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Abstract 32 

This work studies nonhydrostatic effects (NHE) on the momentum flux of orographic 33 

gravity waves (OGWs) forced by isolated three-dimensional orography. Based on linear wave 34 

theory, an asymptotic expression for low horizonal Froude number (𝐹𝑟 =
√𝑈2+(𝛾𝑉)2

𝑁𝑎
 where (U, V) 35 

is the mean horizontal wind, γ and a are the orography anisotropy and half-width and N is the 36 

buoyancy frequency) is derived for the gravity wave momentum flux (GWMF) of vertically-37 

propagating waves. According to this asymptotic solution, which is quite accurate for any value of 38 

Fr, NHE can be divided into two terms (NHE1 and NHE2). The first term contains the high-39 

frequency parts of the wave spectrum that are often mistaken as hydrostatic waves, and only 40 

depends on Fr. The second term arises from the difference between the dispersion relationships of 41 

hydrostatic and nonhydrostatic OGWs. Having an additional dependency on the horizontal wind 42 

direction and orography anisotropy, this term can change the GWMF direction. Examination of 43 

NHE for OGWs forced by both circular and elliptical orography reveals that the GWMF is reduced 44 

as Fr increases, at a faster rate than for two-dimensional OGWs forced by a ridge. At low Fr, the 45 

GWMF reduction is mostly attributed to the NHE2 term, whereas the NHE1 term starts to 46 

dominate above about Fr = 0.4. The behavior of NHE is mainly determined by Fr, while horizontal 47 

wind direction and orography anisotropy play a minor role. Implications of the asymptotic GWMF 48 

expression for the parameterization of nonhydrostatic OGWs in high-resolution and/or variable-49 

resolution models are discussed.  50 
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1 Introduction 51 

Orographic gravity waves (OGWs) triggered by stably stratified airflow over topography 52 

have been the subject of many studies over the last century. These waves can propagate upward 53 

and thus have great importance for the large-scale circulation in the middle atmosphere (Fritts and 54 

Alexander 2003). They are also closely related to various severe weather phenomena, like clear 55 

air turbulence (CAT) and downslope windstorms occurring in the troposphere (Smith 1985). Given 56 

that their horizonal spatial scales vary from a few to hundreds of kilometers, OGWs cannot be 57 

fully resolved by numerical weather prediction (NWP) and general circulation models (GCMs). 58 

As a result, the impacts of unresolved OGWs need to be parameterized (Kim et al. 2003). 59 

Many parameterization schemes have been developed for subgrid-scale OGWs since the 60 

1980s (e.g., Palmer et al. 1986; McFarlane 1987; Kim and Arakawa 1995; Lott and Miller 1997; 61 

Scinocca and MacFarlane 2000; Kim and Doyle 2005), which are now routinely implemented in 62 

various operational models for both weather forecasts and climate simulations. In general, these 63 

schemes share many common assumptions, such as the columnar propagation of OGWs 64 

(Plougonven et al. 2020). They also assume that OGWs are generated in a non-rotating and 65 

hydrostatic framework. A state-of-the-art NWP model, the Integrated Forecasting System (IFS) 66 

model of the European Centre for Medium-range Weather Forecasts (ECMWF), has horizontal 67 

resolutions typically on the order of 10 km. In these circumstances, the non-rotating assumption is 68 

justified because the subgrid-scale OGWs are too short to be affected by the earth’s rotation. 69 

However, this is not the case with the assumption of hydrostatic OGWs. 70 

For small-scale OGWs with horizontal wavenumber comparable to the Scorer parameter 71 

(Scorer 1949), nonhydrostatic effects (NHE) play a key role in controlling the wave dynamics. 72 

Using the stationary phase method, Smith (1979) theoretically studied the far-field OGWs excited 73 
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by a narrow two-dimensional (2D) ridge, which are nonhydrostatic. A “dispersive tail” was found 74 

to trail downstream of the mountain, which was also revealed in a number of numerical simulations 75 

(e.g., Klemp and Durran 1983; Xue and Thorpe 1991; Zängl 2003). This suggests that the wave 76 

energy can, not only propagate upwards as in the case of hydrostatic OGWs, but also disperse 77 

downstream. Owing to nonhydrostatic dispersion, the wave activity above the mountain is weaker 78 

than in its hydrostatic counterpart, leading to a suppression of wave breaking (Zängl 2003). 79 

Nonetheless, NHE on wave breaking can be modified by the interaction between OGWs and 80 

critical levels, as studied in Guarino and Teixeira (2017) for three-dimensional (3D) OGWs excited 81 

in directional shear flows past isolated mountains. These modeling results showed that wave 82 

breaking tends to be inhibited when the background shear is weak while it is enhanced for stronger 83 

wind shear. Besides wave breaking, NHE can also influence the gravity wave momentum flux 84 

(GWMF) at the surface. The high-frequency parts of nonhydrostatic OGWs (i.e., short-wavelength 85 

components) tend to be trapped in the lower troposphere (e.g., Wurtele et al. 1996; Doyle and 86 

Durran 2002). Consequently, the GWMF associated with upward-propagating waves is smaller 87 

than that existing in the hydrostatic case (e.g., Xue et al. 2000).  88 

The GWMF at the surface is a key parameter in the parameterization schemes of OGWs. 89 

It denotes the maximum GWMF that can be absorbed into the mean flow. Changes in the surface 90 

GWMF can affect wave breaking at high altitudes (Xu et al. 2020) and thus redistribute the wave 91 

momentum deposition, impacting the large-scale circulation in the middle atmosphere (Xu et al. 92 

2019). However, NHE are not considered in any OGW parameterization scheme. This is mainly 93 

due to the fact that there is no analytical solution for nonhydrostatic OGWs except for very special 94 

cases. To compensate for this, some OGW parametrization schemes (e.g., Lott and Miller 1997) 95 

filter all orography of horizontal scale smaller than a few km out of the orography that serves as 96 
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input to the OGW parametrization, assuming that it only causes turbulent orographic form drag 97 

(TOFD) which is the object of a separate parametrization (e.g., Beljaars et al. 2004). However, this 98 

filtering procedure is somewhat arbitrary, ignoring the influence of the flow characteristics on how 99 

non-hydrostatic the OGWs are, and how reduced their GWMF is by NHE. In the present study, 100 

this limitation will be overcome.  101 

Smith (1980) proposed solving the wave equation of nonhydrostatic OGWs numerically 102 

using the Fast Fourier Transform (FFT) technique, which is apparently not suitable for the purpose 103 

of OGW parameterization given its computational cost. Alternatively, ray theory has been widely 104 

adopted to obtain the asymptotic solutions of nonhydrostatic OGWs. For instance, Smith (1979) 105 

derived the far-field approximation of 2D nonhydrostatic OGWs, while Marks and Eckermann 106 

(1995) developed a ray-tracing model for 3D nonhydrostatic gravity waves in a rotating, stratified 107 

and fully compressible atmosphere. Standard ray theory often utilizes the stationary-phase method 108 

and the asymptotic solution is expressed in spatial coordinates (Shutts 1998). This spatial-ray 109 

solution is inaccurate directly over the mountain because of the presence of ray caustics there. To 110 

overcome this problem, Broutman et al. (2002) expressed the ray solution in the wavenumber 111 

rather than spatial domain, i.e., Maslov’s method. This eliminates the caustics over the mountain 112 

because rays in the spectral domain are well separated. Broutman et al. (2003) further extended 113 

the so-called Fourier-ray solution to accommodate nonhydrostatic OGWs, which showed good 114 

agreement with numerical simulations. Nonetheless, the Fourier-ray solution also has caustics at 115 

the buoyancy-frequency turning point for nonhydrostatic waves. Later, Pulido and Rodas (2011) 116 

developed a higher-order ray approximation method, i.e., the Gaussian beam approximation 117 

(GBA), for OGWs generated in vertically sheared flows. In the standard ray theory, each ray only 118 

consists of a single monochromatic wavenumber (i.e., the characteristic wavenumber). On the 119 
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contrary, the GBA uses a bundle of rays centered at the characteristic wavenumber (i.e., Gaussian 120 

beams) for each ray, and considers diffractive effects. Therefore, the GBA solution is well defined 121 

even at caustics. However, all these studies focused on the wave fields rather than on the GWMF 122 

and hence OGW parameterization. Based on the GBA, Xu et al. (2017a, 2018) revised a traditional 123 

OGW parameterization scheme by explicitly incorporating the horizontal propagation (e.g., 124 

Eckermann et al. 2015; Ehard et al. 2017) and directional absorption (e.g., Shutts 1995; Xu et al. 125 

2012; Teixeira and Miranda 2009; Teixeira and Yu 2014) of OGWs. The revised scheme was 126 

implemented into the global Weather Research and Forecasting (WRF) model, and helped improve 127 

the simulation of the stratospheric polar-night jet in the Northern Hemisphere (Xu et al. 2019).  128 

Compared with the traditional parameterization schemes of OGWs, ray-tracing based 129 

schemes have to keep track of a number of rays, which requires a significant amount of 130 

computation (e.g., Song and Chun 2008; Amemiya and Sato 2016). This approach is thus not 131 

suitable for operational use. Teixeira et al. (2008, hereafter T08) studied the surface GWMF 132 

associated with vertically-propagating OGWs produced by nonhydrostatic and rotating flow over 133 

a 2D ridge. Instead of calculating the GWMF numerically, an asymptotic expression was derived 134 

by using Taylor expansion for weakly-nonhydrostatic and weakly-rotating conditions. Fortuitously, 135 

the asymptotic expansion was found to be fairly accurate even for nonhydrostatic inertio-gravity 136 

waves, i.e., when the nonhydrostatic or rotation effects were not weak. The analytical form of this 137 

asymptotic expression of GWMF makes it promising for practical use in OGW parameterizations 138 

in numerical models. However, T08 only considered 2D OGWs forced by a ridge, while subgrid-139 

scale OGWs are intrinsically 3D (Lott and Miller 1997; Kim and Doyle 2005). In this work, an 140 

asymptotic expression will be derived for 3D GWMF to accommodate the parameterization of 3D 141 
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nonhydrostatic OGWs. This provides a physically-based, flow-dependent, alternative to simply 142 

filtering out the GWMF associated with waves shorter than a prescribed scale. 143 

