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Abstract 18 

Forecasting rainfall in the tropics is a major challenge for numerical weather 19 

prediction. Convection-permitting (CP) models are intended to enable forecasts of 20 

high-impact weather events. Development and operation of these models in the 21 

tropics has only just been realised. This study describes and evaluates a suite of 22 

recently developed Met Office Unified Model CP ensemble forecasts over three 23 

domains in Southeast Asia, covering Malaysia, Indonesia and the Philippines. 24 

Fractions Skill Score is used to assess the spatial scale-dependence of skill in 25 

forecasts of precipitation during October 2018 - March 2019. CP forecasts are skilful 26 

for 3-hour precipitation accumulations at spatial scales greater than 200 km in all 27 

domains during the first day of forecasts. Skill decreases with lead time but varies 28 

depending on time of day over Malaysia and Indonesia, due to the importance of the 29 

diurnal cycle in driving rainfall in those regions. Skill is largest during daytime when 30 

precipitation is over land and is constrained by orography. Comparison of CP 31 

ensembles using 2.2, 4.5 and 8.8 km grid spacing and an 8.8km ensemble with 32 

parameterised convection reveals that varying resolution has much less effect on 33 

ensemble skill and spread than the representation of convection. The parameterised 34 

ensemble is less skilful than CP ensembles over Malaysia and Indonesia and more 35 

skilful over the Philippines; however, the parameterised ensemble has large drops in 36 

skill and spread related to deficiencies in its diurnal cycle representation. All 37 

ensembles are under-spread indicating that future model development should focus on 38 

this issue.   39 
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1. Introduction 40 

The nations of South East Asia are susceptible to devastating impacts of heavy 41 

rainfall such as flooding and landslides. Deep convection is central to extreme rainfall 42 

intensity in the region (e.g. Matsumoto et al., 2017) and it also plays an active part in 43 

the dynamics of the larger scale atmospheric phenomena that dominate in the region. 44 

There are many contributing factors to the occurrence of convective rainfall events on 45 

a range of spatial and temporal scales from the longest to the shortest such as: the El 46 

Nino-Southern Oscillation (Hamada et al. 2012; Villafuerte and Matsumoto 2015; 47 

Supari et al. 2018), the Madden-Julian Oscillation (MJO; Wu et al. 2013; Peatman et 48 

al. 2014; Xavier et al. 2014; Birch et al. 2016; Vincent and Lane 2018; Lestari et al. 49 

2019), cold surges (Chang et al. 2005; Lim et al. 2017), equatorial waves (Ferrett et 50 

al. 2020) and tropical cyclones (Takahashi and Yasunari 2008).  51 

Rainfall variability in many regions of Southeast Asia has a strong diurnal cycle, a 52 

result of local land-sea breeze circulations, surface heating during the day and the 53 

delayed response of deep convection (e.g. Mori et al., 2004; Yamanaka, 2016). 54 

Coarse-grid models (including all current operational global models) rely on 55 

convection parameterisations and are known to struggle to capture accurately tropical 56 

rainfall features (e.g. Neale & Slingo, 2003; Johnson et al., 2016), such as the diurnal 57 

cycle (Yang and Slingo 2001; Love et al. 2011), the propagation of the MJO and 58 

equatorial waves (Lin et al. 2006; Holloway et al. 2013; Peatman et al. 2015; Peatman 59 

et al. 2018), and other aspects of convection (Qian 2008; Pearson et al. 2010, 2014).  60 

Consequently, there has been considerable effort to improve the representation of 61 

these processes in models, namely by increasing model resolution so that deep 62 

convection can be explicitly simulated by the dynamical core of the model reducing 63 
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the need for convection parameterisations. In a numerical weather prediction context, 64 

there is a trade-off between resolution, model domain size and ensemble size. 65 

Resolving deep convection requires a model capable of representing non-hydrostatic, 66 

compressible dynamics and a horizontal (and vertical) grid spacing that is much less 67 

than the depth of deep convective updrafts (10-20 km). If achieving this resolution 68 

requires that the domain is too small, the behaviour of systems developing in the 69 

domain will be almost completely specified by the lateral boundary conditions 70 

imposed by the parent, lower resolution model, in which the model is nested and there 71 

is no benefit in the high-resolution prediction. If the domain is large enough to allow 72 

the interior solution of the high-resolution model to deviate from that of its parent, 73 

then a compromise must be made on resolution and ensemble size in order to obtain 74 

an ensemble forecast in near-real time.  75 

The current state-of-the-art for operational numerical weather prediction is that deep 76 

convective motions are only partially resolved; such models have horizontal grid 77 

spacing of the order 1-10 km and are described as “convection-permitting” (CP) and 78 

the ensembles are small (~10 members). Often shallow moist convection is not 79 

resolved and may be parametrized as part of the convective regime of the boundary 80 

layer scheme, although the approach taken to turbulence and boundary layer 81 

parameterization also depends on model resolution. While CP forecasts are more 82 

computationally expensive, they are better able to represent processes that drive 83 

convection (Clark et al. 2016). Studies have shown significant improvement in the 84 

initiation of convection (Mittermaier et al. 2013; Birch et al., 2014a; 2014b; 2015; 85 

Woodhams et al., 2018), the diurnal cycle of convection (Sato et al. 2009; Love et al. 86 

2011; Birch et al. 2015), and large-scale modes that drive convection (Miura et al. 87 
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2007; Holloway et al. 2013) in CP models compared to those with parameterised 88 

convection. 89 

Forecasting at convective scales is inherently uncertain, even at short lead times 90 

(Hohenegger and Schar 2007). This uncertainty can be associated with many things, 91 

such as model physics, initial conditions, or boundary conditions. Therefore, 92 

ensembles of forecasts are used to account for uncertainty. These convective-scale 93 

ensembles have been developed in regions world-wide (e.g. Gebhardt et al. 2011; 94 

Golding et al. 2014; Schwartz et al. 2015; Hagelin et al. 2017; Roberts et al. 2019) 95 

with obvious improvements in forecast accuracy compared to a single forecast 96 

(Hagelin et al. 2017). While there have been many studies of the benefits of using 97 

ensemble forecasts to predict the risk of high impact weather in the extra-tropics 98 

(Hanley et al. 2013; Bednarczyk and Ancell 2015) and CP ensembles have been 99 

shown to add value to forecasts of mesoscale phenomena such as sea breezes (Cafaro 100 

et al. 2019), there are fewer studies examining how CP ensembles may benefit 101 

forecasts of extreme rainfall in the tropics more widely and Southeast Asia 102 

specifically. A few recent studies have focused on CP ensemble forecasts over 103 

Singapore and the surrounding region (Porson et al. 2019; Sun et al. 2020). These 104 

studies focused on comparing the effect of global models in which CP ensembles are 105 

nested on forecast skill and spread (Porson et al. 2019) and comparing objective and 106 

subjective evaluation methods of forecasts of squall lines (Sun et al. 2020). Both 107 

studies evaluate against observations in relatively small regions around Singapore 108 

(approx. 400km x 400km). 109 

In this study CP ensemble forecasts are one-way nested in limited area domains 110 

within the operational MOGREPS global ensemble using three horizontal resolutions. 111 
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Three domains within the Southeast Asia region are examined, including Peninsular 112 

Malaysia, Java and the Philippines. The aim of this study is to quantify the usefulness 113 

of CP ensemble forecasts of precipitation in this region, the scale dependence of 114 

forecast skill as well as the role of the diurnal cycle in forecast skill. 115 

Descriptions of the CP ensembles and other datasets used for the analysis are 116 

provided in Section 2. The methods for evaluation of forecasts using observations are 117 

outlined in Section 3. Section 3 also provides details of the construction of a variation 118 

of the ensemble forecast, and a persistence forecast, that are used to assess the role of 119 

the diurnal cycle in forecast skill. Section 4 provides the results of the study, detailing 120 

the spatial scale-dependence in the skill of the forecasts, the role of the diurnal cycle 121 

and the spread of the ensembles in relation to mean forecast error as a function of lead 122 

time. Results are summarised in Section 5. 123 

2.Data 124 

2.1 Ensemble forecasts 125 

The convection-permitting (CP) ensemble forecasts consist of 18 ensemble members 126 

and were created by nesting limited area simulations using the Met Office Unified 127 

Model (MetUM) within the 18-member operational Global ensemble of the Met 128 

Office Global and Regional Ensemble Prediction System (MOGREPS-G). The CP 129 

ensembles were initialised twice daily (00 UTC and 12 UTC) over a period of six 130 

months spanning October 2018-March 2019, producing hourly forecast output in 131 

three domains corresponding to Malaysia, Indonesia and the Philippines (Figure 1) 132 

out to 120 hours, except for 2.2km forecasts which are ran for 60 hours. Only the 00 133 

UTC forecasts are shown here, however analysis has also been carried out for the 12 134 
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UTC forecasts with similar results after the initial model spin-up period, albeit 135 

displaced by twelve hours.  136 

The forecasts use horizontal grid spacing of 2.2, 4.5 and 8.8 km and are nested in 137 

MOGREPS-G that has a horizontal grid spacing of 20km at the equator and 70 138 

vertical levels. The global ensemble initial conditions are derived from the ensemble 139 

transform Kalman filter (ETKF) method and a stochastic parameterisation scheme is 140 

also used in the global ensemble (Bowler et al., 2008). Each member of the limited 141 

area ensembles is obtained by one-way nesting from a MOGREPS-G forecast 142 

(dynamical downscaling). No additional stochastic perturbation scheme is used within 143 

the CP forecasts. The MetUM dynamical core solves a non-hydrostatic, deep 144 

atmosphere equation set using a semi-implicit, semi-Lagrangian time-stepping 145 

method and has 80 vertical levels. The science configuration of the dynamics and 146 

physics schemes of the atmosphere and land used for the CP simulations in tropical 147 

regions, “RAL1-T”, is documented in Bush et al. (2020). RAL1-T is the tropical 148 

subversion of RAL1 (Regional Atmosphere and Land configuration). The tropical 149 

version is required since the mid-latitude version (RAL1-M) has relatively weak 150 

turbulent mixing and stochastic perturbations which causes convection to initiate too 151 

early and convective cells to be small in the tropics. In order to account for this, 152 

