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Abstract: Background: Activity dependent neuroprotective protein (ADNP) syndrome is one of the
most common single-gene causes of autism spectrum disorder (ASD) and intellectual disability, how-
ever, the phenotypes remain poorly described. Here we examine the sensory reactivity phenotype in
children and adolescents with ADNP syndrome. Methods: Twenty-two individuals with ADNP syn-
drome received comprehensive clinical evaluations including standardized observations, caregiver
interviews, and questionnaires to assess sensory reactivity symptoms. Relationships between sensory
symptoms and age, sex, ASD, IQ, and adaptive behavior were examined. Genotype-phenotype
correlations with the recurrent p.Tyr719* variant were also explored. Results: Sensory reactivity
symptoms were observed and reported in all participants. A syndrome-specific phenotype was
identified, characterized by high levels of sensory seeking across tactile, auditory, and visual domains.
Tactile hyporeactivity, characterized by pain insensitivity, was reported in the majority of participants.
Sensory symptoms were identified across individuals regardless of age, sex, IQ, adaptive ability,
genetic variant, and most importantly, ASD status. No significant differences were identified between
participants with and without the recurrent p.Tyr719* variant on any sensory measure. Conclusions:
Sensory reactivity symptoms are a common clinical feature of ADNP syndrome. Quantifying sensory
reactivity using existing standardized measures will enhance understanding of sensory reactivity
in individuals with ADNP syndrome and will aid in clinical care. The sensory domain may also
represent a promising target for treatment in clinical trials.
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1. Introduction

Activity dependent neuroprotective protein (ADNP) syndrome (OMIM: 615873) is
an autosomal dominant neurodevelopmental disorder characterized by mild-to-severe
intellectual disability (ID), autism spectrum disorder (ASD), speech and motor delays, and
a variety of medical comorbidities [1–3]. The ADNP gene codes for activity dependent
neuroprotective protein, a ubiquitously expressed protein involved in chromatin remodel-
ing [4,5] and synaptic function [6–8]. ADNP is one of many genes involved in chromatin
remodeling that has been linked to neurodevelopmental disorders [9].

ASD is present in one half to two thirds of individuals with ADNP syndrome [1,3]
and ADNP syndrome accounts for approximately 0.2% of all cases of ASD [2]. The ASD
phenotype in ADNP syndrome is characterized by less social impairment and more fre-
quent stereotyped motor behaviors when compared to individuals with idiopathic ASD
or those with other genetic syndromes associated with ASD [1]. Social deficits in ADNP
syndrome were associated with verbal impairment and therefore memory and learning
deficits were described as a prominent feature of the syndrome. This is consistent with
significantly higher rates of intellectual disability in individuals with ADNP syndrome rela-
tive to rates observed in idiopathic ASD. Similar to other monogenic causes of ASD, ADNP
syndrome is associated with various medical (e.g., gastrointestinal problems, hypotonia),
behavioral (e.g., externalizing symptoms), and psychiatric (e.g., obsessive compulsive
behavior, mood disorders) comorbidities [3]. One distinguishing symptom appears to be
early tooth eruption, which is present in ~80% of individuals with ADNP syndrome [10].

In light of a growing body of research describing specific sensory phenotypes in
neurodevelopmental syndromes [11–14], this study provides an in-depth prospective ex-
amination of the sensory phenotype in children and adolescents with ADNP syndrome
and the relationship between sensory phenotypes and both clinical and demographic
factors. The Diagnostic and Statistical Manual of Mental Disorders, 5th, Edition (DSM-
5) [15] criteria for ASD broadly defines sensory reactivity symptoms within the Restricted,
Repetitive Behavior (RRB) domain (“Hyper- or hyporeactivity to sensory input or unusual
interests in sensory aspects of the environment”). Two of four RRBs and all three social
communication criteria are required for a diagnosis of ASD. Literature suggests sensory
symptoms are among the earliest clinically observable predictors of a neurodevelopmental
disorder [16,17] and are present in up to 90% of individuals with ASD [18,19]. Sensory
symptoms are also correlated with lower levels of adaptive functioning [20] and higher
levels of anxiety [21,22] and attention problems [23,24], all of which are commonly ob-
served in individuals with ADNP syndrome. Improved identification and awareness of
sensory symptoms in individuals with ADNP syndrome may offer earlier intervention
and improved quality of life for individuals with ADNP syndrome and their families. In
addition, understanding the sensory phenotype within ADNP syndrome can inform the
development of personalized treatment approaches.