The rest of the paper is organized as follows. Section 2 presents the expression for surface 144 

GWMF of 3D nonhydrostatic OGWs from linear mountain wave theory. An asymptotic solution 145 

is derived in section 3 for the linear nonhydrostatic GWMF associated with vertically-propagating 146 

OGWs. The behavior of this GWMF solution is studied for both isotropic and elliptical mountains 147 

in section 4. Finally, the paper is summarized and discussed in section 5. 148 

 149 

2 Linear theory of nonhydrostatic OGWs 150 

In the case of steady, adiabatic, inviscid, and Boussinesq flow, the governing equation for 151 

the perturbed vertical velocity of gravity waves in spectral space is 152 

𝜕2𝑤̂

𝜕𝑧2 + [
𝑁2𝐾2

𝐷̂(𝑧)2 −
1

𝐷̂(𝑧)

𝜕2𝐷̂(𝑧)

𝜕𝑧2 − 𝐾2] 𝑤̂ = 0,     (1) 153 

where N is the Brunt-Väisälä frequency,  𝐾 = √𝑘2 + 𝑙2  is the magnitude of horizontal 154 

wavenumber vector K = (k, l), and 𝐷̂(𝑧) = 𝐕(𝑧) ∙ 𝐊 = 𝑈(𝑧)𝑘 + 𝑉(𝑧)𝑙 , with 𝐕(𝑧)  being a 155 

horizontally uniform mean flow. The above equation is similar to Eq. (9) in Xu et al. (2012) except 156 

for the last term K2 within the brackets, which denotes the NHE. The Earth’s rotation is neglected 157 

because we only consider nonhydrostatic OGWs forced by relatively narrow orography. 158 

In the parameterization schemes of OGWs, the mean flow is assumed to be constant when 159 

calculating the surface GWMF (e.g., Lott and Miller 1997), although vertical wind shear (either 160 

unidirectional or directional) definitely influences the GWMF (e.g., Grubišić et al. 1997; Teixeira 161 

et al. 2004; Turner et al. 2019; Xu et al. 2020). Herein, we also make this assumption, to be 162 
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consistent with existing parameterization schemes. For constant wind, i.e., 𝐕(𝑧) = 𝐕𝟎 =163 

(𝑈0, 𝑉0),Eq. (1) simplifies to   164 

𝜕2𝑤̂

𝜕𝑧2 + 𝑚2𝑤̂ = 0,      (2) 165 

where 𝑚2 =
𝑁2𝐾2

𝐷̂0
2 − 𝐾2  is the squared vertical wavenumber, and 𝐷̂0 = 𝐕𝟎 ∙ 𝐊 = 𝑈0𝑘 + 𝑉0𝑙 =166 

|𝐕𝟎|𝐾𝑐𝑜𝑠(𝜑 − 𝜓0), with 𝜑 and 𝜓0 being the directions of K and 𝐕𝟎 respectively. For vertically-167 

propagating OGWs the magnitude of the horizontal wavenumber should be smaller than 168 

|
𝑁

𝐕𝟎cos(𝜑−𝜓0)
|. Otherwise, the vertical wavenumber will be imaginary, indicating evanescent waves 169 

that decay exponentially with height. 170 

Under the free-slip condition at the bottom boundary, i.e., 𝑤(𝑧 = 0) =  𝐕𝟎 ∙ ∇ℎ(𝑥, 𝑦), the 171 

vertical velocity of upward-propagating OGWs can be determined as 172 

𝑤̂(𝑧) = 𝑖𝐷̂0ℎ̂(𝑘, 𝑙)𝑒𝑖𝑚𝑧 ,      (3) 173 

where ℎ̂(𝑘, 𝑙) is the 2D Fourier transform of the terrain elevation ℎ(𝑥, 𝑦). In idealized studies of 174 

OGWs and their parameterizations (e.g., Phillips 1984; Lott and Miller 1997; Teixeira and 175 

Miranda 2006), elliptical bell-shaped mountains are often adopted, a convenient example of which 176 

is: 177 

ℎ(𝑥, 𝑦) = ℎ0[1 + (𝑥/𝑎)2 + (𝑦/𝑏)2]−3/2,     (4) 178 

where h0 is the mountain amplitude, and a and b are the mountain half widths in the x and y 179 

directions, respectively. The horizontal aspect ratio (i.e., anisotropy) of the elliptical terrain is 180 

quantified by 𝛾 =
𝑎

𝑏
. The 2D Fourier transform of the terrain elevation is given by 181 

ℎ̂(𝑘, 𝑙) =
ℎ0𝑎𝑏

2𝜋
𝑒−√𝑎2𝑘2+𝑏2𝑙2

      (5) 182 

and the GWMF at the surface is equal to 183 
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𝛕 = −𝜌̅ ∫ ∫ 𝐯′𝑤′𝑑𝑥𝑑𝑦
+∞

−∞

+∞

−∞
.       (6) 184 

Here 𝜌̅ is the background air density, and 𝐯′ = (𝑢′, 𝑣′) and 𝑤′ are the perturbed horizontal and 185 

vertical velocities in physical space, respectively. On substitution of the 2D Fourier transforms of 186 

𝐯′ and 𝑤′ into the above equation and using the polarization relation between 𝐯′ and 𝑤′, i.e., 𝐯̂ =187 

𝑖
𝐊

𝐾𝟐

𝜕𝑤̂

𝜕𝑧
 (see the appendix of Xu et al. 2017b), one can readily obtain 188 

𝛕 = 4𝜋2𝜌̅ ∫ ∫
𝐊

𝐾𝟐 ℑ (
𝜕𝑤̂

𝜕𝑧
𝑤̂∗) 𝑑𝑘𝑑𝑙

+∞

−∞

+∞

−∞
,     (7) 189 

where ℑ(∙) denotes the imaginary part of a complex number and the asterisk indicates complex 190 

conjugate. 191 

For the sake of computational convenience, elliptical polar coordinates are introduced, that 192 

is, 193 

𝑘̃ = 𝑎𝑘 = 𝐾̃cos𝜙,  𝑙 = 𝑏𝑙 = 𝐾̃sin𝜙.      (8) 194 

In this situation, the terrain spectrum has a simple form that only depends on 𝐾̃, i.e., 195 

ℎ̂(𝐾̃) =
ℎ0𝑎𝑏

2𝜋
𝑒−𝐾̃.     (9) 196 

Consequently, the GWMF can be expressed as 197 

𝛕 =
8𝜋2𝜌̅

𝑏
∫ ∫ (cos𝜙, 𝛾sin𝜙)(cos2𝜙 + 𝛾2sin2𝜙)−1ℑ (

𝜕𝑤̂

𝜕𝑧
𝑤̂∗) 𝑑𝐾̃𝑑𝜙

∞

0

𝜋

0
.  (10) 198 

Substituting Eqs. (3) and (9) into the above equation yields 199 

𝛕 = Π ∫ ∫ (cos𝜙, 𝛾sin𝜙)
cos(𝜙−𝜒)

√cos2𝜙+𝛾2sin2𝜙
√1 − [𝐹𝑟 cos(𝜙 − 𝜒)𝐾̃]

2
𝐾̃2𝑒−2𝐾̃𝑑𝐾̃𝑑𝜙

[𝐹𝑟 cos(𝜙−𝜒)]−1

0

𝜋

0
,200 

 (11) 201 

where Π = 2𝜌̅𝑁ℎ0
2𝑏|𝐕̃0| and 𝜒 = atan (

𝛾𝑉0

𝑈0
)  . Note that 𝜒  is the direction of  𝐕̃0 = (𝑈0, 𝛾𝑉0), 202 

which is similar to the actual wind V0 but with the y velocity component scaled by the terrain 203 

anisotropy. Only in the case of isotropic terrain (i.e., 𝛾 = 1) or when the horizontal wind is aligned 204 
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with the main axes of the orography (i.e., U0 = 0 or V0 = 0) is 𝜒 equal to the actual wind direction. 205 

For simplicity, it is still called the horizontal wind direction hereafter, unless otherwise stated.  206 

The non-dimensional parameter Fr is defined as 𝐹𝑟 =
|𝐕̃0|

𝑁𝑎
, which represents a measure of 207 

NHE. It is similar to the traditional Froude number (𝐹𝑟 =
|𝐕|

𝑁ℎ0
) that quantifies the nonlinearity of 208 

OGWs (e.g., Miranda and James 1992), but with the mountain amplitude replaced by the mountain 209 

width. It is thus called horizonal Froude number hereafter. Physically, the horizontal Froude 210 

number can be viewed as the ratio between the period of buoyancy oscillation (1/N) and the 211 

advection time of airflow past the mountain (𝑎/|𝐕̃0|). In the limit 𝐹𝑟 → 0, i.e., slow airflow and/or 212 

a broad mountain, the OGWs are predominantly hydrostatic. As Fr increases, NHE are more and 213 

more important. In the limit 𝐹𝑟 → ∞, the airflow can quickly traverse the mountain, with no 214 

internal OGWs excited. 215 

In Eq. (11) the upper limit of the integral over 𝐾̃ is [𝐹𝑟 cos(𝜙 − 𝜒)]−1, which indicates the 216 

contribution to the GWMF coming from internal OGWs, because evanescent waves produce zero 217 