RAL1-T uses the prognostic cloud prognostic condensate (PC2) cloud scheme 153 

(Wilson et al. 2008), has an interactive boundary layer free-atmosphere mixing length 154 

and has no stochastic boundary layer perturbations. 155 

An 8.8km ensemble with parameterised convection is also included and uses the 156 

configuration of the operational global atmosphere version 6 (GA6) documented in 157 

Walters et al. (2017). This ensemble is referred to throughout as the GA ensemble. 158 
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Before analysis is carried out all forecasts are re-gridded to a common 9 km grid 159 

using an area-weighted conservative re-gridding scheme included in the python 160 

library “Iris” developed by the Met Office.  161 

2.2. GPM-IMERG 162 

To verify forecasts, rainfall is taken from The Integrated Multi-satellitE Retrievals for 163 

GPM (GPM-IMERG; Huffman et al. 2019). The product used is Level 3 half-hourly 164 

Final Run Precipitation at a resolution of 0.1° and combines precipitation estimates 165 

from GPM constellation satellites (see 166 

https://gpm.nasa.gov/missions/GPM/constellation) and Global Precipitation 167 

Climatology Centre (GPCC) precipitation rain-gauges. Precipitation estimates from 168 

passive microwave radiometers are combined with estimates from infrared data from 169 

geostationary weather satellites. Analyses of monthly GPCC gauge accumulations are 170 

then used to reduce biases in the multi-satellite monthly averages where available. 171 

Results using this dataset are referred to in this paper as “GPM” for simplicity.  172 

Before any analysis takes place, the GPM precipitation field is also converted to an 173 

average hourly rain rate and is interpolated from a 0.1 degree grid to a common 9 km 174 

grid. Note that this is a slightly higher resolution than the native grid but the area-175 

weighted conservative interpolation scheme maps between staggered grids with 176 

similar spacings without affecting integrals over larger scales.. It should also be noted 177 

that generally both heavy rainfall and rainfall over ocean tend to be underestimated by 178 

GPM (Tan and Duan 2017; Kahn and Maggioni 2019; Sunilkumar 2019; Tan and 179 

Santo 2019). Nonetheless, studies suggest that in the Philippines, unless examining 180 

very heavy rainfall (99th percentile), GPM captures rainfall relatively well 181 

(Sunilkumar 2019). The Singapore diurnal cycle of rainfall is well represented in 182 
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GPM (Tan et al. 2019) and Tan and Santo (2018) also concluded that GPM was a 183 

reliable precipitation source for a flooding event in Malaysia during 2014-2015. A 184 

recent study finds that GPM precipitation is similar to local precipitation for 185 

percentiles between the 85th  and 95th and concludes that IMERG can be used for 186 

forecast evaluation of precipitation up to the 95th percentile (De Silva et al. 2021). 187 

3.Methods 188 

3.1. Fractions Skill Score 189 

The Fractions Skill Score (FSS; Roberts & Lean, 2008) is a metric that compares two 190 

gridded fields and measures the degree of correspondence as a function of spatial 191 

scale. In order to calculate the FSS the re-gridded (see section 2) forecast and 192 

observation fields are converted into binary fields (1 or 0) based on values in each 193 

grid cell being above or below a threshold. In this study a threshold of the 95th 194 

percentile of rainfall is used, calculated using all grid cells (including zero values) 195 

over the re-gridded domains and the six months spanned by the forecasts. The 196 

threshold is calculated separately using GPM-IMERG and the ensemble forecast data 197 

for the GPM and forecast binary fields respectively. The threshold varies depending 198 

on time of day in the case of GPM and depending on lead time in the case of 199 

forecasts. Percentiles are used for the threshold choice in calculations (rather than a 200 

fixed rain rate threshold) to counteract the influence of intensity bias that effects the 201 

frequency of “event” occurrence. 202 

A neighbourhood length (N; number of grid cells) is defined and is used to convert 203 

regularly gridded fields into fractions based on how many grid cells within 204 

neighbourhoods of size NxN have cell values exceeding the threshold (see figure 2 in 205 

Roberts & Lean, 2008). The FSS is given as: 206 
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𝐹𝑆𝑆(𝑁) = 1 − 
𝑀𝑆𝐸(𝑁)

𝑀𝑆𝐸(𝑁)𝑟𝑒𝑓
    (1) 207 

where  208 

𝑀𝑆𝐸(𝑁) =
1

𝑁𝑥𝑁𝑦
∑ ∑ [𝑂(𝑁)𝑖,𝑗 − 𝑀(𝑁)𝑖,𝑗]

2𝑁𝑦

𝑗=1
𝑁𝑥
𝑖=1   (2) 209 

𝑀𝑆𝐸(𝑁)ref =
1

𝑁𝑥𝑁𝑦
[∑ ∑ 𝑂(𝑁)𝑖,𝑗

2𝑁𝑦

𝑗=1
𝑁𝑥
𝑖=1 + ∑ ∑ 𝑀(𝑁)𝑖,𝑗

2𝑁𝑦

𝑗=1
𝑁𝑥
𝑖=1 ]  (3) 210 

Such that O(N) and M(N) are the fields of fractions for neighbourhood length N for 211 

observations and models respectively. Nx and Ny are the number of neighbourhoods in 212 

the full domain along the longitude and latitude axes respectively. 213 

This calculation can be computed for varying N to obtain FSS as a function of 214 

neighbourhood size. The aim is to allow for the fact that the location of features on 215 

the smallest scales in CP models, associated with convective updrafts, is highly 216 

unpredictable, while the probability that a certain fraction of neighbourhood area is 217 

occupied by precipitation cells (reaching an intensity threshold) may be predicted 218 

skilfully. Furthermore, in the absence of data assimilation for high resolution 219 

observations (such as radar) there is no information in the initial conditions on the 220 

smaller scales. The FSS value must lie between 1 and 0 with an FSS of 1 indicating a 221 

perfect forecast. FSS is expected to increase with neighbourhood size.  A threshold of 222 

FSS can be used to determine the minimum spatial scale at which the forecast is 223 

considered skilful. This is taken to be 0.5 if observed rainfall frequency is sufficiently 224 

low (see Roberts & Lean, 2008). 225 

Using this calculation as a basis, this study examines the ensemble-aggregated FSS 226 

(eFSS), the dispersion FSS (dFSS) and the localised FSS (LFSS). Because this study 227 

deals with an ensemble, it is required that FSS for all ensemble members is 228 
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summarised, so to do this the average of MSE(N) and MSE(N)ref is taken over all 229 

ensemble members and all forecasts in the six-month period prior to calculation of the 230 

FSS using Equ. 1, resulting in the eFSS (Dey et al. 2014).  231 

In order to obtain a measure of ensemble spread in relation to skill the dFSS is also 232 

calculated. The method for this is very similar to that of the eFSS except rather than 233 

compare ensemble members to observations they are compared to the control member 234 

of the ensemble (Rezacova et al. 2009; Dey et al. 2014). This provides a metric that 235 

demonstrates how similar precipitation patterns are between members of the 236 

ensemble. It is possible that model bias can influence metrics of spread (e.g. Wang et. 237 

al 2018). However, this FSS-based metric uses a percentile threshold, therefore 238 

accounting for precipitation intensity biases as part of the calculation. 239 

Finally, a localised FSS (Woodhams et al. 2018) is used to determine regions in the 240 

domain that have particularly high or low values of skill relative to the full domain. 241 

For this metric the MSE(N) and MSE(N)ref are calculated for each neighbourhood (using 242 

the same domain-wide threshold precipitation rate, calculated from a percentile of the 243 

data from all forecasts at all grid points, as described above) but are not averaged over 244 

the domain prior to FSS calculation. 245 

3.2. Persistence Forecast and ‘Shifted Forecast’ 246 

Forecast skill should be benchmarked against some more simple climatological or 247 

persistence-based reference forecast, since a useful forecast has to provide greater 248 

skill than these basic methods. The FSS is calculated for three variations of forecast 249 

over Oct 2018-Mar 2019. The three variations are: 250 

● The standard CP ensemble forecasts.  251 
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● A ‘shifted ensemble forecast’, where forecast time stamps (for all lead times) 252 

are shifted by adding one day such that the forecast is verified against 253 

observations that occur a day later than the actual forecast verification times. 254 

● A persistence forecast based on forward extrapolation from observations. 255 

The ‘shifted forecast’ tests how much potential predictability comes from the 256 

similarity of the observed diurnal cycle from one day to the next (e.g., the pattern of 257 

precipitation over mountains and coasts). If the standard ensemble were no more 258 

skilful than the shifted forecast, it would imply that the model gives little useful 259 

information beyond its representation of the diurnal cycle in that flow regime and 260 

season. 261 

The persistence forecast uses no model data but instead uses hourly GPM 262 

precipitation from the day prior to forecast initialisation and replicates this for every 263 

24-hour period of the forecast. If the observed precipitation at each location were 264 

dominated by its diurnal cycle then the persistence forecast would be almost perfect, 265 

while the ‘shifted forecast’ would have the same skill as the standard ensemble and 266 

comparison of both these forecasts with observations would reflect model bias. 267 

However, longer timescale variability reduces the skill in the persistence forecast.  268 

4. Results 269 

4.1. Rainfall climatology and 4.5 km forecast bias 270 

GPM 95th percentile rainfall amounts in the Malaysia and Indonesia domains have a 271 

pronounced diurnal variation (dashed lines in Fig. 2b). Each domain has 2 peaks in 272 

rainfall; one around 0800 UTC and one around 2000 UTC. Malaysia and Philippines 273 

local time is UTC+8 hours and Indonesia local time is UTC+7 hours so these times 274 
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correspond to local early evening when rainfall is mostly over land and local early 275 

morning when rainfall is mostly over ocean (Mori et al. 2004). The morning peak is 276 

larger in the Malaysia domain than in the Indonesia domain. This is because rainfall 277 

off the northwest coast of Sumatra is relatively strong during early morning. The 278 

Philippines also has a variation throughout the day at similar times, but it is not as 279 

pronounced as that in the other two domains (Fig. 2b). Only the 95th percentile is 280 

shown here, but the diurnal variation is consistent across other intensities, such as 281 

average rainfall (not shown). 282 

Percentiles are also calculated for forecasts. Note here that there is no averaging 283 

involved in this calculation; the percentiles are calculated over all ensemble members, 284 

all available forecasts and all grid points in the domain. For three-hourly 285 

accumulations, the forecasts tend to underestimate the 95th percentile rainfall in 286 

comparison to GPM (Fig. 2b; Table 1). A similar result was found by Woodhams et 287 

al. (2018) examining the 95th percentile rainfall in East Africa forecasts. In contrast, 288 

the 95th percentile and mean of 24-hourly accumulations (Fig 2a; c) are overestimated, 289 

as is the 3-hourly 99th percentile (Table 1). Woodhams et al. (2018) find that in 290 

