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Abstract 9 

Models simulating household energy demand based on different occupant and household types and 10 

their behavioral patterns have received increasing attention over the last years due the need to better 11 

understand fundamental characteristics that shape the demand side. Most of the models described in 12 

the literature are based on Time Use Survey data and Markov chains. Due to the nature of the 13 

underlying data and the Markov property, it is not sufficiently possible to consider long-term 14 

dependencies over several days in occupant behavior. An accurate mapping of long-term 15 

dependencies in behavior is of increasing importance, e.g. for the determination of flexibility potentials 16 

of individual households urgently needed to compensate supply-side fluctuations of renewable based 17 

energy systems. The aim of this study is to bridge the gap between social practice theory, energy 18 

related activity modelling and novel machine learning approaches. The weaknesses of existing 19 

approaches are addressed by combining time use survey data with mobility data, which provide 20 

information about individual mobility behavior over periods of one week. In social practice theory, 21 

emphasis is placed on the sequencing and repetition of practices over time. This suggests that practices 22 

have a memory. Transformer models based on the attention mechanism and Long short-term memory 23 

(LSTM) based neural networks define the state of the art in the field of natural language processing 24 

(NLP) and are for the first time introduced in this paper for the generation of weekly activity profiles. 25 

In a first step an autoregressive model is presented, which generates synthetic weekly mobility 26 

schedules of individual occupants and thereby captures long-term dependencies in mobility behavior. 27 

In a second step, an imputation model enriches the weekly mobility schedules with detailed 28 

information about energy relevant at home activities. The weekly activity profiles build the basis for 29 

multiple use cases one of which is modelling consistent electricity, heat and mobility demand profiles 30 

of households. The approach developed provides the basis for making high-quality weekly activity data 31 

available to the general public without having to carry out complex application procedures. 32 
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1. Introduction  34 

In the course of the decarbonisation of domestic heat demand, it is expected that a large part of the 35 

heat will be generated by electricity (e.g. through heat pumps) (Paardekooper et al. 2018). In order to 36 

decarbonise the mobility sector, the aim is to increase the amount of electric vehicles in the European 37 

union from 1.3 million in 2020 to at least 33 million by 2030 (Transport & Environment 2020). Due to 38 

the expected developments, fundamental characteristics will change in the course of energy demand 39 

in the household sector. Furthermore, the introduction of stationary and mobile electricity storage 40 

systems as well as stationary heat storage systems enable the storage of energy over periods of single 41 

days and therefore open up flexibility potentials in the residential sector, which can support the 42 

integration of fluctuating renewable energies. To evaluate these flexibility potentials, fundamental 43 

relationships that shape household energy demand must be understood. 44 

Occupant behavior has been identified as having a significant impact on household energy demand 45 

(Steemers and Yun 2009). Therefore, there has been an increasing research interest in the field of 46 

behavioral modelling over the last years with the aim to explain dynamics in residential energy demand 47 

based on energy related activities (Torriti 2014, 2017). A large number of studies focus on the 48 

modelling of activity sequences of single households or individuals with the objective to describe 49 

occupant behavior on an aggregated level for socio-demographic differentiated groups (Aerts et al. 50 

2014; Flett and Kelly 2016; Richardson et al. 2008; Wilke 2013). Time use data (TUD) are used as a data 51 

basis, which provide information on the temporal course of occupant activities over single days and 52 

are available for various countries in the form of population representative samples (Eurostat 2000). 53 

Based on occupant behavior, different approaches were developed that connect occupant activities 54 

with electrical household appliances and thus generate synthetic electricity demand profiles 55 

(Yamaguchi et al. 2018). The aim of these studies is to gain a deeper understanding of household 56 

electricity demand in order to e.g. be able to evaluate device-specific efficiency measures, time-57 

dependent electricity tariffs or load shift potentials. 58 

However, TUD only provide information on activity patterns of individual days, therefore longer-term 59 

dependencies in mobility behavior and energy relevant at home activities that extend over several 60 

days are not captured in existing TUD based models. Figure 1 compares the autocorrelation of power 61 

consumption data generated on the basis of TUD with measured power consumption data. The 62 

autocorrelation in the generated data is underestimated. Especially, dependencies between 63 

subsequent days (48 lags) are not properly reproduced by the examined models. 64 

 65 

Figure 1: Mean autocorrelation and 95% confidence interval of electricity consumption profiles of the three load profile 66 
generators (LPG (Pflugradt 2016), CREST (Richardson et al. 2010), SynPro (Fischer et al. 2015)) and empirical smart meter 67 

data (I: HTW (Tjaden et al. 2015), II: (described in (Kaschub 2017)) 68 

Models based on device-specific power consumption data available over periods longer than one day 69 

are able to account for day-to-day variability in electricity demand (Yilmaz et al. 2017). However, due 70 

to the data underpinning these approaches, not much is known about the occupants and their 71 
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behavior, therefore it is not (easily) possible to calculate consistent heat and mobility demand profiles 72 

matching the electricity demand. One possible way to infer the occupancy behavior would be to use 73 

non-intrusive occupancy monitoring methods in order to calculate internal heat gains (metabolic gains 74 

and device-specific heat losses) (Chen et al. 2018). However, integrating demand through electrical 75 

vehicles would be another challenge. 76 

The objective of this study is to develop a methodology that enables the generation of synthetic weekly 77 

activity schedules in which long-term dependencies in mobility behavior and energy relevant at home 78 

activities are captured on an individual level. These schedules can be used as a basis for generating 79 

consistent energy service demand profiles, taking into account heating, mobility and device specific 80 

energy service demand. In order to identify trends and potentials at the individual household level, 81 

like flexible charging behavior of electric vehicles, day-to-day variability in mobility patterns needs to 82 

be captured in the proposed approach. Therefore, novel machine learning based algorithms from the 83 

field of natural language processing (NLP) which are capable of capturing long-term dependencies in 84 

time series are transferred to the field of activity modelling. To answer the research question to what 85 

extent these algorithms are able to capture long-term dependencies in individual energy related 86 

occupancy patterns while maintaining the diversity of occupancy behavior on an individual and 87 

aggregated level, two behavioral data sets are combined in a two-step approach. Mobility data are 88 

used which provide information about weekly mobility patterns and combined with time use survey 89 

data which provide detailed information about daily activities (sleeping, cooking, eating, …).  90 

The two-step approach enables to combine the advantages of mobility data (long-term dependencies 91 

in mobility behavior) with the advantages of TUD (detailed information about activities) and generates 92 

high quality weekly activity schedules. Novel machine learning algorithms which are used in the area 93 

of NLP are used for the first time to model occupancy behavior. These models have fundamental 94 

advantages over Markov chains, because they provide the capability to learn long term dependencies 95 

in time series. In comparison to existing approaches which were developed to reproduce aggregated 96 

occupancy behavior the proposed approach reproduces aggregated occupancy behavior and at the 97 

same time provides high quality individual activity schedules. Therefore, the synthetic activity 98 

schedules can be used to analyse trends in the household sector on an individual level and to examine 99 

their impact on an aggregated level at the same time. Due to the rich socio-demographic information 100 

in the underlying data sets, differences in behavior between socio-demographic groups can be 101 

analysed based on the synthetic activity schedules. 102 

The paper is structured as follows. Section 2 presents an overview about current approaches to activity 103 

based residential demand modelling and gives a short introduction to the field of social practice theory. 104 

Furthermore, the latest developments in the field of NLP are summarized. Section 3 presents the 105 

mobility and activity data used in this work. Subsequently, two autoregressive models are presented 106 

for the generation of weekly mobility schedules and two imputation models are presented for 107 

enriching the synthetic mobility schedules with energy related activity information. The section 108 

concludes with a presentation of the metrics used to evaluate the activity plans. In Section 4 the 109 

generated activity schedules are evaluated. Finally, the results are discussed and an outlook on future 110 

work is given in Section 5 before conclusions are drawn in Section 6. 111 

2. Introducing NLP to activity modelling 112 

The majority of studies in the residential energy demand modelling literature simulate residential 113 

energy demand based on activity patterns. The most important data basis for modelling activity 114 

sequences is TUD. TUD are large-scale surveys which provide detailed information about how people 115 

spend their time. The mean of data collection is the time-diary instrument in which the respondents 116 

enter their activities in regular time steps. These so-called time-diaries contain activity sequences for 117 
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the period of usually one single day. When selecting households for the study, care is taken to select a 118 

sample of households representative of the population. Time diaries are collected for all persons in 119 

the households except for young children for usually one weekday and one weekend day to capture 120 

the differences between the days. Since TUD are collected in a harmonised procedure in most 121 

countries in Europe, these data provide a good basis for a variety of similar models for modelling 122 

activity sequences. In the following, different model approaches are presented which generate activity 123 

sequences based on TUD and similar activity-based data sets. Furthermore, the weaknesses of the 124 

models reviewed in the literature is described and a short insight into social practice theory is given. 125 

Finally, the field of NLP is briefly introduced due to similarities in modelling human behavior and 126 

language.  127 

2.1. Markov chain based approaches 128 

One of the most commonly used approaches to map activity sequences is to describe them as Markov 129 

chains. A Markov chain is a stochastic process that describes a sequence of possible states in which 130 

the probability of each state depends only on the previous states. The state space of a Markov chain 131 

describes the set of possible states and their corresponding state transition probabilities. The abstract 132 

idea behind the modelling of activity sequences that describe the behavior of individuals is that 133 

individuals go about their lives by transitioning between different elements of a set of potential states 134 

of activity (Ramírez-Mendiola et al. 2019). Richardson et al. have developed an occupancy model which 135 

uses a first order Markov chain and distinguishes between the states ‘active at home’ and ‘not active 136 

at home’ for each person of a household (Richardson et al. 2008). Based on aggregated household 137 

states they calculate transition probabilities in order to model the activity level of the household over 138 

the timeframe of one day. By modelling households in an aggregated way instead of individual persons, 139 

inter personal relations are better represented than in models where individuals are modelled 140 

individually (McKenna et al. 2015). First order Markov models are adequately suited to describe 141 

processes that fullfill the Markov property. The term Markov property refers to the memorylessness 142 

of a stochastic process. For a first order Markov model, this means that the transition to a subsequent 143 

state depends only on the current state and is independent of previously observed states in the 144 

evolution of the process. It is obvious that residential activity schedules represent more complex 145 

processes and therefore cannot easily be represented by a first order Markov model. To overcome this 146 

problem, a variety of more complex Markov models have been presented in recent years. In contrast 147 

to first order Markov models, so-called semi-Markov models determine not only the subsequent state 148 

but also the duration of the subsequent state. As this kind of models represent an improvement to 149 

first order Markov Chains, due to a better mapping of state durations, they are used in various studies 150 

for activity modelling (Aerts et al. 2014; Wilke 2013; Bottaccioli et al. 2019). Flett et al. (Flett and Kelly 151 

2016) present a Markov model for occupancy simulation that uses transition probabilities which are 152 

calculated based on the current state and the length of the current state. By considering the state 153 

length of the current state, this model represents an improvement over previous models, so that this 154 

model cannot be called memoryless. The logical next step would be to develop higher order Markov 155 

models, which allow any number of past states to be taken into account when choosing the subsequent 156 

state. However, two serious issues can be associated with higher-order Markov chains. On the one 157 

hand the number of free parameters in the model increases exponentially with the order of the model 158 

and on the other hand the collection of all possible full high-order Markov chain models is limited and 159 

completely stratified (Ramírez-Mendiola et al. 2019). Ramírez-Mendiola et al. (Ramírez-Mendiola et al. 160 

2019) addressed this issues by presenting a Markov chain model with variable memory length which 161 

allows the order of the model to vary during the evolution of the stochastic process. In order to find 162 

relevant portions of the past based on the influence on the outcomes of the transition probabilities to 163 

subsequent states the authors present a novel algorithm based on the Kullback-Leibler divergence and 164 

the log-likelihood test. 165 
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 166 

Figure 2: Graphical representation of the process of sequence generation with different kinds of Markov chains (1. first order 167 
Markov chain, 2. semi Markov chain, 3. higher order Markov chain, 4. Markov chain with variable memory length) 168 

A graphical overview of the different Markov chain variations can be seen in Figure 2. It can be 169 

concluded that over the last few years more and more complex models based on Markov chains have 170 

been developed, which partly overcome the memorylessness problem. However, due to their 171 

structure, Markov models are only able to capture the states of the short-term past in order to predict 172 

subsequent states. Long-term relationships in daily schedules cannot be adequately represented by 173 

these types of models. 174 

2.2. Timing of social practices  175 

Markov chain approaches are based on the assumption that activities develop over time and are only 176 

dependent on the evolution of previous states. However, social practice theory literature points out 177 

that in order to understand people’s daily/weekly schedules these should be treated as a whole (Shove 178 

et al. 2012; Torriti 2017). While practice theoretical accounts of social life vary, they remain consistent 179 

on at least two counts: (1) that practices are shared (socially/as part of the social i.e. performed by 180 

more than one person) and, because of that, (2) are repeated (performed more than once). If we also 181 

add that practices are connected and depend more and less on each other in being reproduced, it 182 

follows that we need to know more about how practices are repeated and with what effect for the 183 

relative strengths of their dependencies, connections, and extended relationships. In order to do 184 

justice to this statement in the patterning of activities, models must be developed which not only make 185 

it possible to capture connections between activities from the short-term past in order to predict the 186 

future, but also capture higher-level patterns which shape patterns of people’s activities. In other 187 

words, models need to understand how temporal dynamics are embedded in the social world in order 188 

to understand how activities and thus energy consumption change and vary over time (Walker 2014). 189 

The majority of people structure their lives in daily rhythms, which are based on regular working hours, 190 

meal times and other constraints. These constraints form the basis for a certain degree of 191 

synchronization of social activities and thus for demand patterns (Walker 2014). Future models should 192 

be able to recognize and reproduce logical sequences in activity patterns, so that dependencies in 193 

activities are taken into account. For instance, food should first be prepared and then eaten. 194 

Hilgert et al. (Hilgert et al. 2017) use a  utility-based stepwise regression approach to generate weekly 195 

activity schedules for travel demand models. Due to the observation period of one week and the 196 

associated extended requirements for the mapping of activity sequences (day to day stability and 197 

variability of personal behavior), this approach differs from the approaches presented so far. 198 

Compared to Markov chain based approaches, activity sequences do not evolve over time but are the 199 
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result of regression based utility functions and time budgets. Based on Bowman (Bowman 1998) the 200 

construction process of activity schedules is split into smaller decisions due to the high complexity of 201 

constructing the entire schedule directly. These small decisions are then integrated downward 202 

vertically in the form of many logistic regression models. Due to the large number of regression models 203 

and their integration, many assumptions must be made when creating such a model, which increase 204 

the assumption bias. Future approaches should be less assumption driven to be easily transferable to 205 

different applications and datasets. To capture the high complexity of a complete activity plan without 206 

many intermediate steps, as described by Bowman, data-driven approaches could be used that need 207 

less assumptions and can capture complex relationships due to their structure. Table 1 gives an 208 

overview of the approaches presented in this section and compares them with the approach presented 209 

in this study. 210 

Table 1: An overview of selected models for modelling occupancy behavior 211 

Study Database Approach Object of 

consideration 

Country 

(Richardson et al. 2008) TUD Markov - 1st order Household UK 

(Wilke 2013) TUD Markov - semi Individual  FR 

(Bottaccioli et al. 2019) TUD Markov - semi Individual  IT 

(Aerts et al. 2014) TUD Markov - semi Individual  BE 

(Flett and Kelly 2016) TUD Markov - higher order Individuals UK 

(Ramírez-Mendiola et al. 2019) TUD Markov - variable length Individual UK 

(Hilgert et al. 2017) MOP Regression Individual DE 

This study MOP + TUD Neural networks Individual DE 

 212 

2.3. A brief review of natural language processing 213 

The term natural language processing covers applications such as text classification, text 214 

understanding, text generation and text translation. NLP algorithms give machines the ability to read, 215 

understand and derive meaning from human languages. Over the last years NLP evolved from the era 216 

of punch cards and batch processing, in which the procession of a sentence could take up to 7 minutes, 217 

to the era of Transformer based model architectures like Googles BERT or OpenAIs GPT-3 with models 218 

up to 175 Billion parameters which are trained on large web corpora like Wikipedia and are able to 219 

generate articles which human evaluators have difficulty distinguishing from articles written by 220 

humans (Young et al. 2017; Brown et al. 2020; Devlin et al. 2018).  221 

The first neural language model was based on a feed-forward neural network (Bengio et al. 2003). 222 

Vector representations of the n previous words are taken from a table and used as input in order to 223 

predict the probabilities of the following words. Nowadays dense vector representations of words or 224 

word embeddings are trained in an efficient way while training the neural network and are capable of 225 

capturing the context of words in a document (Mikolov et al. 2013).  226 

From 2013 on neural network models in the form of recurrent neural networks (RNN), convolutional 227 

neural networks (CNN), and recursive neural networks got adopted in the field of NLP (Sutskever 2013; 228 

Kalchbrenner et al. 2014). RNNs are the obvious choice to deal with dynamic word sequences as they 229 

process the sequences from left-to-right or right-to-left and provide some kind of memory in the form 230 

of the hidden state (Elman 1990). RNNs in the form of long-short term memory networks (LSTM) 231 

proved to be more resilient to the vanishing gradient problem and therefore be able to better 232 

represent long-term dependencies in time series (Hochreiter and Schmidhuber 1997). The in 2014 233 

presented sequence-to-sequence approach builds the basis for multiple machine translation 234 

applications. First, an LSTM-based encoder is used to compress an input sequence into a vector 235 

representation and then a decoder network, also based on LSTMs, predicts the target sequence step 236 

by step (Sutskever et al. 2014). The main shortcoming of the sequence-to-sequence approach is that 237 
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the input sequence needs to be compressed into a fixed-size vector. The Attention mechanism tackles 238 

this shortcoming by allowing the decoder to look back at the input sequence hidden states, which are 239 

provided as additional input to the decoder (Bahdanau et al. 2015). A rare feature of the Attention 240 

mechanism is, that it provides superficial insides about the learning process by providing information, 241 

through the attention weights, about which parts of the input are relevant for particular parts of the 242 

output. In 2016 Google presented their neural machine translation system which consisted of a deep 243 