GWMF. This upper limit depends on the directions of both the mean flow and the horizontal 218 

wavenumber. To facilitate the deduction of the asymptotic GWMF expression (see section 3), this 219 

upper limit is set to 𝐹𝑟−1, i.e., 220 

𝛕trunc = Π ∫ ∫ (cos𝜙, 𝛾sin𝜙)
cos(𝜙−𝜒)

√cos2𝜙+𝛾2sin2𝜙
√1 − [𝐹𝑟 cos(𝜙 − 𝜒)𝐾̃]

2
𝐾̃2𝑒−2𝐾̃𝑑𝐾̃𝑑𝜙

𝐹𝑟−1

0

𝜋

0
.221 

 (12) 222 

This corresponds to an artificial truncation of waves with 𝐾̃ between 𝐹𝑟−1 and [𝐹𝑟 cos(𝜙 − 𝜒)]−1. 223 

The latter value can go up to infinity when cos(𝜙 − 𝜒) → 0. Nonetheless, as will be shown below, 224 

these high-frequency waves only give a weak contribution to the total GWMF. 225 

 226 
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3 Asymptotic solution 227 

Generally, a closed analytical form for Eq. (12) does not exist, and the GWMF must be 228 

evaluated by numerical integration. Yet an asymptotic solution can be derived for weakly 229 

nonhydrostatic OGWs at small Fr (see T08). In the limit 𝐹𝑟 → 0, the nonhydrostatic term in Eq. 230 

(12) can be approximated by   231 

√1 − [𝐹𝑟 cos(𝜙 − 𝜒)𝐾̃]
2

≈ 1 −
1

2
𝐹𝑟2cos2(𝜙 − 𝜒)𝐾̃2,    (13) 232 

based upon a Taylor series expansion around Fr = 0 up to first order. On substitution of Eq. (13) 233 

into (12), the asymptotic GWMF (𝛕𝑎𝑠𝑦) is given by the sum of 𝛕0, 𝛕𝑎𝑠𝑦1, and 𝛕𝑎𝑠𝑦2, as follows 234 

𝛕0 = Π ∫ (cos𝜙, 𝛾sin𝜙)
cos(𝜙−𝜒)

√cos2𝜙+𝛾2sin2𝜙
(∫ 𝐾̃2𝑒−2𝐾̃𝑑𝐾̃

∞

0
)𝑑𝜙

𝜋

0
,   (14a) 235 

𝛕𝑎𝑠𝑦1 = −Π ∫ (cos𝜙, 𝛾sin𝜙)
cos(𝜙−𝜒)

√cos2𝜙+𝛾2sin2𝜙
(∫ 𝐾̃2𝑒−2𝐾̃𝑑𝐾̃

∞

𝐹𝑟−1 )𝑑𝜙
𝜋

0
,   (14b) 236 

𝛕𝑎𝑠𝑦2 = −
1

2
𝐹𝑟2Π ∫ (cos𝜙, 𝛾sin𝜙)

cos3(𝜙−𝜒)

√cos2𝜙+𝛾2sin2𝜙
(∫ 𝐾̃4𝑒−2𝐾̃𝑑𝐾̃

𝐹𝑟−1

0
) 𝑑𝜙

𝜋

0
, (14c) 237 

with 𝛕0 = (𝜏0𝑥, 𝜏0𝑦) denoting the GWMF of hydrostatic OGWs. In deriving these equations, we 238 

have used ∫ 𝐾̃2𝑒−2𝐾̃𝑑𝐾̃
𝐹𝑟−1

0
= ∫ 𝐾̃2𝑒−2𝐾̃𝑑𝐾̃

∞

0
− ∫ 𝐾̃2𝑒−2𝐾̃𝑑𝐾̃

∞

𝐹𝑟−1 . Using integration by parts, it 239 

is easy to show that 240 

∫ 𝐾̃2𝑒−2𝐾̃𝑑𝐾̃
∞

0
=

1

4
,           (15a) 241 

∫ 𝐾̃2𝑒−2𝐾̃𝑑𝐾̃
∞

𝐹𝑟−1 =
1

4
(2𝐹𝑟−2 + 2𝐹𝑟−1 + 1)𝑒−2𝐹𝑟−1

=
1

4
𝐼2(𝐹𝑟),     (15b) 242 

∫ 𝐾̃4𝑒−2𝐾̃𝑑𝐾̃
𝐹𝑟−1

0
=

1

4
[3 − (2𝐹𝑟−4 + 4𝐹𝑟−3 + 6𝐹𝑟−2 + 6𝐹𝑟−1 + 3)𝑒−2𝐹𝑟−1

] =
1

4
𝐼4(𝐹𝑟). (15c) 243 

The I2 term receives contributions from wavenumbers ranging from 𝐾̃ = 𝐹𝑟−1 to 𝐾̃ = ∞. The 244 

largest contribution of the integrand comes from 𝐾̃ = 1  (see the solid line in Fig. 1), which 245 

corresponds to the typical horizontal scale of the orography. On the contrary, the I4 term is made 246 
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up of wavenumbers in the range between 𝐾̃ = 0 and 𝐾̃ = 𝐹𝑟−1, with the largest contribution from 247 

the integrand being shifted to a higher wavenumber 𝐾̃ = 2 (i.e., half the orography scale; see the 248 

dashed line in Fig. 1). The response decays rapidly away from 𝐾̃ = 1 for I2 and 𝐾̃ = 2 for I4, 249 

especially towards the high-wavenumber tail of the spectrum (i.e., high-frequency waves). It is 250 

noteworthy that this decay depends crucially on the exponential that results directly from the 251 

Fourier transform of the terrain elevation, but any smooth topography will have a spectrum that 252 

decays towards high wavenumbers (albeit in different ways). Substitution of Eq. (15) into (14) 253 

yields 254 

𝛕0 =
Π

4
∫ (cos𝜙, 𝛾sin𝜙)

cos(𝜙−𝜒)

√cos2𝜙+𝛾2sin2𝜙
𝑑𝜙

𝜋

0
,    (16a) 255 

𝛕𝑎𝑠𝑦1 = −𝐼2(𝐹𝑟)𝛕0,       (16b) 256 

𝛕𝑎𝑠𝑦2 = −
1

2
𝐹𝑟2𝐼4(𝐹𝑟)[𝑅𝑥(𝛾, 𝜒)𝜏0𝑥, 𝑅𝑦(𝛾, 𝜒)𝜏0𝑦],   (16c) 257 

where 258 

𝑅𝑥(𝛾, 𝜒) =

∫
cos𝜙cos3(𝜙−𝜒)

√cos2𝜙+𝛾2sin2𝜙

𝑑𝜙
𝜋

0

∫
cos𝜙cos(𝜙−𝜒)

√cos2𝜙+𝛾2sin2𝜙

𝑑𝜙
𝜋

0

,    (17a) 259 

 𝑅𝑦(𝛾, 𝜒) =

∫
sin𝜙cos3(𝜙−𝜒)

√cos2𝜙+𝛾2sin2𝜙

𝑑𝜙
𝜋

0

∫
sin𝜙cos(𝜙−𝜒)

√cos2𝜙+𝛾2sin2𝜙

𝑑𝜙
𝜋

0

.    (17b) 260 

𝛕𝑎𝑠𝑦1 is anti-parallel to 𝛕0, with its magnitude controlled by the I2 term.  𝛕𝑎𝑠𝑦2 is more complicated, 261 

depending not only on Fr but also on 𝛾 and 𝜒. Given the difference between Rx and Ry, 𝛕𝑎𝑠𝑦2 may 262 

be misaligned with 𝛕0. This suggests that NHE can change the direction of the GWMF as well as 263 

its magnitude. 264 



 

 13 

In order to better understand the NHE, they are quantified by the ratio between the 265 

asymptotic and hydrostatic GWMFs, i.e., 266 

𝜏̃𝑥(𝐹𝑟, 𝛾, 𝜒) =
𝜏𝑎𝑠𝑦𝑥

𝜏𝑥0
= 1 − 𝐼2(𝐹𝑟) −

1

2
𝐹𝑟2𝐼4(𝐹𝑟)𝑅𝑥(𝛾, 𝜒),   (18a) 267 

𝜏̃𝑦(𝐹𝑟, 𝛾, 𝜒) =
𝜏𝑎𝑠𝑦𝑦

𝜏𝑦0
= 1 − 𝐼2(𝐹𝑟) −

1

2
𝐹𝑟2𝐼4(𝐹𝑟)𝑅𝑦(𝛾, 𝜒).   (18b) 268 

The second term on the right-hand-side (RHS) of Eq. (18) is related to 𝛕𝑎𝑠𝑦1 (hereafter, NHE1 for 269 

short), which only depends on the horizontal Froude number. It denotes the wave components that 270 

are mistaken as vertically-propagating internal waves in the hydrostatic approximation, but are 271 

actually evanescent waves. The third term arises from 𝛕𝑎𝑠𝑦2 (hereafter, NHE2 for short), which is 272 

attributed to the difference between the dispersion relationships of hydrostatic and nonhydrostatic 273 

OGWs, i.e., the K2 term within the brackets of Eq. (1). As noted above, NHE2 can affect both the 274 

magnitude and direction of the GWMF. 275 

The above asymptotic expressions were derived for weakly nonhydrostatic OGWs. In the 276 

limit 𝐹𝑟 → 0, they simplify to  277 

𝜏̃𝑥(𝐹𝑟 → 0, 𝛾, 𝜒) = 1 −
3

2
𝑅𝑥(𝛾, 𝜒)𝐹𝑟2,     (19a) 278 

𝜏̃𝑦(𝐹𝑟 → 0, 𝛾, 𝜒) = 1 −
3

2
𝑅𝑦(𝛾, 𝜒)𝐹𝑟2.     (19b) 279 

As will be shown in section 4, the relative difference between the asymptotic and exact GWMFs 280 

increases as the horizontal Froude number increases. Therefore, the asymptotic GWMF at 𝐹𝑟 →281 