Africa, at higher percentiles, such as 99%, the CP model has higher values than 291 

observed. This is consistent with other studies that find that CP models in the extra-292 

tropics overestimate rainfall amounts and persistence at very high intensities, but 293 

underestimate rainfall at lower intensities (e.g. Kendon et al., 2012). However, bias 294 

varies with lead time and CP models tend to have large amounts of rainfall after spin-295 

up. Note also that GPM is known to underestimate heavy rainfall events (Tan and 296 

Duan 2017; Sunilkumar 2019) which will impact the extent to which the model shows 297 

‘bias’ in comparison, though De Silva et. al (2021) find that 95th percentile rainfall 298 

over the Maritime Continent in GPM is suitable for forecast verification. 299 
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Forecast precipitation rapidly increases during the initial hours of the forecast as the 300 

model spins up, then declines with lead time (Fig. 2b). Variations with the diurnal 301 

cycle are captured in the forecasts and peaks tend to occur at the correct times of day, 302 

however the difference between the morning and evening peaks in rainfall is larger 303 

than in GPM for the Malaysia and Indonesia domains. This suggests that rainfall over 304 

the ocean is not as well captured in the model, or is overestimated in GPM, or a 305 

combination of both. Since both heavy rainfall and rainfall over ocean tend to be 306 

underestimated by GPM (Tan and Duan 2017; Kahn and Maggioni 2019; Sunilkumar 307 

2019) this suggests the bias largely lies with the ensemble. 308 

The 95th percentile of precipitation in Malaysia forecasts also shows a relatively large 309 

decrease following the first day of forecasts (Fig. 2). Such abrupt declines between 310 

day 1 and day 3 are less evident in the Indonesia and Philippines domains (Fig. 2). 311 

This visible drop in forecast precipitation for Malaysia may be a result of the spatial 312 

distribution of precipitation in the Malaysia domain between ocean and land. Indeed, 313 

when performing the percentile analysis for only land points and only ocean points 314 

this decline is visible for the ocean rainfall but less so for the land rainfall (not 315 

shown). This may be a result of differing drivers of rainfall in the regions. In the 316 

Malaysia domain there is strong rainfall off the east coast of Sumatra, mainly driven 317 

by convergence because of Sumatran orography (Wu et al. 2009). Rainfall in the 318 

Indonesia domain is also largely driven by convergence lines between land masses, 319 

though Wu et al. (2009) suggest that differences in orography of nearby land masses 320 

may explain differences in ocean rainfall across Southeast Asia, such as between the 321 

east coast of Sumatra and the west coast of Borneo. Therefore, the representation of 322 

orography may be a large factor in diurnal cycle rainfall biases.  323 
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Other aspects of the ensemble may also contribute to biases, such as initial conditions, 324 

or the dynamical configuration and parameterizations of the parent ensemble. The 325 

drop in rainfall is also found by Dipankar et al. (2020) in similar CP forecasts 326 

covering Singapore and surrounding regions, such as Peninsular Malaysia and 327 

Sumatra (SINGV). Dipankar et al. (2020) find that rainfall in a version of the model 328 

driven by the global UM declines over ocean following 24 hours. This was not the 329 

case in a version of the model driven by the ECMWF operational deterministic 330 

forecast. It is suggested that this is primarily a result of the lateral boundary 331 

conditions and a dry bias in global UM forecasts. Further analysis would be required 332 

to determine the precise causes of bias here, and why they differ between regions. 333 

Examining the spatial pattern of extreme precipitation in subsequent figures will 334 

highlight the differences between the domains further. At longer lead times rainfall in 335 

Malaysia and Indonesia domains continues to decrease, whereas Philippines rainfall 336 

remains well captured at all lead times. 337 

In GPM the highest values of 95th percentile rainfall are over ocean, particularly over 338 

the west coast of Sumatra (Fig. 3a;b). On the first day of forecasts the largest 339 

precipitation amounts occur over mountainous regions of Sumatra and Java (Fig. 340 

3d;e), in contrast to GPM. There is some heavier rainfall off the west coast of Sumatra 341 

where the observed rainfall peaks, but they are smaller than the land rainfall amounts. 342 

The 95th percentile of rainfall in the Philippines domain is well replicated with 343 

comparable rainfall amounts to GPM in the south of the Philippines and the north-east 344 

region of Borneo (Fig. 3f). Rainfall over mountains is heavier in the forecasts than 345 

observed, explaining the discrepancies in the diurnal variations of rainfall (Fig. 2a; b). 346 
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As lead time increases the 95th percentile of rainfall off the west coast of Sumatra 347 

decreases (Fig 3g). Rainfall over the ocean here decreases at a faster rate than that 348 

over land between lead day 1 and lead day 3, explaining the large decrease in the 349 

rainfall shown in Fig. 2b after lead day 1. The rainfall in the ocean to the north of Java 350 

and in the Strait of Malacca does not show this decrease and even increases slightly. 351 

As mentioned previously it seems likely there is a meteorological phenomenon in this 352 

area that is more accurately captured than equivalent phenomena occurring west of 353 

Sumatra and results in this differing behaviour. One possibility is convergence lines in 354 

the Strait of Malacca resulting from land-sea breezes (Weller et al. 2017; Mohd Nor et 355 

al. 2020) that are relatively well represented and persist in the forecast. At longer lead 356 

times rainfall over mountainous regions continues to decrease (Fig. 3j;k). Rainfall 357 

amounts over the Philippines show less change as lead time increases (Fig 3l), as is 358 

also indicated in Fig. 2. 359 

4.2. Skill of 4.5 km ensemble forecasts of daily precipitation accumulations 360 

The spatial scales over which forecasts of 24-hourly accumulated rainfall can be 361 

considered skilful is assessed using the ensemble-aggregated Fractions Skill Score 362 

(eFSS) to determine the smallest scale for useful forecast information from each of 363 

the ensembles. Forecast skill of 24-hourly precipitation exceeds the skilful threshold 364 

of 0.5 (red line in Fig. 4) at spatial scales greater than around 150 km on the first day 365 

of forecasts for all three domains. Skill in the Philippines domain is slightly higher 366 

and so forecasts are considered skilful at spatial scales greater than around 50 km. 367 

Skill decreases as lead time increases such that by the end of the 5-day forecasts only 368 

spatial scales exceeding 350 km are considered skilful. It should be noted that here the 369 

ensemble-average FSS is examined for comparison with ensemble spread, not a 370 
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metric based on the probabilistic output of the FSS. The skill of the probabilistic 371 

ensemble output is slightly higher (not shown) and so the probabilistic forecasts will 372 

be able to be displayed usefully at slightly smaller scales than these (approximately 373 

50-100km smaller depending on lead time and region). 374 

While this is useful information for forecasting daily rainfall totals, variations in 375 

rainfall with the diurnal cycle and between land and sea mean that forecast skill is 376 

likely to vary with both location and time of day, particularly in Malaysia and 377 

Indonesia. To further understand contributors to forecast skill it is important to also 378 

examine diurnal variations in forecast skill, as well as spatial variations in skill. 379 

4.3. The role of the diurnal cycle in 4.5 km forecast skill 380 

As mentioned previously, rainfall has a strong diurnal cycle during the day and can be 381 

defined by two peaks: one during local early morning when rainfall is mostly over the 382 

ocean (not shown), and one during local early evening when rainfall is over land (Fig. 383 

5). In GPM during early evening the highest values of rainfall are over Sumatra and 384 

Borneo (Fig. 5a; b). The rainfall over Sumatra tends to be located around orographic 385 

features: mountains run down the west side of Sumatra. There are also large amounts 386 

of rainfall just off the west coast of Sumatra. There are smaller amounts of rainfall 387 

over Peninsular Malaysia, Java and the southern Philippines (Fig 5a;b;c). 388 

For forecasts, twelve hours after forecast initialisation the spatial pattern of 95th 389 

percentile precipitation is similar to that in GPM but with varying amounts. 390 

Precipitation in Sumatra is most strong in the northwest (Fig. 5d), unlike GPM where 391 

larger amounts of precipitation run the full length of the island. Forecasts do not 392 

capture the precipitation off the west coast of Sumatra (Fig. 5d), though they still have 393 

some precipitation over the ocean, similar to GPM. Three days into the forecast 394 
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precipitation over the ocean is decreased (Fig. 5g) but the precipitation over land is 395 

still relatively strong. Examining early morning in the forecasts also shows that 396 

precipitation over the ocean around Sumatra decreases following the first day forecast 397 

(not shown), explaining the large drop in Malaysia domain precipitation shown in Fig. 398 

2a. By the final day of the forecast precipitation amounts have slightly decreased but 399 

the spatial pattern remains the same (Fig. 5j;k;l) 400 

To examine how forecast skill depends on the diurnal cycle in the region, the skill of 401 

the three ensembles is examined. The shading in Fig. 6 demonstrates eFSS for the 402 

standard ensemble forecast, but the eFSS=0.5 “skilful threshold” contours are shown 403 

for all three forecast variations described in Section 3. Forecasts with skill exceeding 404 

0.5, regions to the right of the colored lines in Fig. 6, are considered skilful for the 405 

given spatial scale and lead time. Forecasts with lines further to the left in the figure 406 

are therefore more skilful at smaller spatial scales.  407 

Forecast skill of three-hourly precipitation is strongly tied to the diurnal cycle for the 408 

Malaysia forecasts (Fig. 6a) and the Indonesia forecasts (Fig. 6b). The Philippines 409 

forecast skill shows some link to the diurnal cycle but this is less pronounced than that 410 

of the other two domains (Fig. 6c). Skill tends to be largest in the daytime when 411 

precipitation is over land and smallest at night when precipitation is offshore. It is 412 

likely that this is due to precipitation that is constrained by topography, and therefore 413 

more predictable, during the day. For the first day forecasts are considered skilful at 414 

spatial scales greater than approximately 200 km (Fig. 6). After the first day forecast 415 

skill begins to decrease as lead time increases. On day 5 of the forecasts there is skill 416 

on spatial scales greater than around 400 km. These scales are comparable to analysis 417 

by Dey et al. (2014) that showed skill on scales greater than 200 km for forecasts of 418 
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extreme rainfall in the UK using a similar nested 2.2 km ensemble. Woodhams et al. 419 

