

Consumers behaviour towards carbon footprint labels on food: a review of the literature and discussion of industry implications

Article

Accepted Version

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Rondoni, A. ORCID: https://orcid.org/0000-0003-1514-1247 and Grasso, S. ORCID: https://orcid.org/0000-0001-6089-864X (2021) Consumers behaviour towards carbon footprint labels on food: a review of the literature and discussion of industry implications. Journal of Cleaner Production, 301. 127031. ISSN 0959-6526 doi: 10.1016/j.jclepro.2021.127031 Available at https://centaur.reading.ac.uk/97407/

It is advisable to refer to the publisher's version if you intend to cite from the work. See <u>Guidance on citing</u>.

To link to this article DOI: http://dx.doi.org/10.1016/j.jclepro.2021.127031

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the <u>End User Agreement</u>.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

1	
2	Consumers behaviour towards carbon footprint labels on food: A
3	review of the literature and discussion of industry implications
4	
5	Agnese Rondoni ^{1,a} and Simona Grasso ^b
6 7	^a Department of Applied Economics and Marketing,
8	School of Agriculture Policy and Development,
9	University of Reading, Reading, United Kingdom
10	
11	^b Institute of Food, Nutrition and Health (IFNH),
12	School of Agriculture, Policy and Development,
13	University of Reading, Reading, United Kingdom
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

¹ Corresponding author: email address: <u>a.rondoni@pgr.reading.ac.uk</u>

26	Word count (including tables and figure captions): 6840 words
27	
28	

29 Abstract

30 Carbon footprint labels allow manufactures to show information about the impact that their food 31 production has on the environment, as well as to help consumers make more sustainable choices. Thus, investigating consumers' reaction towards carbon footprint labels is vital to understand their 32 33 effectiveness. The aim of this manuscript is to identify the state of the art and research gaps on this topic, by conducting a literature review of published scientific article between 2011-2020. In total, 34 35 38 papers emerged. Findings show that females, adults, with higher income and educational level 36 have a more positive attitude towards carbon footprint labels. Furthermore, people expressing higher 37 environmental concern and those who are used to buy eco-friendly labelled foods are willing to pay 38 more for carbon footprint labelled foods. However, it also emerges that consumers still have poor 39 knowledge of carbon measurements and the existing carbon footprint label system is still unclear. 40 When carbon footprint labels are re-designed using consumers friendly symbols (e.g., traffic light 41 colours), their consumers' understanding significantly increases. Consumers from countries like Egypt and China also show a positive attitude towards carbon footprint information, meaning that a 42 43 carbon footprint label system should be developed also in the emerging countries. Nonetheless, when 44 carbon footprint is presented with other labels (e.g., organic, Fair Trade etc.) consumers show the 45 lowest willingness to pay for carbon footprint information. It was also found that using a carbon 46 footprint label on environmentally sustainable produced foods (e.g., using upcycled ingredients) 47 increase willingness to pay. Food manufacturers should better inform consumers on carbon footprint 48 labels and policy makers are advised to develop a consumers friendlier carbon footprint label system 49 to incentivize more sustainable choices. This paper is the first to summarize existing literature on 50 consumers' behaviour for carbon footprint labelled foods, providing a discusses implication for food 51 manufacturers and policy makers, as well as future research avenues.

52

53 Keywords: Carbon footprint labels; Food; Consumer attitude; Behaviour; Willingness to pay;
54 Review.

55 1. INTRODUCTION

Agricultural activities are responsible alone for about 14% of global greenhouse gas (GHG) emissions 56 57 (FAO, 2016). With the increase of human population to up to 10 billion individuals by 2050, this is expected to raise of further 10% (Hartikainen et al., 2014). The importance of promoting and 58 59 developing sustainable activities has been promoted by several European projects and initiatives (European Union, 2015; European Consumer Organisation, 2020). For example, engaging in a more 60 61 sustainable food consumption could help to significantly reduce the emissions of GHG (Poore and 62 Nemecek, 2018). Recently, consumers have shown to be increasingly concerned about the effects 63 that their daily activities could cause to the environment (Liu, Yan and Zhou, 2017). For these reasons, over the last decade, several labels have been developed to facilitate consumers to make 64 65 more sustainable choices (Grunert, Hieke and Wills, 2014). One of the most well-known is the Carbon 66 Footprint (CF) labelling scheme, which was developed in the United Kingdom (UK) in 2007, and was defined as "a measure of the total emission of carbon dioxide (and other greenhouse gases such 67 68 as nitrous oxide and methane) caused by a particular product throughout its life cycle" (Thøgersen 69 and Nielsen, 2016). The scope of these labels is to provide companies with a tool to inform consumers 70 about the carbon impacts of their food production (Kimura et al., 2010). Since then, a series of 71 different CF labels have been developed, with the same aim of providing consumers with information about the environmental impact of the food they purchase (see Fig. 1). 72