∞ provides an estimate of the upper bound of the bias. Expanding the 𝑒−2𝐹𝑟−1
term in Eq. (18) as 282 

𝐹𝑟 → ∞ using Taylor series, one can readily find that 283 

𝜏̃𝑥(𝐹𝑟 → ∞, 𝛾, 𝜒) = [
4

3
−

2

5
𝑅𝑥(𝛾, 𝜒)] 𝐹𝑟−3,     (20a) 284 

𝜏̃𝑦(𝐹𝑟 → ∞, 𝛾, 𝜒) = [
4

3
−

2

5
𝑅𝑦(𝛾, 𝜒)] 𝐹𝑟−3.     (20b) 285 
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At this highly-nonhydrostatic limit, the GWMF becomes extremely small (proportional to 𝐹𝑟−3), 286 

given the trivial contribution from very small-scale OGWs (see Fig. 1). This result is not only 287 

qualitatively correct, given that, without adopting the approximation expressed by Eq. (13), the 288 

drag would also decrease to zero at high Fr, but even approximately quantitatively correct, as will 289 

be shown next. 290 

 291 

4 Results 292 

In this section, the NHE will be firstly studied for the simple case of a circular mountain, 293 

i.e., 𝛾 = 1. Then we will investigate the more general case of elliptical mountains with 𝛾 ≠ 1. In 294 

the latter case, the mean flow can be either parallel or oblique to the main axes of the mountain, 295 

which will be examined separately. These variants will henceforth be called “parallel flow” and 296 

“oblique flow”, for short. 297 

4.1 Isotropic terrain 298 

For isotropic terrain, without loss of generality, the horizontal wind direction can be set to 299 

𝜒 = 0 for simplicity, i.e., V0 = (U0, 0). In this case, 𝜏𝑥0 =
π

4
𝜌̅𝑁ℎ0

2𝑎𝑈0, 𝜏𝑦0 = 0, 𝑅𝑥(1, 0) =
3

4
, 300 

𝑅𝑦(1, 0) = 0, and Eq. (18) simplifies to 301 

𝜏̃𝑐(𝐹𝑟) = 1 − 𝐼2(𝐹𝑟) −
3

8
𝐹𝑟2𝐼4(𝐹𝑟)   302 

= 1 −
9

8
𝐹𝑟2 + 𝑒−2𝐹𝑟−1

(−
5

4
𝐹𝑟−2 −

1

2
𝐹𝑟−1 +

5

4
+

9

4
𝐹𝑟 +

9

8
𝐹𝑟2),  (21) 303 

where the subscript “c” indicates circular terrain. Clearly, 𝜏̃𝑐 only depends on the horizonal Froude 304 

number. 305 

The variation of 𝜏̃𝑐 with the horizontal Froude number is depicted in Fig. 2. For comparison, 306 

the scaled asymptotic GWMF in the case of 2D ridge is also shown, which is expressed as follows 307 

[cf. Eq. (16) in T08] 308 
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𝜏̃2𝐷(𝐹𝑟) =
𝜏𝑎𝑠𝑦_2𝐷

𝜏0_2𝐷
= 1 −

3

4
𝐹𝑟2 + 𝑒−2𝐹𝑟−1

(−𝐹𝑟−1 +
1

2
+

3

2
𝐹𝑟 +

3

4
𝐹𝑟2).  (22) 309 

It is clear that NHE weaken the GWMF. For both 2D and 3D OGWs, the asymptotic GWMFs are 310 

in good agreement with their exact counterparts which are obtained via numerical integration of 311 

Eq. (11) in this work and Eq. (10) in T08, respectively. The GWMF is only slightly overestimated 312 

by Eq. (22) for 2D flow and underestimated by Eq. (12) with respect to Eq. (11) for 3D flow for 313 

moderate Fr. This justifies the choice of  𝐹𝑟−1 as the upper limit of the integral in Eq. (11), given 314 

the simplifications this entails. Although adoption of the asymptotic approximation for the GWMF 315 

slightly improves the agreement with Eq. (11), the GWMF is still underestimated by a larger 316 

fraction than it is overestimated in the 2D case. Note that 𝜏̃𝑐  is always smaller than its 2D 317 

counterpart. In the limit 𝐹𝑟 → 0, 𝜏̃𝑐(𝐹𝑟) tends asymptotically to 1 −
9

8
𝐹𝑟2  while 𝜏̃2𝐷  varies as 318 

1 −
3

4
𝐹𝑟2. In the opposite limit 𝐹𝑟 → ∞, 𝜏̃𝑐 and 𝜏̃2𝐷 tend asymptotically to  319 

𝜏̃𝑐(𝐹𝑟 → ∞) =
31

30
𝐹𝑟−3,     (23) 320 

𝜏̃2𝐷(𝐹𝑟 → ∞) =
3

2
𝐹𝑟−2,     (24) 321 

respectively. 𝜏̃𝑐 is proportional to 𝐹𝑟−3 which decays faster than 𝜏̃2𝐷. As shown by Fig. 2, the way 322 

in which 𝜏̃𝑐 approaches zero as Fr increases is surprisingly accurate (as found in T08 for 𝜏̃2𝐷) 323 

given that the asymptotic approximation was developed for small Fr. 324 

As stated in section 3, the NHE can be decomposed into two terms: NHE1 and NHE2. 325 

Figure 3 displays these two terms as a function of the horizontal Froude number. The magnitude 326 

of NHE1 exhibits an increasing trend with Fr. At lower horizontal Froude numbers (Fr < 0.2), the 327 

NHE1 term is very weak. This is because the lower limit of the integral in Eq. (15b) is given by 328 

𝐹𝑟−1, hence the NHE1 term mainly comes from high-frequency waves which produce negligible 329 

GWMF (Fig. 1). As Fr increases beyond 0.2 (corresponding to a cutoff horizontal wavenumber of 330 
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𝐾̃ = 5), the magnitude of NHE1 term increases rapidly, reaching up to about 0.7 at Fr = 1. As Fr 331 

approaches infinity, this term tends asymptotically to -1. The NHE2 term is jointly determined by 332 

the squared horizontal Froude number (Fr2) and I4 given by Eq. (15c). As the horizontal Froude 333 

number increases, each of these two factors increases and decreases, respectively. The latter effect 334 

is due to the fact that the upper limit of the integral in Eq. (15c) decreases as Fr increases. As a 335 

result, the magnitude of NHE2 firstly increases with Fr, peaking around Fr = 0.48 at a maximum 336 

of about 0.1. It then starts decreasing as the horizontal Froude number increases. It is clear that 337 

NHE2 plays a more important role in the flow regimes with low Fr whereas NHE1 dominates 338 

above about Fr = 0.4. 339 

4.2 Anisotropic terrain: parallel flow 340 

For OGWs generated by elliptical mountains, we firstly study the special case of horizontal 341 

wind parallel to the main axes of the orography, which are assumed to be aligned in the x and y 342 

directions, i.e., 𝜒 = 0 (mean flow along the x axis) or 𝜒 = ±
𝜋

2
 (mean flow along the y axis). In 343 

this situation, 𝛕̃ only depends on the horizontal Froude number and on the terrain anisotropy.  344 

Taking 𝜒 = 0 for example, i.e., V0 = (U0, 0), one obtains that 𝜏𝑦0 = 0, 𝑅𝑦(𝛾, 0) = 0, and 345 

𝑅𝑥0(𝛾) = 𝑅𝑥(𝛾, 0) =

∫
cos4𝜙

√cos2𝜙+𝛾2sin2𝜙

𝑑𝜙
𝜋

0

∫
cos2𝜙

√cos2𝜙+𝛾2sin2𝜙

𝑑𝜙
𝜋

0

.    (25) 346 

Hereafter, the subscript “0” denotes the case with 𝜒 = 0. The black line in Fig. 4 shows the 347 

variation of 𝑅𝑥0(𝛾) with 𝛾. Clearly, 𝑅𝑥0(𝛾) increases as 𝛾 increases (i.e., from a ridge normal to 348 

the flow to a ridge along the flow direction), showing substantial changes (by about 30%) from 349 

𝛾 =
1

10
 to 𝛾 = 10. The fastest variation occurs near 𝛾 = 1. 350 
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To better reveal the influence of terrain anisotropy, the relative variation of 𝜏̃𝑥0(𝛾, 𝐹𝑟) with 351 

respect to 𝜏̃𝑐 is examined, which is defined as 352 

∆𝜏̃𝑥0(𝛾, 𝐹𝑟) =
𝜏̃𝑥0(𝛾,𝐹𝑟)−𝜏̃𝑐(𝐹𝑟)

𝜏̃𝑐(𝐹𝑟)
=

𝜏̃𝑥0(𝛾,𝐹𝑟)

𝜏̃𝑐(𝐹𝑟)
− 1.   (26) 353 

At Fr = 0, ∆𝜏̃𝑥0 is always equal to zero (Fig. 5). As the horizontal Froude number increases, the 354 

∆𝜏̃𝑥0  curves quickly diverge. In the case of mean flow perpendicular to the long axis of the 355 

mountain (𝛾 < 1), ∆𝜏̃𝑥0  is greater than zero, i.e.,  𝜏̃𝑥0(𝛾, 𝐹𝑟) > 𝜏̃𝑐(𝐹𝑟) . This means that the 356 