LSTM network combining multiple encoder and decoder layers using residual connections and the 244 

attention mechanism (Wu et al. 2016). However, in 2017 the paper “Attention is all you need” was 245 

presented, which builds the basis for numerous transformer architectures which work on the principle 246 

of self-attention and define the state of the art in multiple NLP tasks (Vaswani et al. 2017; Brown et al. 247 

2020). It was shown that the sequential nature can be captured by only using attention mechanisms 248 

and positional encodings without the use of RNNs. Due to the fundamental constraint of sequential 249 

computation of RNNs, it is not possible to parallelize training, therefore it is hard to learn on long 250 

sequences. Transformer models are fully based on fully connected layers and can be easily parallelized. 251 

Since 2017 multiple different transformer based architectures were introduced, consisting of multiple 252 

encoder and/or decoder blocks and an increasing number of trainable parameters (Wolf et al. 2020). 253 

In figure 3 the model architecture of a sequence to sequence RNN based model is compared to the 254 

model structure of an attention based transformer, consisting of an encoder and decoder block. 255 

 256 

Figure 3: Abstract graphical representation of the RNN based sequence-to-sequence architecture (left) (Sutskever et al. 257 
2014) and an encoder/decoder based transformer architecture on the right (Vaswani et al. 2017) 258 

Adversarial learning methods have gained increased intention especially in the area of image 259 

processing/generation and have also been used in different forms in NLP over the last years. 260 

Generative adversarial networks (GANs) for example are able to generate synthetic data with similar 261 

statistical properties as real data by using two neural networks, a generator and a discriminator 262 

(Goodfellow et al. 2014). The generator produces synthetic data and the discriminator classifies 263 

generated data as fake and real data as real. Both networks are trained in an iterative way while trying 264 

to minimizes the reverse Kullback-Leibler divergence. Therefore, in comparison to the previously 265 

presented model architectures, GANs are not trained by maximum likelihood estimation (MLE) and 266 

thus are said to be less vulnerable to suffer from the exposure bias in the inference stage: the model 267 

generates a sequence iteratively and predicts next token conditioned on its previously predicted ones 268 
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that may be never seen in the training data (Yu et al. 2017). With that in mind many GAN based 269 

architectures were developed for natural language generation based on the approach presented in (Yu 270 

et al. 2017) which combines GANs with a reinforcement learning policy in order to deal with the 271 

differentiability problem. However, it was shown that MLE based approaches still dominate GANs 272 

when quality and diversity metrics are taken into account (Caccia et al. 2020). Therefore, GAN 273 

architectures are not considered further in this work, even if they form a promising basis for future 274 

work. 275 

3. Data and Methodology 276 

The German Mobility Panel (MOP) and German Time Use Data are used as an exemplary data source 277 

for analysing activity patterns in this study. In Section 3.1 the data preparation of the two data sets is 278 

described and the processed data is visualized. Further on, Section 3.2 presents the methodology 279 

developed to generate weekly activity schedules. Finally, Section 3.3 describes the metrics that are 280 

used to evaluate the activity plans. 281 

3.1. Data 282 

3.1.1. German mobility panel 283 

The MOP collects information on the mobility behavior of the German population every year since 284 

1994. About 1,500 to 3,100 persons (10 years and older), who make up about 900 to 1,900 households, 285 

fill out travel diaries over a period of one week. The travel diaries contain information about all trips 286 

during the week (start and arrival time, distance, modes used, purpose). In addition, socio-287 

demographic information and information on refuelling behavior are recorded in the form of personal, 288 

household and fuel diaries. The survey is conducted every year in autumn to avoid distortions caused 289 

by holidays. The data is representative of the travel behavior of the German population. The Institute 290 

for Transport Studies at the Karlsruhe Institute of Technology is responsible for the implementation 291 

and design of the survey (Weiß et al. 2016; Zumkeller, Chlond 2009). Due to changes in the survey 292 

design, data from the surveys from 2001 to 2017 are used in this study. 293 

 294 

3.1.2. German time use survey 295 

For the analysis of energy relevant activities, the German part of the Harmonized European Time Use 296 

Survey, supplied by the German Statistic Office, was used (Destatis 2006; Eurostat 2000). Since the 297 

current version of 12/13 incorrectly recorded the location of the people, this data is not used. The data 298 

set contains activity diaries and socio-demographic information for 11,921 individual persons (age > 299 

10 years) out of 5,443 households. Most of the participants provided diaries on two weekdays and one 300 

weekend-day in a 10-minute resolution. In this study time dependent data about primary activities and 301 

location as well as socio-demographic information are used. 302 

3.1.3. Data preparation 303 

In general, neural networks based machine learning methods have good adaptive feature learning 304 

ability. But in the present study the employed datasets are of a very different format, therefore they 305 

need to be aligned before the training. In order to create activity plans from the travel diaries, the 306 

basic dataset consisting of 833,986 travel entries for 35,014 person-weeks is converted into weekly 307 

activity plans with a time resolution of 10 minutes. The generation of activity plans is inspired by Hilgert 308 

et al. (Hilgert et al. 2017). In a first step, person weeks with missing or unrealistic entries are eliminated 309 

so that finally 26,610 person-weeks can be used for further analysis. Based on the travel entries and 310 

their purpose, states are determined for each time interval of the week. The choice of the initial state 311 

is based on the final state of the time series. Subsequently, the data are aggregated from a 1-minute 312 
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resolution to 10-minute resolution, assuming the state that is most frequently taken in the respective 313 

10-minute interval. The reason for the reduction of the temporal resolution of the data is, on the one 314 

hand, the increased information density, since machine learning algorithms have problems with sparse 315 

data. On the other hand, TUD data are also recorded in 10-minute resolution. 316 

The diary entries in the German TUD consist of more than 200 activity codes describing activities in the 317 

everyday life of human beings. Before the diary data is used as input for further processing, these 318 

activities are aggregated to activities relevant for household energy demand. The choice of activities 319 

is based on similar studies (Fischer et al. 2015; Richardson et al. 2010). The aggregated activities are 320 

visualized in Figure 4. In the upper two figures, the time course of the aggregated state probabilities 321 

of the two data sets is provided over a week. The lower two partial figures show example artificial 322 

activity plans for individual persons. Interday dependencies in behavior from Monday to Friday can be 323 

easily recognized from the visualization of the mobility schedule. The example activity plan, on the 324 

other hand, provides detailed daily information on energy-related home, sleep and mobility activities. 325 

Further comparative analyses based on socio-demographic characteristics of the data sets can be 326 

found in Section 5 and in the appendix. 327 

 328 

Figure 4: Visualization of aggregated state probabilities and exemplary artificial individual diary entries based on the MOP 329 
(Weiß et al. 2016) and the TUD (Destatis 2006) 330 

3.2. Methodology 331 

The approach for the generation of weekly activity schedules with a time resolution of 10 minutes is 332 

presented in Figure 5. In the first step, weekly mobility schedules of individual persons from the 333 

German Mobility Panel are used as input data. The objective of the first step is to generate synthetic 334 
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mobility schedules with statistical properties similar to the empirical schedules. The developed 335 

approaches are autoregressive. This means that it is assumed that the choice of the next mobility state 336 𝑚𝑠𝑡+1 only depends on all the states 𝑚𝑠0…𝑡 that have already been observed. In Section 3.2.1, an 337 

LSTM-based and an attention-based approach for sequence generation of mobility states are 338 

presented. Due to the similarity of the underlying problem, the selection of the methods used in this 339 

paper is based on the models that define the state of the art in the field of NLP. These are currently 340 

attention-based transformer architectures. Before that, LSTM based neural networks were used as 341 

described in Section 2.3. 342 

The objective of the second model step is to enrich the synthetic mobility plans with energy-related at 343 

home activities. For this purpose, two imputation models are presented in Section 3.2.2. Bidirectional 344 

LSTM model architectures are compared with attention-based architectures. Time Use Survey data 345 

from individuals are used to train the models. During the prediction process, the synthetically 346 

generated weekly mobility schedules are fed into the imputation model as input and the at home state 347 

is replaced by energy-relevant activities. A graphic representation of the step by step procedure of the 348 

autoregressive and imputation models can be found in Figure 7 a. 349 

 350 

Figure 5: Two-step model approach for generating weekly activity schedules 351 

3.2.1. Autoregressive models for weekly mobility schedule generation 352 

To generate high-quality mobility plans on an individual level and at the same time representative 353 

mobility plans on an aggregated level that adequately describe the diversity of human behavior, 354 

approaches are required that capture the complex relationships in human behavior. In contrast to the 355 

Markov-based approaches used in the majority of the studies described in Section 2.1, LSTM and 356 

attention-based approaches can take into account longer-term time dependencies in the timing of 357 

individual activities due to their different memorisation mechanisms. While in Markov models 358 

probabilities are assigned to individual activity sequences and thus the number of free parameters 359 

increases exponentially with the order of the model, these kind of models are not suitable to take into 360 

account long-term dependencies in behavior between single days (Ramírez-Mendiola et al. 2019).  361 

LSTM based models process time series sequentially and take as input the current state vector 𝑥𝑡 ∈362  ℝ𝑑 the hidden state vector ℎ𝑡−1 ∈  ℝℎ and the cell state vector 𝑐𝑡−1 ∈  ℝℎ. The dimension of the 363 

hidden state and the cell state vector ℎ is the number of LSTM units which define the memory capacity 364 

of the LSTM cell. The cell states are adjusted every timestep using different gating mechanisms (input 365 

gate, output gate, forget gate) and activation functions. Due to the additive structure of the LSTM cells 366 

they partly solve the vanishing gradient problem and therefore are able to capture long-term 367 

dependencies in time series (Hochreiter and Schmidhuber 1997).  368 
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Attention based models do not process time series sequentially and therefore are suitable to better 369 

parallelize the learning process. The time dependencies between individual time steps are learned 370 

from scratch. To make this easier, positional encodings are added to the individual states in this study, 371 

which provide information about the relative position of the state in the time series. To calculate the 372 

masked dot product attention matrix, the matrices 𝑄, 𝐾, 𝑉 ∈  ℝ𝑇,𝑑 (query, key, value) and the mask 373 𝑀 ∈  ℝ𝑇,𝑇 are required as input according to Figure 6. In the case of self-attention 𝑄, 𝐾, 𝑉 are the 374 

same. The mask shown in Figure 6 is a look ahead mask. The masked (black) cells contain high negative 375 

values and are added to the scaled result of the matrix multiplication of 𝑄 and 𝐾. The subsequent use 376 

of the softmax function prevents to put attention on dependencies between already observed and 377 

future states. The Softmax function transforms a 𝑇-dimensional vector with real components into a 𝑇-378 

dimensional vector 𝜎(𝑧) also as a vector of real components in the value range [0, 1], where the 379 

components add up to 1. 380 

𝜎(𝑧)𝑡 = 𝑒𝑧𝑡∑ 𝑒𝑧𝑡𝑇𝑡=0      𝑡 = 1, … , 𝑇 
(1) 

 381 

 382 

Figure 6: Illustration of the masked scaled dot product self-attention mechanism of an autoregressive model based on 383 
(Vaswani et al. 2017) 384 

Before the dependencies between individual states can be learned in the LSTM/attention layers, layers 385 

must be introduced that use all the available information of a single state as input and learn its state 386 

representation in a multidimensional space.  387 

Figure 7 b./c. show the different kinds of input provided to the autoregressive and imputation models 388 

and their first layers. Input to the autoregressive model is provided in the form of the mobility state 389 𝑚𝑠𝑝,𝑡, the time of the day/week 𝜏𝑡, the day of the week 𝑑𝑡 of person 𝑝 at timestep 𝑡 and as socio-390 

demographic information 𝑠𝑑𝑖,𝑝. The time of the day/week is translated into a sinusoidal positional 391 

encoding using periods of one day/week. This is a typical approach to provide information about 392 

cyclical characteristics in time series (e.g. daily/weekly patterns) to the model. All other model inputs 393 

(𝑚𝑠𝑝,𝑡, 𝑑𝑡, 𝑠𝑑𝑖,𝑝) are categorical and are therefore inserted into an embedding layer. Through the 394 

embedding layer the categorical information is mapped into a m-dimensional continuous space. The 395 

weights of the embedding layer and therefore the way the categorical variables are represented in the 396 

m-dimensional space are learned during the training process of the model. Further on, all the time 397 

step specific information are concatenated. The input time series is shifted one time step to the right 398 

(𝑡 = 0 … 𝑇 − 1) and starts with a dummy time step at 𝑡 = 0, which is composed of a start token 399 

consisting of the start time and day and socio demographic information of the specific person. This 400 

training method is called teacher forcing (Williams and Zipser 1989).  401 
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 402 

Figure 7: a.) Illustration of the relevant time step specific dependencies in the autoregressive and imputation models, b./c.) 403 
training input of the autoregressive/imputation (b./c.) models and visualization of their first layers 404 

Figure 8 a. describes the central components of the LSTM based autoregressive model. After 405 

concatenating the time specific information, the vector state representations are fed into a linear 406 

dense layer before the state representations are inserted into a sequence to sequence LSTM layer. The 407 

final dense layer contains |𝑚𝑠| = 6 neurons which represent the probabilities (logits) of each mobility 408 

state 𝑚𝑠𝑝,𝑡 (𝑡 = 1 … 𝑇).  409 

 410 

Figure 8: a.) LSTM based autoregressive model architecture and b.) BiLSTM based imputation model architecture 411 

Figure 9 describes the architecture of the attention based transformer model. The transformer layer 412 

consists out of three linear dense layers for 𝑄, 𝐾, 𝑉, the attention layer consisting of the scaled dot -413 

product attention and two feed forward dense layers with dropout similar to (Vaswani et al. 2017). 414 
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Both models are trained by minimizing the cross entropy loss between the ground truth and the 415 

predicted probabilities. 416 

 417 

Figure 9: a.) Transformer based autoregressive model architecture and b.) Transformer based imputation model architecture 418 
(residual connections are not visualized) 419 

3.2.2. Energy related activity imputation / enrichment 420 

In the second model step, the generated weekly mobility plans are enriched with energy-related 421 

activities. A bidirectional LSTM model (Figure 8 b.) is compared with an attention-based transformer 422 

model (Figure 9 b.). In contrast to the first model step, information about individual mobility behavior 423 

over the entire week is already available when the first “at home” activity is estimated, this information 424 

has an impact on the activity choice. The procedure of the prediction process of the imputation model 425 

can be found in Figure 7 a. 426 

As input data during the training process, the model is provided with activity time series of individual 427 

persons over 3 days (2x weekday, 1x weekend), the time and day of the week as well as socio-428 

demographic parameters (job, age). The time step specific input processing can be seen in Figure 7 c. 429 

In contrast to the autoregressive models, the imputation models do not necessarily receive 430 

consecutive days as input, as this is not possible due to the structure of the time use survey. The 431 

connection between the three respective days is learned in the training process and applied to a whole 432 

week in the imputation process. In contrast to Figure 8 a., it can be seen in Figure 8 b. that the 433 

bidirectional LSTM architecture also takes future states into account when predicting the current state. 434 

In contrast to the autoregressive transformer model, the imputation transformer does not use self-435 

attention. The query vector 𝑄 of the first transformer layer contains the information about the 436 

unknown home states (unknown state, time, day, socio-demographic information). The key and value 437 

vector are identical and contain information about the mobility states of the three days (during 438 

training) or the week (during prediction). During the training process, at home activities of the TUD are 439 

masked and fed to the model as input. In all of the following Transformer layers, the output of the 440 

previous Transformer layer represents the query vector 𝑄. The imputation models are trained using 441 

the cross entropy loss function. 442 
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3.3. Metrics 443 

To evaluate the models presented, metrics must be introduced on the basis of which the model output 444 

can be assessed on an individual and aggregated level. The metrics presented below are generated 445 

and visualized at constant intervals during the training process.  446 

The model-specific metrics are the cross entropy loss, which is minimized during the training process, 447 

and the model accuracy which provides information about how well the model predicts the next state. 448 

For the evaluation of the generated activity schedules, metrics are used to assess whether the 449 

proposed models reflect the variability in human behavior. Furthermore, metrics describing the 450 

variability of intrapersonal behavior are used to assess the consistency within a person's activity plan.  451 

The aggregated state probability (sp) describes the aggregated probability 𝑠𝑝𝑠,𝑡 of a state 𝑠 ∈ 𝑆 at time 452 

step 𝑡 ∈ 𝑇 over a sample with the sample size 𝑁. 453 

𝑠𝑝𝑠,𝑡 =  ∑ 𝑥𝑖,𝑠,𝑡𝑁𝑖=1𝑁       ∀ 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 
(2) 

State durations (sd) are calculated for all states 𝑠 ∈ 𝑆 and are visualized by their cumulative 454 

distributions. The distribution of the duration of states can be used as a first indicator to evaluate the 455 

models with regard to the consideration of long-term time dependencies. For the evaluation of the 456 

intrapersonal variability within an activity schedule, the number of activities per week (na), the 457 

autocorrelation (ac) and the Hamming distance (hd) are calculated for each activity schedule of a 458 

sample. The autocorrelation is calculated for each activity state and each individual and is used to 459 

obtain information about the regularity of activities. The Hamming distance is calculated between all 460 

working days 𝑑 ∈ {1 … 5} of the week and thus provides information about the similarity of the daily 461 

behavior of individuals.  462 ℎ𝑑𝑛 = ∑ ∑ |{𝑡 ∈ {1, … , 𝑇𝑑}| 𝑠𝑑1,𝑡 ≠ 𝑠𝑑2,𝑡}|5𝑑2=15𝑑1=1      ∀ 𝑛 ∈ 𝑁    (3) 