(2018) also find that a deterministic CP model forecast of extreme rainfall over East 420 

Africa is skilful at spatial scales around 275-300 km. 421 

The reliance of skill on time of day leads to a question: how much of forecast skill is 422 

driven simply by diurnal variations? The ensemble forecast is compared with the 423 

other two forecast variations described in section 3.2 in order to gain an idea of the 424 

role of persisting weather in the forecast skill, and how much value is added by the 425 

dynamical ensemble forecast. It is found that the standard ensemble forecast is more 426 

skilful than the persistence forecast for all three domains, indicating that the ensemble 427 

forecast contains more information about the weather occurring in the future than can 428 

be inferred from local knowledge of the diurnal cycle observed on the day before 429 

making the forecast.  430 

The ‘shifted forecast’ (see section 3.2) tests how much predictability comes from the 431 

characteristics of the diurnal cycle in the current flow regime and season. The 432 

standard forecast is substantially more skilful than the shifted forecast in all three 433 

domains (Fig. 6). This implies that substantial skill in the precipitation forecast is 434 

associated with phenomena with multi-day timescales, or that the forecast is skilfully 435 

predicting day-to-day variation in the characteristics of the diurnal cycle which are 436 

conditional on the large-scale environment. It is expected that as lead time increases 437 

the standard ensemble forecast skill must tend towards the skill of the shifted forecast 438 

as the model forecast increasingly becomes no better than a forecast of a different 439 

day. 440 

Interestingly, for Malaysia (Fig. 6a) and Indonesia (Fig. 6b) the shifted forecast is 441 

more skilful than the persistence forecast at all lead times beyond the initial 3 hours. 442 
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During the first 24 hours the difference is small. Moving into day 2, the persistence 443 

forecast becomes substantially worse than the shifted forecast, implying that the 444 

precipitation field has multi-day variability that is captured by the model. This is 445 

particularly true for the Philippines (Fig. 6c), which has a large drop in the skill of the 446 

persistence forecast following day 1 relative to the model. In conclusion, even at five-447 

days lead time, the ensemble forecast is still more skilful than a forecast based on 448 

persistence, as well as the shifted forecasts, that mainly capture the diurnal cycle. 449 

Skill is increased when precipitation is located over land, perhaps because it is more 450 

constrained by orography. To examine this further, a Localised Fractions Skill Score 451 

(LFSS, see section 3.1) can be calculated (Fig. 7). It should be noted that while the red 452 

line in Fig. 7 indicates a threshold of 0.5 in keeping with Fig. 6, this should not be 453 

considered a threshold of ‘skilfulness’ in this context. Rather, the LFSS is a tool to 454 

understand the distribution of skill across the full domain, in relation to the eFSS. 455 

During early evening higher skill tends to be located over land where the forecast has 456 

most precipitation, such as in the northwest region of Sumatra (Fig. 7a) and over Java 457 

(Fig. 7b). Comparing the spatial patterns of skill to the 95th percentile of precipitation 458 

(Fig. 3) shows that the spatial patterns are similar in these regions. There is much less 459 

skill over ocean for the Malaysia and Indonesia domains (Fig. 8a;b). Peaks in skill 460 

over ocean also tend to be lower than those over land (Fig. 8). This supports the idea 461 

that most skill comes from precipitation that is spatially constrained, and results in the 462 

diurnal variation of skill as precipitation moves from ocean to land. 463 

There are also regions of high skill that have lower 95th percentile rainfall in both 464 

GPM and forecasts, such as the north of the Philippines (Fig. 7c). This skill is likely 465 

tied to synoptic-scale variability, i.e. tropical cyclones. This region of skill is also 466 
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relatively independent of the diurnal cycle and is still present at other times of day 467 

(not shown), supporting this hypothesis. 468 

As lead time increases, skill decreases rapidly but is still highest in mountainous 469 

regions and in the north of the Philippines (Fig. 7d-i). Localised skill analysis 470 

suggests that the diurnal cycle is more important for skill in Malaysia and Indonesia 471 

since rainfall is more spatially constrained by orographic features when over land. For 472 

the Philippines, skill is more likely to come from synoptic-scale systems that are not 473 

as dependent on time of day. 474 

4.4. Ensemble spread-skill relationship for 4.5 km forecasts 475 

The dispersion Fractions Skill Score (dFSS; Dey et al. 2014) is used to assess spatial 476 

differences between ensemble members, or “ensemble spread”, in relation to forecast 477 

skill (see section 3.1). If the ensemble is “well calibrated” then the dFSS and eFSS 478 

should be the same. If the dFSS is smaller than the eFSS, then the ensemble is over-479 

spread (under-confident) and if the dFSS is larger than the eFSS, then the ensemble is 480 

under-spread (over-confident). For Malaysia forecasts the dFSS is larger than eFSS 481 

(Fig. 9a;b) at all lead times and spatial scales, indicating that ensemble members are 482 

too similar to one another compared to the difference between the forecasts and 483 

observations. This is also true for Indonesia and the Philippines (Fig. 9c-f). Ensembles 484 

are under-spread in relation to the skill, and displacement errors in forecast rainfall 485 

features are typically larger than the differences between ensemble members. This is 486 

consistent with previous studies that find MetUM convective-scale ensembles to be 487 

under-spread (Porson et al. 2020, Cafaro et al. 2020), and being under-spread is a 488 

common error for CP ensembles generally (Schwartz et al. 2014; Beck et al. 2016; 489 

Raynaud and Bouttier 2017). Problems with spread can be linked to model errors (e.g. 490 
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Stensrud et al. 2000) and initial conditions and lateral boundary conditions from the 491 

parent ensemble. However, finding the underlying cause in this case would require 492 

further study. 493 

The spread also varies with the diurnal cycle, consistent with the variation in 494 

ensemble skill. Ensemble spread is smallest (larger dFSS) during local evening, with 495 

dFSS peaking around 8-11pm (lead 12-15), particularly at longer lead times (Fig. 496 

9a;c;e). Consistent with the skill results discussed previously, this is when 497 

precipitation is typically over land and is more spatially constrained, and therefore 498 

more similar between ensemble members. When precipitation is over ocean there is 499 

slightly more ensemble spread, indicated by reduced dFSS. 500 

4.5. The role of resolution and convection parameterisation in forecast skill and 501 

spread 502 

 The 4.5 km ensembles examined in the earlier sections are part of a larger set of 503 

nested ensembles that include ensembles with a 2.2 and 8.8 km horizontal grid 504 

spacing, but the same model levels (see section 2.1), and provide an opportunity to 505 

examine the role of resolution in forecast skill. Analysis of an 8.8 km ensemble with 506 

parameterised convection (GA ensemble) is also included to examine how much skill 507 

is gained from partially resolving convection with the dynamical core. Resolution 508 

tends to play a fairly minor role in forecast skill for all three regions (Fig. 10). This is 509 

also the case when using a higher rainfall percentile threshold, such as the 99th 510 

percentile (not shown). 2.2 km CP, 4.5 km CP and 8.8 km CP ensembles all have 511 

similar variation in skill as a function of lead time and in this measure the 2.2 and 4.5 512 

km forecasts are barely distinguishable. This was found to be true evaluating across 513 

the range of neighbourhood scales from grid-scale to 288 km (results are only shown 514 
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for 144 km, the smallest scale for which the eFSS exceeds 0.5 for all domains in the 515 

first day). During early evening, when skill in the 4.5 km ensemble (blue line in Fig. 516 

10) is highest, the 8.8 km CP ensemble (red line) has less skill in the Malaysia domain 517 

than the 2.2 km and 4.5 km ensembles (Fig. 10a), but in general the differences are 518 

small. A possible reason for this is that resolution may be less important at longer lead 519 

times where large-scale conditions dominate, and so resolution variations have little 520 

effect on skill. 521 

There is a larger difference in the skill between the CP ensembles and the GA 522 

ensemble (green line in Fig. 10), though this is region dependent. For the Malaysia 523 

domain the GA ensemble is less skilful across all lead times, except for the first few 524 

hours of forecasts, during the spin-up period (Fig. 10a). Parameterised convection has 525 

less effect on skill in the Indonesia domain, though skill peaks earlier in the day 526 

compared to the CP ensemble skill. (Fig. 10b). A note to make here is that the diurnal 527 

cycle of precipitation in Malaysia and Indonesia is not as well captured by the GA 528 

ensemble (not shown); the observed peaks in rainfall tend to occur a few hours earlier 529 

in the GA ensemble, around 6 UTC (early afternoon local time) and 18UTC (early 530 

morning local time). The afternoon skill peak therefore coincides with a time when 531 

rainfall is increasing in observations and decreasing in the GA ensemble. This peak in 532 

skill in the Indonesia domain likely reflects a time when rainfall patterns match better 533 

than other times of day, but not for the correct reasons; rainfall in the GA ensemble 534 

does not move over ocean during night in the same way as in observations and the CP 535 

ensembles (not shown). Since rainfall in the Malaysia and Indonesia domains is 536 

largely driven by diurnal variations it is expected that the skill of the GA ensemble is 537 

less than the CP ensembles that capture diurnal variations more accurately.  538 
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While there is little difference between the skill in the CP ensembles it is important to 539 

note that rainfall is reduced in lower resolution 8.8 km CP ensembles (Table 1). Peaks 540 

also tend to occur slightly later in the day in these ensembles, particularly for the 541 

Malaysia domain, with the early morning peak hardly being captured at all (not 542 

shown). This is indicative of larger errors in the diurnal cycle of precipitation in the 543 

lower resolution ensembles, despite little difference being shown in the FSS measure 544 

of spatial skill. It is therefore important not to consider all CP ensembles to have equal 545 

value for operational forecasting despite similar FSS values. 546 

In the Philippines domain there is almost no difference in skill between the CP 547 

ensembles at all resolutions (Fig. 10c). However, following the first 12 hours of the 548 

forecast the GA ensemble has slightly more skill than the CP ensembles, in contrast to 549 

the other two regions. A possible reason for this is that precipitation patterns 550 

associated with certain, likely larger scale, phenomena are represented more 551 

accurately in the GA ensemble. The CP forecasts spin up at initialisation and this may 552 

explain the higher skill of the GA model since less spin up may occur from the initial 553 

conditions. This is a surprising result since previous studies find that drivers of 554 