GWMF is less reduced than in the isotropic case, i.e., weakening of NHE. This is consistent with 357 

the 2D-3D comparison presented in Fig. 2. In contrast, when the mean flow is aligned with the 358 

long axis of the mountain (𝛾 > 1), NHE are enhanced, as suggested by the negative ∆𝜏̃𝑥0. 359 

The ∆𝜏̃𝑥0 curves become more and more flat as the horizontal Froude number increases, 360 

tending asymptotically to their limits at 𝐹𝑟 → ∞, i.e., 361 

 ∆𝜏̃𝑥0(𝛾, 𝐹𝑟 → ∞) =
9

31
[1 −

4

3
𝑅𝑥0(𝛾)],     (27) 362 

which is obtained on substitution of Eqs. (20a) and (23) into Eq. (26). It is clear that the influence 363 

of terrain anisotropy is controlled by 𝑅𝑥0(𝛾). When the mean flow is aligned with the long axis of 364 

the mountain, (the magnitude of) ∆𝜏̃𝑥0 is more notably enhanced than it is suppressed in the case 365 

of mean flow perpendicular to the long axis of the mountain. For instance, at Fr = 1, ∆𝜏̃𝑥0 exceeds 366 

3% at 𝛾 = 8 while it is less than 3% at 𝛾 =
1

8
. This difference is attributed to the asymmetric 367 

distribution of 𝑅𝑥0(𝛾) about 𝛾 = 1 (see the black line in Fig. 4).  368 

While 𝑅𝑥0(𝛾) changes substantially with 𝛾, that is not so much the case of ∆𝜏̃𝑥0. For two 369 

arbitrary 𝛾, say, (𝛾1, 𝛾2), the difference between their ∆𝜏̃𝑥0 gradually saturates as 𝐹𝑟 → ∞, i.e., 370 

∆𝜏̃𝑥0(𝛾1, 𝐹𝑟 → ∞) − ∆𝜏̃𝑥0(𝛾2, 𝐹𝑟 → ∞) =
12

31
[𝑅𝑥0(𝛾2) − 𝑅𝑥0(𝛾1)].  (28) 371 
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This means that the influence of terrain anisotropy on 𝑅𝑥0(𝛾) can be only partially projected onto 372 

∆𝜏̃𝑥0, since the latter is at most 
12

31
≈ 40% of the former. From Eq. (25), 𝑅𝑥0(𝛾) equals 

2

3
 and 1 at 373 

𝛾 = 0 and 𝛾 → ∞, respectively. Bounded by the lower and upper limits of 𝑅𝑥0(𝛾), the variation 374 

of ∆𝜏̃𝑥0 with 𝛾 is thus always smaller than 
12

31
× (1 −

2

3
) =

4

31
≈ 12.9%. When compared to NHE 375 

in the isotropic orography case, i.e., 𝑅𝑥0(1) =
3

4
, the maximum positive and negative differences 376 

are 
12

31
× (1 −

3

4
) =

3

31
≈ 9.7% and 

12

31
× (

2

3
−

3

4
) = −

1

31
≈ −3.2%, respectively. 377 

From the above analysis, we can see that NHE in the parallel-flow case are only weakly 378 

affected by terrain anisotropy. Instead, it is the horizontal Froude number that greatly impacts 𝜏̃𝑥0, 379 

and this occurs both in the cases of circular mountains and 2D ridges (see section 4.1). Physically, 380 

when the mean flow is parallel to the main axis of the elliptical terrain, e.g., when 𝜒 = 0, as studied, 381 

the horizontal Froude number is simplified to 𝐹𝑟 =
|𝐕̃0|

𝑁𝑎
=

𝑈0

𝑁𝑎
. Thus, the terrain width in the cross-382 

flow direction has little contribution to the flow advection time. 383 

4.3 Anisotropic terrain: oblique flow 384 

In this section, the general case of mean flow oblique to the main axes of the elliptical bell-385 

shaped mountain is examined to understand more thoroughly the impacts of terrain anisotropy and 386 

horizontal wind direction on the asymptotic GWMF expression.  387 

In addition to 𝜒 = 0, Figure 4 also shows the variation of 𝑅𝑥(𝛾, 𝜒) as a function of 𝛾 for 388 

three different horizontal wind directions, i.e., 𝜒 =
𝜋

8
, 

𝜋

4
 and 

3𝜋

8
. These wind directions are chosen 389 

in the range of [0,
𝜋

2
), but the same results can be obtained for 𝜒 in the range of [0, −

𝜋

2
). This is 390 

because 𝑅𝑥(𝛾, 𝜒) is symmetric about 𝜒 = 0, i.e., 𝑅𝑥(𝛾, 𝜒) = 𝑅𝑥(𝛾, −𝜒) in accordance with Eq. 391 

(17a). (Note that 𝑅𝑥(𝛾, 𝜒) is ill-defined at 𝜒 = ±
𝜋

2
 where 𝜏𝑥0 vanishes.) The variation of 𝑅𝑦(𝛾, 𝜒) 392 



 

 19 

is not presented herein, but can be inferred from that of 𝑅𝑥(𝛾, 𝜒)  because 𝑅𝑥(𝛾, 𝜒) =393 

𝑅𝑦 (
1

𝛾
,

𝜋

2
− 𝜒). In the situation with 𝜒 =

𝜋

8
, 𝑅𝑥(𝛾, 𝜒) increases as 𝛾 increases, which is similar to 394 

the case with 𝜒 = 0 . When 𝜒  equals 
𝜋

4
 or  

3𝜋

8
, 𝑅𝑥(𝛾, 𝜒) instead decreases as 𝛾  increases. This 395 

suggests a change in the trend of 𝑅𝑥(𝛾, 𝜒) with 𝛾 for a horizontal wind direction between 𝜒 =
𝜋

8
 396 

and 𝜒 =
𝜋

4
, at which 𝑅𝑥(𝛾, 𝜒) should be independent of 𝛾. As can be seen below, this occurs at 397 

𝜒 =
𝜋

6
. 398 

The distribution of 𝑅𝑥(𝛾, 𝜒) in 𝛾-𝜒 parameter space is shown in Fig. 6, with 𝛾 and 𝜒 in the 399 

ranges of [
1

10
, 10] and [0,

𝜋

2
), respectively. 𝑅𝑥(𝛾, 𝜒) is always equal to 

3

4
 at 𝜒 =

𝜋

6
, which can be 400 

obtained analytically from Eq. (17a). Remember that 𝑅𝑥(𝛾, 𝜒) ≡
3

4
 at 𝛾 = 1 as well (see section 401 

4.1). Therefore, the 𝛾-𝜒 space can be divided into four quadrants by the lines 𝜒 =
𝜋

6
 and 𝛾 = 1. In 402 

the third and fourth quadrants (0 ≤ 𝜒 <
𝜋

6
), 𝑅𝑥(𝛾, 𝜒) has an increasing trend with 𝛾. The more the 403 

horizontal wind is aligned with the long axis of the elliptical mountain, the more markedly terrain 404 

anisotropy affects 𝑅𝑥(𝛾, 𝜒). The greatest variation of 𝑅𝑥(𝛾, 𝜒) with 𝛾 (𝑅𝑥0(𝛾 → ∞) − 𝑅𝑥0(𝛾 →405 

0)) occurs at 𝜒 = 0, which takes the value 
1

3
, as derived in section 4.2. In the first and second 406 

quadrants (i.e., 
𝜋

6
< 𝜒 <

𝜋

2
), 𝑅𝑥(𝛾, 𝜒)  decreases instead as 𝛾 increases, and the influence of terrain 407 

anisotropy becomes larger with 𝜒. In the limit of 𝜒 =
𝜋

2
, 𝑅𝑥 (𝛾,

𝜋

2
) is ill-defined, yet it is equivalent 408 

to 𝑅𝑦 (
1

𝛾
, 0)  which is well defined. From Eq. (17b), 𝑅𝑥 (𝛾 → 0,

𝜋

2
) = 𝑅𝑦(𝛾 → ∞, 0) = 1 , and 409 

𝑅𝑥 (𝛾 → ∞,
𝜋

2
) = 𝑅𝑦(𝛾 → 0,0) =

1

3
. As a result, the greatest variation of 𝑅𝑥(𝛾, 𝜒) with 𝛾 is 

2

3
, i.e. 410 

twice that for 𝜒 = 0. Similarly, the greatest variations of 𝑅𝑥(𝛾, 𝜒) with 𝜒 (i.e., variations along the 411 
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vertical rather than horizontal direction in the graph) on the left- and right semi-planes of the 𝛾-𝜒 412 

parameter space are 
1

3
 and 

2

3
, respectively.  413 

As in the parallel-flow case, the relative variation of 𝜏̃𝑥(𝛾, 𝐹𝑟) with respect to 𝜏̃𝑐 is also 414 

examined here, which is defined as 415 

∆𝜏̃𝑥(𝛾, 𝜒, 𝐹𝑟) =
𝜏̃𝑥(𝛾,𝜒,𝐹𝑟)−𝜏̃𝑐(𝐹𝑟)

𝜏̃𝑐(𝐹𝑟)
=

𝜏̃𝑥(𝛾,𝜒,𝐹𝑟)

𝜏̃𝑐(𝐹𝑟)
− 1.   (29) 416 

As 𝐹𝑟 → ∞, 𝜏̃𝑥 tends asymptotically to 417 

𝜏̃𝑥(𝛾, 𝜒, 𝐹𝑟 → ∞) =
9

31
[1 −

4

3
𝑅𝑥(𝛾, 𝑥)].     (30) 418 

For two pairs of (𝛾, 𝜒), e.g., (𝛾1, 𝜒1) and (𝛾2, 𝜒2), the difference between their 𝜏̃𝑥 is  419 