From the variability of these metrics (na, ac, hd), information about the diversity in behavior can be 463 

obtained.  464 

4. Results  465 

The results presented below were calculated with an XLA compiler and a "Tesla V100-SXM2-16GB" 466 

GPU in Tensorflow 2.3. To provide the models from overfitting, the data sets are randomly split up into 467 

training data (9-fold cross validation  80 % training, 10 % validation) and test data (10 %).  468 

4.1. Mobility schedule generation 469 

As a reference model for the presented autoregressive models, a time-inhomogeneous first order 470 

Markov model is used. The first order Markov model characteristics are representative for the models 471 

presented in Section 2.1, since marginal changes in the metrics can be achieved by using more complex 472 

Markov chains, but the basic problems remain (no long-term memory). The introduced metrics are 473 

visualized in Figure 10. All metrics shown are calculated based on a sample size of N = 2,000 unless 474 

explicitly stated otherwise. The course of the aggregated state probability of the state outside deviates 475 

only slightly from the empirical course. The averaged root mean square error (rmse) over all states of 476 

the aggregated state probability is 0.53 % and tends towards zero with increasing sample size. From 477 

the course of the cumulative state durations of the state mobile (car driver) and the other states shown 478 

in Figure 16 it can be observed that the state durations of the schedules produced by the first order 479 

Markov model partly deviate from the empirical data. Furthermore, the distribution of the Hamming 480 

distance and the autocorrelation clearly differ between the data generated by the Markov model and 481 

the empirical data, which is reflected in large deviations in the rmse of the autocorrelation and the 482 
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mean absolute error of the Hamming distance. The peak in the autocorrelation in mobility behavior 483 

after 144 lags (one day) describes daily mobility patterns in the mobility behavior of individual persons. 484 

This peak, which can be clearly identified in the empirical data, is not represented in the synthetic 485 

mobility schedules of the Markov model. Compared to the empirical distribution, the distribution of 486 

the Hamming distances is shifted to the right, towards higher distances. Consequently, subsequent 487 

days of single individuals differ more from one another than in the empirical data. The distribution of 488 

number of activities per week indicates that the Markov model matches the empirical data well on 489 

average, but the boxplot indicates that the diversity in behavior deviates from the one observed in the 490 

empirical data. 491 

 492 

Figure 10: Visualization of the metrics for empirical MOP data (N = 26,610) and data generated with a first order Markov 493 
model (N = 2,000) (blue). The shown state dependent errors are calculated over all states and the mean is presented. 494 

The autoregressive models presented in Section 3.2.1 are trained to predict the multinomial state 495 

distribution of the subsequent state. To achieve this, the cross entropy loss is minimized. Figure 11 and 496 

Figure 12 describe the course of the cross entropy loss during the training process. An epoch is defined 497 

as one training step of the nine-fold cross validation. After nine epochs, the training and validation 498 

data set are reshuffled and divided into nine new participations. During the training of the attention-499 

based models, the loss function converges continuously for the training and test dataset. In the LSTM-500 

based model, however, it can be seen that the course of the loss and accuracy function of the test data 501 

set diverges from the course of the training and validation data after around 14 epochs. From this point 502 

on, the model overfits on the training data and the training process can be stopped. In order not to 503 

use over-trained models, the weights of the model are saved at constant intervals during the training 504 

process. Furthermore, the development of the model accuracy during the training process is shown. 505 

This converges to a value of approx. 96.3%. This means that 96.3% of the time the correct value is 506 

predicted in the training process. Of course, the prediction is easier during the night when people are 507 

asleep than, for example, in the afternoon when there are many changes in activity. Figure 11 shows 508 

the course of the cross entropy loss for two model configurations, with one transformer layer and with 509 

four transformer layers. By increasing the depth of the neural network, the model can better map the 510 

complexity of mobility behavior. However, only marginal improvements can be achieved by further 511 

increasing the number of transformer layers from four to eight (Table 3). Since the performance of the 512 

models presented depends heavily on the choice of hyperparameters, various parameter settings were 513 

tested during the training phase for the LSTM and the attention based models. The parameter settings 514 
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varied during the training process and the corresponding metrics can be found in Table 2 and Table 3. 515 

In addition to the learning rate and the batch size, the number of LSTM units was varied, which limits 516 

the complexity of the internal state of the LSTM and is therefore important to capture temporal 517 

dependencies in behavior. The number of dense neurons (LSTM) or the model dimension 518 

(transformer) was varied to ensure that state-specific information is appropriately represented. 519 

Furthermore, the depth of the neural networks was varied, as this enables the neural network to 520 

learn higher level representations in human behavior. The results of the parameter variations show 521 

that the attention-based models are slightly superior to the LSTM-based models in most metrics, 522 

consequently, the attention-based model no. 3 from Table 3 is used for the presentation of the mobility 523 

schedule specific metrics. 524 

 
Figure 11: Loss development during training of the 

autoregressive transformer (L1/L4: 1/4 transformer layers) 

 
Figure 12: Loss and accuracy development during LSTM 

training 

Selected mobility schedule specific metrics for the attention based autoregressive model described in 525 

Table 3 (model no. 3) are presented in Figure 13. A holistic overview of all metrics for all states can be 526 

found in the appendix (Figure 16). In contrast to the first order Markov model, the aggregated state 527 

probability is represented slightly worse by the attention based model. The rmse of the state 528 

probability averaged over all states and time steps is higher than the error of the first-order Markov 529 

model for all the models shown in Table 2 and Table 3 in the appendix. The Markov error corresponds 530 

to the standard error that arises with a sample size of 2,000. The standard error was calculated by 531 

randomly sampling 2,000 samples 30 times from the entire population and calculating their deviation 532 

from the metrics of the entire population (N = 26,610). The mean value of the error of the 30 samples 533 

is called the standard error. The mean absolute error of the number of weekly activities in the 534 

attention-based model is also higher than that of the Markov model (3.6 > 0.73). The diversity of the 535 

number of weekly activities is, however, recorded much more accurately by the attention-based 536 

model, which is shown in the lower right illustration in Figure 13 for the state mobile (car driver) and 537 

in Figure 16 for all other states. While the machine learning models presented in this work have slight 538 

deviations in the description of the averaged behavior and therefore perform slightly less accurately 539 

than Markov models, the mobility schedules generated differ fundamentally on the individual level, 540 

which is shown by the distribution of the cumulative state durations, the Hamming distance between 541 

weekdays and the autocorrelation of the individual states. Using the Hamming distance and the 542 

autocorrelation, it can be clearly seen that day-to-day dependencies in behavior are very accurately 543 

taken into account by the models presented in this work. In order to be able to adequately capture 544 

daily rhythms in mobility behavior, it is very important that the peak in the autocorrelation graph is 545 

captured well after 24 hours (144 10-minute time steps), which can be seen in the bottom center graph 546 

in Figure 13. From the course of the mean values and the ranges of the 25% / 75% quantile, it becomes 547 

clear that both these dependencies in the mean and in the spread are well represented across the 548 

entire population. These visual findings are also reflected in the significantly lower rmse of the 549 

autocorrelation compared to the Markov model (0.54 <3.79). 550 
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 551 

Figure 13: Visualization of the metrics for empirical MOP data (N = 26,610) and data generated with an attention based model 552 
(N = 2,000) (green). Model parameters can be seen in Table 3 (no. 3). The shown state dependent errors are calculated over 553 
all states and the mean is presented. The overlapping green and red ranges in the left-bottom and center-bottom graph 554 
describe the 25%/75% quantiles. 555 

The difference between LSTM-based models and attention-based models is particularly evident from 556 

the autocorrelation peak in mobility behavior after 24 hours. LSTM models are also able to recognize 557 

relationships over such long periods of time, but in this work it was not possible to reproduce the peak 558 

as well with LSTM-based models as it can be seen in Figure 13 (bottom center) with the attention-559 

based model.  In addition to the low deviation of the mean error in the distribution of the Hamming 560 

distance (5 < 908), it can also be clearly recognized from the form of the distribution that the diversity 561 

in the profiles generated matches the real distributions much better than that of the Markov models, 562 

in which individual weekdays of a person do not have the similarities found in the empirical data.  563 

4.2. Energy-related activity imputation 564 

Since the model approach presented in this paper (step-by-step simulation of mobility behavior and 565 

subsequent enrichment of the results with energy-related activities based on different data sets) is 566 

new and no classical comparable applications in the field of behavioral modeling are known, only the 567 

results of the imputation models presented in Section 3.2.2 are benchmarked against each other in 568 

this section. As with the autoregressive models, the model performance of the imputation models is 569 

strongly dependent on the choice of hyperparameters. The parameters of the BiLSTM-based and the 570 

attention-based imputation model that were varied during the training process can be found in Table 571 

4 and Table 5 in the appendix. To ensure that dependencies between time steps can be adequately 572 

captured by the model, sufficient amounts of LSTM units and attention layers must be provided. The 573 

dimension of the model must be chosen so that all time-step-specific information can be mapped well. 574 

In the following, the activity schedule-specific metrics for the attention-based model no. 6 from Table 575 

5 are compared with the empirically collected TUD data. The metrics are visualized for specific states 576 

in Figure 14. A holistic overview of all metrics for all states and the development of the model loss and 577 

accuracy can be found in the appendix (Figure 17/Figure 18). 578 
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 579 

Figure 14: Visualization of the metrics for empirical TUD data (N = 35,691 dairy days) and data generated with an attention 580 
based model (N = 2,000 diary days) (green). Model parameters can be seen in Table 5 (model no. 6). The shown state 581 
dependent errors are calculated over all states and the mean is presented. The overlapping green and red ranges in the left-582 
bottom and center-bottom graph describe the 25%/75% quantiles. The autocorrelation graphs were calculated based on the 583 
two work days over 288 10-minute timesteps. 584 

Similar to the autoregressive models, it can be seen from the course and the rmse of the aggregated 585 

state probability that this differs slightly from the empirically collected data. The averaged errors over 586 

all states and time steps can be taken from Figure 14, Table 4 and Table 5 for the various model 587 

variants. The error in the simulation of the state durations, on the other hand, is smaller than that 588 

which occurs when modelling activities with a first-order Markov chain (no imputation model). Since 589 

the German TUD data set contains diary entries for three days of the week, the model can also learn 590 

day-to-day dependencies between energy-relevant activities. The autocorrelation graphs in Figure 18 591 

show that the imputation model is able to recognize and reproduce these dependencies. For example, 592 

daily sleep rhythms can be reproduced in the synthetic data, which is another unique selling point of 593 

this work. 594 

When comparing the metrics shown in Table 4 and Table 5, it is noticeable that the attention-based 595 

models perform slightly better in representing the aggregated state probability, while the BiLSTM-596 

based models tend to map the duration of states and autocorrelation better. This could be attributed 597 

to the fact that when representing energy-relevant activities, short-term temporal dependencies 598 

between individual states are of higher importance than the one seen in the mobility schedules and 599 

the sequential character of the BiLSTM depicts these dependencies well, while attention-based models 600 

tend to capture individual states and their time-dependent probability of occurrence more strongly 601 

than short-term sequential dependencies. 602 

4.3. Generation of weekly activity schedules 603 

After the training processes of the autoregressive models and the imputation models have been 604 

described and evaluated in Sections 4.1 and 4.2, synthetic weekly activity plans are now generated for 605 

various socio-demographic groups and compared with empirical data. Table 6 in the appendix gives an 606 

overview of the socio-demographic composition of the empirical data. The age distribution of the MOP 607 

data shows that older population groups are overrepresented in contrast to the TUD data. Younger 608 

groups of the population such as students and part-time workers, on the other hand, are under-609 
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represented. Due to the consideration of socio-demographic factors when coupling the data sets in 610 

the approach presented, a different distribution of the socio-demographic groups in the individual data 611 

sets is not problematic. When considering the sample sizes of the MOP and TUD data, it must be taken 612 

into account that the TUD samples, in contrast to the MOP samples, only consist of two to three days. 613 

The MOP data set with 10-minute time resolution has more than five times as many data points as the 614 

TUD data set. From the rmse of the aggregated state probabilities for the different socio-demographic 615 

groups, it can be seen that the data sets differ in some cases more strongly (rmse (age <18): 4.0%). In 616 

the synthetic profiles, the mobility behavior is generated on the basis of the MOP data, consequently, 617 

when looking at the rmse, fewer errors can be found between the synthetically generated data and 618 

the MOP data, both when looking at the socio-demographic groups in a differentiated manner and 619 

when looking at the aggregate as a whole dataset. 620 

Finally, Figure 15 shows the course of the aggregated state probabilities over a week and two 621 

exemplary activity plans of synthetically generated schedules for two socio-demographic groups 622 

(age<18, full time employees). From the visualization of the aggregated state probabilities it can be 623 

seen that children under the age of 18 are mainly out of the home in the mornings and have two 624 

pronounced mobility peaks at around 8 am and 1 pm, while full-time employees are mainly outside 625 

during the day. Rhythmic behavior within the working days can be seen in the exemplary individual 626 

profiles. In the activity plan of the student on Friday morning, the student changes from an at home 627 

state to an outside state without a mobility activity in between. At first glance, this seems unrealistic, 628 

but these transitions can also be found in the empirical data due to the temporal aggregation of the 629 

mobility data over 10 minutes. 630 
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 631 

Figure 15: The top two figures represent the course of the aggregated state probability for 1,500  generated activity plans for 632 
persons under 18 years of age and for full time employees. The lower two representations are two exemplary activity plans 633 
for a person under the age of 18 and a full-time employee (A legend can be found in Figure 4). 634 

5. Discussion 635 

The results of Section 4.1 show that the Markov model used as a reference model is not able to record 636 

long-term dependencies in activity patterns and, due to the structure of the approach, is not able to 637 

adequately record the diversity in occupancy behavior. Consequently, synthetic activity schedules 638 

generated with Markov chains cannot be used to analyse occupancy behavior on an individual level 639 

and are only suitable for studies on an aggregated level. The approach presented in this paper 640 

combines weekly mobility data with a large sample size with high-resolution activity data with the help 641 

of new machine learning algorithms. The approach creates a new data basis which can be used for 642 

further analyses of home occupancy and mobility behavior. The profiles generated have similar 643 

stochastic properties as the empirically collected data on both the individual and the aggregated level.  644 

By adequately capturing long-term dependencies in people’s activities, the behavior of individual 645 

people can be reproduced. As a result, the data generated represent the basis for a variety of potential 646 

applications, one of which is the examination of potential charging periods of people with electric 647 

vehicles, assuming that electric mobility does not change mobility behavior. By combining the detailed 648 

mobility data with high-resolution activity data, a unique data basis is created which offers the 649 

possibility of consistently simulating the energy demand from personal mobility, the electrical demand 650 

for household devices and the heat demand for space heating and domestic hot water. Therefore, 651 

simultaneity effects in energy demand can be analysed based on one fundamental data set.  652 
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When analyzing such future developments, it should be taken into account that the data sets on which 653 

this work is based describe historical behavior (MOP: 2001-2017, TUD: 2001/02). Not taking into 654 

account the dynamics in people’s behavioral habits could lead to significant errors, depending on the 655 

application. The energy sector includes many examples of innovations that have changed people’s 656 

behavior for example, the internal combustion engine for transport and the development of ICT in 657 

recent decades. Hence ground-breaking/disruptive technologies could change the nature of the 658 

energy service demand itself (e.g. autonomous electric vehicles and smart home applications). In order 659 

to take into account temporal changes in behavior in the data set, the survey year of the respective 660 

sample could be provided as additional information in future studies. Furthermore, the data sets used 661 

differ in their temporal resolution, while the mobility data (MOP) are available in minute resolution, 662 

activities in the TUD are recorded in ten-minute resolution. The aggregation of the mobility data to a 663 

temporal resolution of 10 minutes can lead to distortions in short mobility states. 664 

Through the use of machine learning approaches the assumption bias in the presented approach is low 665 

in comparison to e.g. utility-based stepwise regression approaches (Hilgert et al. 2017), therefore the 666 

developed approach is highly transferable. TUD data are collected uniformly in several European 667 

countries, but there are some differences in the design of the surveys. Some countries only provide 668 

activity time series for one weekday and one weekend day, which makes it harder to capture interday 669 

dependencies in activities. Longitudinal surveys of mobility behavior are not carried out in a 670 

harmonized way at the European level. However, similar mobility studies are available, for example in 671 

the UK and the Netherlands, which examine the mobility behavior over a whole week of a sample that 672 

is representative of the nation (Department for Transport 2020; Hoogendoorn-Lanser et al. 2015). The 673 

approach presented could therefore easily be applied to behavioral data in the UK and the 674 

Netherlands. Instead of training individual models for different countries, it would make more sense 675 

to implement the country information as a socio-demographic parameter in a transnational model in 676 

order to learn country-specific behavior and at the same time provide the model with a larger database 677 

for learning general behavioral relationships.  678 

In this work, the focus was placed on the mapping of the mobility and activity behavior of individual 679 

persons and therefore no interpersonal relationships in the behavior of several individuals in a 680 

household were taken into account. However, the presented approach can and will be extended to 681 

represent household behavior in order to capture interpersonal relationships. Furthermore, only 682 

socio-demographic behavioral differences based on age and employment are currently taken into 683 

account in the model. Since the underlying data sets contain significantly more socio-demographic 684 

differentiations, an extension to include further socio-demographic characteristics is possible. 685 

