P.S.). The experiments were reviewed and
approved by the University of Reading Research Ethics
Committee. Observers were paid £10 per hour to take
part. Participants ranged in age from 18 to 33. All had
normal or corrected-to-normal vision (Snellen acuity of
6/6 or better).

General methods

Observers viewed the virtual scene binocularly using
a NVIS SX111 head-mounted display (HMD). This
had a vertical field of view of 72°, horizontal field of
view of 102°, and 50° of horizontal binocular overlap.
The displays for each eye had a resolution of 1,280 ×
1,024 pixels and a refresh rate of 60 Hz. The position
and orientation of the HMD was tracked using a
14 camera Vicon tracking system (MX3 and T20S
cameras). The HMD was calibrated such that the left
and right eyes viewing frustums could be calculated
from the six degrees of freedom tracking data. This
allowed geometrically correct perspective projection of
the 3D scene as the observer moved through the virtual
environment (Gilson et al., 2011). The HMD was
driven by two computers connected directly by gigabit
Ethernet, one for running the tracking software and one
for generating the simulated environment. The tracking
computer had a quad core Intel Xeon 3.6GHz CPU,
NVidia Quadro K2000 graphics and 8 GB of RAM.
This ran Vicon Tracker 2.0.1 software that outputted
the coordinates of the HMD at 240 Hz. The graphics
computer had an eight core AMD Opteron 6212 CPU,
dual NVidia GeForce GTX 590 Graphics cards and 16
GB RAM. This polled the coordinates of the HMD at
60 Hz using the Vicon DataStream SDK for Matlab
(R2013b).

Stimuli were rendered online in OpenGL using
Matlab and the Psychophysics toolbox extensions
(Brainard, 1997; Kleiner et al., 2007; Pelli, 1997). The
dual displays of the HMD were driven from a single
graphics card port using a Matrox multidisplay adaptor
(“TripleHead2Go”) to ensure the two eyes images were
updated synchronously, without tearing. This created a
single virtual 2,560 × 1,024 screen (left half mirrored to
the left eyes HMD display, and the right half the right
mirrored to the eyes HMD display). Observer responses
were recorded with a handheld wireless button box
connected to the graphics computer via Bluetooth.

Visual direction: Stimulus and task

The experiment took place in a virtual room
(Figure 1) with brick textured walls and a black and
white checkerboard textured floor (24 × 24 tiles). The
checkerboard was created procedurally in Matlab and
the brick texture was loaded in from a photo. The photo
was tiled, resized, and filtered in Adobe Photoshop
CS6 to create a single image with no visible seams
between the edges of the tiled image. Both images were
converted to OpenGL textures for rendering.

Each trial began with the observer in a simulated
room with rendered physical dimensions of 8 m ×
8 m × 3 m (width, depth, and height). The floor of
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Figure 1. Rendering of the virtual room, with the back wall removed. The green square indicates the position of view zone 1 (where
the observer stood in interval 1) and the blue square the position of view zone 2 (where the observer stood in interval 2), in the “near
wall” condition (colored squares were not present in the simulated VR environment). During the experiment observers judged the
distance and visual direction of a red sphere rendered in front of view zone 1. The purple fiducial marker above view zone 1
represents the cyclopean position of the observer. During the experiment the room could dynamically expand or contact around the
observers’ cyclopean point (semi-opaque room shows an example of expansion). When the room expanded the bricks on the wall
and tiles on the floor scaled in size such that from the cyclopean point the room looked identical before and after it changed in size.
This allowed “texture-based” and “physical-based” cues to conflict with one another (see main text for details). Supplementary Movie
1 shows a dynamic version of this figure.

the rendered room was concordant with the physical
floor of the laboratory. Interval 1 was initiated when
the participants entered an invisible 50-cm square view
zone on the left side of the simulated room (view zone
1). View zone 1 was always 1 m from the back wall but
could be either 0.9 m or 2.75 m from the left-hand side
simulated wall (Figure 2). We label these conditions
"near wall" and "near middle," respectively. These two
conditions were used because previous research has
shown that, in an environment such as this, proximity
to the wall modulates the weighting observers assign
to visual cues such as disparity, motion, and texture
(Svarverud et al., 2012).

Upon entering view zone 1 a red target sphere (30 cm
in diameter) appeared at 1.6 m directly in front of the
view zone. The height of the sphere was set to that of
the observer’s cyclopean eye, which was recorded at the
moment they entered the view zone. The coordinates of
the cyclopean eye were computed directly from the left
and right eye OpenGL model view matrices on each
refresh cycle (60 Hz). Observers were informed that the

ball would always be directly in front of view zone 1
before starting the experiment. The sphere was matt,
red in color, and lit by a white light source providing
ambient and diffuse illumination positioned 2 m above
and 2 m to its right. The rest of the room was unaffected
by this light source.

The sphere was viewable continuously, so long as
the X and Z coordinates of the observer’s cyclopean
point remained in the view zone. If the observer moved
out of the view zone, the ball disappeared, but it
reappeared as soon as they reentered. Observers were
instructed to get a good idea of the position of the
ball and were encouraged to move relative to the ball
to aid this process, for example, by rocking side to
side laterally. Once they were confident of the position
of the ball, they pressed a button on the button box.
This action triggered the HMD screens to go blank
for 0.5 seconds, after which time the rendered room
reappeared, without the red sphere. When the room
reappeared, it could have a different size (either smaller
or larger) to that in the first interval. When the room
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Figure 2. Schematic view of a portion of the room from above.
The position of the view zones and red sphere are shown
relative to the left and back walls of the room. In interval 1,
observers remembered the position of the sphere from view
zone 1. They then walked across the room to view zone 2,
where they saw a second sphere that could be in the same
physical location or translated along the line joining the center
of zone 1 and the center of the sphere in interval 1 (dashed
circles). The task was to judge whether the visual direction of
the second sphere was to the “left” or “right” of the original
sphere.

changed size between intervals, it uniformly scaled in
size around the cyclopean point of the observer (Figure
1, Supplementary Movie 1).