𝜏̃𝑥(𝛾1, 𝜒1, 𝐹𝑟 → ∞) − 𝜏̃𝑥(𝛾2, 𝜒2, 𝐹𝑟 → ∞) =
12

31
[𝑅𝑥(𝛾2, 𝜒2) − 𝑅𝑥(𝛾1, 𝜒1)].   (31) 420 

Again, this means that the influences of terrain anisotropy and horizontal wind direction on 421 

𝑅𝑥(𝛾, 𝜒) have a relatively small impact on 𝜏̃𝑥 . From Fig. 6, the global maximal variation of 422 

𝑅𝑥(𝛾, 𝜒) with 𝛾 and 𝜒 is 
2

3
. Thus, under the influence of both terrain anisotropy and horizontal 423 

wind direction, 𝜏̃𝑥 can change by 
12

31
×

2

3
≈ 25.8% at most as Fr tends to infinity. Compared to the 424 

NHE in the isotropic terrain case, the maximum positive and negative differences are 425 

12

31
× (1 −

3

4
) =

3

31
≈ 9.7% and 

12

31
× (

1

3
−

3

4
) = −

5

31
≈ −16.1%, respectively. At small horizontal 426 

Froude number, the impacts of terrain anisotropy and horizontal wind direction are rather weak, 427 

as will be shown below. 428 

Figure 7 gives the distributions of ∆𝜏̃𝑥 on the 𝛾-𝜒 plane at four different horizontal Froude 429 

numbers: Fr = 0.1, 0.3, 0.5, and 1.0, respectively. Positive ∆𝜏̃𝑥  is found in the first and third 430 

quadrants, indicating an amplification of the NHE compared to the case of isotropic orography. 431 

Conversely, NHE are weakened in the second and fourth quadrants, given the negative values of 432 
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∆𝜏̃𝑥  existing there. At Fr = 0.1 (Fig. 7a) ∆𝜏̃𝑥  is extremely small, implying that the terrain 433 

anisotropy and horizontal wind direction have negligible influence on the NHE. At Fr = 0.3 (Fig. 434 

7b), the impacts of terrain anisotropy and horizontal wind direction increase by more than 10 times 435 

compared to those at Fr = 0.1. When the horizontal Froude number further increases to Fr = 0.5 436 

and 1.0 (Figs. 7c, 7d), there occurs a consistent increase in the magnitude of ∆𝜏̃𝑥, which can reach 437 

up to 0.1 in the first quadrant (i.e., 𝛾 > 1 and 
𝜋

6
< 𝜒 <

𝜋

2
). 438 

Figure 8 displays the variation of 𝜏̃𝑥 as a function of Fr. Two elliptical mountains with 𝛾 =439 

1

8
 (dashed lines) and 𝛾 = 8 (solid lines) are selected, along with two horizontal wind directions 440 

𝜒 =
𝜋

8
 (blue lines) and 𝜒 =

3𝜋

8
 (red lines). From the above analysis, these configurations of terrain 441 

anisotropy and horizontal wind direction tend to have a significant influence on the NHE. However, 442 

as can be seen from Fig. 8, 𝜏̃𝑥 is still mainly determined by Fr. At Fr = 0.1, 𝜏̃𝑥  = 0.99, i.e., the 443 

OGWs are almost purely hydrostatic. As Fr increases, 𝜏̃𝑥 decreases rapidly to about 0.65 at Fr = 444 

0.5, and further reduces to about 0.27 at Fr = 1.0. Compared with the horizontal Froude number, 445 

terrain anisotropy and horizontal wind direction only play a minor role. This is due to the fact that 446 

these two factors only affect the NHE2 term [see Eq. (18)]. At small horizontal Froude number 447 

(Fr < 0.2), the NHE2 term is of greater importance than NHE1 (Fig. 2), but ∆𝜏̃𝑥 is too weak to 448 

exert a profound influence on 𝜏̃𝑥 (Fig. 7a). At moderate to large horizontal Froude number (Fr > 449 

0.4), while ∆𝜏̃𝑥 is significantly enhanced (Figs. 7c, 7d), the NHE2 term is exceeded by NHE1, thus 450 

contributing less to 𝜏̃𝑥. 451 

4.4 Surface pressure perturbation 452 

Theoretically, the GWMF is equal to the pressure drag at the surface (e.g., Teixeira et al. 453 

2004). In this section, the surface pressure perturbations are investigated to help understand the 454 

impact of NHE on the GWMF. Herein, we only focus on the simple case of mean flow over circular 455 
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bell-shaped mountains, because the horizontal wind direction and orography anisotropy play a 456 

minor role on the NHE (as we have just seen). 457 

Figure 9 depicts the distribution of the surface pressure perturbation obtained via numerical 458 

integration of Eqs. (A4). Note that the pressure perturbations are scaled with 𝜌̅𝑁|𝐕̃|ℎ0. At Fr = 459 

0.1, the pressure field (Fig. 9a) shows a left-right anti-symmetric pattern about the orography 460 

center, with positive and negative regions on the windward and leeward slope respectively (Smith 461 

1980; Teixeira et al. 2004). In this weakly nonhydrostatic case, the pressure perturbation mainly 462 

arises from vertically-propagating OGWs, with little contribution from evanescent waves (Figs. 463 

9b, 9c). At Fr = 0.5, however, the surface pressure perturbation ceases to be perfectly anti-464 

symmetric about the mountain center (Fig. 9d). The maximum on the windward slope weakens 465 

slightly as compared to that at Fr = 0.1, while the minimum on the lee slope also weakens notably 466 

and moves downstream. In addition, a secondary pressure minimum occurs near the orography 467 

center. This more complex pressure pattern is due to an enhanced pressure contribution from 468 

evanescent waves (Fig. 9f), which is symmetric about the orography center (and thus produces 469 

zero surface pressure drag). Concurrently, the pressure perturbation associated with vertically-470 

propagating OGWs weakens (Fig. 9e), giving rise to the reduction of GWMF. 471 

Using the Taylor series expansion of the vertical wavenumber at small Fr (expressed by 472 

Eq. (13)), one can also derive an asymptotic expression for the pressure perturbation associated 473 

with vertically-propagating OGWs (see details in Appendix A), which is decomposed into three 474 

parts (namely, p0, p1 and p2) corresponding to 𝛕0, 𝛕𝑎𝑠𝑦1 and 𝛕𝑎𝑠𝑦2, respectively.  475 

Figure 10 shows the distribution of the asymptotic surface pressure perturbation at Fr = 476 

0.1, which is also scaled by 𝜌̅𝑁|𝐕̃|ℎ0. The total asymptotic pressure perturbation (Fig. 10a) agrees 477 

well with that in Fig. 9a. It is dominated by the hydrostatic part (Fig. 10b), because NHE are very 478 
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weak at Fr = 0.1 (see Fig. 2). The maximum (minimum) pressure perturbation occurs about one 479 

half-width away from the orography center, suggesting that the horizontal scale of the dominant 480 

wave field is comparable to that of the mountain. This is consistent with the power spectrum of 𝛕0, 481 

which peaks at 𝐾̃ = 1, i.e., K = a-1 (Fig. 1). The p1 pressure perturbation is extremely small (Fig. 482 

10c), given the small magnitude of 𝛕𝑎𝑠𝑦1 at this low horizontal Froude number (Fig. 3). A wave-483 

train pattern is found both upstream and downstream of the mountain, which can be ascribed to 484 

the cos (
𝜇

𝐹𝑟
) and sin (

𝜇

𝐹𝑟
) terms in Eq. (A9b). This pattern is undiscernible in Fig. 10a because of 485 

its small magnitude. The horizontal wavelength of p1 is very short, since it originates mainly from 486 

the high-frequency part of the wave spectrum [Eq. (A7b)]. Similar to p0, the p2 pressure 487 

perturbation is anti-symmetric about the orography center (Fig. 10d), but with negative (positive) 488 

perturbations on the upslope (downslope) side. Consequently, p2 produces a pressure gradient 489 

force opposed to that of p0, contributing negatively to the total surface pressure drag. Moreover, 490 

the p2 pressure perturbation is mainly confined to the region within one half-width of the mountain 491 

to the orography center. This is also in agreement with the power spectrum of 𝛕𝑎𝑠𝑦2 which peaks 492 

at 𝐾̃ = 2 (Fig. 1). 493 

Figure 11 is similar to Fig. 10, but for Fr = 0.5. Compared to that at Fr = 0.1, the total 494 

pressure perturbation is substantially reduced (Fig. 11a). The pressure perturbation extrema only 495 

correspond to about 70% of those at Fr = 0.1. The scaled p0 (Fig. 11b) is independent of Fr, so it 496 

is exactly the same as in Fig. 10b. The p1 pressure perturbation (Fig. 11c) increases markedly in 497 

magnitude, reaching up to 60% of p0. The p2 pressure perturbation is also enhanced (Fig. 11d). 498 

However, unlike in the case with Fr = 0.1, p2 is smaller than p1. This agrees with the major role 499 

played by the NHE1 term at moderate-to-large horizontal Froude numbers (see Fig. 3). Moreover, 500 

while the p1 and p2 pressure perturbations still display a wave-train pattern upstream and 501 
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downstream of the mountain, their horizontal wavelengths have increased significantly. Taking p1 502 

as an example, the dominant wavelength is approximately twice the orography half-width. This is 503 

because, at Fr = 0.5, p1 is composed of wavenumbers ranging from 𝐾̃ = 2 to ∞ [see Eq. (A7b)]. 504 

In this spectral range, the greatest response of 𝛕𝑎𝑠𝑦1 corresponding to p1 occurs at 𝐾̃ = 2 (Fig. 1). 505 