Philippines rainfall, such as tropical cyclones, can be represented more accurately by 555 

CP models (Bousquet et al. 2020). A full analysis of the differences in the 556 

representation drivers of rainfall between CP and GA ensembles is outside of the 557 

scope of this study, but this result certainly highlights an area of future research. 558 

Resolution also has a small impact on ensemble spread (Fig 9d-f). All three CP 559 

ensembles are under-spread to a similar degree at the 144 km neighbourhood scale. 560 

Note here that ensemble spread is shown over a sub-region with boundaries 2 degrees 561 

away from the 2.2 km boundaries to avoid a larger influence of lateral boundary 562 
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conditions on the 2.2 km ensemble than the larger domain ensembles. When 563 

performing analysis over the full 2.2 km ensemble domain the spread of the 2.2 km 564 

ensemble is smaller than that of the 4.5 km and 8.8 km CP ensembles (not shown) as 565 

a result of the role of lateral boundary conditions on ensemble spread. Ensemble 566 

spread in the GA ensemble is relatively similar to the CP ensembles at most times of 567 

day but reduces during early afternoon (local time; approximately 4 UTC) when 568 

observed rainfall is moving from over ocean to over land (Fig. 10d; e). This suggests 569 

that the ensemble spread in the spatial patterns of rainfall is much less than the CP 570 

ensemble as a result of the parameterisations used. In the Philippines, where rainfall is 571 

not as strongly driven by the diurnal cycle, ensemble spread is similar in the GA 572 

ensemble and the CP ensembles, particularly during the first two to three days of the 573 

forecast. 574 

5. Summary and Conclusions 575 

Convection-permitting (CP) ensemble forecasts in the Tropics have, until now, been 576 

relatively uncommon. Recently, the UK Met Office have developed such systems 577 

over Singapore (Porson et al. 2019) and East Africa (Cafaro et al. 2020). Model 578 

development has now extended to further domains in Southeast Asia, covering 579 

Malaysia, Indonesia and the Philippines. In this study the skill of newly-developed CP 580 

ensembles over these regions has been examined using the Fractions Skill Score 581 

(FSS), with a particular focus on the role of the diurnal cycle and quantifying the 582 

spread of the ensemble in relation to skill. 583 

The skill of forecasts of precipitation in the Malaysia and Indonesia domains are 584 

strongly linked to the diurnal cycle, peaking during local early evening when rainfall 585 

is over land and dropping in local early morning when rainfall is over ocean (Fig. 6). 586 
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The diurnal variation suggests that orographic and coastal features play a role in skill, 587 

such that precipitation over mountainous regions is spatially constrained and therefore 588 

better captured by the model. Land-sea contrast is also important to the characteristics 589 

of the rainfall. Examination of maps of the Localised Fractions Skill Score (LFSS) 590 

confirms this, as the largest skill tends to be over mountainous regions and skill is 591 

much lower over the ocean (Fig. 7; Fig. 8). The diurnal cycle is less strong in the 592 

Philippines domain, suggesting that other modes of variability drive precipitation 593 

there. Skill decreases as lead time increases, and forecasts are skilful at spatial scales 594 

greater than 400 km for all lead times and all domains, providing a suggested scale for 595 

future forecast display. 596 

The large role played by the diurnal cycle motivates the question as to how much of 597 

the skill is potentially predictable simply by representing well the diurnal cycle in the 598 

region. Vogel et al. (2018) found that forecasts of precipitation in West Africa that 599 

were based on climatological precipitation outperformed operational ensemble 600 

forecasts that used parameterised convection schemes. Here, comparisons are made to 601 

persistence forecasts to examine how the CP ensembles perform relative to a forecast 602 

from recently observed rainfall. In this case all three ensembles have much higher 603 

skill than a persistence forecast, suggesting that there is significant added value in the 604 

CP ensemble compared to a forecast based on observed rainfall from the previous 605 

day. Skill for a ‘shifted forecast’, in which the forecast date stamps are shifted one 606 

day later and therefore verified against observations from one day after the true 607 

verification date, is also presented to determine how much of the model skill is related 608 

to simulation of the diurnal cycle. The skill of the shifted forecast is larger than the 609 

persistence forecast, but less than the standard ensemble forecast, for lead times 610 

longer than one day. This suggests that increased CP ensemble forecast skill is 611 
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associated with phenomena characterised by multi-day timescales that are captured by 612 

the model, highlighting the usefulness of the CP ensemble in this region. 613 

Variation of horizontal grid spacing, across 2.2, 4.5 and 8.8 km, plays a fairly small 614 

role in ensemble skill assessed using the Fractions Skill score over the full range of 615 

neighbourhood scales. These results agree with previous studies that also find 1-2km 616 

resolution forecasts rainfall in the United States to perform as well as 4km forecasts 617 

(Kain et al. 2008; Schwarz et al 2009; Loken et al. 2017). However, other studies 618 

found that increased resolution resulted in higher forecast skill for United States 619 

rainfall (Schwarz et al. 2017; Shwartz and Sobash 2019). Schwartz and Sobash (2019) 620 

suggest that this could be because of higher quality initial conditions than in previous 621 

studies. Given the computational cost of higher resolution forecasts this is a result to 622 

be considered in future forecast model development focussing on this region 623 

The 8.8 km GA ensemble using a parameterised convection scheme has less skill 624 

compared to the CP ensembles, but only in the regions where rainfall patterns are 625 

strongly driven by the diurnal cycle, i.e. Malaysia and Indonesia. In the Philippines 626 

region, CP ensembles have slightly lower skill than the GA ensemble suggesting that 627 

CP forecasts add limited value when forecasting spatial patterns of rainfall in the 628 

Philippines region. This is likely due to the higher latitude location of the Philippines 629 

and hence stronger synoptic scale forcing of rainfall and weaker dependence on local 630 

thermal contrasts in forcing convective systems. Also, there are no additional high-631 

resolution observations assimilated into the CP forecasting system and the initial 632 

conditions for each forecast member are obtained simply by interpolating the parent 633 

global member onto a finer grid. The only benefit that could come from the higher 634 

resolution is an improvement in the representation of the lower boundary and weather 635 
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system dynamics. The higher resolution forecasts need to spin up and this may 636 

explain the apparently higher skill of the 8.8 km model with parameterised 637 

convection, rather than explicit. The model dynamics with parameterisation is more 638 

similar to the global model parent and therefore less spin up may occur from the 639 

initial conditions. An important note and caveat to make here is that while resolution 640 

plays a small role in skill measured using the FSS there are many other reasons why a 641 

higher-resolution model is preferable. Other aspects of rainfall, aside from spatial 642 

pattern, such as intensity and timing, are of importance and should be considered 643 

when choosing models for an operational forecast. 644 

The spread of the ensemble is examined using the dispersion Fractions Skill Score 645 

(dFSS), which compares ensemble member pairs to obtain a measure of the spatial 646 

differences within the ensemble. Spread also varies with the diurnal cycle such that 647 

there is less ensemble spread when precipitation is over land, again supporting the 648 

idea that convection is more constrained by orography at that time (Fig. 9). The 649 

ensemble is under-dispersive. Spread is 59%, 61% and 33% less than ensemble mean 650 

forecast error on average over 4.5 km forecasts for Malaysia, Indonesia, and 651 

Philippines domains respectively, confirming that these ensembles suffer from a 652 

persistent drawback of CP ensembles. While using percentiles for the threshold choice 653 

in calculations (rather than a fixed amount threshold) somewhat counteracts the 654 

influence of rainfall intensity bias, there are further possible causes of reduced 655 

ensemble spread, such as the influence of initial and lateral boundary conditions and 656 

model errors. Studies have found various ways to improve ensemble spread, such as 657 

combining ensembles (Beck et al. 2016) and time-lagging ensemble member forecasts 658 

(Porson et al. 2020). Porson et al. (2019) assessed the difference in skill and spread in 659 

an ensemble covering Singapore nested in two different global ensembles. They find 660 
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that spread is sensitive to initial conditions at the beginning of the forecast and lateral 661 

boundary conditions towards the end of the forecast. While beyond the scope of the 662 

present study, investigating why the ensembles analysed here are under-spread would 663 

be an interesting topic of future research. Assimilation of high resolution data to 664 

generate a higher resolution regional analysis would be expected to improve initial 665 

conditions for the CP ensembles, introducing spread associated with observed 666 

mesoscale features and acting to reduce artificial forecast spin up effects which may 667 

reduce skill. However, assimilation in the convection-dominated regime in the tropics 668 

is challenging, due to convective instability and the high variance on small spatial and 669 

temporal scales, and prototype systems assimilating satellite radiance data are 670 

currently under development in the Southeast Asia region (Heng et al. 2020). 671 

Despite the lack of sufficient spread in the CP ensembles shown here, the forecasts 672 

have significant skill beyond that shown by a persistence forecast based on observed 673 

climatology. Aside from improvements to ensemble spread, future work with these 674 

forecasts should focus on sources of skill in the three different regions, including the 675 

role of large-scale conditions in forecast skill. Understanding drivers of forecast skill 676 

will lead to improved forecasts of high-impact weather in the region and should 677 

therefore be a high priority in future. 678 

 679 

Acknowledgements 680 

This work and SF, THAF, CEH, JM and THMS were supported by the Weather and 681 

Climate Science for Services Partnership (WCSSP) Southeast Asia as part of the 682 

Newton Fund. We thank three anonymous reviewers for insightful comments and 683 

suggestions on this work. The GPM-IMERG data were provided by the NASA 684 



30 

 

Goddard Space Flight Center’s Precipitation Measurement Missions Science Team 685 

and Precipitation Processing System, which develop and compute GPM-IMERG as a 686 

contribution to GPM, and archived at the NASA GES DISC.   687 



31 

 

References 688 

 689 

Beck, J., F. Bouttier, L. Wiegand, C. Gebhardt, C. Eagle, and N. Roberts, 2016: 690 