73

74 Figure 1 - Examples of carbon footprint labels

75 Although consumers have expressed a positive attitude towards CF labels, as shown by Li, Long and 76 Chen (2017) who found that 72% of European citizens supported the introduction of footprint 77 labelling and agreed that this should be mandatory, there is lack of clear understanding on how 78 consumers perceive and behave towards environmentally sustainable information indicated by 79 footprint labels, as well as on which are the factors that influence their attitude. Shedding light on the 80 current status of the literature on this topic could guide food producers and retailers, support 81 policymakers' efforts in providing a better regulation and ultimately better inform consumers. Moreover, to the best of the authors' knowledge, a coherent overview of the factors that affect 82 83 consumers' behaviour, perceptions, and preferences towards CF labels is missed.

84

This review wants to fill this void by reviewing and discussing the academic consumer research on footprint labels on food products from the last ten years aiming to (i) identify the main factors that drive consumers' behaviour and willingness to pay (WTP) for CF labels; (ii) discuss implications for industries and policy makers, and (iii) identify research gaps to be addressed in future studies.

89

To conceptualize and categorize literature findings on the topic under analysis, this review applied
the Alphabet Theory framework, which identifies the factors that influence consumers' behaviour,
which has already been used in the past in the context of food choice (Rivaroli, Baldi and Spadoni,
2020; Stampa, Schipmann-Schwarze and Hamm, 2020).

94

95 This review is structured as follows. First a brief description of the theoretical framework is provided.
96 Next the applied methodology followed for this review is illustrated together with an overview of the
97 selected studies. Then, the findings of the reviewed studies are structured in accordance with the
98 Alphabet Theory framework. Finally, a summary discussion and implications for industries, policy
99 makers, and future research avenues are provided.

101 2. CONCEPTUAL FRAMEWORK

102 Over the past decades, different scientific attempts were made to try to develop a framework that 103 explained all the elements that could affect consumers pro-environmental behaviour. For example, 104 Stern et al. (1999) developed the Value-Belief-Norm (VBN) theory which tells that pro-105 environmental behaviour is explained by five variables, personal values (PV), the New Ecological Paradigm (NEP), awareness of adverse consequences (AC), ascription of responsibility to self (AR), 106 107 and personal norms (PN). Overall, the VBN is based on the idea that values directly affect beliefs, 108 which in turn affects norms, and this affects beliefs (Stern et al., 1999). Another example is the 109 Attitude Behaviour Context (ABC) theory by Guagnano, Stern and Dietz (1995) which is based on three components, affect (which is the feeling that an individual has about something), cognition 110 111 (which is people's belief or knowledge towards something) and behaviour (which results from affect 112 and cognition). According to the ABC theory, consumers behave based on the functional and 113 psychological results that they can obtain from their actions (Guagnano, Stern and Dietz, 1995). For 114 this manuscript, the Alphabet Theory model by Zepeda and Deal (2009) has been selected as 115 conceptual framework to help structuring the findings of the literature review, which further develops from previous theories combining the VBN Theory and the ABC Theory with the addition of other 116 117 components such as demographics, knowledge, information seeking and habits (see Fig. 2).

118

120 Fig. 2 - The Alphabet Theory framework by Zepeda and Deal (2009).

121

Particularly, the Alphabet Theory framework well fits in the context of consumers' pro-122 environmental choices, and this is because socio-demographic factors, attitudes, information seeking, 123 knowledge and context (e.g., food availability, price product type etc.) were found to influence 124 125 decision makers (Vecchio and Annunziata, 2012; Van Loo, Hoefkens and Verbeke, 2017). Habits are 126 also an increasingly important factor as consumers are becoming always more aware of the effects of their consumption habits on the environment, which has led to shifting towards more sustainable 127 choices over the years (Lazzarini, Visschers and Siegrist, 2017). Last, the appropriateness of the use 128 129 of the Alphabet Theory as framework to analyse consumers' behaviour towards environmentally 130 friendlier food has been proven by recent literature reviews on this topic (Feldmann and Hamm, 2015; 131 Schäufele and Hamm, 2017; Rivaroli, Baldi and Spadoni, 2020; Stampa, Schipmann-Schwarze and 132 Hamm, 2020).