As a result, the checkerboard and brick textures
scaled with the room so that there were the same number
of bricks on the walls and tiles on the floor when
the room changed size. The textures were magnified
using bilinear sampling and minified using a tri-linear
sampling (multiresolution mipmap pyramid), both with
16× anisotropic filtering. This ensured that there was
no visual texture aliasing or excessive blur at different
scales, even when viewing the textures at very shallow
viewing angles. In addition to this, the whole scene was
anti-aliased using full screen multisampling with eight
samples per image pixel. Thus, the cyclopean viewpoint
when the room reappeared was identical to that at the
end of the first interval, except for any small movement
the observer made during the short blank period. When
a room is scaled in this way, people remain consciously
unaware that the room has changed size, even though
this size change can be dramatic (Glennerster et al.,
2006; Svarverud et al., 2010).

Once the room reappeared, observers walked
rightwards across the room 1.8 m to view zone 2 (also
1 m from the back wall). A physical bar 1 m in height,
not rendered in the virtual environment, straddled the
diameter of the laboratory at right angles to the walls
and provided a guide for walking. The positions of
both view zones were marked on the bar with physical
markers so that observers could feel when to stop
walking by touch. The distance walked was always
1.8 m and observers rapidly became accustomed to this
movement distance. This also meant that on different
trials observers walked across different proportions of
the simulated room. All observers were debriefed at the
end of the experiment and, consistent with previous
research (Glennerster et al., 2006), none reported being
aware that the room scaled in size, or that they were
traversing different proportions of the simulated room.
At best, the only thing observers noticed was that on
some trials they felt as if they were moving faster or
slower than others.

When observers entered view zone 2, a new ball
appeared in the room (interval 2). This ball was also
directly in front of view zone 1; however, its distance
from view zone 1 (in the Z direction) was generally
different from that in interval 1 (the full psychophysical
procedure for this is described further elsewhere in this
article). The observers’ task was to judge whether, in
terms of visual direction, the second ball was to the left
or the right of the first ball. In Figure 2, this corresponds
to whether θ was smaller or greater than that in interval
1. Before the beginning of the experiment, the task was
explained clearly to observers with the aid of diagrams
and each observer completed practice blocks until they
were confident in the task. With a short period of
practice, observers became very proficient in the task,
finding it quick and intuitive to perform. We consider
that a task in which the target disappears and then
participants judge the location of a probe relative to
the remembered location is the cleanest way to measure
their representation of perceived location. When the
target can be seen continuously, biases are introduced
relative to participants’ perception in a static scene
(Tcheang et al., 2005; Wallach et al., 1974).

The size of the ball in interval 2 was scaled relative to
the room so that observers would be unable to identify
the physical scale of the room simply by judging the
size of the ball relative to the room across intervals.
In addition to this, the ball’s size was jittered by a
random value drawn from a uniform distribution of
±15%. This prevented participants from using the
angular size of the ball as an accurate proxy for viewing
distance, although we note that this does not completely
eliminate angular size as a potential cue to viewing
distance. Observers were informed that the ball’s size
would vary randomly across trials, but regardless of
the ball’s size, the task was always to judge its visual
direction. If participants had misattributed some of
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the change in ball size to a change in viewing distance
(e.g., 50%), this would be equivalent to carrying out the
experiment at a different viewing distance. Assuming,
as we do throughout, that participants remember this
viewing distance from interval 1, and use it in their
estimation of viewing distance or direction in interval
2, then there is only a very small effect of this potential
misattribution on the quantities we compute later on.
Specifically, the maximum possible effect will be for
trials that have the largest jitter. For these extreme trials,
the estimated ratio of reliabilities for texture-based and
physical-based cues would change by 5% from the ratio
that would have been computed otherwise. Overall,
the mean effect across all trials would be zero and the
standard deviation of the change in ratio would be
0.2%.

Upon recording their response with a button press,
the rendering of the room was extinguished. This cued
the observer to walk back to view zone 1. When they
got half-way between view zones 1 and 2, they reentered
the simulated room of interval 1 for the next trial of the
experiment.

Visual direction: Single cue sensitivities

To test the weighted averaging model, we first
measured single cue sensitivities to changes in visual
direction. We did this using a paradigm in which one
cue, either physical-based or texture-based was varied,
and the other one was constant. We did this both when
the participant was near the wall and near the middle
of the room. As described elsewhere in this article,
physical-based cues refer to information from stereo
and motion parallax that is scaled by an estimate of the
baseline between views (such as interocular separation
or distance walked), which can potentially signal the
position of the sphere independent of other aspects
of the room. Texture-based cues, in contrast, signal
the position of the ball relative to other aspects of
the room, for example, the tiled floor and brick walls.
Disparity and motion parallax can also contribute to
these, for example, the ratio of two relative disparities
is independent of any estimate of the interocular
separation. Single cue sensitivities were measured by
holding one cue constant while letting the other vary
when the room scaled in size across intervals 1 and 2.
Elsewhere in this article, we detail how we can infer
single cue sensitivities from measurements with both
cues present. For both classes of cue, in interval 1 the
ball was always positioned 1.6m directly in front of
view zone 1. However, in interval 2 the positioning of
the ball differed.

When measuring a physical threshold, the position
of the ball in front of zone 1 remained the same relative
to the room (i.e., a different physical position compared
with interval 1). In contrast, when measuring a texture

threshold, the ball remain at the same physical position
in front of zone 1 (i.e., a different position relative to
the room compared with interval 1). By varying the
magnitude of room scaling between intervals 1 and
2, we were able to map out a psychometric function
for each type of cue, for each position in the room:
1) texture cues near wall, 2) physical cues near wall,
3) texture cues near middle, and 4) physical cues near
middle. Whereas in previous research observers were
instructed to pay explicit attention to the type of cue
being varied (Svarverud et al., 2010), in the present
study we gave no instructions in this regard, so as to
measure observers’ natural propensity to use each type
of cue in each condition.

There are clearly many different components that
contribute to the overall sensitivity to a cue, including
the variability in measuring the distance walked,
variability in remembering the distance of the target in
interval 1, and variability in the process of computing
an angle from these two distances. This is true for a
large range of studies in this area (see Hillis et al., 2004
for a discussion). When we fit a cumulative Gaussian
to the psychometric function for one of these tasks,
we are assuming that a number of sources of noise
sum together (variances add, for independent noise
sources) to give a total noise for all the components
contributing to performance. For both physical-based
and texture-based cues, variability in measuring the
viewing distance, measuring the distance walked, or
computing an angle from these distances are all likely
sources of noise. The key aim is to see, under these
common assumptions, how well weighted averaging can
account for the data.