Development and verification of two convection-allowing multi-model 691 

ensembles over Western Europe. Q. J. R. Meteorol. Soc., 142, 2808–2826, 692 

https://doi.org/10.1002/qj.2870. 693 

Bednarczyk, C. N., and B. C. Ancell, 2015: Ensemble sensitivity analysis applied to a 694 

southern plains convective event. Mon. Weather Rev., 143, 230–249, 695 

https://doi.org/10.1175/MWR-D-13-00321.1. 696 

Birch, C. E., J. H. Marsham, D. J. Parker, and C. M. Taylor, 2014a: The scale 697 

dependence and structure of convergence fields preceding the initiation of deep 698 

convection. Geophys. Res. Lett., 41, 4769–4776, 699 

https://doi.org/10.1002/2014GL060493. 700 

——, D. J. Parker, J. H. Marsham, D. Copsey, and L. Garcia-Carreras, 2014b: A 701 

seamless assessment of the role of convection in the water cycle of the West 702 

African Monsoon. J. Geophys. Res. Atmos., 119, 2890–2912, 703 

https://doi.org/10.1002/2013JD020887. 704 

——, M. J. Roberts, L. Garcia-Carreras, D. Ackerley, M. J. Reeder, A. P. Lock, and 705 

R. Schiemann, 2015: Sea-breeze dynamics and convection initiation: The 706 

influence of convective parameterization in weather and climate model biases. J. 707 

Clim., 28, 8093–8108, https://doi.org/10.1175/JCLI-D-14-00850.1. 708 

——, and Coauthors, 2016: Scale Interactions between the MJO and the Western 709 

https://doi.org/10.1175/MWR-D-13-00321.1


32 

 

Maritime Continent. J. Clim., 29, 2471–2492, https://doi.org/10.1175/JCLI-D-710 

15-0557.1. 711 

Bousquet, O, D. Barbary, S. Bielli, and Coauthors. 2020 An evaluation of tropical 712 

cyclone forecast in the Southwest Indian Ocean basin with AROME‐Indian 713 

Ocean convection‐permitting numerical weather predicting system. Atmos Sci 714 

Lett. 21:e950. https://doi.org/10.1002/asl2.950 715 

Bowler N, A. Arribas, K. Mylne, K. Robertson, S. Beare. 2008. The MOGREPS 716 

short-range ensemble prediction system. Q. J. R. Meteorol. Soc. 134:703–72 717 

Bush, M., and Coauthors. 2020: The first Met Office Unified Model–JULES Regional 718 

Atmosphere and Land configuration, RAL1, Geosci. Model Dev., 13, 1999–2029, 719 

https://doi.org/10.5194/gmd-13-1999-2020. 720 

Cafaro, C., T. H. A. Frame, J. Methven, N. Roberts,. and J. Bröcker, 2019. The added 721 

value of convection‐permitting ensemble forecasts of sea breeze compared to a 722 

Bayesian forecast driven by the global ensemble. Q. J. R. Meteorol. Soc., 723 

145(721), 1780-1798. 724 

Cafaro, C., and Coauthors, 2020: Do convection-permitting ensembles lead to more 725 

skillful short-range probabilistic rainfall forecasts over tropical East Africa ?, 726 

Wea. Forecasting, under review. 727 

Chang, C. P., P. A. Harr, and H. J. Chen, 2005: Synoptic disturbances over the 728 

equatorial South China Sea and western maritime continent during boreal winter. 729 

Mon. Weather Rev., 133, 489–503, https://doi.org/10.1175/MWR-2868.1. 730 

Clark, P., N. Roberts, H. Lean, S. P. Ballard, and C. Charlton-Perez, 2016: 731 

https://doi.org/10.1175/JCLI-D-15-0557.1
https://doi.org/10.1175/JCLI-D-15-0557.1
https://doi.org/10.5194/gmd-13-1999-2020


33 

 

Convection-permitting models: A step-change in rainfall forecasting. Meteorol. 732 

Appl., 23, 165–181, https://doi.org/10.1002/met.1538. 733 

De Silva, N., and Coauthors, 2021: Validation of GPM IMERG extreme precipitation 734 

in the Maritime Continent by station and radar data (In Preparation) 735 

Dey, S. R. A., G. Leoncini, N. M. Roberts, R. S. Plant, and S. Migliorini, 2014: A 736 

spatial view of ensemble spread in convection permitting ensembles. Mon. 737 

Weather Rev., 142, 4091–4107, https://doi.org/10.1175/MWR-D-14-00172.1. 738 

Dipankar, A., and coauthors, 2020: SINGV: A convective‐scale weather forecast 739 

model for Singapore. Q J R Meteorol Soc. 1– 16. https://doi.org/10.1002/qj.3895 740 

Ferrett, S., G. Yang, S. J. Woolnough, J. Methven, K. Hodges, and C. E. Holloway, 741 

2020: Linking extreme precipitation in Southeast Asia to equatorial waves. Q. J. 742 

R. Meteorol. Soc., 146, 665–684, https://doi.org/10.1002/qj.3699. 743 

Gebhardt C., S.E. Theis, M. Paulat, Z. Ben Bouallègue, 2011: Uncertainties in 744 

COSMO-DE precipitation forecasts introduced by model perturbations and 745 

variation of lateral boundaries, Atmospheric Research, 100, 168-177, 746 

https://doi.org/10.1016/j.atmosres.2010.12.008. 747 

Golding, B. W., and Coauthors, 2014: Forecasting Capabilities for the London 2012 748 

Olympics. Bull. Amer. Meteor. Soc., 95, 883–896, 749 

https://doi.org/10.1175/BAMS-D-13-00102.1. 750 

Hagelin, S., J. Son, R. Swinbank, A. McCabe, N. Roberts and W. Tennant, 2017: The 751 

Met Office convective‐scale ensemble, MOGREPS‐UK. Q.J.R. Meteorol. Soc., 752 

143: 2846-2861. doi:10.1002/qj.3135 753 

https://doi.org/10.1002/met.1538
https://doi.org/10.1175/MWR-D-14-00172.1
https://doi.org/10.1002/qj.3699
https://doi.org/10.1016/j.atmosres.2010.12.008


34 

 

Hamada, J.-I., S. Mori, H. Kubota, M. D. Yamanaka, U. Haryoko, S. Lestari, R. 754 

Sulistyowati, and F. Syamsudin, 2012: Interannual Rainfall Variability over 755 

Northwestern Jawa and its Relation to the Indian Ocean Dipole and El 756 

Ni^|^ntilde;o-Southern Oscillation Events. SOLA, 8, 69–72, 757 

https://doi.org/10.2151/sola.2012-018. 758 

Hanley, K. E., D. J. Kirshbaum, N. M. Roberts, and G. Leoncini, 2013: Sensitivities 759 

of a Squall Line over Central Europe in a Convective-Scale Ensemble. Mon. 760 

Weather Rev., 141, 112–133, https://doi.org/10.1175/MWR-D-12-00013.1. 761 

Heng, B. C. P, and Coauthors, 2020: SINGV‐DA: A data assimilation system for 762 

convective‐scale numerical weather prediction over Singapore. Q J R Meteorol 763 

Soc., 146, 1923– 1938, https://doi.org/10.1002/qj.3774 764 

Hohenegger, C., and C. Schar, 2007: Atmospheric Predictability at Synoptic Versus 765 

Cloud-Resolving Scales. Bull. Amer. Meteor. Soc., 88, 1783–1794, 766 

https://doi.org/10.1175/BAMS-88-11-1783. 767 

Holloway, C. E., S. J. Woolnough, and G. M. S. Lister, 2013: The effects of explicit 768 

versus parameterized convection on the MJO in a large-domain high-resolution 769 

tropical case study. Part I: Characterization of large-scale organization and 770 

propagation. J. Atmos. Sci., 70, 1342–1369, https://doi.org/10.1175/JAS-D-12-771 

0227.1. 772 

Huffman, G. J., and Coauthors, 2019: NASA Global Precipitation Measurement 773 

(GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG), Algorithm 774 

Theoretical Basis Document (ATBD), Version 06. 38 pp. 775 

https://gpm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V06.pdf 776 

https://doi.org/10.1175/MWR-D-12-00013.1


35 

 

Johnson, S. J., and Coauthors, 2016: The resolution sensitivity of the South Asian 777 

monsoon and Indo-Pacific in a global 0.35° AGCM. Clim. Dyn., 46, 807–831, 778 

https://doi.org/10.1007/s00382-015-2614-1. 779 

Kain, J. S., Weiss, S. J., Bright, D. R., Baldwin, M. E., Levit, J. J., Carbin, G. W., 780 

Schwartz, C. S., Weisman, M. L., Droegemeier, K. K., Weber, D. B., & 781 

Thomas, K. W. 2008: Some Practical Considerations Regarding Horizontal 782 

Resolution in the First Generation of Operational Convection-Allowing NWP, 783 

Weather and Forecasting, 23(5), 931-952 784 

Khan, S. and V. Maggioni, 2019: Assessment of Level-3 Gridded Global Precipitation 785 

Mission (GPM) Products Over Oceans. Remote Sens, 11, 255. 786 

Kendon, E. J., N. M. Roberts, C. A. Senior, and M. J. Roberts, 2012: Realism of 787 

rainfall in a very high-resolution regional climate model. J. Clim., 25, 5791–788 

5806, https://doi.org/10.1175/JCLI-D-11-00562.1. 789 

Lestari, S., A. King, C. Vincent, D. Karoly, and A. Protat, 2019: Seasonal dependence 790 

of rainfall extremes in and around Jakarta, Indonesia. Weather Clim. Extrem., 24, 791 

100202, https://doi.org/10.1016/j.wace.2019.100202. 792 

Lim, S. Y., C. Marzin, P. Xavier, C. P. Chang, B. Timbal, S. Yee Lim, C. Marzin, and 793 

P. Xavier, 2017: Impacts of Boreal Winter Monsoon Cold Surges and the 794 

Interaction with MJO on Southeast Asia Rainfall. J. Clim., 30, 4267–4281, 795 

https://doi.org/10.1175/JCLI-D-16-0546.1. 796 

Lin, J. L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 797 

climate models. Part I: Convective signals. J. Clim., 19, 2665–2690, 798 

https://doi.org/10.1175/JCLI3735.1. 799 

https://doi.org/10.1007/s00382-015-2614-1
https://doi.org/10.1175/JCLI3735.1


36 

 

Loken, E. D., Clark, A. J., Xue, M., and Kong, F. 2017: Comparison of Next-Day 800 

Probabilistic Severe Weather Forecasts from Coarse- and Fine-Resolution 801 

CAMs and a Convection-Allowing Ensemble, Weather and Forecasting, 32(4), 802 

1403-1421 803 

Love, B. S., A. J. Matthews, and G. M. S. Lister, 2011: The diurnal cycle of 804 

precipitation over the Maritime Continent in a high-resolution atmospheric 805 

model. Q. J. R. Meteorol. Soc., 137, 934–947, https://doi.org/10.1002/qj.809. 806 