Since the training process is stopped before the presented models overfit, it can be stated that the 686 

models have learned the general stochastic relationships in human behavior and not simply learned 687 

the raw data sets by heart. This statement is supported by Figure 19 in the appendix, which describes 688 

the distribution of the minimum distances of a sample of data set a with all samples of data set b. The 689 

distribution of the minimum distances between the synthetic mobility schedules and the raw data is 690 

similar to the distribution of the minimum distances within the empirically collected data. However, 691 

even if the raw data used in this paper are already provided in anonymized form, it must be ensured 692 

that no information about individual samples in the empirical data is revealed by the synthetic data 693 

sets. Consequently, in follow-up work, prior to making the models presented in this paper available to 694 

the general public, algorithms from the field of "differential privacy" must be used to ensure that no 695 

information about individual samples is provided (Dwork and Roth 2014). Algorithms that ensure the 696 

privacy of individuals have been developed in recent years for deep learning applications (Abadi et al. 697 

2016). Ensuring differential privacy is always accompanied by a loss of quality in the model, whereby 698 

this trade-off between quality and privacy can be clearly quantified by the so-called privacy budget. 699 
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6. Conclusion and Outlook 700 

Over the past few years, many models have been published that aim to capture relationships in activity 701 

patterns to explain residential energy demand. Most of these models are different Markov variants or 702 

regression models that have a strong assumption bias and are therefore unable to capture complex 703 

long-term dependencies and the diversity in occupancy behavior. In this work it was shown that 704 

machine learning models from the field of natural language processing are able to capture long-term 705 

dependencies in mobility and activity patterns and at the same time adequately depict the diversity in 706 

behavior across the entire population. In a first step, two autoregressive models are presented which 707 

are able to recognize and reproduce weekly mobility patterns. In a second step, two imputation models 708 

are trained with time use data, which, based on the mobility information of individual people, enrich 709 

them with energy-related activities. Finally, the two models are combined to generate weekly activity 710 

plans. By combining an autoregressive generative model with an imputation model, the advantages of 711 

two data sets are combined and new data are generated which are beneficial for multiple use cases. 712 

One of which is the examination of flexibility potentials of individual households which is urgently 713 

needed for the integration of volatile renewable energy sources. Furthermore, metrics were 714 

introduced that enable activity profiles to be investigated in terms of intrapersonal and interpersonal 715 

variability. Based on these metrics, it is shown that the synthetically generated activity plans represent 716 

weekly mobility patterns and day-to-day dependencies of the energy-relevant activities with a high 717 

quality on an individual and aggregated level. The evaluation metrics show that LSTM and attention-718 

based neural networks outperform existing approaches on an individual level by a large margin and at 719 

the same time have only slight deviations in the aggregated behavior. 720 

Due to the availability of rich socio-demographic information in the two basic data sets, activity plans 721 

can be generated for different socio-demographic groups and can be used in future work to simulate 722 

consistent energy demand profiles from electric mobility, household devices and space heating. The 723 

approach developed provides the basis for making high-quality weekly activity data available to the 724 

general public without having to carry out complex application procedures. It was shown that the 725 

presented approach does not learn the training data by heart, however, it must be ensured that no 726 

private information about individuals is revealed by the model before the synthetic data can be 727 

provided to the community, which cannot be ensured at the current time. Therefore, in further work 728 

the model will be trained in a differential private way. Furthermore, the presented methodology can 729 

be trained with behavioral data from different European countries in order to develop a transnational 730 

model. Instead of individual behavior, household behavior could be learned to take interpersonal 731 

dependencies into account. 732 
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8. Appendix 863 

 864 

Figure 16: Comparison of all metrics and all states for the mop data (red), the attention based autoregressive model described 865 
in Table 3 (no. 3) (green) and a first order Markov model (blue). The mobility schedule specific metrics of the attention based 866 
model are calculated based on the model weights after epoch 7. 867 
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 868 

 869 

Figure 17: Part a: Comparison of all metrics and all states for the TUD data (red), the attention based imputation model 870 
described in Table 5 (model no. 6) (green) and a first order Markov model (blue – no imputation model). The mobility schedule 871 
specific metrics of the attention based model are calculated based on the model weights after epoch 37. The autocorrelation 872 
graphs were calculated based on single days. 873 



 

 28 

 874 

 875 

Figure 18: Part b: Comparison of all metrics and all states for the TUD data (red), the attention based imputation model 876 
described in Table 5 (model no. 6) (green) and a first order Markov model (blue – no imputation model). The mobility schedule 877 
specific metrics of the attention based model are calculated based on the model weights after epoch 37. The autocorrelation 878 
graphs were calculated based on single days. Furthermore, the course of the model loss and accuracy is visualized. 879 
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Table 2: Hyperparameter configurations and model metrics for the LSTM based autoregressive model. Metrics were calculated 880 
based on a sample size of N=2,000. Furthermore, a mean standard error due to the sample size of 2,000 is given. 881 

No. LSTM units/ 

Learning rate/ 

Batch size/ 

Dense neurons 

Sp 

rmse 

[%] 

Sd 

rmse 

[%] 

Ac 

rmse 

[%] 

Na 

mae 

[] 

Hd 

mae 

[] 

Cross-

entropy 

Loss 

Accuracy 

[%] 

CV 

Epochs 

1 512/0.0005/512/32 0.99 0.13 0.71 1.11 144 0.133 96.27 14 

2 128/0.0005/512/32 1.03 0.17 1.65 1.57 423 0.142 96.12 8 

3 512/0.001/512/32 1.05 0.18 0.66 3.04 235 0.131 96.30 11 

4 512/0.0005/64/32 1.27 0.22 0.89 3.39 114 0.134 96.26 3 

5 512/0.0005/512/64 0.90 0.18 0.80 0.67 98 0.131 96.29 17 

6 512/0.0005/256/32 0.90 0.13 0.60 1.85 83 0.131 96.29 11 

7 2x256/0.001/512/32 0.69 0.14 0.95 2.08 120 0.131 96.29 12 

8 2x256/0.0005/256/32 0.97 0.19 0.63 3.61 1.5 0.132 96.28 10 

Standard error (N=2,000) 0.52 0.09 0.24 0.6 13 - - - 

 882 

Table 3: Hyperparameter configurations and model metrics for the attention based autoregressive model. 2xh means that 883 
two attention heads are used (see (Vaswani et al. 2017)). 884 

No. Transformer layers/ 

D_model/ 

Learning rate/ 

Batch size 

Sp 

rmse 

Sd 

rmse 

Ac 

rmse 

Na 

mae 

Hd 

mae 

Cross-

entropy 

Loss 

Accuracy CV 

Epochs 

1 1/64/0.001/64 0.83 0.31 1.32 2.96 244 0.14 95.95 9 

2 4/64/0.001/64 0.91 0.16 0.70 2.53 33 0.128 96.34 15 

3 8/64/0.001/64 0.86 0.17 0.54 3.6 5 0.127 96.36 7 

4 4/64/0.001/128 0.95 0.22 0.54 3.28 44 0.130 96.29 3 

5 4/128/0.001/128 0.89 0.24 0.59 3.60 9 0.128 96.33 6 

6 4/64/0.0005/64 0.86 0.18 0.48 4.78 6 0.128 96.33 20 

7 2(2xh)/64/0.001/64 0.97 0.22 0.60 6.33 74 0.129 96.31 11 

8 4(2xh)/64/0.001/64 1.20 0.20 0.42 4.52 126 0.127 96.35 8 

Standard errors (N=2,000) 0.52 0.09 0.24 0.6 13 - - - 

 885 

Table 4: Hyperparameter configurations and model metrics for the BiLSTM based imputation model. Metrics were calculated 886 
based on a sample size of N=2,000 diary days. Furthermore, a mean standard error due to the sample size of 2,000 diary days 887 
is given. 888 

No. LSTM units/ 

D_model/ 

Learning rate/ 

Batch size 

Sp 

rmse 

Sd 

rmse 

Ac 

rmse 

Na 

mae 

Cross-

entropy 

Loss 

Accuracy CV 

Epochs 

1 64/32/0.001/64 0.70 0.27 0.36 0.88 0.434 87.48 21 

2 128/32/0.001/64 0.74 0.28 0.44 0.86 0.435 87.36 11 

3 256/32/0.001/64 0.60 0.26 0.37 0.59 0.432 87.46 9 

4 128/64/0.001/128 0.75 0.26 0.42 0.96 0.432 87.54 13 

5 128/32/0.001/128 0.71 0.42 0.48 0.98 0.433 87.44 11 

6 128/32/0.0005/128 0.64 0.28 0.43 1.27 0.434 87.48 12 

7 64/32/0.0005/128 0.60 0.30 0.38 0.62 0.434 87.39 33 

8 64/32/0.0005/64 0.62 0.34 0.44 0.82 0.434 87.43 33 

Standard errors (N=2,000) 0.40 0.19 0.24 0.33 - - - 
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 889 

Table 5: Hyperparameter configurations and model metrics for the attention based imputation model. Metrics were calculated 890 
based on a sample size of N=2,000 diary days. Furthermore, a mean standard error due to the sample size of 2,000 diary days 891 
is given. 892 

No. Transformer 

layers/ 

D_model/ 

Learning rate/ 

Batch size 

Sp 

rmse 

Sd 

rmse 

Ac 

rmse 

Na 

mae 

Cross-

entropy 

Loss 

Accuracy CV 

Epochs 

1 1/64/0.001/256 0.58 0.39 0.50 0.50 0.469 86.97 158 

2 4/64/0.001/256 0.58 0.39 0.44 0.62 0.436 87.32 22 

3 4/64/0.001/64 0.57 0.38 0.36 0.90 0.436 87.35 8 

4 4/64/0.001/128 0.63 0.39 0.46 1.05 0.438 87.31 12 

5 4/64/0.0005/64 0.59 0.36 0.39 0.72 0.435 87.35 10 

6 4/64/0.0005/128 0.49 0.39 0.39 0.66 0.431 87.41 37 

7 4/14/0.0005/64 1.27 0.54 0.72 1.42 0.458 87.14 46 

8 4/14/0.0005/128 0.84 0.60 0.61 0.65 0.459 87.14 47 

Standard errors (N=2,000) 0.40 0.19 0.24 0.33 - - - 

 893 

Table 6: Comparative presentation of the socio-demographic composition of the MOP and TUD data sets. The calculated rmse 894 
of the aggregated state probabilities are calculated on the basis of the five aggregated states (home, outside, mobile (car 895 
driver), mobile (co driver), mobile (rest)). For the calculation of the rmse between the synthetic profiles and the MOP and TUD 896 
data, synthetic data with the same socio-demographic characteristics as in the comparison data sets were generated. 897 

Age  <18 <26 <36 <51 <61 <71 >=71 

Samples 

MOP  

1971 

(7.4%) 

1430 

(5.4%) 

2288 

(8.6%) 

6107 

(22.9%) 

5132 

(19.3%) 

5809 

(21.8%) 

3873 

(14.6%) 

Samples 

TUD  

2169 

(18.2%) 

1106 

(9.3%) 

1140 

(9.6%) 

4080 

(34.2%) 

1654 

(13.9%) 

1167 

(9.8%) 

494 

(4.1%) 

rmse sp  

MOP/TUD 

4.0% 3.8% 2.3% 1.9% 2.2% 2.7% 2.8% 

rmse sp 

syn./MOP 

1.7% 1.6% 1.3% 0.9% 1.1% 0.7% 0.9% 

rmse sp 

syn./TUD 

3.9% 4.2% 2.1% 1.7% 1.9% 2.6% 2.7% 

Job - Full time Part time Students Training No job Pensioner 

Samples 

MOP 

212 

(0.8%) 

8853 

(33.3%) 

3627 

(13.6%) 

2759 

(10.4%) 

489 

(1.8%) 

2052 

(7.7%) 

8618 

(32.4%) 

Samples 

TUD 

- 3938 

(33.0%) 

2599 

(21.8%) 

2214 

(18.6%) 

375 

(3.1%) 

1184 

(9.9%) 

1611 

(13.5%) 

rmse sp  

MOP/TUD 

- 2.2% 2.5% 2.9% 3.8% 2.4% 2.4% 

rmse sp 

syn./MOP 

2.8% 1.1% 1.1% 1.3% 4.0% 1.0% 0.7% 

rmse sp 

syn./TUD 

- 2.1% 2.0% 3.6% 4.69% 2.1% 2.1% 

rmse sp MOP/TUD (entire sample) 2.9% 

rmse sp syn./TUD (entire sample) 1.8% 

rmse sp syn./MOP (entire sample) 0.7% 
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Table 7: Comparative representation of the aggregated state probabilities of the TUD and MOP data sets for population 898 
groups with different ages. 899 
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 900 

Table 8: Comparative representation of the aggregated state probabilities of the TUD and MOP data sets for population 901 
groups with different occupations. 902 
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 903 

 904 

Figure 19: Distribution of the minimum Hamming distances of the samples from dataset a (sample size N = 500) to the 905 
samples in dataset b (dataset a/ dataset b) 906 

 907 



 Comments Authors' response Changes made, if 

any  

 Reviewer #1   

1 The authors demonstrated 

the developed model are 

able to capture long-term 

dependencies in mobility 

and activity patterns at the 

same time adequately 

predict the diversity in 

behavior across the entire 

population. The capability is 

useful to model energy 

demand of buildings and 

mobility realistically. I 

believe that the developed 

methodology contributes 

significantly to the 

literature of the energy 

demand modelling. 

Therefore, I recommend 

the paper to be published 

as it is, with rechecking 

small errors. At least, the 

last paragraph of the 

introduction contains the 

error in referencing.  

Thank you for your nice comment.  We checked the 

entire manuscript 

again for errors 

and removed the 

referencing error in 

the introduction 

(line 103). 

 Reviewer #2   

2 This work is mainly about 

bridging the gap between 

social practice theory, 

energy related activity 

modelling and novel 

machine learning 

approaches. The recent 

machine learning method, 

namely, LSTM, is 

investigated in this work. 

The autoregressive model is 

employed, which generates 

synthetic weekly mobility 

schedules of individual 

occupants and thereby 

captures long-term 

dependencies in mobility 

behavior. The framework is 

clear. The reviewer would 

like to raise several 

comments. 

Thank you for your comments. In 

addition to the LSTM-based 

approaches mentioned, attention-

based neural networks are also 

presented. In addition to the 

autoregressive approach, an 

imputation model is presented, which 

enables the two data sets (TUD and 

MOP) to be linked. 

No changes. 

3 As the most successful 

machine learning methods, 

neural networks-based 

Thank you for your comments. We 

totally agree that neural network-

based deep learning models have the 

In Section 3.1.3. we 

added the 

Response to Reviewers



deep learning models have 

been widely studied across 

different fields. These 

methods generally follow 

an end-to-end framework. 

Namely, these methods 

have adaptively feature 

learning ability, regardless 

of data-preprocessing, 

manually feature extraction 

or selection.  

ability to adaptively learn features and 

therefore manually feature 

extraction/selection is not needed 

while using these kinds of models. We 

see this ability as the greatest 

advantage of the model presented in 

this work compared to the regression 

and Markov models used so far in the 

literature in the field of activity 

modeling. However, since the data 

sets (Time Use Data and Mobility 

Data) used in this work are available in 

different formats, they must of course 

be brought to a uniform machine-

readable data format before the data 

can be used for training these kind of 

models. Furthermore, for the 

connection of the data sets it was 

necessary to define an interSection of 

common activity states and meta-

information on the basis of which the 

data sets can be combined with one 

another. To achieve this, the selected 

activity states and the selected meta-

information were used. In summary, it 

can be stated that the data 

preprocessing was carried out with 

the aim of connecting the data sets 

using the two models presented. If we 

had "only" had the goal of 

reproducing a data set, then we totally 

agree with you, we would have had to 

provide the data to the neural 

network as unprocessed as possible. 

 

Regarding the additional sinusoidal 

and categorical positional encodings 

we provided to the networks: this 

information is necessary for the 

attention-based neural networks to 

learn the sequential structure of the 

underlying problem. This approach is 

used in most of the papers in 

literature which try to model 

sequential data with attention-based 

neural networks. 

following 

sentences: 

“In general, neural 

networks based 

machine learning 

methods have good 

adaptive feature 

learning ability. But 

in the present study 

the employed 

datasets are of a 

very different 

format, therefore 

they need to be 

aligned before the 

training.”  

4 The reviewer thinks it is a 

significant improvement, 

compared with other 

machine learning methods.  

Thank you for this comment. We do 

state that the “autoregressive part” of 
the presented approach is a significant 

improvement to the existing state of 

the art in the field of activity 

modelling which is defined by the 

No changes. 

 



presented Markov and regression 

models presented in table 2.  

5 In this work, there are no 

comparisons between your 

LSTM model and other 

popular machine learning 

models. 

Thank you for this comment. We 

present a sequential two step 

approach in our work consisting of an 

autoregressive model and an 

imputation model. For the 

autoregressive model we present an 

LSTM based neural network and an 

attention based neural network and 

compare these models with a first 

order Markov chain approach. Due to 

the similarity of the underlying 

problem, the selection of the methods 

used in this paper was based on the 

models that define the state of the art 

in the field of natural language 

processing. These are currently 

attention-based transformer 

architectures. Before that, LSTM 

based neural networks were used as 

described in Section 2. Of course, 

other approaches could be used for 

comparison, such as GRUs, which like 

LSTMs also represent recurrent neural 

networks. Due to the already large 

scope of the work and the expected 

similar results for LSTMs, this was not 

done. Furthermore, at the end of 

Section 2.3 we explain why GANs are 

not used. 