For each of the four functions, the scale factor
of the room in the second interval was determined
by the psi-marginal adaptive method (Prins, 2013),
implemented in the Palamedes toolbox for Matlab
(Prins & Kingdom, 2009). The psi-marginal method
is based on the psi method (Kontsevich & Tyler,
1999), but allows the experimenter to label the four
parameters of the psychometric function as parameters
of interest or nuisance parameters. The psi-marginal
method marginalizes over the nuisance parameters
so that stimulus placement only gathers information
about these if they provide information about the
parameters of interest (for a full description, see Prins,
2013). Because we were primarily interested in the
point of subjective equality (PSE) and slope of the
psychometric function these were set as parameters of
interest, whereas the lapse and guess rate were set as
nuisance parameters. As such, the PSE and slope of the
psychometric function were set as our free parameters
when psychometric functions were fit (as discussed
elsewhere in this article).

The minimum and maximum room scale factors
from which the psi-marginal could be selected were set
at 0.35 and 3.95. Collecting data at values high and
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low on the psychometric function is key for gaining
well-fit, unbiased, functions (Prins, 2013; Wichmann
& Hill, 2001a, 2001b). We chose these values because
they had resulted in near asymptotic behavior and well
fit functions during piloting. Trials for each for the
four psychometric functions were randomly interleaved
and completed in blocks of 40 (10 trials per function
per block). There were 5 blocks, giving a total of 150
trials per psychometric function. Observers took breaks
between blocks, but typically completed two blocks
back to back. The experiment could be completed over
multiple days or weeks, depending on the availability of
the observer.

Visual direction: Measuring perceived visual
direction when both cues vary

Next, we measured perceived visual direction when
both classes of cue could vary between intervals 1 and
2. If the weighted averaging model holds, we should
be able to predict cue weighting in the combined-cue
case from single cue sensitivities. For this part of
the experiment we used five scale factors with equal
logarithmic spacing (2−1, 2−0.5, 20, 20.5, and 21),
corresponding with scale factors of 0.5, 0.71, 1.0, 1.41,
and 2.0. The values were chosen to lie well within the
scale factors used for measuring single cue sensitivities,
so as to not be extrapolating beyond the range in which
cue weights were measured. For each scale factor, we
collected a separate psychometric function using the
psi-marginal adaptive method. Here, the psi-marginal
method was used to vary the depth of the sphere in
interval 2. This had the effect of altering the visual angle
θ for both cues concurrently (Figure 2). All five of these
psychometric functions were run randomly interleaved
within blocks. Each block consisted of 50 trials, 10 per
function. There were in total 15 experimental blocks,
giving a total of 150 trials per psychometric function,
that is, the same number of trials per function as when
measuring single cue sensitivities. All other aspects of
the task were identical to that described elsewhere in
this article.

Perceived distance: Stimulus and task

The aim of the second part of the experiment was to
obtain estimates of the perceived distance of the target
sphere in the same experimental conditions with as with
judgments of visual direction. Five observers also made
distance judgments (in subsequent figures: PS, S1, S3,
S4, and S5) based on their availability to take part. The
stimulus and methodology were largely identical to
judgments of visual direction, so we just describe the
differences here. In the first interval, observers judged

the distance to the red sphere in front of them (distance
being the Z dimension shown Figure 2). Once they
were confident, they pressed a button that triggered the
HMD screens to go blank for 0.5 seconds, after which
the rendered room reappeared, with a new red sphere.
The observer’s task was to judge whether the red sphere
in the second interval was closer or further from them
in the Z dimension compared with the red sphere in
interval 1.

As with the direction task, the room could scale
in size around the cyclopean point between intervals
and the red ball scaled in size relative to the room with
an additional jitter of value drawn from a uniform
distribution ±15%. In addition to this, the ball in the
second interval was jittered laterally in the X dimension
by a value drawn from a uniform distribution ±25.43
cm. This was equivalent to ±9° at the 1.6 m distance of
the ball in interval 1. This lateral jitter was introduced so
as to disrupt the use of monocular cues to complete the
task. Observers were informed of this random lateral
jitter and told that, regardless of the jitter value, the
task was always to judge distance in the Z dimension.

As with the judgments of direction, there were
two parts. In the first part, we measured single cue
sensitivities for distance by holding target distance (as
defined by one cue) constant while the distance of the
target as defined by the other cue was varied. As before,
the room scale factor between intervals 1 and 2 was
determined adaptively by the psi-marginal method.
In the second part, we measured perceived distance
with the same five room expansion factors. Here the
psi-marginal method was used to measure the distance
of the ball from view zone 1 in the Z dimension.
Observers were given practice trials until they were
familiar with the task and confident in carrying it out
before beginning the experiment. All other aspects
of the procedure were identical to the direction
task.

Definition of cues for perceived visual direction

In measuring single cue sensitivities for physical
and texture cues to visual direction, we parametrically
varied the scale of the room between intervals 1 and 2,
as has been done previously for judgments of distance
(Svarverud et al., 2010). However, room scale factor
has a nonlinear relationship with the property that
the observer was asked to estimate, namely, whether
the visual direction of the ball had changed between
intervals 1 and 2. For single cue sensitivities to be
correctly measured there must be a linear relationship
between 1) the property being estimated and 2) the
property being manipulated. There is currently active
debate surrounding the cues observers use to complete
a given task and whether or not they are linearly related
to the judgment that an observer is making (Hillis et al.,
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2004; Rosas et al., 2004; Saunders & Chen, 2015; Todd,
2015; Todd et al., 2010). Often, this remains an open
question (Rosas et al., 2004). With this aim in mind,
before fitting psychometric functions to the data, we
converted the room scale factor into a change in visual
direction for each class of cue. In the following, we
describe this process and in doing so the predictions
that would follow if an observer relied entirely on either
class of cue.