Owing to the enhanced p1 pressure perturbation, the extrema of the total pressure perturbation 506 

slightly move away from the orography center (Fig. 11a), implying an increase in the dominant 507 

wavelength. This is reasonable, since short waves are removed by the NHE from the range of 508 

waves that contribute to the GWMF. 509 

 510 

5 Summary and discussion 511 

It has been widely recognized that the parameterization of subgrid-scale orographic gravity 512 

waves (OGWs) is essential for accurate numerical weather forecast and climate prediction. Many 513 

efforts have been made to improve the representation of orographic gravity wave momentum flux 514 

(GWMF) and its deposition into the mean flow in numerical models. With the development of 515 

high-resolution global numerical weather prediction (NWP) and general circulation models 516 

(GCMs), the horizontal scale of unresolved OGWs is becoming increasingly small. As a result, 517 

the GWMF can be significantly impacted by nonhydrostatic effects (NHE). However, these effects 518 

are not accounted for in even the state-of-the-art parameterization schemes, since there is in general 519 

no analytical solution for nonhydrostatic OGWs. In some parametrizations (e.g., Lott and Miller 520 

1997), the GWMF reduction that is known to occur for highly non-hydrostatic waves is mimicked 521 

rather artificially by filtering the orography that is fed into the OGW parametrization. The present 522 

study proposes the more physical approach of explicitly evaluating the NHE approximately. 523 
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Using linear gravity wave theory, we have derived an asymptotic solution for the surface 524 

GWMF of 3D OGWs, which is an extension of the 2D asymptotic expression studied in T08. The 525 

intensity of the NHE can be quantified by the non-dimensional parameter called here the horizonal 526 

Froude number, i.e., 𝐹𝑟 =
|𝐕̃0|

𝑁𝑎
. This parameter is akin to the inverse non-dimensional mountain 527 

half width 
𝑁𝑎

𝑈
 used in previous studies (e.g., Durran and Klemp 1983; Xue and Thorpe 1991; Zängl 528 

2003) but with U replaced by 𝐕̃0 = (𝑈0, 𝛾𝑉0). This extended definition is necessary due to the 529 

horizontal anisotropy of the isolated orography that generates the 3D OGWs.  530 

Based upon an asymptotic approach, the NHE are divided into two components (NHE1 531 

and NHE2). The first component accounts for the high-frequency parts of the wave spectrum (i.e., 532 

short waves) that are mistaken as hydrostatic, upward-propagating waves in the hydrostatic 533 

approximation. The GWMF associated with NHE1 is parallel but opposite to the hydrostatic 534 

GWMF. The second component is due to the difference between the dispersion relationships of 535 

hydrostatic and nonhydrostatic OGWs. While NHE1 only depends on the horizontal Froude 536 

number, NHE2 also depends on the terrain anisotropy and horizontal wind direction. In the 537 

presence of NHE, both the magnitude and direction of GWMF can be changed. 538 

The asymptotic GWMF expression derived here was investigated for OGWs forced by both 539 

circular and elliptical mountains for flows with various orientations. In the isotropic orography 540 

case, NHE only depend on the horizontal Froude number, which is the same dependence as in the 541 

2D-ridge case studied by T08. Compared to its 2D counterpart, the 3D GWMF is more strongly 542 

reduced by NHE. Considering the two parts of the NHE, NHE1 is weaker than NHE2 at lower 543 

horizontal Froude number, but its magnitude grows rapidly as the horizontal Froude number 544 

increases. On the contrary, NHE2 firstly increases but then starts decreasing with the horizontal 545 
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Froude number, with this change of trend occurring at about Fr = 0.48. Consequently, NHE1 starts 546 

to be dominant in the reduction of the GWMF above about Fr = 0.4.  547 

For OGWs generated by anisotropic terrain, when the mean flow is perpendicular to the 548 

long axis of the orography (𝛾 < 1 ), the GWMF is less reduced than in the isotropic case, 549 

suggesting a weakening of the NHE. This is consistent with the results of OGWs forced by 2D 550 

ridges. Conversely, NHE are enhanced when the mean flow is parallel to the long axis or the 551 

orography (𝛾 > 1). In the parallel-flow case, the NHE vary by no more than 12.9% with the terrain 552 

anisotropy, and this occurs as the horizontal Froude number tends asymptotically to infinity. Since 553 

this corresponds to a situation in which 𝛕 approaches zero, the relevance of this effect is even more 554 

limited. When the mean flow is oblique to the main axes of the mountain, NHE exhibit a greater 555 

variation under the joint influence of terrain anisotropy and horizontal wind direction, with a 556 

maximum value twice that of the parallel-flow case. Nevertheless, in either case, it is still the 557 

horizontal Froude number that dominates the variation of the NHE. 558 

Given the relatively weak influence of terrain anisotropy and horizontal wind direction on 559 

the NHE, the asymptotic solution of the GWMF for isotropic terrain [i.e., Eq. (21)], which is 560 

simply a function of the horizontal Froude number, may be used to quantify the NHE with a good 561 

accuracy. Benefiting from the analytical form of this expression, the parameterization schemes for 562 

hydrostatic OGWs can be easily extended to nonhydrostatic conditions, which will inevitably 563 

occur in high-resolution NWP and GCMs. It is noteworthy that the horizontal Froude number 564 

depends on the horizontal scale of subgrid-scale orography, which is constrained by the model’s 565 

horizontal resolution. Since the NHE are scale-aware (or scale-dependent), they make the 566 

parametrization itself scale-aware. Recently, variable-resolution numerical models have generated 567 

a growing interest (e.g., Skamarock et al. 2012; Davis et al. 2016; Zhou et al. 2019; Zhang et al. 568 
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2019), as they can significantly reduce the computational costs, while allowing for high-resolution 569 

modelling in areas of specific interest. A nonhydrostatic parameterization scheme will be 570 

particularly useful for models with variable-resolution meshes, as it can adjust the parameterized 571 

GWMF in the fine-resolution regions where NHE are expected to be important, while having little 572 

influence in the coarse-resolution areas.  573 

In our upcoming research, a traditional hydrostatic OGW parameterization scheme will be 574 

revised taking into account NHE, based on the asymptotic expressions derived in the present study. 575 

Then the revised scheme will be implemented in a high-resolution numerical model (with a grid 576 

spacing on the order of 10 km) to investigate the impacts of NHE on the vertical momentum 577 

transport of subgrid-scale OGWs and their consequences for the large-scale circulation. 578 
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 583 

Appendix A: Derivation of the asymptotic pressure perturbation at the surface 584 

According to Eq. (7) in Xu et al. (2017b), for 3D OGWs generated by constant flow over 585 

an isolated mountain, the polarization relation between the pressure and vertical velocity 586 

perturbations in spectral space has the simple form: 587 

𝑝̂(𝑘, 𝑙, 𝑧) = −𝑖
𝜌̅

𝐾2 𝐷̂
𝜕𝑤̂(𝑧)

𝜕𝑧
.      (A1) 588 

Substitution of Eq. (3) into the above equation yields     589 

                𝑝̂(𝑘, 𝑙, 𝑧) = 𝑖𝜌̅
𝐷̂2

𝐾2 𝑚𝑒𝑖𝑚𝑧ℎ̂(𝑘, 𝑙). (A2) 590 

Using inverse 2D Fourier transforms, the pressure perturbation in physical space is given by  591 
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𝑝(𝑥, 𝑦, 𝑧) = 𝑅𝑒 [𝑖𝜌̅ ∫ ∫
𝐷̂2

𝐾2
𝑚ℎ̂(𝑘, 𝑙)

∞

−∞
𝑒𝑖(𝑘𝑥+𝑙𝑦+𝑚𝑧)𝑑𝑘𝑑𝑙

∞

−∞
], (A3) 592 

where Re(·) denotes the real part of a complex number. For the elliptical bell-shaped mountain 593 

under consideration, and using polar coordinates for the horizontal wavenumber [see Eq. (8)], the 594 

pressure perturbation of nonhydrostatic OGWs at z = 0 is 595 

            𝑝(𝑥, 𝑦, 0) = 𝑝(𝑆, Ψ, 0) = 𝑅𝑒 [
𝑖

𝜋
𝜌̅𝑁|𝐕̃|ℎ0 ∫ ∫

cos(𝜙−𝜒)

√cos2𝜙+𝛾2sin2𝜙

∞

0

𝜋

0
×      596 

√1 − [𝐾̃𝐹𝑟cos(𝜙 − 𝜒)]
2

𝐾̃𝑒−𝐾̃𝑒𝑖𝐾̃𝑆cos(𝜙−Ψ)𝑑𝐾̃𝑑𝜙],            (A4a) 597 

which can be divided into two parts, i.e., 598 

            𝑝𝐺𝑊(𝑆, Ψ, 0) = 𝑅𝑒 [
𝑖

𝜋
𝜌̅𝑁|𝐕̃|ℎ0 ∫ ∫

cos(𝜙−𝜒)

√cos2𝜙+𝛾2sin2𝜙

[𝐹𝑟 cos(𝜙−𝜒)]−1

0

𝜋

0
×    599 

  600 

√1 − [𝐾̃𝐹𝑟cos(𝜙 − 𝜒)]
2

𝐾̃𝑒−𝐾̃𝑒𝑖𝐾̃𝑆cos(𝜙−Ψ)𝑑𝐾̃𝑑𝜙].            (A4b) 601 

            𝑝𝑒𝑣𝑎𝑠𝑐𝑒𝑛𝑡(𝑆, Ψ, 0) = 𝑅𝑒 [
𝑖

𝜋
𝜌̅𝑁|𝐕̃|ℎ0 ∫ ∫

cos(𝜙−𝜒)