2. Materials and Methods
2.1. Participants

Twenty-two individuals (10 female) between the ages of 2 and 17 years old (Mean
age = 7.72, SD = 4.04) participated in comprehensive clinical evaluations as part of an ADNP
syndrome natural history study. Participants all have likely pathogenic or pathogenic
variants detected by next generation sequencing performed at Clinical Laboratory Improve-
ment Amendments (CLIA) certified laboratories. Variants were annotated according to the
Human Genome Variation Society Guidelines (HGVS) and mapped to the RefSeq transcript
NM_015339.4 (Table S1). The American College of Medical Genetics and Genomics and
Association for Molecular Pathology (ACMG-AMP) Guidelines [25] were used to interpret
each variant. Vision and hearing problems were reviewed to ensure participants did not
have interfering uncorrected sensory impairment (Table S2).
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2.2. Ethics Declaration

The study was approved by the Mount Sinai Program for the Protection of Human
Subjects (Study: 98-0436, Assessment Core for phenotyping approved annually since
1998). Parents or legal guardians of all participants signed written informed consent for
participation. Assent was obtained where applicable.

2.3. Clinical Evaluation

Comprehensive clinical evaluations were completed using a battery of well-validated
instruments commonly used in the assessment of individuals with ASD, ID, and related
conditions [26]. All participants received a psychiatric evaluation by a board-certified
child and adolescent psychiatrist and gold-standard autism diagnostic testing by clinical
psychologists with established research reliability. Using DSM-5 [15] diagnostic criteria
for ID, cognitive and adaptive tests assessed the presence and severity of ID. Cognitive
tests included the Mullen Scales of Early Learning [27] or the Stanford-Binet Intelligence
Scales, 5th Edition [28]. The Vineland Adaptive Behavior Scales, 3rd Edition [29] was
used as a measure of adaptive behavior. DSM-5 diagnosis for ASD was determined based
on a consensus diagnosis from the psychiatric evaluation, and gold standard diagnostic
assessments, including the Autism Diagnostic Observation Schedule, 2nd Edition (ADOS-
2) [30] and the Autism Diagnostic Interview-Revised (ADI-R) [31]. The ADOS-2 is a
semi-structured 45–60-min direct assessment of an individual’s communication, social-
ization, and restricted/repetitive behaviors. The ADI-R is a comprehensive diagnostic
interview conducted with a caregiver to assess current and past symptoms in the following
domains: socialization, communication, restricted and repetitive behavior, and age of
onset. Both the ADOS-2 and ADI-R offer clinical cutoff scores for a classification of ASD
based on extensive research in individuals with ASD relative to individuals with other
developmental delays [32,33]. Both the ADOS-2 and ADI-R were administered by research
reliable clinicians.

Sensory reactivity was measured using standardized observations, caregiver inter-
views, and questionnaires, including:

Sensory Assessment for Neurodevelopmental Disorders (SAND) [34]. A clinician-administered
observation and corresponding caregiver interview that quantifies sensory hyperreactivity,
hyporeactivity, and seeking across visual, tactile, and auditory modalities.

Higher scores indicate a greater number of symptoms. Normed cut-off scores are rated
as within normal limits, elevated (+1 SD), or clinically significant (+2 SDs). Z-scores were
also examined and were based on normative data from over 300 individuals, including
typically developing (TD) controls and individuals with ASD without known genetic
etiology [i.e., idiopathic ASD (iASD)]. The SAND produces an overall Total Score based
on a composite of all Observation and Interview codes as well as composite scores for six
scales (Hyperreactivity, Hyporeactivity, and Seeking Domains; Visual, Tactile, and Auditory
Modalities), and nine subscales (e.g., Visual Hyperreactivity, Visual Hyporeactivity, Visual
Seeking, etc.).

Short Sensory Profile (SSP) [35]. A caregiver questionnaire that assesses sensory process-
ing in everyday settings. Lower scores indicate a greater number of symptoms. Normed
cut-off scores indicate typical performance, probable sensory differences (-1SD) definite
differences (-2SDs) across seven scales.

Autism Diagnostic Observation Schedule, 2nd Edition (ADOS-2) [30]. Scores on the
“unusual sensory interests in play material/person” item were examined.