In measuring a threshold for physical cues, when the
room scale between intervals 1 and 2, the ball remained
in the same position relative to the room. As a result,
the ball’s physical position changed between intervals.
Here, we describe what that would look like to an
observer who relied 100% on physical cues. In interval
1, the observer estimates the distance to the ball D from
view zone 1. In interval 2, they walk across the room
by distance B to view zone 2. The room has scaled in
size by a factor of Si between intervals 1 and 2 (where
Si varies between trials and 0.5 < Si < 2), but because
the observer relies 100% on physical cues, they ignore
this scaling and expect that the visual direction of the
ball in view zone 2 will be:

θ
Phy
1 = tan−1

(
D
B

)
(3)

Thus, even though the observer in interval 1 is at zone 1,
with the target in front of them, Equation 3 refers to the
expectation of the angle θ to the target sphere as viewed
from zone 2, but under the stimulus conditions present
in interval 1. However, in interval 2, room scaling causes
the ball’s physical distance from view zone 1 to change
fromD toD*Si. Thus, when the ball reappears, its angle
from physical cues is given by

θ
Phy
2 = tan−1

(
D ∗ Si

B

)
(4)

The difference in angle between intervals 1 and 2 for
an observer who relied 100% on physical cues would
therefore be:

�θPhy= θ
Phy
2 − θ

Phy
1 = tan−1

(
D ∗ Si

B

)

− tan−1
(
D
B

)
(5)

Note that, if an observer relied 100% on texture
cues, we would be unable to measure a threshold for
physical cues because each trial would look identical to
the observer.

In measuring a threshold for texture cues, when
the room scales between intervals 1 and 2, the ball
remains in the same physical position. As a result, the
ball’s position relative to the room changes between

intervals. Here we describe what this would look like
to an observer who relied 100% on texture cues. In
interval 1, the observer estimates the distance to the
ball (D) relative to a distance that is defined in terms
of the room (R), which can refer to any property of
the room, for example, the size of one of the square
tiles on the floor or the distance from the observer
to the back wall since these all covary. Thus, D/R is
unitless and gives a measure of the distance of the
target that remains independent of the overall scaling
of the room. In interval 2, the observer walks across the
room by distance B to view zone 2, again judging this
distance relative to the same property of the room. The
observer’s expectation of the ball’s visual direction at
view zone 2 is therefore given by:

θTex
1 = tan−1

(
D/R
B/R

)
= tan−1

(
D
B

)
(6)

Because the ball remains in the same physical
position when the room scales, its distance relative
to view zone 1 changes inversely to the rooms scale
(D/R)/Si.

θTex
2 = tan−1

(
(D/R) ∗ 1

Si

B/R

)
= tan−1

(
D

B ∗ Si

)
(7)

The difference in angle between intervals 1 and 2 for
an observer who relied 100% on texture cues would
therefore be:

�θTex= θTex
2 − θTex

1 = tan−1
(

D
B ∗ Si

)

− tan−1
(
D
B

)
(8)

Note that, if an observer relied 100% on physical
cues, we would be unable to measure a threshold for
texture cues because each trial would look identical
to the observer (D and B are both unchanged across
trials). It is also important to note that θTex

2 refers to
the angle at which the observer would see the ball from
zone 2, if zone 2 had been scaled with the room (hence
B/R on the denominator is not multiplied by 1

Si
in the

same way that D is, so that D remains fixed in physical
coordinates). It does not matter that the visual direction
judgment takes place from a physically different place
(namely, zone 2 at distance B from zone 1). The idea
is that, as the observer walks from zone 1 to zone 2
with a constant place in mind where they think that the
ball was in interval 1, there should be some measure
to describe that constant location, even though its
visual direction changes as the observer walks. We have
chosen, for the sake of convenience, the visual direction
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of that location as seen from zone 2, if zone 2 had been
scaled with the room, hence Equation 7.

Definition of cues for perceived distance

In measuring a threshold for physical cues for
distance, when the room scale changed between
intervals 1 and 2, the ball remained in the same position
relative to the room. As a result, the ball’s physical
position changed between intervals. Here we describe
what that would look like to an observer who relied
100% on physical cues. In interval 1, the observer
estimates the distance D to the ball from view zone
1. In interval 2 they again estimate distance, but in a
room that has scaled in by a factor of Si. Because the
observer relies 100% on physical cues, they ignore this
scaling. Thus, their estimate of distance in interval 1 is
assumed to be:

DPhy
1 = D (9)

and in interval 2 room scaling causes the ball’s physical
distance from view zone 1 to change from D to D*Si:

DPhy
2 = D ∗ Si (10)

So, the difference in estimated distance of the target
between intervals 1 and 2 for an observer who relied
100% on physical cues would therefore be:

�DPhy = DPhy
2 − DPhy

1 = D (1 − Si) (11)

These equations are similar to Equations 3 through 5
earlier, but they refer only to the distance part (the
left-hand edge of the triangle shown in Figure 2), rather
than θ . Just as in the case of direction judgments, if
an observer relied 100% on texture cues, they would
be unable to detect any change between intervals 1
and 2 whatever the value of Si and hence we could not
measure a threshold in this experiment.

As for direction thresholds, measuring a distance
threshold for texture cues requires that, when the room
scales between intervals 1 and 2, the ball remains in the
same physical position. Consequently, the ball’s position
relative to the room changes between intervals. Here we
describe what this would look like to an observer who
relied 100% on texture cues. In interval 1, the observer
estimates the distance to the ball (D). In interval 2, the
observer’s judgment of distance is given by:

DTex
1 = D (12)

This is similar to Equation 6, which applied to
direction but here only refers to distance (the left-hand
edge of the triangle shown in Figure 2). In interval

2, the target distance relative to view zone 1 changes
inversely to the room’s scale (while its physical distance
remains constant):

DTex
2 = D

Si
(13)

Hence, for an observer who relied only on texture
cues, the magnitude of the distance signal (the difference
between intervals 1 and 2) would be:

�DTex = DTex
2 − DTex

1 = D
(
1 − 1

Si

)
(14)

Results

Perceived direction: Single cues

After conversion, cumulative Gaussian functions
were fitted to observers’ data by maximum likelihood
in Matlab using the Palamedes software package with
the mean and slope of the function as free parameters.
These parameters correspond to the parameters of
interest set in the psi-marginal adaptive procedure
(Prins & Kingdom, 2009). The point of subjective
equality (mean of the fitted cumulative Gaussian) and
slope of the fitted function were estimated with 95%
confidence intervals (CIs) computed via parametric
bootstrapping (1,000 bootstrap samples). The standard
deviation of the cumulative Gaussian is given by the
inverse of the slope. The standard deviation of the
fitted cumulative Gaussian is useful for determining the
sensitivity of observers to that cue. We explain how we
use this value to obtain an estimate of the reliability of
the cue elsewhere in this article (Equations 17–20).