Matsumoto, J., and Coauthors, 2017: An overview of the Asian Monsoon Years 2007-807 

2012 (AMY) and multi-scale interactions in the extreme rainfall events over the 808 

Indonesian maritime continent. World Scientific Series on Asia-Pacific Weather 809 

and Climate, Vol. Volume 9 of, World Scientific Publishing Co. Pte Ltd, 365–810 

385. 811 

Met Office, 2010-2020: Iris: A Python library for analysing and visualising 812 

meteorological and oceanographic data sets; v2.4, http://scitools.org.uk/ 813 

Miura, H., M. Satoh, T. Nasuno, A. T. Noda, and K. Oouchi, 2007: A Madden-Julian 814 

oscillation event realistically simulated by a global cloud-resolving model. 815 

Science (80-. )., 318, 1763–1765, https://doi.org/10.1126/science.1148443. 816 

Mittermaier, M., N. Roberts, and S. A. Thompson, 2013; A long‐term assessment of 817 

precipitation forecast skill using the Fractions Skill Score. Meteor. Appl. 20, 176-818 

186, https://doi.org/10.1002/met.296 819 

Mohd Nor, M. F. F., C. E. Holloway, and P. M. Inness, 2020: The Role of Local 820 

Orography on the Development of a Severe Rainfall Event over Western 821 

Peninsular Malaysia: A Case Study. Mon. Wea. Rev., 148, 2191–2209, 822 

https://doi.org/10.1126/science.1148443
https://doi.org/10.1002/met.296


37 

 

https://doi.org/10.1175/MWR-D-18-0413.1. 823 

Mori, S., H. Jun-Ichi, M. D. Yamanaka, N. Okamoto, F. Murata, N. Sakurai, and H. 824 

Hashiguchi, 2004: Diurnal Land-Sea Rainfall Peak Migration over Sumatera 825 

Island, Indonesian Maritime Continent, Observed by TRMM Satellite and 826 

Intensive Rawinsonde Soundings. American Meteorological Society, 2021–2039 827 

pp. 828 

Neale, R., and J. Slingo, 2003: The Maritime Continent and Its Role in the Global 829 

Climate: A GCM Study. American Meteorological Society, 834–848 pp. 830 

Pearson, K. J., R. J. Hogan, R. P. Allan, G. M. S. Lister, and C. E. Holloway, 2010: 831 

Evaluation of the model representation of the evolution of convective systems 832 

using satellite observations of outgoing longwave radiation. J. Geophys. Res., 833 

115, D20206, https://doi.org/10.1029/2010JD014265. 834 

——, G. M. S. Lister, C. E. Birch, R. P. Allan, R. J. Hogan, and S. J. Woolnough, 835 

2014: Modelling the diurnal cycle of tropical convection across the ‘grey zone.’ 836 

Q. J. R. Meteorol. Soc., 140, 491–499, https://doi.org/10.1002/qj.2145. 837 

Peatman, S. C., A. J. Matthews, and D. P. Stevens, 2014: Propagation of the Madden-838 

Julian Oscillation through the Maritime Continent and scale interaction with the 839 

diurnal cycle of precipitation. Q. J. R. Meteorol. Soc., 140, 814–825, 840 

https://doi.org/10.1002/qj.2161. 841 

Peatman, S. C., Methven, J. and Woolnough, S. J., 2018: Isolating the effects of 842 

moisture entrainment on convectively coupled equatorial waves in an aquaplanet 843 

GCM. J. Atmos. Sci., 75, 3139-3157. https://doi.org/10.1175/JAS-D-18-0098.1. 844 

https://doi.org/10.1002/qj.2161
http://centaur.reading.ac.uk/view/creators/90006004.html
http://centaur.reading.ac.uk/view/creators/90000334.html
http://centaur.reading.ac.uk/view/creators/90000334.html
http://centaur.reading.ac.uk/view/creators/90000455.html
http://centaur.reading.ac.uk/view/creators/90000455.html
http://centaur.reading.ac.uk/view/creators/90000455.html
http://centaur.reading.ac.uk/view/creators/90000455.html
http://centaur.reading.ac.uk/77851/
http://centaur.reading.ac.uk/77851/
http://centaur.reading.ac.uk/77851/
http://centaur.reading.ac.uk/77851/
http://centaur.reading.ac.uk/77851/


38 

 

——, ——, and ——, 2015: Propagation of the Madden–Julian Oscillation and scale 845 

interaction with the diurnal cycle in a high-resolution GCM. Clim. Dyn., 45, 846 

2901–2918, https://doi.org/10.1007/s00382-015-2513-5. 847 

Porson, A. N., S. Hagelin, D. F. A. Boyd, N. M. Roberts, R. North, S. Webster, and J. 848 

C. Lo, 2019: Extreme rainfall sensitivity in convective‐scale ensemble modelling 849 

over Singapore. Q. J. R. Meteorol. Soc., 145, 3004–3022, 850 

https://doi.org/10.1002/qj.3601. 851 

——, and Coauthors, 2020: Recent upgrades to the Met Office convective‐scale 852 

ensemble: An hourly time‐lagged 5‐day ensemble. Q. J. R. Meteorol. Soc., 853 

qj.3844, https://doi.org/10.1002/qj.3844. 854 

Qian, J. H., 2008: Why precipitation is mostly concentrated over islands in the 855 

maritime continent. J. Atmos. Sci., 65, 1428–1441, 856 

https://doi.org/10.1175/2007JAS2422.1. 857 

Raynaud, L., and F. Bouttier, 2017: The impact of horizontal resolution and ensemble 858 

size for convective-scale probabilistic forecasts. Q. J. R. Meteorol. Soc., 143, 859 

3037–3047, https://doi.org/10.1002/qj.3159. 860 

Rezacova, D., P. Zacharov, and Z. Sokol, 2009: Uncertainty in the area-related QPF 861 

for heavy convective precipitation. Atmos. Res., 93, 238–246, 862 

https://doi.org/10.1016/j.atmosres.2008.12.005. 863 

Roberts, B., I. L. Jirak, A. J. Clark, S. J. Weiss, and J. S. Kain, 2019: Postprocessing 864 

and visualization techniques for convection-allowing ensembles.  Bull. Amer. 865 

Meteor. Soc., 100, 1245-1258. 866 



39 

 

Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall 867 

accumulations from high-resolution forecasts of convective events. Mon. 868 

Weather Rev., 136, 78–97, https://doi.org/10.1175/2007MWR2123.1. 869 

Sato, T., H. Miura, M. Satoh, Y. N. Takayabu, and Y. Wang, 2009: Diurnal cycle of 870 

precipitation in the tropics simulated in a global cloud-resolving model. J. Clim., 871 

22, 4809–4826, https://doi.org/10.1175/2009JCLI2890.1. 872 

Schwartz, C. S., Kain, J. S., Weiss, S. J., Xue, M., Bright, D. R., Kong, F., Thomas, 873 

K. W., Levit, J. J., & Coniglio, M. C. 2009: Next-Day Convection-Allowing 874 

WRF Model Guidance: A Second Look at 2-km versus 4-km Grid Spacing, 875 

Monthly Weather Review, 137(10), 3351-3372 876 

Schwartz, C. S., G. S. Romine, K. R. Smith, and M. L. Weisman, 2014: 877 

Characterizing and optimizing precipitation forecasts from a convection-878 

permitting ensemble initialized by a mesoscale ensemble kalman filter. Weather 879 

Forecast., 29, 1295–1318, https://doi.org/10.1175/WAF-D-13-00145.1. 880 

Schwartz, C. S., G. S. Romine, R. A. Sobash, K. R. Fossell, and M. L. Weisman, 881 

2015: NCAR’s Experimental Real-Time Convection-Allowing Ensemble 882 

Prediction System. Wea. Forecasting, 30, 1645–1654, 883 

https://doi.org/10.1175/WAF-D-15-0103.1. 884 

Schwartz, C. S., G. S. Romine, K. R. Fossell, A. Sobash, and M. L. Weisman. 2017: 885 

Toward 1-km Ensemble Forecasts over Large Domains, Monthly Weather 886 

Review, 145(8), 2943-2969 887 

https://doi.org/10.1175/WAF-D-15-0103.1


40 

 

Schwartz, C. S., and R. A. Sobash 2019: Revisiting Sensitivity to Horizontal Grid 888 

Spacing in Convection-Allowing Models over the Central and Eastern United 889 

States, Monthly Weather Review, 147(12), 4411-4435 890 

Stensrud, D. J., J. Bao, and T. T. Warner, 2000: Using Initial Condition and Model 891 

Physics Perturbations in Short-Range Ensemble Simulations of Mesoscale 892 

Convective Systems, Monthly Weather Review, 128(7), 2077-2107 893 

Sun, X., and Coauthors, 2020: A subjective and objective evaluation of model 894 

forecasts of sumatra squall events. Weather Forecast., 35, 489–506, 895 

https://doi.org/10.1175/WAF-D-19-0187.1. 896 

Supari, F. Tangang, E. Salimun, E. Aldrian, A. Sopaheluwakan, and L. Juneng, 2018: 897 

ENSO modulation of seasonal rainfall and extremes in Indonesia. Clim. Dyn., 51, 898 

2559–2580, https://doi.org/10.1007/s00382-017-4028-8. 899 

Takahashi, H. G., and T. Yasunari, 2008: Decreasing Trend in Rainfall over 900 

Indochina during the Late Summer Monsoon: Impact of Tropical Cyclones, J. 901 

Meteorol. Soc. Jpn., 86, 429-438 902 

Tan, M.L. and Z. Duan, 2017: Assessment of GPM and TRMM Precipitation 903 

Products over Singapore. Remote Sens., 9, 720. 904 

Tan, M.L. and H. Santo, 2018: Comparison of GPM IMERG, TMPA 3B42 and 905 

PERSIANN-CDR satellite precipitation products over Malaysia. Atmos. Res., 906 

202, 63-76. 907 

Tan, J., Huffman, G. J., Bolvin, D. T., & Nelkin, E. J. 2019: Diurnal cycle of IMERG 908 