Autism Diagnostic Interview-Revised (ADI-R) [31]. Scores on items relevant to sensory
processing were examined: (i) “unusual sensory interests,” (ii) “abnormal, idiosyncratic,
negative response to specific sensory stimuli,” and (iii) “undue general sensitivity to noise.”
Algorithms include responses to both current and historical (“ever”) behavior. Item-level
scoring is the same as described for the ADOS-2.
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2.4. Analysis

A variety of statistical analyses were used to examine the sensory phenotype within
individuals with ADNP syndrome and to assess whether sensory symptoms were a charac-
teristic of the syndrome broadly or associated features such as ASD, ID, adaptive ability
or genetic variant. First, percentages were calculated to quantify the frequency of sensory
symptoms overall and by individual measures. Then, group differences were examined in
the individuals with ADNP syndrome who received a diagnosis of ASD (n = 11) compared
to those who did not (n = 11). To do this, multivariate analysis of variance (MANOVAs)
were run between groups on SAND, SSP, and ADI-R scores. In addition, to assess if the
severity of ASD was associated with sensory symptoms, Pearson’s correlation coefficients
(r) were calculated between ADOS-2 comparison scores and sensory reactivity symptoms.
Spearman’s rank-order (rs) correlations assessed the relationship between sensory symp-
toms and ordinal variables from the ADOS-2 and ADI-R. A one sample t-test was used for
the single ADOS-2 sensory item. Further exploratory analyses examined if other comorbidi-
ties (e.g., ID, adaptive functioning) or demographic characteristics were associated with
sensory symptoms. To do so, Pearson’s correlation coefficients were calculated between
IQ/DQ, Vineland-3 scores, and scores on sensory measures. Pearson’s correlation coeffi-
cients were also used to assess the relationship between age and sensory symptoms. Lastly,
to assess whether sex was correlated with sensory symptoms a point-biserial correlation
was completed. To minimize the likelihood of type II error, Bonferroni adjustments were
not used [36,37].

3. Results
3.1. Genetic Testing

Participants (n = 22) all carried variants classified as pathogenic or likely pathogenic.
Variants include 10 nonsense, 10 frameshift and one missense variant, and one partial
deletion (Figure 1a). Within the nonsense variants, 6 carry the recurrent p.Tyr719* variant
and there were 2 individuals with the recurrent frameshift variant, p.Asn832Lysfs*81. The
partial deletion encompasses the 5’ UTR through the second coding exon. The missense
variant is located in coding exon 2 and functional studies done clinically through Ambry’s
Translational Genomics Lab have shown that this alteration leads to in-frame skipping
of coding exon 2 (c.109_201del, p.D37_Q67del). De novo status has been confirmed in
19 cases; three cases did not have de novo confirmation. The three variants without de
novo status confirmed are classified as pathogenic and one is a recurrent variant.

3.2. Participant Characteristics

All participants met DSM-5 criteria for ID. Ten presented with severe-to-profound
ID (IQ/DQ < 40), 10 with moderate ID (IQ/DQ 40–55) and 2 with mild ID (IQ/DQ
55–69). Standard scores on the Vineland Adaptive Behavior Composite [38,39] ranged
from 26–68 (all < 2nd percentile). Half the sample (n = 11) met DSM-5 criteria for ASD
based on a consensus diagnosis determined by psychiatric evaluation, ADOS-2 and ADI-R
(Figure 1b).
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Figure 1. (a) ADNP variants in the cohort. The zinc fingers (purple), NAP domain (yellow), and
DNA-Binding Homeobox domain (blue) are shown as reported in Uniprot Q9H2P0, (ADNP_Human).
Two pathogenic variants are represented by more than one individual in the cohort, p.Tyr19* in six
individuals, and p.Asn832Lysfs*81 in two. Not pictured: 5’UTR_EX2del. (b) Participant demograph-
ics. ADOS-2 comparison scores range from 1–10 with higher numbers reflecting greater symptom
severity. IQ and Vineland scores are reflected as standard scores (M = 100; SD = 15). Developmental
Quotients (DQs) were calculated by dividing age equivalents by chronological age for participants
above the normed age range on the Mullen and unable to complete the Stanford-Binet.