Psychometric functions for the three representative
observers are shown in Figure 3. The observers shown
in Figure 3 have different levels of experience. PS is one
of the authors, S1 is an experienced psychophysical
observer naïve to the purposes of the experiment, and
S2 a naïve observer with little to no experience of
psychophysical experiments.

Clearly, it is only possible to fit functions to
observers’ data if they give some weighting to the cue
that is being varied. If not, observers’ responses will
not be related to changes in that cue’s value, making it
impossible to fit a function. There were three observers
where we were unable to fit a function to one or more
conditions due to them performing at chance across the
whole stimulus range. For observer S3, we were unable
to fit a function to measure physical cue thresholds for
either position in the room (near wall or near middle),
for S4 we were unable to fit a physical cue function
for the near middle condition, and for S5 we were
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Figure 3. Example psychometric functions for physical and texture cues for judgments of visual direction (upper row “near wall”
condition, lower row “near middle” condition). The area of the circular markers is proportional to the number of trials at that stimulus
level, as determined by the psi-marginal adaptive procedure. The squares represent the point of subjective equality (mean of the
psychometric function). Error bars around the PSE show bootstrapped 95% confidence intervals (where these are not visible, they are
smaller than the size of the marker). The vertical black dashed line shows “veridical” performance; the PSEs of the psychometric
functions would fall on this line if the observer was unbiased in judging visual direction.

unable to fit a texture cue function for the near middle
condition. Therefore, in subsequent calculations, we
set cue weight to zero in these conditions for these
participants.

Potentially, we could have altered the scale of the
room over a wider range to map out a psychometric
function, but we chose not to do this for two reasons.
First, we could not shrink the room any further without
the physical position of view zone 2 lying beyond the
right-hand side wall of the scaled room. This would have
resulted in subjects walking through the wall and out of
the room if it shrunk further. Second, the maximum
scale factor we were using already produces a room
with over double the floor area of a basketball court;
thus, it seemed unlikely that these observers would be
able give weight to the cues with further increases. A
more plausible explanation was that observers were
simply not giving any weight to the visual information
contributing to that particular threshold.

Visual direction: When both cues vary

Psychometric functions for perceived visual direction
for each of the five room scale factors were fitted
using the same procedure as described above. Example
psychometric functions for each scale factor, for
observer S2 in the near wall condition are shown
in Figure 4b–f. To estimate the weight given to texture
when making visual direction judgments we fitted the
PSEs, from the different room scale factors with a linear
model (Equation 15).

A = kT + c (15)

Here, T is the texture cue prediction of visual direction
so both A and T are vectors with five elements for
the five scale factors we used. The multiplicative free
parameter k represents the texture weight, whereas c is
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Figure 4. Example psychometric functions for judgments of visual direction while varying both classes of cue and for each of the five
room scale factors (b–f). In each of these plots, the area of the circular data points is proportional to the number of trials presented at
the that stimulus level (as determined by the psi-marginal adaptive procedure). Function PSEs are shown as squares, with error-bars
showing bootstrapped 95% confidence intervals (where these cannot be seen they are smaller than the symbol size). In (a) these PSEs
are plotted against room scale factor along with a fit of Equation 15 (blue dots and line), which was used to determine relative cue
weighting (k) and level of perceptual bias (inset text). The horizontal dashed black line shows the prediction if an observer gave zero
weight to texture-based cues, the dotted red line shows the prediction if the observer gave zero weight to physical cues (where both
predictions assume no bias in perceptual estimates). The dashed blue line shows the predicted perceived visual angle if the observer
weighted the cues as they did in the experiment but exhibited no perceptual bias (bias shown as dark grey arrow).

an additive parameter of the linear model incorporating
any bias. The solid line in Figure 4a shows an example
fit for observer S1 for the near wall condition. This
observer preferentially weights texture when making
judgments of visual direction. The dotted red line
shows the predicted visual direction if the observer
gave full weight to texture cues while the black dashed
line shows predicted visual direction if the observer
gave full weight to physical cues. The physical cue
prediction is simply the physically correct angle,
θPhy = 41.6◦, whereas the texture cue prediction is
given by

θTex
i = tan−1

(
B

D/Si

)
(16)

Here, θTex
i is the texture cue prediction of θ and varies

with room scale factor Si, B is physical distance to the
target ball, and D the physical distance from view zone
1 to 2. The dashed blue line in Figure 4a shows the
predicted performance if the observer weighted cues
by the same amount to that found, but exhibited no
perceptual bias.

Comparable plots for all observers are shown
in Figures 5 and 6 for the near wall and near middle
conditions. Observers tended to weight texture-based
cues more highly in both room positions. The
average weighting for texture-based cues was 0.71
near wall and 0.57 in the near middle. This differed
significantly from equal cue weighting in the near
wall condition, t = 5.1, df = 8, 95% CI = 0.61–0.80,
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Figure 5. PSEs are plotted against room scale factor for the “near wall” condition when both cues were varied, for each of the nine
observers. Plots are formatted as described for Figure 4a.

p = 9.32 × 10−4, but not in the “near middle”
condition, t = 0.9, df = 8, 95% CI = 0.39–0.74, p =
0.4. In the section “Visual direction: Do observers
optimally combine texture-based and physical-based
cues?”, we examine whether the relative reliabilities of
texture-based and physical-based cues can predict these
responses.

Overall, when visual direction from both cues varied
observers tended to underestimate visual angle. Seven of
nine observers underestimated visual direction in both
room positions, whereas two observers overestimated
visual direction in both room positions. The average
bias was −3.40° near wall and −5.57° near middle.
This bias was significantly different from zero both in
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Figure 6. PSEs are plotted against room scale factor for the “near middle” condition when both cues were varied, for each of the nine
observers. Plots are formatted as described for Figure 4a.

the near wall condition, t = −2.30, df = 8, 95% CI =
−6.81 to 0.01, p = 0.05, and near middle conditions, t
= −3.37, df = 8, 95% CI = −9.37 to −1.75, p = 0.01.
There was a significant linear relationship between the
bias observers exhibited in each room position, F(1, 7) =
36.69, p < 0.001 (Figure 7).