133

134 3. METHODOLOGY

135 This review is based on published and peer-reviewed articles selected from the following four online catalogues: Scopus, Science Direct, AgEcon Search, and Web of Science. Only those in English 136 language were considered for this analysis. In order to limit the results only to the area of interest, the 137 138 following keywords or keyword combinations have been digited in the title or abstract: "food" AND "carbon footprint labels" AND "consumers" AND "preferences" OR "attitude" OR "perception" OR 139 "choice" OR "behaviour" OR "purchase intention" OR "willingness to pay". Only empirical, per-140 141 reviewed full-text papers written in English were examined for this literature review and excluding review papers. Following this criterion, 38 articles have been selected, published between 2011-2020. 142 143 The full list of articles included in this review is presented in Table A1 in the Appendix A. The selection process indicates that the number of articles on the reviewed topic has increased during the 144

146 3).

Fig. 3 - Number of research articles included in the topic of consumer behaviour towards
carbon footprint labels from Scopus, Science Direct, AgEcon Search, and Web of Science
databases.

Table 1 shows an overview of the top 5 journals conducting empirical studies on consumers behaviour
towards CF labelled food in the past ten years ranked by number of publications. Journal of Cleaner
Production is the dominant source, followed by Ecological Economics.

- . . .

162	Table 1 - Top 5 academic journals by number of publications on consumers behaviour towards
163	CF labelled food.

164

Academic Journal	N. of publications	%
Journal of Cleaner Production	8	20.5
Ecological Economics	6	15.3
Food Policy	4	10.2
Food Quality and Preferences	3	7.7
Sustainability	2	7.1

165

In terms of geographical coverage, the majority of the studies were conducted in emerging countries 166 such as Germany (11 articles), UK (5 articles), Italy (4 articles), United States (US) (4 articles), 167 168 France (3 articles), Spain (2 articles), Sweden (2 articles), Finland (2 articles), Netherlands (1 article), 169 Denmark (1 article) and Japan (1 article). Fewer articles were found in emerging countries, such as China (3 articles), Chile (1 article), Egypt (1 article) and South Africa (1 article). In regard to the 170 methodologies used in these studies, most applied a quantitative approach (32), mainly employing 171 172 choice experiments. Only five studies used qualitative methodologies, such as focus groups or indepth interviews, and one used a mixed method approach, including both quantitative and qualitative 173 techniques. 174

175

176 **4. RESULTS**

This paragraph provides a description of the results from the review of the literature following the
factors influencing consumers' behaviour as indicated Alphabet Theory framework. Table 2 below
provides a short summary.

Factors from the Alphabet Theory framework	Findings	Authors
1) Demographics	• Consumers' <i>gender</i> , <i>age</i> , <i>education</i> , <i>income</i> , and <i>region of provenience</i> influence their behaviour.	Canavari and Coderoni (2020); Grunert, Hieke and Wills (2014); Hartikainen <i>et al.</i> (2014); Koistinen <i>et al.</i> (2013)
2) Attitudes	• The higher consumers' concern towards environmental condition, the more positive their attitude towards carbon labelled foods.	Canavari and Coderoni (2019); Grebitus, Steiner and Veeman (2015); Van Loo <i>et al.</i> (2015)
3) Information seeking	 Consumers still anticipate other information to the CF labels (e.g., price, expiry dates etc.) when grocery shopping. Different positioning of CF labels on products' packaging influences consumers' behaviour. 	Canavari and Coderoni (2020); Steiner, Peschel and Grebitus, (2017); Zhou <i>et al.</i> (2019)
4) Knowledge	• Consumers show little knowledge of the CF system which negatively influences their behaviour.	Canavari and Coderoni (2019); Feucht and Zander (2018); Guenther, Saunders and Tait, (2012); Onozaka and McFadden (2011); Zhou <i>et al.</i> (2019)
5) Context	• When CF labels are presented with other labels (e.g., Fair Trade labels) consumers are less willing to pay for it.	Akaichi <i>et al.</i> (2016); Grunert <i>et al.</i> (2018); Onozaka and McFadden (2011); Thøgersen and Nielsen (2016)
6) Habits	 Consumers who used to buy eco-labelled foods showed higher willingness to pay for CF labelled foods. Consumers who usually bought ethical, local, and organic foods, were also more inclined to pay more for CF labelled foods. 	Canavari and Coderoni (2019); Gadema and Oglethorpe (2011); Röös and Tjärnemo (2011); Vecchio and Annunziata (2015)
7) Behaviour	• Consumers are willing to pay more for CF labelled milk chocolate bars and upcycled food products labelled.	Echeverría <i>et al.</i> (2014); Grasso and Asioli (2020); Onozaka and McFadden (2011); Vecchio and Annunziata (2015)