V06 precipitation. Geophysical Research Letters, 46, 13584– 13592. 909 

https://doi.org/10.1007/s00382-017-4028-8


41 

 

https://doi.org/10.1029/2019GL085395 910 

Villafuerte, M. Q., and J. Matsumoto, 2015: Significant influences of global mean 911 

temperature and ENSO on extreme rainfall in Southeast Asia. J. Clim., 28, 1905–912 

1919, https://doi.org/10.1175/JCLI-D-14-00531.1. 913 

Vincent, C. L., and T. P. Lane, 2018: Mesoscale variation in diabatic heating around 914 

Sumatra, and its modulation with the Madden-Julian oscillation. Mon. Weather 915 

Rev., 146, 2599–2614, https://doi.org/10.1175/MWR-D-17-0392.1. 916 

Vogel, P., P. Knippertz, A. H. Fink, A. Schlueter, and T. Gneiting, 2018: Skill of 917 

global raw and postprocessed ensemble predictions of rainfall over Northern 918 

Tropical Africa. Weather Forecast., 33, 369–388, https://doi.org/10.1175/WAF-919 

D-17-0127.1. 920 

Wang, J., Chen, J., Du, J., Zhang, Y., Xia, Y., & Deng, G., 2018: Sensitivity of 921 

Ensemble Forecast Verification to Model Bias, Mon. Weather Rev., 146, 781-922 

796 923 

Wilson, D. R., A. C. Bushell, A. M. Kerr-Munslow, J. D. Price, and C. J. Morcrette, 924 

2008: PC2: A prognostic cloud fraction and condensation scheme. I: Scheme 925 

description, Q. J. Roy. Meteor. Soc., 134, 2093–2107, 926 

https://doi.org/10.1002/qj.333 927 

Woodhams, B. J., C. E. Birch, J. H. Marsham, C. L. Bain, N. M. Roberts, and D. F. A. 928 

Boyd, 2018: What is the added value of a convection-permitting model for 929 

forecasting extreme rainfall over tropical East Africa? Mon. Weather Rev., 146, 930 

2757–2780, https://doi.org/10.1175/MWR-D-17-0396.1. 931 

https://doi.org/10.1175/WAF-D-17-0127.1
https://doi.org/10.1175/WAF-D-17-0127.1


42 

 

Wu, P., M. Hara, J. Hamada, M. D. Yamanaka, and F. Kimura, 2009: Why a Large 932 

Amount of Rain Falls over the Sea in the Vicinity of Western Sumatra Island 933 

during Nighttime. J. Appl. Meteor. Climatol., 48, 1345–1361, 934 

https://doi.org/10.1175/2009JAMC2052.1. 935 

Wu, P., A. A. Arbain, S. Mori, J. Hamada, M. Hattori, F. Syamsudin, and M. D. 936 

Yamanaka, 2013: The Effects of an Active Phase of the Madden-Julian 937 

Oscillation on the Extreme Precipitation Event over Western Java Island in 938 

January 2013. SOLA, 9, 79–83, https://doi.org/10.2151/sola.2013-018. 939 

Xavier, P., R. Rahmat, W. K. Cheong, and E. Wallace, 2014: Influence of Madden-940 

Julian Oscillation on Southeast Asia rainfall extremes: Observations and 941 

predictability. Geophys. Res. Lett., 41, 4406–4412, 942 

https://doi.org/10.1002/2014GL060241. 943 

Yamanaka, M. D., 2016: Physical climatology of Indonesian maritime continent: An 944 

outline to comprehend observational studies. Atmos. Res., 178–179, 231–259, 945 

https://doi.org/10.1016/j.atmosres.2016.03.017. 946 

Yang, G.-Y., and J. Slingo, 2001: The Diurnal Cycle in the Tropics. American 947 

Meteorological Society, 784–801 pp. 948 

 949 

  950 



43 

 

Region GPM/model 

resolution 

95th pc 99th pc 

Malaysia GPM 1.85 5.62 

2.2 1.49 7.13 

4.5 0.78 6.45 

8.8 0.62 6.04 

8.8 (GA) 1.41 2.78 

Indonesia GPM 1.35 4.76 

2.2 0.52 5.69 

4.5 0.48 5.87 

8.8 0.12 4.21 

8.8 (GA) 1.23 2.57 

Philippines GPM 0.34 2.66 

2.2 0.18 3.21 

4.5 0.27 4.34 

8.8 0.11 2.93 

8.8 (GA) 0.58 2.19 

 951 

Table 1: The average over all lead times of 95th and 99th percentiles for 3-hourly 952 

accumulations of GPM and 2.2 km CP, 4.5 km CP, 8.8km CP, 8.8km GA forecasts for 953 

all three regions (using 2.2 km domains in Fig. 1). All values are converted to rain 954 

rate in mm hr-1.  955 

 956 

  957 
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 958 
Figure 1: Malaysia (black boxes), Indonesia (blue boxes) and Philippines (red boxes) 959 

forecast domains for 2.2 km forecasts (dashed lines) and 4.5 km forecasts (solid 960 

lines). The full domain shows the 8.8 km domain. For analysis, the 8.8 km forecasts 961 

are subset to the relevant smaller regional domains.  962 
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 963 

Figure 2: GPM-IMERG (dashed lines) and 4.5 km forecast (solid lines) 95th 964 

percentile for a) 24-hourly accumulations, b) 3-hourly accumulations and c) mean of 965 

24-hourly precipitation accumulations as a function of forecast lead time. All values 966 

are converted to rain rate in mm hr-1. Values shown here are the thresholds used for 967 

FSS calculation (see section 3). For forecasts the percentile are calculated over all 968 

ensemble members, all forecasts and all gridpoints in the domain. 969 

  970 



46 

 

971 

Figure 3: GPM-IMERG and 4.5 km forecast 95th percentile precipitation for 972 

Malaysia (left panels), Indonesia (centre panels) and Philippines (right panels). The 973 

95th percentile is calculated for 24-hourly accumulations and is displayed as mm hr-1. 974 

Forecast precipitation is shown for lead day 1 (hours 00-24), lead day 3 (hours 48-975 

72) and lead day 5 (hours 96-120).  976 

  977 



47 

 

 978 

Figure 4: Fractions Skill Score (eFSS) of 24-hourly accumulated precipitation 979 

exceeding 95th percentile aggregated over all 4.5 km forecasts in Oct 2018-Mar 2019 980 

as function of spatial scale (x-axis) and lead time (y-axis) for a) Malaysia model 981 

domain, b) Indonesia model domain, and c) Philippines model domain. The red line 982 

shows the eFSS=0.5 “skilful” contour. 983 
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 985 

 986 

Figure 5: GPM-IMERG and 4.5 km forecast 95th percentile precipitation for 987 

Malaysia (left panels), Indonesia (centre panels) and Philippines (right panels). The 988 

95th percentile is calculated for 3-hourly accumulations at 12-15UTC (local evening) 989 

and is displayed as mm hr-1. Forecast precipitation is shown for lead day 1 (hours 12-990 

15), lead day 3 (hours 60-63) and lead day 5 (hours 108-111). 991 
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 993 

Figure 6: eFSS of 3-hourly accumulated precipitation exceeding 95th percentile 994 

aggregated over all 4.5 km forecasts in Oct 2018-Mar 2019 as a function of spatial 995 

scale (x-axis) and lead time (y-axis) for a) Malaysia model domain, b) Indonesia 996 

model domain, and c) Philippines model domain. The red line shows the eFSS=0.5 997 

“skilful” contour for 3-hourly forecasts. The blue line shows the eFSS=0.5 contour 998 

for 3-hourly “shifted forecasts” where the forecast time-stamp has been shifted a day 999 

ahead of observations. The green line shows the FSS=0.5 contour for a persistence 1000 

forecast such that lead time corresponds to the lag of the persistence forecast (see 1001 

methods).  1002 
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 1003 

Figure 7: Localised FSS (LFSS) for the 72 km neighbourhood scale 3-hourly 1004 

accumulated precipitation exceeding 95th percentile aggregated over all 4.5 km 1005 

forecasts in Oct 2018-Mar 2019 for the Malaysia model domain (left panels), the 1006 

Indonesia model domain (centre panels), and Philippines model domain (right 1007 

panels). LFSS is calculated for lead hours 12-15, 60-63 and 108-111. The red line 1008 

shows the LFSS=0.5 contour. 1009 
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 1011 

Figure 8: eFSS calculated using land and ocean points for the 72 km neighbourhood 1012 

scale 3-hourly accumulated precipitation exceeding 95th percentile aggregated over 1013 

all 4.5 km forecasts in Oct 2018-Mar 2019 for a) the Malaysia model domain, b) the 1014 

Indonesia model domain, and c) Philippines model domain. Solid lines show eFSS 1015 

over land and dashed lines show eFSS over ocean. 1016 
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 1018 

Figure 9: Dispersion Fraction Skill Score (dFSS) of 3-hourly accumulated 1019 

precipitation exceeding 95th percentile aggregated over all 4.5 km forecasts in Oct 1020 

2018-Mar 2019 as function of spatial scale (x-axis) and lead time (y-axis) for a) 1021 

Malaysia domain (Note - local time is UTC+8), c) Indonesia domain and e) 1022 

Philippines domain. The red line shows the dFSS=0.5 contour for 3-hourly forecasts. 1023 

The difference between eFSS and dFSS for the same forecasts as in a), c) and e) are 1024 

shown in b), d) and f) such that a negative value indicates the ensemble is under-1025 

spread and a positive value indicates the ensemble is over-spread. 1026 
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 1028 

Figure 10: Fraction Skill Score (a-c) and the difference with the dispersion Fraction 1029 

skill score (d-f) at a spatial scale of 144 km of 3-hourly accumulated precipitation 1030 

exceeding 95th percentile aggregated over all forecasts in Oct 2018-Mar 2019 as a 1031 

function of lead time (x-axis) for a) & d) Malaysia model domain, b) & e) Indonesia 1032 

model domain, and c) & f) Philippines model domain. The color of the lines indicates 1033 

the type of forecast; 2.2 km CP (black), 4.5 km CP (blue), 8.8 km CP (red), and 8.8 1034 

km GA (green). Horizontal dashed line in a)-c) indicates a skilful forecast 1035 

(eFSS>0.5). In d)-f) negative values indicated an under-spread ensemble, positive 1036 
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values indicate an over-spread ensemble. Analysis in d)-f) is performed over a 1037 

subregion of the stated 2.2 km region (see figure discussion). 1038 