Visual direction: Do observers optimally
combine texture-based and physical-based
cues?

Given the assumptions of the weighted averaging
model, it should be possible to predict the weighting
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Figure 7. The bias in judgments of visual direction observed for
the “near wall” and “near middle” conditions, when both cues
varied (as in Figures 5 and 6). If observers exhibited no
perceptual bias, all data would fall at the intersection of the
vertical and horizontal dashed lines. The pink line shows a linear
fit to the data with associated 95% confidence bounds (R2 value
of the fit shown in text inset). Negative values in the lower left
quadrant indicate an underestimation of visual direction.

of texture-based and physical-based cues based on the
single cue sensitivities we have measured (Equation 10).
However, we cannot simply use the standard deviation
of the cumulative Gaussian measured in the single cue
sensitivity experiments (Figure 3) as an estimate of the
reliability of each cue, 1/σ 2 . This is because both cues
were present during these measurements of sensitivity,
one signaling zero change from intervals 1 to 2, the
other providing a signal that changed across intervals
and allowed the participant to carry out the task.
Assuming cue combination occurs, the zero-change
cue will still affect performance as, on every trial, it
will decrease the perceived perturbation of the target
relative to the perturbation of the signal or changing
cue that the experimenter has added (i.e., the values
plotted on the x-axis of the psychometric functions
in Figure 3). The extent of this reduction in the effective
magnitude of the signal cue is determined as follows.

First, we can see how the weights of the two
cues affects the measured standard deviation of
the cumulative Gaussian in the comparison task.
Specifically, for any given trial, D̂A is the magnitude of
the changing or signal cue in the experiment, D̂B is the

magnitude of the static cue (zero in this case) and D̂C is
the combined perceptual estimate (Landy et al., 1995).
wA is the weight given to the changing signal cue and
wB the weight given to the static cue. Thus, the presence
of D̂B will have the effect of pulling D̂C toward zero on
every trial, always by the same proportion.

D̂C = wAD̂A + wBD̂B (17)

As a result, the experimentally measured standard
deviation, σ̂A, is overestimated relative to the true
underlying standard deviation σA. It is overestimated
rather than underestimated because a higher value of
D̂A needs to be presented than would otherwise be the
case if the static cue D̂B were not presented to give rise
to the same internal response (i.e., reach the same value
on a fitted cumulative Gaussian curve). The magnitude
of this overestimation is 1

wA
. A derivation of this is

given in Scarfe (2020, pp. 49–53). So, if each individual
point on a psychometric function is shifted toward the
mean (PSE) by the same proportion (e.g., 50%) then
the standard deviation of the cumulative Gaussian fit
through the shifted data will reduce (by 50% in this
example) but the mean (PSE) will not change. As a
consequence, the measured standard deviation σ̂A is
given by:

σ̂A = σA

wA
(18)

Since

wA

wB
= σ 2

B

σ 2
A

(19)

the ratio of observed standard deviations for the two
cues from the sensitivity experiments is given by

σ̂A

σ̂B
= σAwB

σBwA
= σ 3

A

σ 3
B

(20)

This means that the underlying ratio of reliabilities,
σ 2
A

σ 2
B
, will be closer to unity than the ratio measured using

the standard deviations of the cumulative Gaussians
shown in Figure 3, σ̂ 2

A
σ̂ 2
B
. A number of papers which have

measured cue sensitivities whilst holding a conflicting
cue constant would need to apply this correction to
accurately estimate cue reliabilities (Svarverud, et al.
2012; Murphy et al., 2013). For an extended discussion
see Scarfe (2020).

Figure 8 shows the predicted and observed texture
weights for the ‘near wall’ and ‘near middle’ conditions
using σA and σB derived from Equation 20. If the
weighted averaging model perfectly predicted observers’
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Figure 8. Predicted and observed texture weights for judgments of visual direction in the (a) “near wall” and (b) “near middle”
conditions. Predicted weights are calculated from single cue sensitivities, observed weights from the data where both cues varied. If
the combined cues data were perfectly predicted from the weighted averaging model, the data would fall on the solid black diagonal
line in each plot. If the combined cue data were unrelated to single cue sensitivities, the data would fall (on average) along the dashed
black line in each plot. The blue line in each plot shows a linear fit to the data with associated 95% confidence bounds (R2 value of the
fit shown in text inset).

performance, all the data points should lie along the
black diagonal line with a slope of one and intercept
of zero. We fitted a linear model to the data by least
squares. There was a significant linear relationship
between predicted and observed texture cue weights for
both the near wall, R2 = 0.64, F(1, 7) = 12.4, p = 0.01,
and near middle conditions, R2 = 0.79, F(1, 7) = 26.0,
p = 0.001.

Perceived distance: Single cues

After converting changes in room scale factor
between intervals 1 and 2 into differences in ball
distance, from each class of cue, cumulative Gaussian
functions were fitted in the same way as described
elsewhere in this article. Example functions for three
representative observers are shown in Figure 9. The
observers are the same as in Figure 3, except for S2
who did not take part in the distance experiment. S2
has been replaced by S4, who is also an observer naïve
to the purposes of the experiment, with little or no
experience of psychophysical experiments.

Perceived distance: Do observers optimally
combine texture-based and physical-based
cues?

Psychometric functions for perceived distance for
each of the five room scale factors were fitted using the
same procedure as described and a linear model fitting

to estimate the cue weighting that participants used
for their distance judgments when both cues varied
(Equation 15). Figure 10 shows fits for the near wall
condition and Figure 11 for the near middle condition.
Consistent with the single cue threshold data, biases
were universally small.

Figure 12 shows predicted and observed texture
weights for the distance judgments made near the wall
(left) and near the middle of the room (right). There
was a significant linear relationship between predicted
and observed texture cue weights for both the near wall,
R2 = 0.95, F(1, 3) = 56.6, p = 0.005, and near middle
conditions, R2 = 0.78, F(1, 3) = 10.9, p = 0.045.

Are estimates of distance and direction
consistent with one another?

To see whether observers’ judgments of direction
and distance are mutually consistent, they need to be in
common units (either distance or direction). Therefore,
for the following we have converted observers’ distance
judgments (and the standard deviation around these
values) into units of visual angle. For each room scale
factor this angle is calculated as the visual direction
observers would perceive the ball to be in from view
zone 2, if it were at the position defined by the PSE in
the distance judgment (see Figure 2).