Table 2. Overview of the literature review findings

181 **4.1 Demographics**

182 Socio-demographic factors, such as gender, age, education, income, and region of provenance were183 found to influence consumers behaviour towards carbon footprint labelled food products.

184 Gender

185 Females were shown to place greater attention to carbon footprint labels on food than men. For example, Hartikainen et al. (2014) found that Finnish female consumers prioritized environmental 186 187 food attributes (e.g., carbon footprint labels) to others such as taste, quality and price in their decisionmaking. On the contrary, both adults and young males from Finland were more price-conscious and 188 189 less willing to pay a premium for carbon labels than females (Koistinen et al., 2013). Egyptian 190 females, instead, were significantly more willing to pay for CF labels than male (Mostafa, 2016). 191 Similarly, Canavari and Coderoni (2020) found that female Italian consumers were inclined to pay 192 more for carbon labelled milk than male, however only slightly more. Also, Italians who were more 193 sensitive to price when buying products, tend to be willing to pay less for products with a lower CF label (Canavari and Coderoni, 2019). In a study by Wong, Chan and So (2020), green advocates in 194 the male group had comparatively more significant influences on the acceptance of low carbon 195 196 emission products than the consumers in the female group.

197

198 *Age*

Wong, Chan and So (2020), also showed that Chinese aged over 50 tended to accept low carbon
emission products more easily than younger people (Wong, Chan and So, 2020). Similarly, older
Finnish consumers showed a more positive attitude towards carbon footprint labels, as environmental
concern increased with age (Hartikainen *et al.*, 2014). However, the level of understanding and use
of eco-friendly labels did not increase with age among consumes from the United Kingdom, France,
Germany, Spain, Sweden, and Poland (Grunert, Hieke and Wills, 2014).

206 *Education*

Grunert, Hieke and Wills (2014) also showed that higher *level of education* was found to lead towards higher concern about environmental issues, which however did not translate in a more positive attitude towards CF labels (Grunert, Hieke and Wills, 2014). The same result emerged from a study with Chinese consumers (Zhao *et al.*, 2018). On the contrary, Canavari and Coderoni (2020) did not show any influences of age and education on Italian consumers' WTP for carbon labelled milk in Italy.

213

214 Income

215 Higher income Chinese (Zhao et al., 2018), Belgian (Van Loo et al., 2014a) and Italian (Canavari 216 and Coderoni, 2019) shoppers were found to be willing to pay a higher price for foods with CF labels 217 than lower income people. Income differences was also found to have effects on the level of 218 understanding of CF labels among consumers from the United Kingdom, France, Germany, Spain, 219 Sweden, and Poland (Grunert, Hieke and Wills, 2014). In South Africa middle-class and upper-class 220 consumers were heterogeneous in their preferences for water and carbon footprint labels on beef steak 221 and some were more conservative than others regarding environmentally sustainable products 222 (Owusu-Sekyere, Mahlathi and Jordaan, 2019).

223

224 *Region of provenience*

The United Kingdom and German citizens showed high level of concern, understanding and use of CF labels on food, whereas Polish and Swedish reported the lowest level of concern and Spanish the lowest level of use (Grunert, Hieke and Wills, 2014). This may be due to the fact that north European countries have started earlier to promote eco-sustainable consumption (e.g., the United Kingdom was the first that released carbon and water footprint labels), compared to other south and east-European countries like Spain and Poland (Baldo *et al.*, 2009). In addition, ecologically oriented consumers were found to more likely come from rural areas than urban and this may be due to the fact that social interactions in less developed zones are more developed than in highly industrialized places (Steiner,
Peschel and Grebitus, 2017). However, it is worth mentioning that despite the development of a
system of carbon labeling is still at a very initial stage in countries like China, people still showed
high ecological human values (e.g., 'preventing pollution' and 'protecting the environment')
probably due to the collectivistic nature of its society where the common welfare is more important
than the individual (Liu, Yan and Zhou, 2017).