In Section 3.2. we 

added the 

following 

sentences: 

“Due to the 

similarity of the 

underlying 

problem, the 

selection of the 

methods used in 

this paper is based 

on the models that 

define the state of 

the art in the field 

of NLP. These are 

currently attention-

based transformer 

architectures. 

Before that, LSTM 

based neural 

networks were 

used as described 

in Section Error! 

Reference source 

not found..” 

6 Besides, the existing 

comparisons seem to be 

unfair. The author 

illustrates the existing 

research Approaches in 

Table 1. What are the 

optimization measures of 

Markov Approach and 

which optimization strategy 

is adopted in this study? 

please add more details. 

Thank you for this comment. We 

suppose that you consider the 

comparison of highly parametric 

neural networks with Markov models 

to be unfair. In this work, we propose 

the combination of two datasets 

together with new model approaches. 

By using both datasets we already 

have an advantage in information and 

by using neural networks which can 

capture the complex dependencies in 

the datasets we can generate 

synthetic data which combine the 

information of both datasets. Due to 

the specific nature of the overall 

approach presented, it is just possible 

to benchmark the single steps of the 

presented approach on their own 

against other approaches. At the end 

of Section 2.1, we discuss the general 

shortcomings of a Markov chain 

(exponential increasing number of 

In Section 4.1 we 

added that it is a 

time-

inhomogeneous 

Markov chain, 

since this 

information was 

missing until now: 

“As a reference 

model for the 

presented 

autoregressive 

models, a time-

inhomogeneous 

first order Markov 

model is used.” 



free parameters with order of model 

and the collection of all possible full 

high-order Markov chain models is 

limited and completely stratified). Due 

to these shortcomings, it is not 

possible to capture long-term 

dependencies over several days with 

Markov chains. As written in Section 

4.1 (As a reference model for the 

presented autoregressive models, a 

first order Markov model is used. The 

first order Markov model 

characteristics are representative for 

the models presented in Section 2.1, 

since marginal changes in the metrics 

can be achieved by using more 

complex Markov chains, but the basic 

problems remain (no long-term 

memory)) we use a first order time 

inhomogeneous Markov model, which 

performs slightly worse than more 

complex Markov models, as can be 

seen from the papers discussed in 

Table 2.1, but the general 

shortcomings stay the same.  

 

Regarding the optimization measures 

of the Markov approach: as written 

above we used a first order time 

inhomogeneous Markov chain. 

Therefore, we calculated transition 

probabilities between all states for all 

time steps considered.  

 

Regarding the imputation approach 

we compare different bidirectional 

LSTM and attention based models, 

which seems to be appropriate, 

because these models define the state 

of the art (Cui et al. 2020; Chan et al. 

2020; Richard et al. 2020; Ma et al. 

2019; Sucholutsky et al. 2019). 

7 Although the model shows 

admirable performance, the 

Hyperparameter 

optimization in the study 

seems to be unreliable. 

What is the scope, basis and 

strategy of Hyperparameter 

adjustment? In particular, 

LSTM Units, Dense Grids 

and Transformer Layers. 

Thank you for this comment. Due to 

the fact that our computational 

resources are limited, as stated in the 

beginning of Section 4, it was not 

possible to fully optimize all 

hyperparameters in a systematic 

procedure (grid search), as is the case 

in most machine learning based 

approaches. After experimenting with 

many different parameter settings 

(different activation functions, 

We added the 

following 

paragraph to the 

Results Section: 

“In addition to the 

learning rate and 

the batch size, the 

number of LSTM 

units was varied, 

which limits the 

complexity of the 



dropout rates, embedding sizes,…) we 
came to the conclusion that the 

hyperparameters presented in Table 2 

and Table 3 are the most relevant and 

interesting for the following reasons: 

 

- LSTM units: they define the 

memory capacity of the neural 

network. With a high number 

of LSTM units, it is possible for 

the network to build a more 

complex representation of the 

past in the internal state of 

the LSTM. Obviously, the 

computational complexity 

increases with more LSTM 

units.  

 important for 

intertemporal 

dependencies 

- Dense neurons of dense layer 

(LSTM) D_model (attention): 

more neurons enable learning 

more complex time step 

specific state representations.  

 Important for timestep 

specific dependencies  

- Transformer layers: the 

number of transformer layers 

define the depth of the neural 

network. Deeper layers of 

neural networks learn higher 

class features of human 

behavior. The performance 

increase with depth can be 

seen in Table 3 and Figure 11.  

 Important to learn high 

level representations  

 

internal state of 

the LSTM and is 

therefore 

important to 

capture temporal 

dependencies in 

behavior. The 

number of dense 

neurons (LSTM) or 

the model 

dimension 

(transformer) was 

varied to ensure 

that state-specific 

information is 

appropriately 

represented. 

Furthermore, the 

depth of the neural 

networks was 

varied, as this 

enables the neural 

network to learn 

higher level 

representations in 

human behavior.” 
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Abstract 9 

Models simulating household energy demand based on different occupant and household types and 10 

their behavioral patterns have received increasing attention over the last years due the need to better 11 

understand fundamental characteristics that shape the demand side. Most of the models described in 12 

the literature are based on Time Use Survey data and Markov chains. Due to the nature of the 13 

underlying data and the Markov property, it is not sufficiently possible to consider long-term 14 

dependencies over several days in occupant behavior. An accurate mapping of long-term 15 

dependencies in behavior is of increasing importance, e.g. for the determination of flexibility potentials 16 

of individual households urgently needed to compensate supply-side fluctuations of renewable based 17 

energy systems. The aim of this study is to bridge the gap between social practice theory, energy 18 

related activity modelling and novel machine learning approaches. The weaknesses of existing 19 

approaches are addressed by combining time use survey data with mobility data, which provide 20 

information about individual mobility behavior over periods of one week. In social practice theory, 21 

emphasis is placed on the sequencing and repetition of practices over time. This suggests that practices 22 

have a memory. Transformer models based on the attention mechanism and Long short-term memory 23 

(LSTM) based neural networks define the state of the art in the field of natural language processing 24 

(NLP) and are for the first time introduced in this paper for the generation of weekly activity profiles. 25 

In a first step an autoregressive model is presented, which generates synthetic weekly mobility 26 

schedules of individual occupants and thereby captures long-term dependencies in mobility behavior. 27 

In a second step, an imputation model enriches the weekly mobility schedules with detailed 28 

information about energy relevant at home activities. The weekly activity profiles build the basis for 29 

multiple use cases one of which is modelling consistent electricity, heat and mobility demand profiles 30 

of households. The approach developed provides the basis for making high-quality weekly activity data 31 

available to the general public without having to carry out complex application procedures. 32 
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1. Introduction  34 

In the course of the decarbonisation of domestic heat demand, it is expected that a large part of the 35 

heat will be generated by electricity (e.g. through heat pumps) (Paardekooper et al. 2018). In order to 36 

decarbonise the mobility sector, the aim is to increase the amount of electric vehicles in the European 37 

union from 1.3 million in 2020 to at least 33 million by 2030 (Transport & Environment 2020). Due to 38 

the expected developments, fundamental characteristics will change in the course of energy demand 39 

in the household sector. Furthermore, the introduction of stationary and mobile electricity storage 40 

systems as well as stationary heat storage systems enable the storage of energy over periods of single 41 

days and therefore open up flexibility potentials in the residential sector, which can support the 42 

integration of fluctuating renewable energies. To evaluate these flexibility potentials, fundamental 43 

relationships that shape household energy demand must be understood. 44 

Occupant behavior has been identified as having a significant impact on household energy demand 45 

(Steemers and Yun 2009). Therefore, there has been an increasing research interest in the field of 46 

behavioral modelling over the last years with the aim to explain dynamics in residential energy demand 47 

based on energy related activities (Torriti 2014, 2017). A large number of studies focus on the 48 

modelling of activity sequences of single households or individuals with the objective to describe 49 

occupant behavior on an aggregated level for socio-demographic differentiated groups (Aerts et al. 50 

2014; Flett and Kelly 2016; Richardson et al. 2008; Wilke 2013). Time use data (TUD) are used as a data 51 

basis, which provide information on the temporal course of occupant activities over single days and 52 

are available for various countries in the form of population representative samples (Eurostat 2000). 53 

Based on occupant behavior, different approaches were developed that connect occupant activities 54 

with electrical household appliances and thus generate synthetic electricity demand profiles 55 

(Yamaguchi et al. 2018). The aim of these studies is to gain a deeper understanding of household 56 

electricity demand in order to e.g. be able to evaluate device-specific efficiency measures, time-57 

dependent electricity tariffs or load shift potentials. 58 

However, TUD only provide information on activity patterns of individual days, therefore longer-term 59 

dependencies in mobility behavior and energy relevant at home activities that extend over several 60 

days are not captured in existing TUD based models. Figure 1 compares the autocorrelation of power 61 

consumption data generated on the basis of TUD with measured power consumption data. The 62 

autocorrelation in the generated data is underestimated. Especially, dependencies between 63 

subsequent days (48 lags) are not properly reproduced by the examined models. 64 

 65 

Figure 1: Mean autocorrelation and 95% confidence interval of electricity consumption profiles of the three load profile 66 
generators (LPG (Pflugradt 2016), CREST (Richardson et al. 2010), SynPro (Fischer et al. 2015)) and empirical smart meter 67 

data (I: HTW (Tjaden et al. 2015), II: (described in (Kaschub 2017)) 68 

Models based on device-specific power consumption data available over periods longer than one day 69 

are able to account for day-to-day variability in electricity demand (Yilmaz et al. 2017). However, due 70 

to the data underpinning these approaches, not much is known about the occupants and their 71 
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behavior, therefore it is not (easily) possible to calculate consistent heat and mobility demand profiles 72 

matching the electricity demand. One possible way to infer the occupancy behavior would be to use 73 

non-intrusive occupancy monitoring methods in order to calculate internal heat gains (metabolic gains 74 

and device-specific heat losses) (Chen et al. 2018). However, integrating demand through electrical 75 

vehicles would be another challenge. 76 

The objective of this study is to develop a methodology that enables the generation of synthetic weekly 77 

activity schedules in which long-term dependencies in mobility behavior and energy relevant at home 78 

activities are captured on an individual level. These schedules can be used as a basis for generating 79 

consistent energy service demand profiles, taking into account heating, mobility and device specific 80 

energy service demand. In order to identify trends and potentials at the individual household level, 81 

like flexible charging behavior of electric vehicles, day-to-day variability in mobility patterns needs to 82 

be captured in the proposed approach. Therefore, novel machine learning based algorithms from the 83 

field of natural language processing (NLP) which are capable of capturing long-term dependencies in 84 

time series are transferred to the field of activity modelling. To answer the research question to what 85 

extent these algorithms are able to capture long-term dependencies in individual energy related 86 

occupancy patterns while maintaining the diversity of occupancy behavior on an individual and 87 

aggregated level, two behavioral data sets are combined in a two-step approach. Mobility data are 88 

used which provide information about weekly mobility patterns and combined with time use survey 89 

data which provide detailed information about daily activities (sleeping, cooking, eating, …).  90 

The two-step approach enables to combine the advantages of mobility data (long-term dependencies 91 

in mobility behavior) with the advantages of TUD (detailed information about activities) and generates 92 

high quality weekly activity schedules. Novel machine learning algorithms which are used in the area 93 

of NLP are used for the first time to model occupancy behavior. These models have fundamental 94 

advantages over Markov chains, because they provide the capability to learn long term dependencies 95 

in time series. In comparison to existing approaches which were developed to reproduce aggregated 96 

occupancy behavior the proposed approach reproduces aggregated occupancy behavior and at the 97 

same time provides high quality individual activity schedules. Therefore, the synthetic activity 98 

schedules can be used to analyse trends in the household sector on an individual level and to examine 99 

their impact on an aggregated level at the same time. Due to the rich socio-demographic information 100 

in the underlying data sets, differences in behavior between socio-demographic groups can be 101 

analysed based on the synthetic activity schedules. 102 

The paper is structured as follows. Section 2 presents an overview about current approaches to activity 103 

based residential demand modelling and gives a short introduction to the field of social practice theory. 104 

Furthermore, the latest developments in the field of NLP are summarized. Section 3 presents the 105 

mobility and activity data used in this work. Subsequently, two autoregressive models are presented 106 

for the generation of weekly mobility schedules and two imputation models are presented for 107 

enriching the synthetic mobility schedules with energy related activity information. The section 108 

concludes with a presentation of the metrics used to evaluate the activity plans. In Section 4 the 109 

generated activity schedules are evaluated. Finally, the results are discussed and an outlook on future 110 

work is given in Section 5 before conclusions are drawn in Section 6. 111 

2. Introducing NLP to activity modelling 112 

The majority of studies in the residential energy demand modelling literature simulate residential 113 

energy demand based on activity patterns. The most important data basis for modelling activity 114 

sequences is TUD. TUD are large-scale surveys which provide detailed information about how people 115 

spend their time. The mean of data collection is the time-diary instrument in which the respondents 116 

enter their activities in regular time steps. These so-called time-diaries contain activity sequences for 117 
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the period of usually one single day. When selecting households for the study, care is taken to select a 118 

sample of households representative of the population. Time diaries are collected for all persons in 119 

the households except for young children for usually one weekday and one weekend day to capture 120 

the differences between the days. Since TUD are collected in a harmonised procedure in most 121 

countries in Europe, these data provide a good basis for a variety of similar models for modelling 122 

activity sequences. In the following, different model approaches are presented which generate activity 123 

sequences based on TUD and similar activity-based data sets. Furthermore, the weaknesses of the 124 

models reviewed in the literature is described and a short insight into social practice theory is given. 125 

Finally, the field of NLP is briefly introduced due to similarities in modelling human behavior and 126 

language.  127 

2.1. Markov chain based approaches 128 

One of the most commonly used approaches to map activity sequences is to describe them as Markov 129 

chains. A Markov chain is a stochastic process that describes a sequence of possible states in which 130 

the probability of each state depends only on the previous states. The state space of a Markov chain 131 

describes the set of possible states and their corresponding state transition probabilities. The abstract 132 

idea behind the modelling of activity sequences that describe the behavior of individuals is that 133 

individuals go about their lives by transitioning between different elements of a set of potential states 134 

of activity (Ramírez-Mendiola et al. 2019). Richardson et al. have developed an occupancy model which 135 

uses a first order Markov chain and distinguishes between the states ‘active at home’ and ‘not active 136 

at home’ for each person of a household (Richardson et al. 2008). Based on aggregated household 137 

states they calculate transition probabilities in order to model the activity level of the household over 138 

the timeframe of one day. By modelling households in an aggregated way instead of individual persons, 139 

inter personal relations are better represented than in models where individuals are modelled 140 

individually (McKenna et al. 2015). First order Markov models are adequately suited to describe 141 

processes that fullfill the Markov property. The term Markov property refers to the memorylessness 142 

of a stochastic process. For a first order Markov model, this means that the transition to a subsequent 143 

state depends only on the current state and is independent of previously observed states in the 144 

evolution of the process. It is obvious that residential activity schedules represent more complex 145 

processes and therefore cannot easily be represented by a first order Markov model. To overcome this 146 

problem, a variety of more complex Markov models have been presented in recent years. In contrast 147 

to first order Markov models, so-called semi-Markov models determine not only the subsequent state 148 

but also the duration of the subsequent state. As this kind of models represent an improvement to 149 

first order Markov Chains, due to a better mapping of state durations, they are used in various studies 150 

for activity modelling (Aerts et al. 2014; Wilke 2013; Bottaccioli et al. 2019). Flett et al. (Flett and Kelly 151 

2016) present a Markov model for occupancy simulation that uses transition probabilities which are 152 

calculated based on the current state and the length of the current state. By considering the state 153 

length of the current state, this model represents an improvement over previous models, so that this 154 

model cannot be called memoryless. The logical next step would be to develop higher order Markov 155 

models, which allow any number of past states to be taken into account when choosing the subsequent 156 

state. However, two serious issues can be associated with higher-order Markov chains. On the one 157 

hand the number of free parameters in the model increases exponentially with the order of the model 158 

and on the other hand the collection of all possible full high-order Markov chain models is limited and 159 

completely stratified (Ramírez-Mendiola et al. 2019). Ramírez-Mendiola et al. (Ramírez-Mendiola et al. 160 

2019) addressed this issues by presenting a Markov chain model with variable memory length which 161 

allows the order of the model to vary during the evolution of the stochastic process. In order to find 162 

relevant portions of the past based on the influence on the outcomes of the transition probabilities to 163 

subsequent states the authors present a novel algorithm based on the Kullback-Leibler divergence and 164 

the log-likelihood test. 165 
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 166 

Figure 2: Graphical representation of the process of sequence generation with different kinds of Markov chains (1. first order 167 
Markov chain, 2. semi Markov chain, 3. higher order Markov chain, 4. Markov chain with variable memory length) 168 

A graphical overview of the different Markov chain variations can be seen in Figure 2. It can be 169 

concluded that over the last few years more and more complex models based on Markov chains have 170 

been developed, which partly overcome the memorylessness problem. However, due to their 171 

structure, Markov models are only able to capture the states of the short-term past in order to predict 172 

subsequent states. Long-term relationships in daily schedules cannot be adequately represented by 173 

these types of models. 174 

2.2. Timing of social practices  175 

Markov chain approaches are based on the assumption that activities develop over time and are only 176 

dependent on the evolution of previous states. However, social practice theory literature points out 177 

that in order to understand people’s daily/weekly schedules these should be treated as a whole (Shove 178 

et al. 2012; Torriti 2017). While practice theoretical accounts of social life vary, they remain consistent 179 

on at least two counts: (1) that practices are shared (socially/as part of the social i.e. performed by 180 

more than one person) and, because of that, (2) are repeated (performed more than once). If we also 181 

add that practices are connected and depend more and less on each other in being reproduced, it 182 

follows that we need to know more about how practices are repeated and with what effect for the 183 

relative strengths of their dependencies, connections, and extended relationships. In order to do 184 

justice to this statement in the patterning of activities, models must be developed which not only make 185 

it possible to capture connections between activities from the short-term past in order to predict the 186 

future, but also capture higher-level patterns which shape patterns of people’s activities. In other 187 

words, models need to understand how temporal dynamics are embedded in the social world in order 188 

to understand how activities and thus energy consumption change and vary over time (Walker 2014). 189 