θdist = tan−1
(

DPSE

Dwalked

)
(21)
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Figure 9. Example psychometric functions for physical and texture cues for judgments of distance (upper row “near wall” condition,
lower row “near middle” condition). The circular marker area is proportional to the number of trials at that stimulus levels, as
determined by the psi-marginal adaptive procedure. The squares represent the point of subjective equality (mean of the
psychometric function). Error bars around the PSE show bootstrapped 95% confidence intervals (where these are not visible, they are
smaller than the size of the marker). The vertical black dashed line shows “veridical” performance; the PSEs of the psychometric
functions would fall on this line if the observer was unbiased in judging distance.

Here, DPSE is the observer’s PSE for the distance
judgment for a given scale factor while Dwalked is the
physical distance from zone 1 to zone two, and θdist the
visual direction the observer would see the ball in from
view zone 2, if they were to judge Dwalked correctly. Data
are plotted for the near wall condition in Figure 13 and
the near middle condition in Figure 14. The error bars
are asymmetric; this is because the conversion from
distance to direction is a nonlinear transform.

In almost all instances in Figures 13 and 14, the
perceived visual direction of an object is inconsistent
with its perceived distance. In the Introduction, we
discussed two ways in which estimates of distance
and direction might be mutually inconsistent. First,
physical and texture cues could be weighted differently
for the two types of task, and second, estimates of
distance and direction might be differentially biased. A
model comparison approach was used to examine these
possibilities, by fitting Equation 15 to the data by least

squares using the fminsearch function in Matlab under
four models. Model 1 allowed differential weighting and
bias between distance and direction estimates (four free
parameters). Model 2 allowed differential cue weighting
but constrained the bias terms to be identical (three free
parameters). Model 3 allowed differential cue bias but
constrained the weighting terms to be identical (three
free parameters). Model 4 constrained the weighting
and bias terms to be identical (two free parameters).

The log-likelihood of each model was determined
and the Akaike Information Criteria (AIC) and
Bayesian Information Criteria (BIC) used to compare
the relative likelihood of each model while taking into
account the number of free parameters in each model.
In this calculation, we have taken the mean of the
asymmetric standard deviation for θdist in calculating
the likelihoods (see Rosas et al., 2004 for an extended
discussion). We present both the AIC (Table 1) and BIC
(Table 2) values but the conclusions are the same. Lower
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Figure 10. PSEs for perceived distance in the “near wall” condition when both cues varied are plotted against room scale factor along
with a fit of equation 10 (green dots and line), which was used to determine relative cue weighting and level of perceptual bias (inset
text). The horizontal dashed black line shows the prediction if an observer gave zero weight to texture-based cues, the dotted red line
if the observer gave zero weight to physical cues (both assuming no perceptual bias). The dashed green line shows the predicted
perceived distance if the observer weighted the cues as they did in the experiment but exhibited no perceptual bias.

numbers represent a high relative likelihood. As can be
seen, regardless of the metric, model 1, with differential
weighting and bias, provided the best account of the
data. Model 1 was better than model 2 (constrained
bias) in 90% of instances, it was better than model 3
(constrained weighting) in 80% of instances and was
better than model 4, (constrained weighting and bias)
in 100% of instances. Model 1 is shown as solid lines
in Figures 13 and 14.

Discussion

Visual direction is, in some senses, the poor relation
in 3D vision; there are many fewer studies examining
the cues used to judge the visual direction of objects,
and how visual direction is updated in the visual system,
than there are for distance and depth. This neglect
is understandable, given that vision has primarily

been studied in static observers. With the use of
virtual reality, it is now possible to parametrically
manipulate the cues available to freely moving observers
and examine how information is utilized to make
perceptual judgments (Glennerster et al., 2006; Scarfe
& Glennerster, 2015, 2019; Svarverud et al., 2012;
Svarverud et al., 2010). Here, we have shown how
estimates of the visual direction of a target can be
influenced by two different classes of cue, namely,
texture-based cues such as the distance of an object
relative to the back wall of the room, and physical-based
cues such as vergence and motion parallax scaled by
proprioceptive information about the distance the
observer moves. It is logical to separate these two cues
and to examine their independent contribution to
judgments of visual direction because they are quite
different.

We also examined whether the estimates for distance
and direction were consistent with one another.
We found that they were not and that under the
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Figure 11. PSEs for perceived distance in the “near middle” condition using the same layout as for the “near wall” data in Figure 10.

Figure 12. Predicted and observed texture weights for judgments of distance in the (a) “near wall” and (b) “near middle” conditions.
Predicted weights are calculated from single cue sensitivities, observed weights from the data where both cues varied. If the
combined cue data were perfectly predicted from the weighted averaging model, the data would fall on the solid black diagonal line
in each plot. If the combined cue data were unrelated to single cue sensitivities, the data would fall along the dashed black line in
each plot. The pink line in each plot shows a linear fit to the data with associated 95% confidence bounds (R2 value of the fit shown in
text inset).
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Figure 13. Data for the direction and distance estimation tasks, for the “near wall” condition, plotted in common units of visual angle.
The solid lines represent a model fit in which the observers are modelled as exhibiting both differential cue weighting and differential
bias for their estimates of both direction and distance. This was the model that gave the best fit overall across observers (see text).
The red dotted line in each plot represents the prediction if physical cues had zero weighting and the dashed black line shows the
case where texture cues had zero weighting: these predictions assume no bias in perceptual estimates.

assumptions of the weighted averaging model this
inconsistency could be attributed to two factors. First,
cues were differentially weighted for the two types
of judgments and, second, the judgments of visual
direction exhibited perceptual bias, whereas judgements
of distance did not. In the context of the weighted
averaging model, differential cue weighting is relatively
uncontroversial (Knill, 2005), whereas differential bias
is the focus of active debate. This is because cues are
typically assumed a priori to be unbiased (Landy et
al., 1995; Maloney & Landy, 1989), with any bias
being attributed to conflicting sources of sensory
information or decision level bias (Watt et al., 2005).
However, the perceptual bias exhibited in the present
study is consistent with a large range of experimental
data gathered with both real-world stimuli (Bradshaw
et al., 2000; Cuijpers et al., 2000; Koenderink et al.,
2002; Koenderink et al., 2000) and that collected with
carefully controlled simulated stimuli (Watt et al.,
2005).