238

239 4.1 Attitudes

240 Human values are activated during the pre-decisional step of the behavioral process and therefore serve as good predictors of people behavior (de Boer, Hoogland and Boersema, 2007). In most of the 241 242 available studies on the topic of consumers preferences for environmentally friendly food (Moser, 243 2016; Steiner, Peschel and Grebitus, 2017; Laureti and Benedetti, 2018), attitude was investigated by 244 analysing their self-reported level of concern for environmental conditions, as a proxy to predict their 245 behaviour towards more or less sustainable choices. The principle behind this is that moral 246 considerations and personal norms influence people's behaviour, and therefore that a higher propensity in safeguarding the environment is supposed to lead to an eco-friendlier purchasing 247 248 behaviour (Jansson, Marell and Nordlund, 2010). Findings show a high level of self-reported concern towards environmental conditions (Grunert, Hieke and Wills, 2014) and partially confirm the 249 250 assumption that the higher the sensibility towards the environment, the more positive the attitude 251 towards food products labelled with lower carbon and water footprint is (Grebitus, Steiner and 252 Veeman, 2015). Similarly, Italian consumers who believed that buying environmentally friendlier foods could help mitigating climate change were willing to pay more for carbon labelled milk 253 254 (Canavari and Coderoni, 2019). UK environmentalist consumers expressed the highest willingness 255 to pay for biscuits made with upcycled ingredients and labelled with CF information than other more 256 traditionalist groups (Grasso and Asioli, 2020). Grebitus, Steiner and Veeman (2015) reported that 257 German consumers showing a strong social orientation were more likely to choose foods labelled

with lower carbon and water footprints. Furthermore, it was found that the higher the concern in 258 259 sustainability aspects of food production, the higher the value and the time spent by consumers in 260 checking sustainability information during food choice (Van Loo et al., 2015). These findings are in 261 line with Canavari and Coderoni (2020) who revealed that sustainability concern, as well as the belief 262 that buying products with lower environment impact could combat climate change, positively influenced Italian consumers willing to pay. However, it is worth mentioning that some other studies 263 264 also reported a dissonance between consumers' attitude towards environmental conditions and actual 265 purchase behavior and this was mainly due to the perceived higher price of these products (Röös and 266 Tjärnemo, 2011; Grunert, Hieke and Wills, 2014; Canavari and Coderoni, 2020).

267

268 4.2 Information seeking

269 Existing academic literature showed that the tendency of consumers to check and read CF labels has 270 an effect on their purchasing behavior. For example, Steiner, Peschel and Grebitus (2017) found that 271 German consumers who scored higher in ecological orientation were more likely to read CF labels 272 when purchasing for their foods. On the contrary, price-sensitive people scored low in ecological 273 concern and showed to be less motivated in reading labels and less willing to pay more for CF food 274 products (Steiner, Peschel and Grebitus, 2017). Emberger-Klein and Menrad (2018) found that German consumers looked at carbon labels on the products' packaging only when instructed to do 275 276 so. Similarly, Italian shoppers said to give little importance to labels when buying foods, but pay 277 more attention to other aspects like sensory properties or expiry date (Canavari and Coderoni, 2020). 278 This may be caused by the still ongoing controversies behind a commonly accepted system of 279 calculation of the CF label itself (Baldo et al., 2009) which may lead to inability in expressing its 280 message. Uncertainty on how to interpret CF labels and lack of information were found to limit the 281 purchase of CF labelled food also by UK consumers (Gadema and Oglethorpe, 2011). Interestingly 282 Zhou et al. (2019) found that placing the CF on different positions on the packaging can influence 283 Chinese consumers, showing that if the CF label was on the right side of the packaging they were

more interested and inclined to pay more for both milk and rice than when it was positioned on theleft.