The majority of people structure their lives in daily rhythms, which are based on regular working hours, 190 

meal times and other constraints. These constraints form the basis for a certain degree of 191 

synchronization of social activities and thus for demand patterns (Walker 2014). Future models should 192 

be able to recognize and reproduce logical sequences in activity patterns, so that dependencies in 193 

activities are taken into account. For instance, food should first be prepared and then eaten. 194 

Hilgert et al. (Hilgert et al. 2017) use a  utility-based stepwise regression approach to generate weekly 195 

activity schedules for travel demand models. Due to the observation period of one week and the 196 

associated extended requirements for the mapping of activity sequences (day to day stability and 197 

variability of personal behavior), this approach differs from the approaches presented so far. 198 

Compared to Markov chain based approaches, activity sequences do not evolve over time but are the 199 
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result of regression based utility functions and time budgets. Based on Bowman (Bowman 1998) the 200 

construction process of activity schedules is split into smaller decisions due to the high complexity of 201 

constructing the entire schedule directly. These small decisions are then integrated downward 202 

vertically in the form of many logistic regression models. Due to the large number of regression models 203 

and their integration, many assumptions must be made when creating such a model, which increase 204 

the assumption bias. Future approaches should be less assumption driven to be easily transferable to 205 

different applications and datasets. To capture the high complexity of a complete activity plan without 206 

many intermediate steps, as described by Bowman, data-driven approaches could be used that need 207 

less assumptions and can capture complex relationships due to their structure. Table 1 gives an 208 

overview of the approaches presented in this section and compares them with the approach presented 209 

in this study. 210 

Table 1: An overview of selected models for modelling occupancy behavior 211 

Study Database Approach Object of 

consideration 

Country 

(Richardson et al. 2008) TUD Markov - 1st order Household UK 

(Wilke 2013) TUD Markov - semi Individual  FR 

(Bottaccioli et al. 2019) TUD Markov - semi Individual  IT 

(Aerts et al. 2014) TUD Markov - semi Individual  BE 

(Flett and Kelly 2016) TUD Markov - higher order Individuals UK 

(Ramírez-Mendiola et al. 2019) TUD Markov - variable length Individual UK 

(Hilgert et al. 2017) MOP Regression Individual DE 

This study MOP + TUD Neural networks Individual DE 

 212 

2.3. A brief review of natural language processing 213 

The term natural language processing covers applications such as text classification, text 214 

understanding, text generation and text translation. NLP algorithms give machines the ability to read, 215 

understand and derive meaning from human languages. Over the last years NLP evolved from the era 216 

of punch cards and batch processing, in which the procession of a sentence could take up to 7 minutes, 217 

to the era of Transformer based model architectures like Googles BERT or OpenAIs GPT-3 with models 218 

up to 175 Billion parameters which are trained on large web corpora like Wikipedia and are able to 219 

generate articles which human evaluators have difficulty distinguishing from articles written by 220 

humans (Young et al. 2017; Brown et al. 2020; Devlin et al. 2018).  221 

The first neural language model was based on a feed-forward neural network (Bengio et al. 2003). 222 

Vector representations of the n previous words are taken from a table and used as input in order to 223 

predict the probabilities of the following words. Nowadays dense vector representations of words or 224 

word embeddings are trained in an efficient way while training the neural network and are capable of 225 

capturing the context of words in a document (Mikolov et al. 2013).  226 

From 2013 on neural network models in the form of recurrent neural networks (RNN), convolutional 227 

neural networks (CNN), and recursive neural networks got adopted in the field of NLP (Sutskever 2013; 228 

Kalchbrenner et al. 2014). RNNs are the obvious choice to deal with dynamic word sequences as they 229 

process the sequences from left-to-right or right-to-left and provide some kind of memory in the form 230 

of the hidden state (Elman 1990). RNNs in the form of long-short term memory networks (LSTM) 231 

proved to be more resilient to the vanishing gradient problem and therefore be able to better 232 

represent long-term dependencies in time series (Hochreiter and Schmidhuber 1997). The in 2014 233 

presented sequence-to-sequence approach builds the basis for multiple machine translation 234 

applications. First, an LSTM-based encoder is used to compress an input sequence into a vector 235 

representation and then a decoder network, also based on LSTMs, predicts the target sequence step 236 

by step (Sutskever et al. 2014). The main shortcoming of the sequence-to-sequence approach is that 237 
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the input sequence needs to be compressed into a fixed-size vector. The Attention mechanism tackles 238 

this shortcoming by allowing the decoder to look back at the input sequence hidden states, which are 239 

provided as additional input to the decoder (Bahdanau et al. 2015). A rare feature of the Attention 240 

mechanism is, that it provides superficial insides about the learning process by providing information, 241 

through the attention weights, about which parts of the input are relevant for particular parts of the 242 

output. In 2016 Google presented their neural machine translation system which consisted of a deep 243 

LSTM network combining multiple encoder and decoder layers using residual connections and the 244 

attention mechanism (Wu et al. 2016). However, in 2017 the paper “Attention is all you need” was 245 

presented, which builds the basis for numerous transformer architectures which work on the principle 246 

of self-attention and define the state of the art in multiple NLP tasks (Vaswani et al. 2017; Brown et al. 247 

2020). It was shown that the sequential nature can be captured by only using attention mechanisms 248 

and positional encodings without the use of RNNs. Due to the fundamental constraint of sequential 249 

computation of RNNs, it is not possible to parallelize training, therefore it is hard to learn on long 250 

sequences. Transformer models are fully based on fully connected layers and can be easily parallelized. 251 

Since 2017 multiple different transformer based architectures were introduced, consisting of multiple 252 

encoder and/or decoder blocks and an increasing number of trainable parameters (Wolf et al. 2020). 253 

In figure 3 the model architecture of a sequence to sequence RNN based model is compared to the 254 

model structure of an attention based transformer, consisting of an encoder and decoder block. 255 

 256 

Figure 3: Abstract graphical representation of the RNN based sequence-to-sequence architecture (left) (Sutskever et al. 257 
2014) and an encoder/decoder based transformer architecture on the right (Vaswani et al. 2017) 258 

Adversarial learning methods have gained increased intention especially in the area of image 259 

processing/generation and have also been used in different forms in NLP over the last years. 260 

Generative adversarial networks (GANs) for example are able to generate synthetic data with similar 261 

statistical properties as real data by using two neural networks, a generator and a discriminator 262 

(Goodfellow et al. 2014). The generator produces synthetic data and the discriminator classifies 263 

generated data as fake and real data as real. Both networks are trained in an iterative way while trying 264 

to minimizes the reverse Kullback-Leibler divergence. Therefore, in comparison to the previously 265 

presented model architectures, GANs are not trained by maximum likelihood estimation (MLE) and 266 

thus are said to be less vulnerable to suffer from the exposure bias in the inference stage: the model 267 

generates a sequence iteratively and predicts next token conditioned on its previously predicted ones 268 
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that may be never seen in the training data (Yu et al. 2017). With that in mind many GAN based 269 

architectures were developed for natural language generation based on the approach presented in (Yu 270 

et al. 2017) which combines GANs with a reinforcement learning policy in order to deal with the 271 

differentiability problem. However, it was shown that MLE based approaches still dominate GANs 272 

when quality and diversity metrics are taken into account (Caccia et al. 2020). Therefore, GAN 273 

architectures are not considered further in this work, even if they form a promising basis for future 274 

work. 275 

3. Data and Methodology 276 

The German Mobility Panel (MOP) and German Time Use Data are used as an exemplary data source 277 

for analysing activity patterns in this study. In Section 3.1 the data preparation of the two data sets is 278 

described and the processed data is visualized. Further on, Section 3.2 presents the methodology 279 

developed to generate weekly activity schedules. Finally, Section 3.3 describes the metrics that are 280 

used to evaluate the activity plans. 281 

3.1. Data 282 

3.1.1. German mobility panel 283 

The MOP collects information on the mobility behavior of the German population every year since 284 

1994. About 1,500 to 3,100 persons (10 years and older), who make up about 900 to 1,900 households, 285 

fill out travel diaries over a period of one week. The travel diaries contain information about all trips 286 

during the week (start and arrival time, distance, modes used, purpose). In addition, socio-287 

demographic information and information on refuelling behavior are recorded in the form of personal, 288 

household and fuel diaries. The survey is conducted every year in autumn to avoid distortions caused 289 

by holidays. The data is representative of the travel behavior of the German population. The Institute 290 

for Transport Studies at the Karlsruhe Institute of Technology is responsible for the implementation 291 

and design of the survey (Weiß et al. 2016; Zumkeller, Chlond 2009). Due to changes in the survey 292 

design, data from the surveys from 2001 to 2017 are used in this study. 293 

 294 

3.1.2. German time use survey 295 

For the analysis of energy relevant activities, the German part of the Harmonized European Time Use 296 

Survey, supplied by the German Statistic Office, was used (Destatis 2006; Eurostat 2000). Since the 297 

current version of 12/13 incorrectly recorded the location of the people, this data is not used. The data 298 

set contains activity diaries and socio-demographic information for 11,921 individual persons (age > 299 

10 years) out of 5,443 households. Most of the participants provided diaries on two weekdays and one 300 

weekend-day in a 10-minute resolution. In this study time dependent data about primary activities and 301 

location as well as socio-demographic information are used. 302 

3.1.3. Data preparation 303 

In general, neural networks based machine learning methods have good adaptive feature learning 304 

ability. But in the present study the employed datasets are of a very different format, therefore they 305 

need to be aligned before the training. In order to create activity plans from the travel diaries, the basic 306 

dataset consisting of 833,986 travel entries for 35,014 person-weeks is converted into weekly activity 307 

plans with a time resolution of 10 minutes. The generation of activity plans is inspired by Hilgert et al. 308 

(Hilgert et al. 2017). In a first step, person weeks with missing or unrealistic entries are eliminated so 309 

that finally 26,610 person-weeks can be used for further analysis. Based on the travel entries and their 310 

purpose, states are determined for each time interval of the week. The choice of the initial state is 311 

based on the final state of the time series. Subsequently, the data are aggregated from a 1-minute 312 
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resolution to 10-minute resolution, assuming the state that is most frequently taken in the respective 313 

10-minute interval. The reason for the reduction of the temporal resolution of the data is, on the one 314 

hand, the increased information density, since machine learning algorithms have problems with sparse 315 

data. On the other hand, TUD data are also recorded in 10-minute resolution. 316 

The diary entries in the German TUD consist of more than 200 activity codes describing activities in the 317 

everyday life of human beings. Before the diary data is used as input for further processing, these 318 

activities are aggregated to activities relevant for household energy demand. The choice of activities 319 

is based on similar studies (Fischer et al. 2015; Richardson et al. 2010). The aggregated activities are 320 

visualized in Figure 4. In the upper two figures, the time course of the aggregated state probabilities 321 

of the two data sets is provided over a week. The lower two partial figures show example artificial 322 

activity plans for individual persons. Interday dependencies in behavior from Monday to Friday can be 323 

easily recognized from the visualization of the mobility schedule. The example activity plan, on the 324 

other hand, provides detailed daily information on energy-related home, sleep and mobility activities. 325 

Further comparative analyses based on socio-demographic characteristics of the data sets can be 326 

found in Section 5 and in the appendix. 327 

 328 

Figure 4: Visualization of aggregated state probabilities and exemplary artificial individual diary entries based on the MOP 329 
(Weiß et al. 2016) and the TUD (Destatis 2006) 330 

3.2. Methodology 331 

The approach for the generation of weekly activity schedules with a time resolution of 10 minutes is 332 

presented in Figure 5. In the first step, weekly mobility schedules of individual persons from the 333 

German Mobility Panel are used as input data. The objective of the first step is to generate synthetic 334 
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mobility schedules with statistical properties similar to the empirical schedules. The developed 335 

approaches are autoregressive. This means that it is assumed that the choice of the next mobility state 336 𝑚𝑠𝑡+1 only depends on all the states 𝑚𝑠0…𝑡 that have already been observed. In Section 3.2.1, an 337 

LSTM-based and an attention-based approach for sequence generation of mobility states are 338 

presented. Due to the similarity of the underlying problem, the selection of the methods used in this 339 

paper is based on the models that define the state of the art in the field of NLP. These are currently 340 

attention-based transformer architectures. Before that, LSTM based neural networks were used as 341 

described in Section 2.3. 342 

The objective of the second model step is to enrich the synthetic mobility plans with energy-related at 343 

home activities. For this purpose, two imputation models are presented in Section 3.2.2. Bidirectional 344 

LSTM model architectures are compared with attention-based architectures. Time Use Survey data 345 

from individuals are used to train the models. During the prediction process, the synthetically 346 

generated weekly mobility schedules are fed into the imputation model as input and the at home state 347 

is replaced by energy-relevant activities. A graphic representation of the step by step procedure of the 348 

autoregressive and imputation models can be found in Figure 7 a. 349 

 350 

Figure 5: Two-step model approach for generating weekly activity schedules 351 

3.2.1. Autoregressive models for weekly mobility schedule generation 352 

To generate high-quality mobility plans on an individual level and at the same time representative 353 

mobility plans on an aggregated level that adequately describe the diversity of human behavior, 354 

approaches are required that capture the complex relationships in human behavior. In contrast to the 355 

Markov-based approaches used in the majority of the studies described in Section 2.1, LSTM and 356 

attention-based approaches can take into account longer-term time dependencies in the timing of 357 

individual activities due to their different memorisation mechanisms. While in Markov models 358 

probabilities are assigned to individual activity sequences and thus the number of free parameters 359 

increases exponentially with the order of the model, these kind of models are not suitable to take into 360 

account long-term dependencies in behavior between single days (Ramírez-Mendiola et al. 2019).  361 

LSTM based models process time series sequentially and take as input the current state vector 𝑥𝑡 ∈362  ℝ𝑑 the hidden state vector ℎ𝑡−1 ∈  ℝℎ and the cell state vector 𝑐𝑡−1 ∈  ℝℎ. The dimension of the 363 

hidden state and the cell state vector ℎ is the number of LSTM units which define the memory capacity 364 

of the LSTM cell. The cell states are adjusted every timestep using different gating mechanisms (input 365 

gate, output gate, forget gate) and activation functions. Due to the additive structure of the LSTM cells 366 

they partly solve the vanishing gradient problem and therefore are able to capture long-term 367 

dependencies in time series (Hochreiter and Schmidhuber 1997).  368 
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Attention based models do not process time series sequentially and therefore are suitable to better 369 

parallelize the learning process. The time dependencies between individual time steps are learned 370 

from scratch. To make this easier, positional encodings are added to the individual states in this study, 371 

which provide information about the relative position of the state in the time series. To calculate the 372 

masked dot product attention matrix, the matrices 𝑄, 𝐾, 𝑉 ∈  ℝ𝑇,𝑑 (query, key, value) and the mask 373 𝑀 ∈  ℝ𝑇,𝑇 are required as input according to Figure 6. In the case of self-attention 𝑄, 𝐾, 𝑉 are the 374 

same. The mask shown in Figure 6 is a look ahead mask. The masked (black) cells contain high negative 375 

values and are added to the scaled result of the matrix multiplication of 𝑄 and 𝐾. The subsequent use 376 

of the softmax function prevents to put attention on dependencies between already observed and 377 

future states. The Softmax function transforms a 𝑇-dimensional vector with real components into a 𝑇-378 

dimensional vector 𝜎(𝑧) also as a vector of real components in the value range [0, 1], where the 379 

components add up to 1. 380 

𝜎(𝑧)𝑡 = 𝑒𝑧𝑡∑ 𝑒𝑧𝑡𝑇𝑡=0      𝑡 = 1, … , 𝑇 
(1) 

 381 

 382 

Figure 6: Illustration of the masked scaled dot product self-attention mechanism of an autoregressive model based on 383 
(Vaswani et al. 2017) 384 

Before the dependencies between individual states can be learned in the LSTM/attention layers, layers 385 

must be introduced that use all the available information of a single state as input and learn its state 386 

representation in a multidimensional space.  387 

Figure 7 b./c. show the different kinds of input provided to the autoregressive and imputation models 388 

and their first layers. Input to the autoregressive model is provided in the form of the mobility state 389 𝑚𝑠𝑝,𝑡, the time of the day/week 𝜏𝑡, the day of the week 𝑑𝑡 of person 𝑝 at timestep 𝑡 and as socio-390 

demographic information 𝑠𝑑𝑖,𝑝. The time of the day/week is translated into a sinusoidal positional 391 

encoding using periods of one day/week. This is a typical approach to provide information about 392 

cyclical characteristics in time series (e.g. daily/weekly patterns) to the model. All other model inputs 393 

(𝑚𝑠𝑝,𝑡, 𝑑𝑡, 𝑠𝑑𝑖,𝑝) are categorical and are therefore inserted into an embedding layer. Through the 394 

embedding layer the categorical information is mapped into a m-dimensional continuous space. The 395 

weights of the embedding layer and therefore the way the categorical variables are represented in the 396 

m-dimensional space are learned during the training process of the model. Further on, all the time 397 

step specific information are concatenated. The input time series is shifted one time step to the right 398 

(𝑡 = 0 … 𝑇 − 1) and starts with a dummy time step at 𝑡 = 0, which is composed of a start token 399 

consisting of the start time and day and socio demographic information of the specific person. This 400 

training method is called teacher forcing (Williams and Zipser 1989).  401 
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 402 