√cos2𝜙+𝛾2sin2𝜙

∞

[𝐹𝑟 cos(𝜙−𝜒)]−1

𝜋

0
×    602 

  603 

√1 − [𝐾̃𝐹𝑟cos(𝜙 − 𝜒)]
2

𝐾̃𝑒−𝐾̃𝑒𝑖𝐾̃𝑆cos(𝜙−Ψ)𝑑𝐾̃𝑑𝜙].            (A4c) 604 

for vertically-propagating OGWs and evanescent waves, respectively. In the deduction of the 605 

above equations, the following elliptical polar coordinate in physical space was introduced for 606 

convenience: 607 

𝑋 =
𝑥

𝑎
= 𝑆cosΨ,  𝑌 =

𝑦

𝑏
= 𝑆sinΨ,     (A5) 608 

where 𝑆 =
1

𝑎
√𝑥2 + (𝛾𝑦)2 and Ψ = atan (

𝛾𝑦

𝑥
).   609 
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By expanding the vertical wavenumber for small Fr [see Eq. (13)], the asymptotic surface 610 

pressure perturbation associated with vertically propagating OGWs can be approximated by the 611 

sum of p0, p1 and p2, namely, 612 

𝑝0(𝑆, Ψ, 0) = 𝑅𝑒 [
𝑖

𝜋
𝜌̅𝑁|𝐕̃|ℎ0 ∫

cos(𝜙−𝜒)

√cos2𝜙+𝛾2sin2𝜙
𝐺0(𝜑, 𝑆, Ψ)𝑑𝜙

𝜋

0
],    (A6a) 613 

𝑝1(𝑆, Ψ, 0) = 𝑅𝑒 [−
𝑖

𝜋
𝜌̅𝑁|𝐕̃|ℎ0 ∫

cos(𝜙−𝜒)

√cos2𝜙+𝛾2sin2𝜙
𝐺1(𝜑, 𝑆, Ψ)𝑑𝜙

𝜋

0
],    (A6b) 614 

𝑝2(𝑆, Ψ, 0) = 𝑅𝑒 [−
𝑖

2𝜋
𝐹𝑟2𝜌̅𝑁|𝐕̃|ℎ0 ∫

cos3(𝜙−𝜒)

√cos2𝜙+𝛾2sin2𝜙
𝐺2(𝜑, 𝑆, Ψ)𝑑𝜙

𝜋

0
],  (A6c) 615 

with G0, G1 and G2 given, respectively, by 616 

𝐺0(𝜙, 𝑆, Ψ) = ∫ 𝐾̃
∞

0
𝑒𝐾̃[𝑖𝑆cos(𝜙−Ψ)−1]𝑑𝐾̃ = 𝑄−2,     (A7a) 617 

𝐺1(𝜙, 𝑆, Ψ) = ∫ 𝐾̃
∞

𝐹𝑟−1 𝑒𝐾̃[𝑖𝑆cos(𝜙−Ψ)−1]𝑑𝐾̃ = 𝑄−2𝑒−𝑄𝐹𝑟−1
(1 + 𝑄𝐹𝑟−1),  (A7b) 618 

               𝐺2(𝜙, 𝑆, Ψ) = ∫ 𝐾̃3𝐹𝑟−1

0
𝑒𝐾̃[𝑖𝑆cos(𝜙−Ψ)−1]𝑑𝐾̃ 619 

= 𝑄−4[6 − 𝑒−𝑄𝐹𝑟−1
(𝑄3𝐹𝑟−3 + 3𝑄2𝐹𝑟−2 + 6𝑄𝐹𝑟−1 + 6)],     (A7c) 620 

and 621 

 𝑄(𝜙, 𝑆, Ψ) = 1 − 𝑖𝑆cos(𝜙 − Ψ) = 1 − 𝑖𝜇(𝜙, 𝑆, Ψ).                           (A8) 622 

Clearly, p0 is the pressure perturbation of purely hydrostatic OGWs while p1 and p2 are the pressure 623 

perturbations corresponding to 𝛕𝑎𝑠𝑦1 and 𝛕𝑎𝑠𝑦2.  624 

Finally, after some lengthy but straightforward algebraic manipulations, one can obtain the 625 

three components of the surface pressure perturbation associated with vertically-propagating 626 

OGWs: 627 

𝑝0(𝑆, Ψ, 0) = −
𝜌̅𝑁|𝐕̃|ℎ0

𝜋
∫

cos(𝜙−𝜒)

√cos2𝜙+𝛾2sin2𝜙

2𝜇

(1+𝜇2)2
𝑑𝜙

𝜋

0
,    (A9a) 628 

𝑝1(𝑆, Ψ, 0) =
𝜌̅𝑁|𝐕̃|ℎ0

𝜋
∫

cos(𝜙−𝜒)

√cos2𝜙+𝛾2sin2𝜙

1

(1+𝜇2)2

𝜋

0

𝐽1(𝜇)cos(
𝜇

𝐹𝑟
)+𝐽2(𝜇)sin(

𝜇

𝐹𝑟
)

𝑒𝐹𝑟−1 𝑑𝜙,   (A9b) 629 
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 𝑝2(𝑆, Ψ, 0) =
𝜌̅𝑁|𝐕̃|ℎ0

2𝜋
∫

cos3(𝜙−𝜒)

√cos2𝜙+𝛾2sin2𝜙

𝐹𝑟2

(1+𝜇2)4

𝜋

0
[𝐽0(𝜇) −

𝐽3(𝜇)cos(
𝜇

𝐹𝑟
)+𝐽4(𝜇)sin(

𝜇

𝐹𝑟
)

𝑒𝐹𝑟−1 ] 𝑑𝜙, (A9c) 630 

where 631 

𝐽0(𝜇) = 24(1 − 𝜇2)𝜇,        (A10a) 632 

𝐽1(𝜇) = 𝜇 (2 +
1+𝜇2

𝐹𝑟
),         (A10b) 633 

𝐽2(𝜇) = 1 − 𝜇2 +
1+𝜇2

𝐹𝑟
,        (A10c) 634 

𝐽3(𝜇) = 𝜇 [24(1 − 𝜇2) −
6(𝜇2−3)(1+𝜇2)

𝐹𝑟
+

6(1+𝜇2)
2

𝐹𝑟2
+

(1+𝜇2)
3

𝐹𝑟3
],   (A10d) 635 

𝐽4(𝜇) = 6(𝜇4 − 6𝜇2 + 1) +
6(1+3𝜇2)(1−𝜇2)

𝐹𝑟
+

3(1−𝜇2)(1+𝜇2)
2

𝐹𝑟2 +
(1+𝜇2)

3

𝐹𝑟3 .  (A10e)  636 
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 786 

Fig. 1 Response functions 𝐾̃2𝑒−2𝐾̃ (solid) and 𝐾̃4𝑒−2𝐾̃ (dashed). 787 
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 789 

Fig. 2 Variation of the normalized GWMF (𝜏̃) with the horizontal Froude number (Fr). Blue lines 790 

are for the nonhydrostatic OGWs forced by 2D bell-shaped ridges, while the black and red lines 791 

are for those forced by 3D circular bell-shaped mountains. The normalization is made with respect 792 

to their hydrostatic counterparts. 793 
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 794 

Fig. 3 Variations of the NHE1 (dashed) and NHE2 (solid) terms with the horizontal Froude number 795 

(Fr) in the case of isotropic terrain.  796 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Fr

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0
N

H
E

 t
er

m
s



 

 42 

 797 

Fig. 4 Variation of 𝑅𝑥(𝛾, 𝜒) as a function of terrain anisotropy (𝛾) for different horizontal wind 798 

directions (𝜒).  799 
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 800 

Fig. 5 Variation of ∆𝜏̃𝑥0 in the parallel-flow case as a function of horizontal Froude number (Fr) 801 

for different terrain anisotropies (𝛾). 802 
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 803 
Fig. 6 Distribution of 𝑅𝑥(𝛾, 𝜒) in 𝛾- 𝜒 parameter space. The red line represents 𝜒 =

𝜋

6
 while the 804 

blue line indicates γ = 1.  805 
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 806 

Fig. 7 Distribution of ∆𝜏̃𝑥 in 𝛾- 𝜒 parameter space at different horizontal Froude numbers: (a) Fr 807 

= 0.1, (b) Fr = 0.3, (c) Fr = 0.5, and (d) Fr = 1.0. The red line represents 𝜒 =
𝜋

6
 while the blue line 808 

indicates γ = 1. 809 
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 810 

Fig. 8 Variation of the x-component of the normalized GWMF (𝜏̃𝑥) in the oblique-flow case as a 811 

function of the horizontal Froude number (Fr). Solid and dashed lines are for 𝛾 = 8 and 𝛾 =
1

8
, 812 

respectively. 813 
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 815 
Fig. 9 Exact surface pressure perturbation (top) of nonhydrostatic OGWs forced by a circular bell-816 

shaped mountain, which is the sum of pGW (middle) and pevanescent (bottom). See appendix for details. 817 

(a) (c) and (e) are for Fr = 0.1, while (b) (d) and (f) are for Fr = 0.5. The pressure perturbations 818 

are scaled with 𝜌̅𝑁|𝐕̃|ℎ0. The axes are scaled by the mountain half width a. The black circle 819 

indicates the contour of 0.5 h0, with h0 being the maximum elevation of the mountain.  820 
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 821 

Fig. 10 (a) Asymptotic surface pressure perturbation of nonhydrostatic vertically propagating 822 

OGWs forced by a circular bell-shaped mountain at Fr = 0.1, which is the sum of (b) p0, (c) p1 and 823 

(d) p2 (see appendix for details). The pressure perturbations are scaled with 𝜌̅𝑁|𝐕̃|ℎ0. The axes are 824 

scaled by the mountain half width a. The black circle indicates the contour 0.5 h0, with h0 being 825 

the maximum elevation of the mountain.  826 
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 827 

Fig. 11 Same as Fig. 10 but for Fr = 0.5. 828 