3.3. Frequency and Type of Sensory Symptoms by Measure
3.3.1. SAND

SAND total scores fell in the clinically significant range (+2SD) for 21/22 participants
and in the elevated range (+1SD) for one participant. Sensory seeking fell within the
clinically significant range for 96% of participants. Commonly observed seeking behaviors
included mouthing objects, rubbing objects to skin, visual inspection, repetitive seeking of
sounds (using objects and/or voice), and placing noisemaking objects near ears. Clinically
significant levels of hyporeactivity were present in 11/22 (50%) participants and elevated
in 2 additional participants. Scores in this domain were driven by the presence of pain
insensitivity. On the SAND interview, 81% of parents reported a high pain/temperature
threshold, which was observed in 62% of the sample during the SAND observation (Table 1).
The observation directly assesses response to temperature using warm and cold packs.
Clinically significant levels of overall hyperreactivity was present in 5/22 (23%) and
elevated in 4 additional participants. Mean total scores were > 3 SDs higher than TD norms
(Figure 2a) and similar to overall iASD sensory abnormalities (Figure 2b). Sensory seeking
was > 2 SDs higher than the TD norms across visual, tactile, and auditory domains, and
approximately 1 SD higher than iASD norms in tactile and auditory domains (Figure 2c,d).
Tactile hyporeactivity (e.g., high pain/temperature threshold), was approximately 4 SDs
higher than the TD norms and 1 SD higher than the iASD norms. Similar profiles were
observed between ADNP and iASD norms in visual and tactile hyperreactivity, visual
hyporeactivity, and visual seeking domains (Figure 2c,d).
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Table 1. Most commonly endorsed items on the Sensory Assessment for Neurodevelopmental Disorders (SAND) Interview.

Item Domain % Endorsed

Does your child appear fascinated with certain textures (e.g., the
feel of certain objects, water, a person’s skin)? Tactile Seeking 95.24%

Does your child enjoy seeking pressure or bump or crush into
objects (e.g., walls, furniture) or people? Tactile Seeking 85.71%

Does your child use objects or his/her voice to create sounds
outside of the context of functional play (e.g., banging toys

together, repetitive sounds)?
Auditory Seeking 85.71%

Does your child notice hot or cold temperatures (e.g., hot bath, ice)
and pain (e.g., getting a shot, hurting self)? (reverse coded) Tactile Hyporeactivity 80.95%Genes 2021, 12, x FOR PEER REVIEW 6 of 11 
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Figure 2. (a) Score distributions for individuals with ADNP syndrome relative to TD controls and (b) iASD from a normative
sample. Dashed limit lines represent one, two, and three standard deviations above and below the mean. (c) Sensory
hyperreactivity, hyporeactivity and seeking within visual, tactile, and auditory modalities based on TD z-scores. (d) Sensory
hyperreactivity, hyporeactivity and seeking within visual, tactile, and auditory modalities based on iASD z-scores. Z-scores
have a mean of 0 where +1 indicates 1 SD above the mean. (e) Frequency of sensory behaviors on the SSP, ADOS-2, and
ADI-R. The ‘combined difference’ column reflects the sum of the ‘probable difference’ and ‘definite difference’ columns.
Abbreviations: ADNP: Activity dependent neuroprotective protein; TD: typically developing; iASD: idiopathic autism
spectrum disorder
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3.3.2. SSP

Probable to definite sensory differences were reported in 82% of the sample on the SSP,
with underresponsiveness/seeks sensation (91%) and low energy/weak (87%) symptoms
reported most frequently. Auditory filtering (e.g., appears not to hear when spoken to;
poor response to name) and visual/auditory sensitivity were reported in over half the
sample (Figure 2e). Tactile sensitivity, taste/smell sensitivity, and movement sensitivity
were endorsed in less than half the sample.

3.3.3. ADOS-2

Scores of 0 indicate no unusual sensory interests/behaviors, 1 indicates several pos-
sible sensory interests and/or one clear occurrence (Figure 2e, “probable difference”), 2
indicates definite sensory interests with at least two occurrences, and 3 reflects definite
sensory interests that may have interfered with the assessment. Scores of 2 and 3 are
combined into the “definite difference” category in Figure 2e. A minimum of one clear
sensory seeking behavior was observed in 86% of participants, and at least two sensory
seeking behaviors were observed in 73% of participants during the observation.

3.3.4. ADI-R

All parents reported both current and historical sensory seeking behavior. Severe
sensory seeking (code of 2 or 3) was reported as a current problem in 67% of the sample
(Figure 2e) and as a historical problem by 76%. Responses to sensory hyperreactivity items
indicated 71% of the sample had a history of noise sensitivity that persisted currently
in 62% and causes significant distress in 38%. A quarter (24%) of participants currently
display abnormal responses to specific sensory stimuli and 43% by history.