286

287 4.3 Knowledge

288 Consumers' knowledge and understanding of labels on products consciously drive their decisionmaking process (Gadema and Oglethorpe, 2011). However, the CF labels have been shown to be 289 290 challenging to understand by consumers (Kimura et al., 2010). Between the carbon and the water 291 footprint labels, German consumers seem to be more familiar with the carbon rather than with the 292 water footprint label (Grebitus, Steiner and Veeman, 2016). In the context of environmentallyfriendly labels, Danish consumers were found unable to make purchasing decisions based on footprint 293 294 labels as they found the messages they try to provide hard to understand (Thøgersen and Nielsen, 295 2016). Hartikainen et al. (2014) showed that while Finnish consumers were familiar with the term 'product carbon footprint', only few were able to describe it accurately. The majority thought that it 296 297 was referred to environmental impacts in general or use of natural resources, but nobody mentioned 298 the assonance with concepts such as 'climate change', 'global warming' or 'greenhouse gases' 299 (Hartikainen et al., 2014). In a survey in the US, most consumers self-reported a lack of knowledge 300 about carbon measures (Onozaka and McFadden, 2011). The authors provided information on the meaning of carbon labels during the choice experiment and reported a positive valuation of the 301 302 concepts by consumers.

303

304 Lack of a common CF label

The lack of people's understanding towards carbon footprint labels can be attributed to the fact that a commonly accepted carbon label does not exist yet in many countries globally, as well as to the still limited adoption of the CF label itself by food manufacturers (Van Loo *et al.*, 2014b), which may limit consumers' ability of associating the CF label with its meaning. In fact, largely available labels in the market were found to allow consumers to easily associate their meaning with the products'

characteristics and to provoke some associations in consumers' mind, like the European Union (EU) 310 311 organic label, which is often associated with claims such as 'healthy' and 'local' (Feucht and Zander, 312 2018). This is also confirmed by Canavari and Coderoni (2019) who found that the knowledge of CF 313 labels seemed not to affect Italian consumers' behaviour, whereas the knowledge towards sustainability parameters and the effect of food consumption on the environment had stronger effects. 314 315 In countries like China where a CF label system does not exist yet, Zhao et al., (2018) found that 316 consumers have a very limited understanding of the concept of CF labels. However, Wong, Chan 317 and So (2020) showed that communication of pro-environmental beliefs positively influenced 318 Chinese shoppers' green awareness, which in turn influenced their attitudes and acceptance of green 319 products. Similarly, Guenther, Saunders and Tait (2012) showed that Japanese consumers had no knowledge of CF, whereas UK consumers were much more familiar with it. Similar to what 320 321 mentioned above, this may be explained by the fact that a CF label system in Japan is still missing. 322 The authors also found that consumers' adoption or rejection of low carbon beverages can be 323 influenced by persuasion, therefore they recommend large scale campaigns and public education 324 programs by the government to achieve positive results (Wong, Chan and So, 2020). In a similar way, 325 Owusu-Sekyere, Mahlathi and Jordaan (2019) in a study involving South African consumers, 326 concluded that their awareness on water saving has a significant impact on the choice of sustainable 327 beef products, therefore the authors recommend an expansion in the governmental campaigns on 328 water to reach the majority of people. Interestingly, Shewmake et al. (2015) found that knowledge on environmental impact of different food products affected people's attitude towards carbon labels. 329 330 For example, the presence of CF information on rice, which was believed not to have a big effect on 331 the environment, did not increase its sales as consumers were unable to understand its benefits 332 (Shewmake et al., 2015).