Figure 7: a.) Illustration of the relevant time step specific dependencies in the autoregressive and imputation models, b./c.) 403 
training input of the autoregressive/imputation (b./c.) models and visualization of their first layers 404 

Figure 8 a. describes the central components of the LSTM based autoregressive model. After 405 

concatenating the time specific information, the vector state representations are fed into a linear 406 

dense layer before the state representations are inserted into a sequence to sequence LSTM layer. The 407 

final dense layer contains |𝑚𝑠| = 6 neurons which represent the probabilities (logits) of each mobility 408 

state 𝑚𝑠𝑝,𝑡 (𝑡 = 1 … 𝑇).  409 

 410 

Figure 8: a.) LSTM based autoregressive model architecture and b.) BiLSTM based imputation model architecture 411 

Figure 9 describes the architecture of the attention based transformer model. The transformer layer 412 

consists out of three linear dense layers for 𝑄, 𝐾, 𝑉, the attention layer consisting of the scaled dot -413 

product attention and two feed forward dense layers with dropout similar to (Vaswani et al. 2017). 414 
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Both models are trained by minimizing the cross entropy loss between the ground truth and the 415 

predicted probabilities. 416 

 417 

Figure 9: a.) Transformer based autoregressive model architecture and b.) Transformer based imputation model architecture 418 
(residual connections are not visualized) 419 

3.2.2. Energy related activity imputation / enrichment 420 

In the second model step, the generated weekly mobility plans are enriched with energy-related 421 

activities. A bidirectional LSTM model (Figure 8 b.) is compared with an attention-based transformer 422 

model (Figure 9 b.). In contrast to the first model step, information about individual mobility behavior 423 

over the entire week is already available when the first “at home” activity is estimated, this information 424 

has an impact on the activity choice. The procedure of the prediction process of the imputation model 425 

can be found in Figure 7 a. 426 

As input data during the training process, the model is provided with activity time series of individual 427 

persons over 3 days (2x weekday, 1x weekend), the time and day of the week as well as socio-428 

demographic parameters (job, age). The time step specific input processing can be seen in Figure 7 c. 429 

In contrast to the autoregressive models, the imputation models do not necessarily receive 430 

consecutive days as input, as this is not possible due to the structure of the time use survey. The 431 

connection between the three respective days is learned in the training process and applied to a whole 432 

week in the imputation process. In contrast to Figure 8 a., it can be seen in Figure 8 b. that the 433 

bidirectional LSTM architecture also takes future states into account when predicting the current state. 434 

In contrast to the autoregressive transformer model, the imputation transformer does not use self-435 

attention. The query vector 𝑄 of the first transformer layer contains the information about the 436 

unknown home states (unknown state, time, day, socio-demographic information). The key and value 437 

vector are identical and contain information about the mobility states of the three days (during 438 

training) or the week (during prediction). During the training process, at home activities of the TUD are 439 

masked and fed to the model as input. In all of the following Transformer layers, the output of the 440 

previous Transformer layer represents the query vector 𝑄. The imputation models are trained using 441 

the cross entropy loss function. 442 
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3.3. Metrics 443 

To evaluate the models presented, metrics must be introduced on the basis of which the model output 444 

can be assessed on an individual and aggregated level. The metrics presented below are generated 445 

and visualized at constant intervals during the training process.  446 

The model-specific metrics are the cross entropy loss, which is minimized during the training process, 447 

and the model accuracy which provides information about how well the model predicts the next state. 448 

For the evaluation of the generated activity schedules, metrics are used to assess whether the 449 

proposed models reflect the variability in human behavior. Furthermore, metrics describing the 450 

variability of intrapersonal behavior are used to assess the consistency within a person's activity plan.  451 

The aggregated state probability (sp) describes the aggregated probability 𝑠𝑝𝑠,𝑡 of a state 𝑠 ∈ 𝑆 at time 452 

step 𝑡 ∈ 𝑇 over a sample with the sample size 𝑁. 453 

𝑠𝑝𝑠,𝑡 =  ∑ 𝑥𝑖,𝑠,𝑡𝑁𝑖=1𝑁       ∀ 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 
(2) 

State durations (sd) are calculated for all states 𝑠 ∈ 𝑆 and are visualized by their cumulative 454 

distributions. The distribution of the duration of states can be used as a first indicator to evaluate the 455 

models with regard to the consideration of long-term time dependencies. For the evaluation of the 456 

intrapersonal variability within an activity schedule, the number of activities per week (na), the 457 

autocorrelation (ac) and the Hamming distance (hd) are calculated for each activity schedule of a 458 

sample. The autocorrelation is calculated for each activity state and each individual and is used to 459 

obtain information about the regularity of activities. The Hamming distance is calculated between all 460 

working days 𝑑 ∈ {1 … 5} of the week and thus provides information about the similarity of the daily 461 

behavior of individuals.  462 ℎ𝑑𝑛 = ∑ ∑ |{𝑡 ∈ {1, … , 𝑇𝑑}| 𝑠𝑑1,𝑡 ≠ 𝑠𝑑2,𝑡}|5𝑑2=15𝑑1=1      ∀ 𝑛 ∈ 𝑁    (3) 

From the variability of these metrics (na, ac, hd), information about the diversity in behavior can be 463 

obtained.  464 

4. Results  465 

The results presented below were calculated with an XLA compiler and a "Tesla V100-SXM2-16GB" 466 

GPU in Tensorflow 2.3. To provide the models from overfitting, the data sets are randomly split up into 467 

training data (9-fold cross validation  80 % training, 10 % validation) and test data (10 %).  468 

4.1. Mobility schedule generation 469 

As a reference model for the presented autoregressive models, a time-inhomogeneous first order 470 

Markov model is used. The first order Markov model characteristics are representative for the models 471 

presented in Section 2.1, since marginal changes in the metrics can be achieved by using more complex 472 

Markov chains, but the basic problems remain (no long-term memory). The introduced metrics are 473 

visualized in Figure 10. All metrics shown are calculated based on a sample size of N = 2,000 unless 474 

explicitly stated otherwise. The course of the aggregated state probability of the state outside deviates 475 

only slightly from the empirical course. The averaged root mean square error (rmse) over all states of 476 

the aggregated state probability is 0.53 % and tends towards zero with increasing sample size. From 477 

the course of the cumulative state durations of the state mobile (car driver) and the other states shown 478 

in Figure 16 it can be observed that the state durations of the schedules produced by the first order 479 

Markov model partly deviate from the empirical data. Furthermore, the distribution of the Hamming 480 

distance and the autocorrelation clearly differ between the data generated by the Markov model and 481 

the empirical data, which is reflected in large deviations in the rmse of the autocorrelation and the 482 
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mean absolute error of the Hamming distance. The peak in the autocorrelation in mobility behavior 483 

after 144 lags (one day) describes daily mobility patterns in the mobility behavior of individual persons. 484 

This peak, which can be clearly identified in the empirical data, is not represented in the synthetic 485 

mobility schedules of the Markov model. Compared to the empirical distribution, the distribution of 486 

the Hamming distances is shifted to the right, towards higher distances. Consequently, subsequent 487 

days of single individuals differ more from one another than in the empirical data. The distribution of 488 

number of activities per week indicates that the Markov model matches the empirical data well on 489 

average, but the boxplot indicates that the diversity in behavior deviates from the one observed in the 490 

empirical data. 491 

 492 

Figure 10: Visualization of the metrics for empirical MOP data (N = 26,610) and data generated with a first order Markov 493 
model (N = 2,000) (blue). The shown state dependent errors are calculated over all states and the mean is presented. 494 

The autoregressive models presented in Section 3.2.1 are trained to predict the multinomial state 495 

distribution of the subsequent state. To achieve this, the cross entropy loss is minimized. Figure 11 and 496 

Figure 12 describe the course of the cross entropy loss during the training process. An epoch is defined 497 

as one training step of the nine-fold cross validation. After nine epochs, the training and validation 498 

data set are reshuffled and divided into nine new participations. During the training of the attention-499 

based models, the loss function converges continuously for the training and test dataset. In the LSTM-500 

based model, however, it can be seen that the course of the loss and accuracy function of the test data 501 

set diverges from the course of the training and validation data after around 14 epochs. From this point 502 

on, the model overfits on the training data and the training process can be stopped. In order not to 503 

use over-trained models, the weights of the model are saved at constant intervals during the training 504 

process. Furthermore, the development of the model accuracy during the training process is shown. 505 

This converges to a value of approx. 96.3%. This means that 96.3% of the time the correct value is 506 

predicted in the training process. Of course, the prediction is easier during the night when people are 507 

asleep than, for example, in the afternoon when there are many changes in activity. Figure 11 shows 508 

the course of the cross entropy loss for two model configurations, with one transformer layer and with 509 

four transformer layers. By increasing the depth of the neural network, the model can better map the 510 

complexity of mobility behavior. However, only marginal improvements can be achieved by further 511 

increasing the number of transformer layers from four to eight (Table 3). Since the performance of the 512 

models presented depends heavily on the choice of hyperparameters, various parameter settings were 513 

tested during the training phase for the LSTM and the attention based models. The parameter settings 514 



 

 16 

varied during the training process and the corresponding metrics can be found in Table 2 and Table 3. 515 

In addition to the learning rate and the batch size, the number of LSTM units was varied, which limits 516 

the complexity of the internal state of the LSTM and is therefore important to capture temporal 517 

dependencies in behavior. The number of dense neurons (LSTM) or the model dimension (transformer) 518 

was varied to ensure that state-specific information is appropriately represented. Furthermore, the 519 

depth of the neural networks was varied, as this enables the neural network to learn higher level 520 

representations in human behavior. The results of the parameter variations show that the attention-521 

based models are slightly superior to the LSTM-based models in most metrics, consequently, the 522 

attention-based model no. 3 from Table 3 is used for the presentation of the mobility schedule specific 523 

metrics. 524 

 
Figure 11: Loss development during training of the 

autoregressive transformer (L1/L4: 1/4 transformer layers) 

 
Figure 12: Loss and accuracy development during LSTM 

training 

Selected mobility schedule specific metrics for the attention based autoregressive model described in 525 

Table 3 (model no. 3) are presented in Figure 13. A holistic overview of all metrics for all states can be 526 

found in the appendix (Figure 16). In contrast to the first order Markov model, the aggregated state 527 

probability is represented slightly worse by the attention based model. The rmse of the state 528 

probability averaged over all states and time steps is higher than the error of the first-order Markov 529 

model for all the models shown in Table 2 and Table 3 in the appendix. The Markov error corresponds 530 

to the standard error that arises with a sample size of 2,000. The standard error was calculated by 531 

randomly sampling 2,000 samples 30 times from the entire population and calculating their deviation 532 

from the metrics of the entire population (N = 26,610). The mean value of the error of the 30 samples 533 

is called the standard error. The mean absolute error of the number of weekly activities in the 534 

attention-based model is also higher than that of the Markov model (3.6 > 0.73). The diversity of the 535 

number of weekly activities is, however, recorded much more accurately by the attention-based 536 

model, which is shown in the lower right illustration in Figure 13 for the state mobile (car driver) and 537 

in Figure 16 for all other states. While the machine learning models presented in this work have slight 538 

deviations in the description of the averaged behavior and therefore perform slightly less accurately 539 

than Markov models, the mobility schedules generated differ fundamentally on the individual level, 540 

which is shown by the distribution of the cumulative state durations, the Hamming distance between 541 

weekdays and the autocorrelation of the individual states. Using the Hamming distance and the 542 

autocorrelation, it can be clearly seen that day-to-day dependencies in behavior are very accurately 543 

taken into account by the models presented in this work. In order to be able to adequately capture 544 

daily rhythms in mobility behavior, it is very important that the peak in the autocorrelation graph is 545 

captured well after 24 hours (144 10-minute time steps), which can be seen in the bottom center graph 546 

in Figure 13. From the course of the mean values and the ranges of the 25% / 75% quantile, it becomes 547 

clear that both these dependencies in the mean and in the spread are well represented across the 548 

entire population. These visual findings are also reflected in the significantly lower rmse of the 549 

autocorrelation compared to the Markov model (0.54 <3.79). 550 
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 551 

Figure 13: Visualization of the metrics for empirical MOP data (N = 26,610) and data generated with an attention based model 552 
(N = 2,000) (green). Model parameters can be seen in Table 3 (no. 3). The shown state dependent errors are calculated over 553 
all states and the mean is presented. The overlapping green and red ranges in the left-bottom and center-bottom graph 554 
describe the 25%/75% quantiles. 555 

The difference between LSTM-based models and attention-based models is particularly evident from 556 

the autocorrelation peak in mobility behavior after 24 hours. LSTM models are also able to recognize 557 

relationships over such long periods of time, but in this work it was not possible to reproduce the peak 558 

as well with LSTM-based models as it can be seen in Figure 13 (bottom center) with the attention-559 

based model.  In addition to the low deviation of the mean error in the distribution of the Hamming 560 

distance (5 < 908), it can also be clearly recognized from the form of the distribution that the diversity 561 

in the profiles generated matches the real distributions much better than that of the Markov models, 562 

in which individual weekdays of a person do not have the similarities found in the empirical data.  563 

4.2. Energy-related activity imputation 564 

Since the model approach presented in this paper (step-by-step simulation of mobility behavior and 565 

subsequent enrichment of the results with energy-related activities based on different data sets) is 566 

new and no classical comparable applications in the field of behavioral modeling are known, only the 567 

results of the imputation models presented in Section 3.2.2 are benchmarked against each other in 568 

this section. As with the autoregressive models, the model performance of the imputation models is 569 

strongly dependent on the choice of hyperparameters. The parameters of the BiLSTM-based and the 570 

attention-based imputation model that were varied during the training process can be found in Table 571 

4 and Table 5 in the appendix. To ensure that dependencies between time steps can be adequately 572 

captured by the model, sufficient amounts of LSTM units and attention layers must be provided. The 573 

dimension of the model must be chosen so that all time-step-specific information can be mapped well. 574 

In the following, the activity schedule-specific metrics for the attention-based model no. 6 from Table 575 

5 are compared with the empirically collected TUD data. The metrics are visualized for specific states 576 

in Figure 14. A holistic overview of all metrics for all states and the development of the model loss and 577 

accuracy can be found in the appendix (Figure 17/Figure 18). 578 
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 579 

Figure 14: Visualization of the metrics for empirical TUD data (N = 35,691 dairy days) and data generated with an attention 580 
based model (N = 2,000 diary days) (green). Model parameters can be seen in Table 5 (model no. 6). The shown state 581 
dependent errors are calculated over all states and the mean is presented. The overlapping green and red ranges in the left-582 
bottom and center-bottom graph describe the 25%/75% quantiles. The autocorrelation graphs were calculated based on the 583 
two work days over 288 10-minute timesteps. 584 

Similar to the autoregressive models, it can be seen from the course and the rmse of the aggregated 585 

state probability that this differs slightly from the empirically collected data. The averaged errors over 586 

all states and time steps can be taken from Figure 14, Table 4 and Table 5 for the various model 587 

variants. The error in the simulation of the state durations, on the other hand, is smaller than that 588 

which occurs when modelling activities with a first-order Markov chain (no imputation model). Since 589 

the German TUD data set contains diary entries for three days of the week, the model can also learn 590 

day-to-day dependencies between energy-relevant activities. The autocorrelation graphs in Figure 18 591 

show that the imputation model is able to recognize and reproduce these dependencies. For example, 592 

daily sleep rhythms can be reproduced in the synthetic data, which is another unique selling point of 593 

this work. 594 

When comparing the metrics shown in Table 4 and Table 5, it is noticeable that the attention-based 595 

models perform slightly better in representing the aggregated state probability, while the BiLSTM-596 

based models tend to map the duration of states and autocorrelation better. This could be attributed 597 

to the fact that when representing energy-relevant activities, short-term temporal dependencies 598 

between individual states are of higher importance than the one seen in the mobility schedules and 599 

the sequential character of the BiLSTM depicts these dependencies well, while attention-based models 600 

tend to capture individual states and their time-dependent probability of occurrence more strongly 601 

than short-term sequential dependencies. 602 

4.3. Generation of weekly activity schedules 603 

After the training processes of the autoregressive models and the imputation models have been 604 

described and evaluated in Sections 4.1 and 4.2, synthetic weekly activity plans are now generated for 605 

various socio-demographic groups and compared with empirical data. Table 6 in the appendix gives an 606 

overview of the socio-demographic composition of the empirical data. The age distribution of the MOP 607 

data shows that older population groups are overrepresented in contrast to the TUD data. Younger 608 

groups of the population such as students and part-time workers, on the other hand, are under-609 
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represented. Due to the consideration of socio-demographic factors when coupling the data sets in 610 

the approach presented, a different distribution of the socio-demographic groups in the individual data 611 

sets is not problematic. When considering the sample sizes of the MOP and TUD data, it must be taken 612 

into account that the TUD samples, in contrast to the MOP samples, only consist of two to three days. 613 

The MOP data set with 10-minute time resolution has more than five times as many data points as the 614 

TUD data set. From the rmse of the aggregated state probabilities for the different socio-demographic 615 

groups, it can be seen that the data sets differ in some cases more strongly (rmse (age <18): 4.0%). In 616 

the synthetic profiles, the mobility behavior is generated on the basis of the MOP data, consequently, 617 

when looking at the rmse, fewer errors can be found between the synthetically generated data and 618 

the MOP data, both when looking at the socio-demographic groups in a differentiated manner and 619 

when looking at the aggregate as a whole dataset. 620 

Finally, Figure 15 shows the course of the aggregated state probabilities over a week and two 621 

exemplary activity plans of synthetically generated schedules for two socio-demographic groups 622 