In 20 of 22 participants (91%), sensory reactivity abnormalities were identified on
every measure. The remaining 2 participants displayed clinically significant symptoms on
3 of 4 measures.

3.4. Group Differences and Correlations with Clinical, Demographic, and Genetic Factors
3.4.1. ASD

Group comparisons revealed that ASD diagnosis was not associated with differences
in SAND or SSP scores. On the ADI-R, the unusual sensory interests and sensitivity to
noise items (coded as currently shows behavior and ever showed behavior) showed no
differences between individuals with ADNP syndrome with and without ASD. However,
individuals with ASD were more likely to have abnormal responses to specific stimuli
currently (p = 0.027; n = 5/10, versus none without ASD); the difference did not reach
significance for the “ever” behavior code (p = 0.071). Additionally, ASD diagnosis did not
show significant differences on the ADOS-2 sensory item (p = 0.641). Pearson’s correlations
revealed that ASD severity (ADOS-2 comparison score) was not significantly correlated
with any sensory measure.

3.4.2. Cognitive and Adaptive Functioning

IQ/DQ scores were not correlated with SAND or ADOS-2 sensory scores. IQ/DQ
was correlated with SSP total score (r = 0.441, p = 0.040), SSP auditory/visual sensitivity
(r = 0.504, p = 0.017), and underresponsive/seeks sensation (r = 0.677, p = 0.001) scores.
Q/DQ was significantly correlated with ADI-R current scores on the unusual sensory
interests’ item (r = 0.510, p = 0.018). Overall adaptive behavior was significantly correlated
with SSP total score (r = 0.584, p = 0.004), auditory/visual sensitivity (r = 0.625, p = 0.002),
underresponsive/seeks sensation (r = 0.545, p = 0.009), and tactile sensitivity (r = 0.580,
p = 0.005) scores. Adaptive behavior was not correlated with SAND, ADOS-2, or ADI-R
scores.
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3.4.3. Age and Sex

There was no correlation between age and SAND (Figure 3) or ADOS-2 scores. Age
was significantly correlated with SSP total score (r = −0.593, p = 0.004), tactile sensitivity
(r = −0.568, p = 0.006), auditory/visual sensitivity (r = −0.637, p = 0.001), and movement
sensitivity (r = −0.442, p = 0.039), with older individuals having more sensory symptoms.
Age was significantly correlated with ADI-R abnormal responses to specific sensory stimuli
current (r = 0.597, p = 0.004) and ever (r = 0.515, p = 0.019) scores. Sex was not correlated
with scores on any sensory measure.

Genes 2021, 12, x FOR PEER REVIEW 8 of 11 
 

 

 
Figure 3. Sensory symptoms within three age cohorts reflecting early childhood, middle child-
hood, and adolescence. Results display stability in SAND scores across age groups. 

3.4.4. Genotype-Phenotype 
There were no significant differences between participants with and without the re-

current p.Tyr719* variant on any sensory measure. 

4. Discussion 
Here we describe a comprehensive prospective characterization of the sensory phe-

notype in 22 individuals with ADNP syndrome. Consistent with previous studies, all par-
ticipants presented with mild-to-profound ID and half met DSM-5 criteria for ASD. A dis-
tinct phenotype was identified characterized by high levels of sensory seeking across tac-
tile, auditory, and visual domains. High levels of seeking differentiate sensory features in 
ADNP syndrome from other syndromes associated with ASD. For example, Phelan-
McDermid syndrome has been characterized by high levels of hyporeactivity and low 
levels of hyperreactivity [13,14]. Tactile hyporeactivity also was reported in the majority 
of cases and driven by pain insensitivity, at relatively higher rates than previously re-
ported in the syndrome [3]. Pain insensitivity has been described in several other genetic 
causes of ASD including Phelan-McDermid syndrome [13], FOXP1 syndrome [11], Prader 
Willi syndrome [40], Dup15q syndrome [41] and Rett Syndrome [42]. Recognizing pain 
insensitivity as a common feature in individuals with genetic syndromes is important 
given safety concerns associated with high pain thresholds, particularly in individuals 
with language impairment and ID. Interestingly, pain insensitivity was common in this 
cohort, despite low levels of hyporeactivity in auditory and visual modalities. Our find-
ings did not replicate previous literature describing a more severe phenotype associated 
with the recurrent p.Tyr719* variant [3]; however, results are consistent with Breen et al. 
2020 [43], which included some participants in this cohort and showed no phenotypic dif-
ferences based on methylation group. 