As a result, it is now accepted that bias needs to be
accounted for in any explanation of how observers
combine cues to make perceptual estimates (Ernst & Di
Luca, 2011; Scarfe & Hibbard, 2011). The etiology of
perceptual bias and how this might be incorporated into
models of sensory cue combination is an area of active
debate (Di Luca et al., 2010; Domini & Caudek, 2009;
Domini et al., 2006; Saunders & Chen, 2015; Scarfe
& Hibbard, 2011; Tassinari & Domini, 2008; Todd,
2015; Todd et al., 2010). In our experiment, the visual
direction judgment contains a potential source of bias
that does not exist in the distance judgment (indeed, for
the distance judgment when the room does not expand
or contract the cues in the first and second interval of
a trial are so similar that it is difficult for participants’
judgments to be biased). This extra element is the
estimate of distance walked, a parameter that has long
been considered as a possible cause of biases in spatial
updating tasks (Fukusima et al., 1997; Gogel, 1990;
Gogel & Tietz, 1979). A parsimonious explanation of
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Figure 14. Data for the direction and distance estimation tasks, for the “near middle” condition. The layout is as for the “near wall”
condition shown in Figure 13.

Near wall Near middle

AIC observer Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4

PS 34.26* 317.91 103.41 980.54 42.50* 105.26 49.70 416.41
S1 43.88 42.89* 72.16 316.68 158.79* 171.66 224.27 478.38
S3 26.01 25.34 24.31* 67.28 24.78* 74.75 51.33 84.48
S4 53.62* 65.20 86.75 135.59 27.58* 161.67 350.54 593.78
S7 49.61* 306.19 554.0 809.66 21.64* 27.23 437.86 Infinite

Table 1. Akaike information criteria (AIC) values for each candidate model for all observers in both room positions. Notes: *Model
with the highest relative likelihood.

Near wall Near middle

BIC observer Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4

PS 35.47* 318.81 104.32 981.05 43.71* 106.17 50.61 417.02
S1 45.1 43.8* 73.07 317.28 160.00* 172.57 225.18 478.98
S3 27.22 26.24 25.22* 67.88 25.99* 75.66 52.24 84.09
S4 54.83* 66.11 87.66 136.20 28.79* 162.58 351.45 594.39
S7 50.82* 307.09 554.9 820.26 22.87* 28.13 438.76 Infinite

Table 2. Bayesian information criteria (BIC) values for each candidate model for all observers in both room positions. Notes: The
infinite value is due to the model effectively having zero probability of producing the data for this observer. *Model with the highest
relative likelihood.
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Figure 15. For each room position, this shows the extent of the
misestimation in distance walked that would be required to
account for each participant’s misestimation of visual direction.

the biases is therefore that observers misestimated how
far they walked across the room. Figure 15 plots the
amount by which observers would have to misestimate
distance walked to account for their estimates of visual
direction when the room did not change scale between
intervals 1 and 2. As can be seen, if all error is attributed
to misestimating distance walked, most observers would
have overestimated how far they walked across the
room.

Our data show that it is possible to find good
evidence (compatible with existing research) that
observers are combining cues optimally consistent with
weighted averaging, yet at the same time, good evidence
against the hypothesis that the visual system builds
a 3D reconstruction for different tasks. These results
contradict the mantra that arose from early papers on
cue combination, which assumed that the goal of the
process was to yield a single interpretation of the scene,
for example, a depth map (Landy et al., 1995). However,
they are entirely consistent with the results of many
studies which show that perceptual judgments depend
on the task and that one should not expect consistency
across tasks (Bradshaw et al., 2000; Glennerster et al.,
1996; Koenderink et al., 2002; Smeets & Brenner, 2008).
This is reflected in the wider Bayesian perspective
in which optimality can depend on the perceptual
judgments the observer is making (Schrater & Kersten,
2000).

With the predictions of an optimal cue combination
model such as weighted averaging, it is essential to
consider the criteria for a good fit. Often, the claim is
made that the cue combination data fit well with the
model, and the reader is left to judge the fit of the
model to the data by eye (e.g., Ernst & Banks, 2002;
Hillis et al., 2002; Hillis et al., 2004). Indeed, this has
been recommended as a way in which to judge the
degree of optimality in cue combination (Rohde et
al., 2016). Counterexamples include Burge, Girshick
and Banks (2010), who examined the perception of
slant from disparity and haptic cues and reported an
R2 of 0.60 for predicted versus observed sensitivity
to slant (their Figure 3a); Knill and Saunders (2003),
who examined the perception of slant from disparity
and texture and reported R2 values between 0.15 and
0.46 for different base slants (their Figure 13); and
Svarverud et al. (2010), who examined texture and
physical cues to distance and reported R2 values of
about 0.95 (their Figure 6), although the R2 values in
Svarverud et al. (2010) would have to be adjusted in the
light of Equation 20 before any firm conclusion can be
made as the correction to cue reliabilities was not made
in that paper.

Although the data from the present study fall
squarely within the range of reported R2 values in the
literature, we do not consider this good evidence that
cues are combined optimally according to weighted
averaging. First, the R2 does not provide a measure of
how well the data fit the numerical predictions made
by weighted averaging. For example, there could be
a perfect linear relationship between predicted and
observed cue weighting, in the sense that R2 = 1, but the
observed data could be offset relative to the predicted
data by an arbitrary constant value. Thus, with an R2

= 1, the predicted and observed data could provide
wildly different absolute values. Additionally, there are
numerous candidate models of how human observers
might combine different sources of sensory information
(Jones, 2016). As such, deciding whether a model fits
well should be done with reference to alternatives (de
Winkel et al., 2018; Lovell et al., 2012).

When this is done (and it is comparatively rare) it
becomes clear how hard it is to distinguish certain
models from one another due to their correlated
predictions of combined cues performance (Arnold et
al., 2019; Scarfe & Glennerster, 2018). Scarfe (2020)
discusses this problem in much greater detail. Here,
our aim was to determine whether one could find
good evidence for observers combining cues optimally,
according to the criteria of published research, for both
judgments of direction and distance while at the same
time assessing whether these judgments were mutually
consistent with one another. We find that estimates can
be judged as optimal, yet at the same time be mutually
inconsistent.
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