(age<18, full time employees). From the visualization of the aggregated state probabilities it can be 623 

seen that children under the age of 18 are mainly out of the home in the mornings and have two 624 

pronounced mobility peaks at around 8 am and 1 pm, while full-time employees are mainly outside 625 

during the day. Rhythmic behavior within the working days can be seen in the exemplary individual 626 

profiles. In the activity plan of the student on Friday morning, the student changes from an at home 627 

state to an outside state without a mobility activity in between. At first glance, this seems unrealistic, 628 

but these transitions can also be found in the empirical data due to the temporal aggregation of the 629 

mobility data over 10 minutes. 630 
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 631 

Figure 15: The top two figures represent the course of the aggregated state probability for 1,500  generated activity plans for 632 
persons under 18 years of age and for full time employees. The lower two representations are two exemplary activity plans 633 
for a person under the age of 18 and a full-time employee (A legend can be found in Figure 4). 634 

5. Discussion 635 

The results of Section 4.1 show that the Markov model used as a reference model is not able to record 636 

long-term dependencies in activity patterns and, due to the structure of the approach, is not able to 637 

adequately record the diversity in occupancy behavior. Consequently, synthetic activity schedules 638 

generated with Markov chains cannot be used to analyse occupancy behavior on an individual level 639 

and are only suitable for studies on an aggregated level. The approach presented in this paper 640 

combines weekly mobility data with a large sample size with high-resolution activity data with the help 641 

of new machine learning algorithms. The approach creates a new data basis which can be used for 642 

further analyses of home occupancy and mobility behavior. The profiles generated have similar 643 

stochastic properties as the empirically collected data on both the individual and the aggregated level.  644 

By adequately capturing long-term dependencies in people’s activities, the behavior of individual 645 

people can be reproduced. As a result, the data generated represent the basis for a variety of potential 646 

applications, one of which is the examination of potential charging periods of people with electric 647 

vehicles, assuming that electric mobility does not change mobility behavior. By combining the detailed 648 

mobility data with high-resolution activity data, a unique data basis is created which offers the 649 

possibility of consistently simulating the energy demand from personal mobility, the electrical demand 650 

for household devices and the heat demand for space heating and domestic hot water. Therefore, 651 

simultaneity effects in energy demand can be analysed based on one fundamental data set.  652 
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When analyzing such future developments, it should be taken into account that the data sets on which 653 

this work is based describe historical behavior (MOP: 2001-2017, TUD: 2001/02). Not taking into 654 

account the dynamics in people’s behavioral habits could lead to significant errors, depending on the 655 

application. The energy sector includes many examples of innovations that have changed people’s 656 

behavior for example, the internal combustion engine for transport and the development of ICT in 657 

recent decades. Hence ground-breaking/disruptive technologies could change the nature of the 658 

energy service demand itself (e.g. autonomous electric vehicles and smart home applications). In order 659 

to take into account temporal changes in behavior in the data set, the survey year of the respective 660 

sample could be provided as additional information in future studies. Furthermore, the data sets used 661 

differ in their temporal resolution, while the mobility data (MOP) are available in minute resolution, 662 

activities in the TUD are recorded in ten-minute resolution. The aggregation of the mobility data to a 663 

temporal resolution of 10 minutes can lead to distortions in short mobility states. 664 

Through the use of machine learning approaches the assumption bias in the presented approach is low 665 

in comparison to e.g. utility-based stepwise regression approaches (Hilgert et al. 2017), therefore the 666 

developed approach is highly transferable. TUD data are collected uniformly in several European 667 

countries, but there are some differences in the design of the surveys. Some countries only provide 668 

activity time series for one weekday and one weekend day, which makes it harder to capture interday 669 

dependencies in activities. Longitudinal surveys of mobility behavior are not carried out in a 670 

harmonized way at the European level. However, similar mobility studies are available, for example in 671 

the UK and the Netherlands, which examine the mobility behavior over a whole week of a sample that 672 

is representative of the nation (Department for Transport 2020; Hoogendoorn-Lanser et al. 2015). The 673 

approach presented could therefore easily be applied to behavioral data in the UK and the 674 

Netherlands. Instead of training individual models for different countries, it would make more sense 675 

to implement the country information as a socio-demographic parameter in a transnational model in 676 

order to learn country-specific behavior and at the same time provide the model with a larger database 677 

for learning general behavioral relationships.  678 

In this work, the focus was placed on the mapping of the mobility and activity behavior of individual 679 

persons and therefore no interpersonal relationships in the behavior of several individuals in a 680 

household were taken into account. However, the presented approach can and will be extended to 681 

represent household behavior in order to capture interpersonal relationships. Furthermore, only 682 

socio-demographic behavioral differences based on age and employment are currently taken into 683 

account in the model. Since the underlying data sets contain significantly more socio-demographic 684 

differentiations, an extension to include further socio-demographic characteristics is possible. 685 

Since the training process is stopped before the presented models overfit, it can be stated that the 686 

models have learned the general stochastic relationships in human behavior and not simply learned 687 

the raw data sets by heart. This statement is supported by Figure 19 in the appendix, which describes 688 

the distribution of the minimum distances of a sample of data set a with all samples of data set b. The 689 

distribution of the minimum distances between the synthetic mobility schedules and the raw data is 690 

similar to the distribution of the minimum distances within the empirically collected data. However, 691 

even if the raw data used in this paper are already provided in anonymized form, it must be ensured 692 

that no information about individual samples in the empirical data is revealed by the synthetic data 693 

sets. Consequently, in follow-up work, prior to making the models presented in this paper available to 694 

the general public, algorithms from the field of "differential privacy" must be used to ensure that no 695 

information about individual samples is provided (Dwork and Roth 2014). Algorithms that ensure the 696 

privacy of individuals have been developed in recent years for deep learning applications (Abadi et al. 697 

2016). Ensuring differential privacy is always accompanied by a loss of quality in the model, whereby 698 

this trade-off between quality and privacy can be clearly quantified by the so-called privacy budget. 699 
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6. Conclusion and Outlook 700 

Over the past few years, many models have been published that aim to capture relationships in activity 701 

patterns to explain residential energy demand. Most of these models are different Markov variants or 702 

regression models that have a strong assumption bias and are therefore unable to capture complex 703 

long-term dependencies and the diversity in occupancy behavior. In this work it was shown that 704 

machine learning models from the field of natural language processing are able to capture long-term 705 

dependencies in mobility and activity patterns and at the same time adequately depict the diversity in 706 

behavior across the entire population. In a first step, two autoregressive models are presented which 707 

are able to recognize and reproduce weekly mobility patterns. In a second step, two imputation models 708 

are trained with time use data, which, based on the mobility information of individual people, enrich 709 

them with energy-related activities. Finally, the two models are combined to generate weekly activity 710 

plans. By combining an autoregressive generative model with an imputation model, the advantages of 711 

two data sets are combined and new data are generated which are beneficial for multiple use cases. 712 

One of which is the examination of flexibility potentials of individual households which is urgently 713 

needed for the integration of volatile renewable energy sources. Furthermore, metrics were 714 

introduced that enable activity profiles to be investigated in terms of intrapersonal and interpersonal 715 

variability. Based on these metrics, it is shown that the synthetically generated activity plans represent 716 

weekly mobility patterns and day-to-day dependencies of the energy-relevant activities with a high 717 

quality on an individual and aggregated level. The evaluation metrics show that LSTM and attention-718 

based neural networks outperform existing approaches on an individual level by a large margin and at 719 

the same time have only slight deviations in the aggregated behavior. 720 

Due to the availability of rich socio-demographic information in the two basic data sets, activity plans 721 

can be generated for different socio-demographic groups and can be used in future work to simulate 722 

consistent energy demand profiles from electric mobility, household devices and space heating. The 723 

approach developed provides the basis for making high-quality weekly activity data available to the 724 

general public without having to carry out complex application procedures. It was shown that the 725 

presented approach does not learn the training data by heart, however, it must be ensured that no 726 

private information about individuals is revealed by the model before the synthetic data can be 727 

provided to the community, which cannot be ensured at the current time. Therefore, in further work 728 

the model will be trained in a differential private way. Furthermore, the presented methodology can 729 

be trained with behavioral data from different European countries in order to develop a transnational 730 

model. Instead of individual behavior, household behavior could be learned to take interpersonal 731 

dependencies into account. 732 
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8. Appendix 863 

 864 

Figure 16: Comparison of all metrics and all states for the mop data (red), the attention based autoregressive model described 865 
in Table 3 (no. 3) (green) and a first order Markov model (blue). The mobility schedule specific metrics of the attention based 866 
model are calculated based on the model weights after epoch 7. 867 
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 868 

 869 

Figure 17: Part a: Comparison of all metrics and all states for the TUD data (red), the attention based imputation model 870 
described in Table 5 (model no. 6) (green) and a first order Markov model (blue – no imputation model). The mobility schedule 871 
specific metrics of the attention based model are calculated based on the model weights after epoch 37. The autocorrelation 872 
graphs were calculated based on single days. 873 
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 874 

 875 

Figure 18: Part b: Comparison of all metrics and all states for the TUD data (red), the attention based imputation model 876 
described in Table 5 (model no. 6) (green) and a first order Markov model (blue – no imputation model). The mobility schedule 877 
specific metrics of the attention based model are calculated based on the model weights after epoch 37. The autocorrelation 878 
graphs were calculated based on single days. Furthermore, the course of the model loss and accuracy is visualized. 879 
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Table 2: Hyperparameter configurations and model metrics for the LSTM based autoregressive model. Metrics were calculated 880 
based on a sample size of N=2,000. Furthermore, a mean standard error due to the sample size of 2,000 is given. 881 

No. LSTM units/ 

Learning rate/ 

Batch size/ 

Dense neurons 

Sp 

rmse 

[%] 

Sd 

rmse 

[%] 

Ac 

rmse 

[%] 

Na 

mae 

[] 

Hd 

mae 

[] 

Cross-

entropy 

Loss 

Accuracy 

[%] 

CV 

Epochs 

1 512/0.0005/512/32 0.99 0.13 0.71 1.11 144 0.133 96.27 14 

2 128/0.0005/512/32 1.03 0.17 1.65 1.57 423 0.142 96.12 8 

3 512/0.001/512/32 1.05 0.18 0.66 3.04 235 0.131 96.30 11 

4 512/0.0005/64/32 1.27 0.22 0.89 3.39 114 0.134 96.26 3 

5 512/0.0005/512/64 0.90 0.18 0.80 0.67 98 0.131 96.29 17 

6 512/0.0005/256/32 0.90 0.13 0.60 1.85 83 0.131 96.29 11 

7 2x256/0.001/512/32 0.69 0.14 0.95 2.08 120 0.131 96.29 12 

8 2x256/0.0005/256/32 0.97 0.19 0.63 3.61 1.5 0.132 96.28 10 

Standard error (N=2,000) 0.52 0.09 0.24 0.6 13 - - - 

 882 

Table 3: Hyperparameter configurations and model metrics for the attention based autoregressive model. 2xh means that 883 
two attention heads are used (see (Vaswani et al. 2017)). 884 

No. Transformer layers/ 

D_model/ 

Learning rate/ 

Batch size 

Sp 

rmse 

Sd 

rmse 

Ac 

rmse 

Na 

mae 

Hd 

mae 

Cross-

entropy 

Loss 

Accuracy CV 

Epochs 

1 1/64/0.001/64 0.83 0.31 1.32 2.96 244 0.14 95.95 9 

2 4/64/0.001/64 0.91 0.16 0.70 2.53 33 0.128 96.34 15 

3 8/64/0.001/64 0.86 0.17 0.54 3.6 5 0.127 96.36 7 

4 4/64/0.001/128 0.95 0.22 0.54 3.28 44 0.130 96.29 3 

5 4/128/0.001/128 0.89 0.24 0.59 3.60 9 0.128 96.33 6 

6 4/64/0.0005/64 0.86 0.18 0.48 4.78 6 0.128 96.33 20 

7 2(2xh)/64/0.001/64 0.97 0.22 0.60 6.33 74 0.129 96.31 11 

8 4(2xh)/64/0.001/64 1.20 0.20 0.42 4.52 126 0.127 96.35 8 

Standard errors (N=2,000) 0.52 0.09 0.24 0.6 13 - - - 

 885 

Table 4: Hyperparameter configurations and model metrics for the BiLSTM based imputation model. Metrics were calculated 886 
based on a sample size of N=2,000 diary days. Furthermore, a mean standard error due to the sample size of 2,000 diary days 887 
is given. 888 

No. LSTM units/ 

D_model/ 

Learning rate/ 

Batch size 

Sp 

rmse 

Sd 

rmse 

Ac 

rmse 

Na 

mae 

Cross-

entropy 

Loss 

Accuracy CV 

Epochs 

1 64/32/0.001/64 0.70 0.27 0.36 0.88 0.434 87.48 21 

2 128/32/0.001/64 0.74 0.28 0.44 0.86 0.435 87.36 11 

3 256/32/0.001/64 0.60 0.26 0.37 0.59 0.432 87.46 9 

4 128/64/0.001/128 0.75 0.26 0.42 0.96 0.432 87.54 13 

5 128/32/0.001/128 0.71 0.42 0.48 0.98 0.433 87.44 11 

6 128/32/0.0005/128 0.64 0.28 0.43 1.27 0.434 87.48 12 

7 64/32/0.0005/128 0.60 0.30 0.38 0.62 0.434 87.39 33 

8 64/32/0.0005/64 0.62 0.34 0.44 0.82 0.434 87.43 33 

Standard errors (N=2,000) 0.40 0.19 0.24 0.33 - - - 
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 889 

Table 5: Hyperparameter configurations and model metrics for the attention based imputation model. Metrics were calculated 890 
based on a sample size of N=2,000 diary days. Furthermore, a mean standard error due to the sample size of 2,000 diary days 891 
is given. 892 

No. Transformer 

layers/ 

D_model/ 

Learning rate/ 

Batch size 

Sp 

rmse 

Sd 

rmse 

Ac 

rmse 

Na 

mae 

Cross-

entropy 

Loss 

Accuracy CV 

Epochs 

1 1/64/0.001/256 0.58 0.39 0.50 0.50 0.469 86.97 158 

2 4/64/0.001/256 0.58 0.39 0.44 0.62 0.436 87.32 22 

3 4/64/0.001/64 0.57 0.38 0.36 0.90 0.436 87.35 8 

4 4/64/0.001/128 0.63 0.39 0.46 1.05 0.438 87.31 12 

5 4/64/0.0005/64 0.59 0.36 0.39 0.72 0.435 87.35 10 

6 4/64/0.0005/128 0.49 0.39 0.39 0.66 0.431 87.41 37 

7 4/14/0.0005/64 1.27 0.54 0.72 1.42 0.458 87.14 46 

8 4/14/0.0005/128 0.84 0.60 0.61 0.65 0.459 87.14 47 

Standard errors (N=2,000) 0.40 0.19 0.24 0.33 - - - 

 893 

Table 6: Comparative presentation of the socio-demographic composition of the MOP and TUD data sets. The calculated rmse 894 
of the aggregated state probabilities are calculated on the basis of the five aggregated states (home, outside, mobile (car 895 
driver), mobile (co driver), mobile (rest)). For the calculation of the rmse between the synthetic profiles and the MOP and TUD 896 
data, synthetic data with the same socio-demographic characteristics as in the comparison data sets were generated. 897 

Age  <18 <26 <36 <51 <61 <71 >=71 

Samples 

MOP  

1971 

(7.4%) 

1430 

(5.4%) 

2288 

(8.6%) 

6107 

(22.9%) 

5132 

(19.3%) 

5809 

(21.8%) 

3873 

(14.6%) 

Samples 

TUD  

2169 

(18.2%) 

1106 

(9.3%) 

1140 

(9.6%) 

4080 

(34.2%) 

1654 

(13.9%) 

1167 

(9.8%) 

494 

(4.1%) 

rmse sp  

MOP/TUD 

4.0% 3.8% 2.3% 1.9% 2.2% 2.7% 2.8% 

rmse sp 

syn./MOP 

1.7% 1.6% 1.3% 0.9% 1.1% 0.7% 0.9% 

rmse sp 

syn./TUD 

3.9% 4.2% 2.1% 1.7% 1.9% 2.6% 2.7% 

Job - Full time Part time Students Training No job Pensioner 

Samples 

MOP 

212 

(0.8%) 

8853 

(33.3%) 

3627 

(13.6%) 

2759 

(10.4%) 

489 

(1.8%) 

2052 

(7.7%) 

8618 

(32.4%) 

Samples 

TUD 

- 3938 

(33.0%) 

2599 

(21.8%) 

2214 

(18.6%) 

375 

(3.1%) 

1184 

(9.9%) 

1611 

(13.5%) 

rmse sp  

MOP/TUD 

- 2.2% 2.5% 2.9% 3.8% 2.4% 2.4% 

rmse sp 

syn./MOP 

2.8% 1.1% 1.1% 1.3% 4.0% 1.0% 0.7% 

rmse sp 

syn./TUD 

- 2.1% 2.0% 3.6% 4.69% 2.1% 2.1% 

rmse sp MOP/TUD (entire sample) 2.9% 

rmse sp syn./TUD (entire sample) 1.8% 

rmse sp syn./MOP (entire sample) 0.7% 
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Table 7: Comparative representation of the aggregated state probabilities of the TUD and MOP data sets for population 898 
groups with different ages. 899 
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 900 

Table 8: Comparative representation of the aggregated state probabilities of the TUD and MOP data sets for population 901 
groups with different occupations. 902 
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 903 

 904 

Figure 19: Distribution of the minimum Hamming distances of the samples from dataset a (sample size N = 500) to the 905 
samples in dataset b (dataset a/ dataset b) 906 

 907 
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