ASD diagnosis and severity did not impact sensory symptoms identified by the 
SAND, SSP, or ADOS-2, indicating that the sensory phenotype in ADNP is generalizable 
across the syndrome, rather than driven by a subset with ASD. On the ADI-R, one differ-
ence was identified in abnormal response to specific sensory stimuli. This item probes 
distress in response to a particular, predictable stimulus, thus encompassing repetitive 
and restricted interests more broadly. Cognitive functioning, adaptive behavior, age, and 

Figure 3. Sensory symptoms within three age cohorts reflecting early childhood, middle childhood,
and adolescence. Results display stability in SAND scores across age groups.

3.4.4. Genotype-Phenotype

There were no significant differences between participants with and without the
recurrent p.Tyr719* variant on any sensory measure.

4. Discussion

Here we describe a comprehensive prospective characterization of the sensory phe-
notype in 22 individuals with ADNP syndrome. Consistent with previous studies, all
participants presented with mild-to-profound ID and half met DSM-5 criteria for ASD. A
distinct phenotype was identified characterized by high levels of sensory seeking across
tactile, auditory, and visual domains. High levels of seeking differentiate sensory features
in ADNP syndrome from other syndromes associated with ASD. For example, Phelan-
McDermid syndrome has been characterized by high levels of hyporeactivity and low
levels of hyperreactivity [13,14]. Tactile hyporeactivity also was reported in the majority of
cases and driven by pain insensitivity, at relatively higher rates than previously reported
in the syndrome [3]. Pain insensitivity has been described in several other genetic causes
of ASD including Phelan-McDermid syndrome [13], FOXP1 syndrome [11], Prader Willi
syndrome [40], Dup15q syndrome [41] and Rett Syndrome [42]. Recognizing pain insen-
sitivity as a common feature in individuals with genetic syndromes is important given
safety concerns associated with high pain thresholds, particularly in individuals with
language impairment and ID. Interestingly, pain insensitivity was common in this cohort,
despite low levels of hyporeactivity in auditory and visual modalities. Our findings did
not replicate previous literature describing a more severe phenotype associated with the
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recurrent p.Tyr719* variant [3]; however, results are consistent with Breen et al. 2020 [43],
which included some participants in this cohort and showed no phenotypic differences
based on methylation group.

ASD diagnosis and severity did not impact sensory symptoms identified by the SAND,
SSP, or ADOS-2, indicating that the sensory phenotype in ADNP is generalizable across
the syndrome, rather than driven by a subset with ASD. On the ADI-R, one difference was
identified in abnormal response to specific sensory stimuli. This item probes distress in
response to a particular, predictable stimulus, thus encompassing repetitive and restricted
interests more broadly. Cognitive functioning, adaptive behavior, age, and sex did not
impact SAND or ADOS-2 scores, both of which capture direct observation of symptoms.
Interestingly, results from the SAND suggest a preservation of sensory symptoms with age,
which is consistent with recent studies in individuals with idiopathic ASD demonstrating
stability of sensory symptoms throughout early and middle childhood [44–46]. IQ/DQ,
adaptive behavior, and age were correlated with several SSP scales, suggesting that the
higher the cognitive or adaptive level and older the individual, the fewer abnormal sensory
responses parents reported. In contrast, on the ADI-R unusual sensory interests item,
results suggested higher cognitive and adaptive ability was related to a greater number of
reported sensory interests. Differences in reported sensory behaviors and associations are
likely measure dependent. For example, the SSP includes questions related to common
comorbidities such as hypotonia (e.g., low energy/weak) and ADHD (e.g., jumps from
one activity to another), which may impact sensory processing, but likely do not reflect
primary sensory symptoms. Further, a comparison of current versus historical codes on
the ADI-R suggests that certain sensory symptoms may improve over time, particularly
when ASD is not present.

Taken together, our findings demonstrate that sensory symptoms were present across
individuals with ADNP syndrome regardless of age, sex, cognition, adaptive skills, and
importantly, irrespective of ASD diagnosis. Sensory symptoms, particularly seeking,
appear to span the range of individuals with ADNP syndrome and can be quantified
using existing standardized instruments, such as the SAND which appears to be the most
robust assessment, independent of functioning level or age. Sensory symptoms represent
a novel target for treatment in ADNP clinical trials, and clinically, can inform treatment
recommendations based on an individual’s unique sensory preferences.
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