333

334 Development of consumers' friendlier CF labels

Some research tried to develop consumers friendlier CF labels and showed that they can make a 335 336 significant impact on consumers' decision-making. For instance, Thøgersen and Nielsen (2016) 337 showed that by re-designing the CF label and making it similar to the more commonly used traffic lights, assessing the green color for low GHG products' emissions, the yellow for slightly acceptable 338 339 ones and the red for those with higher environmental impact, Danish consumers significantly drove 340 their purchase to more sustainable food products. Similarly, Vlaeminck, Jiang and Vranken (2014) 341 found that a color-graded scale accompanied with a numeric symbol from 1 to 10 indicating the grade of product's 'environmental friendliness' could better drive Belgian consumers' behavior towards 342 343 more sustainable food choices. Also, it helped to eliminate some incorrect beliefs, such as the the 344 thought that local-organic foods are more eco-friendly than conventional foreign ones (Vlaeminck, 345 Jiang and Vranken, 2014). The positive effect of implementing a similar system to traffic light to indicate CF was showed by Brunner et al. (2018) who reported that the green labelled meat dishes 346 347 increased in sales by 11.5% at restaurants, whereas red label dishes reduced in sales by 4.8%. 348 Meyerding, Schaffmann and Lehberger (2019) compared six different CF labels to evaluate the most 349 preferred by German consumers and found that labels with colour-coded traffic lights were superior 350 to both those that claim neutrality or impact reduction and to those that provide details on the climate 351 impact of product and company. Similarly, other claims like 'we have committed to decrease our 352 climate impact' or an URL webpage with information about the Climate Certification of Food, have 353 been found to help increasing in-store milk sales of approximately 6%-8% (Elofsson et al., 2016). 354 Caputo, Nayga and Scarpa (2013) in the USA investigated if ecological footprint of food transport is 355 better communicated by using carbon dioxide emission (CO₂ label) or by food miles label and showed 356 that the former is more familiar to consumers even though they are still uncertain on its actual 357 meaning. A similar study in Italy reported that a label showing the number of kilometers and time 358 traveled is expected to have greater positive impact on consumers' welfare than a CF label containing 359 information about the CO₂ emissions, probably because people might understand and relate better to time and distance information than to CO₂ emissions (Caputo, Nayga and Scarpa, 2013). Comparing 360

GHG emissions with a more commonly known unit of measure (e.g., light-bulb minutes) was found
to be another way to shift to low-emission options, when both high and low choices are available
(Camilleri *et al.*, 2019).

364

365 4.4 Context

In regard to CF labels label positioning (e.g., when are placed together with other sustainability
 indications like Fair-Trade² or other product information) and product type were found to influence
 consumers behaviour.

369

370 *CF labels with other sustainability labels*

371 Regardless of the general positive concern towards environmental conditions, when other sustainable labels are presented (Fair Trade) consumers were willing to pay the lower price for CF information 372 373 as Italian consumers showed higher concern towards aspects such as child exploitation and poor working conditions than for the environmental impact of chocolate (Vecchio and Annunziata, 2015). 374 Similarly, CF label received less visual attention compared to other labels such as USDA organic 375 and Fair-Trade on coffee by United States consumers (Van Loo et al., 2015). This may be due to the 376 377 fact that the former is largely more available in the market and therefore consumers are more used to 378 them (Grunert, Hieke and Wills, 2014). In a study by Colantuoni et al. (2016) on potatoes, the presence of the CF logo reduced the German and Italian total WTP, while the ethical certification 379 logo, on the other hand, was considered very important for consumers of both nationalities, given 380 381 their large WTP for this attribute. The authors explained that probably these differences are due to the fact that CF has been less debated and considered unnecessary when coupled with other attributes, 382 383 like origin or organic certification. Onozaka and McFadden (2011) showed a positive interaction

² The Fair-Trade certification guarantees principles of ethical purchasing such as banning child and slave labour, guaranteeing a safe workplace and a fair price that covers the cost of production, facilitating social development, and protecting the environment (Akaichi *et al.*, 2016).

384 between the CF label and the Fair-Trade label on tomatoes and apples, reporting that fair trade 385 certification can mitigate concerns about a higher CF. Similarly, Akaichi et al. (2016) found that 386 French, Dutch and United Kingdom consumers were willing to pay more for bananas presenting the CF, the Fair-Trade and the organic labels together than separately. Van Loo et al. (2014) found that 387 388 shoppers were willing to pay a premium about 40% smaller for ecological footprint labels than what 389 they would pay for free range and animal welfare labels. A similar scenario was presented by Chen 390 et al. (2018), where consumers were willing to pay the highest price for information such as 'less 391 pesticides in production', giving the idea that consumers are intentioned to pay more for those benefits 392 that are directly related to their health. Similarly with the findings above, Chinese consumers were 393 willing to pay higher price for carbon emission information when this was presented alone (Li et al., 394 2016).

- 395
- 396 *CF labels with other product information*

397 When ecological footprint labels are presented alone, German consumers preferred the alternative 398 with the lower level of water and carbon emissions (Grebitus, Steiner and Veeman, 2015). However, 399 when other information is displayed, such as price, best before date, origin and production method, 400 information regarding the product's environmental impact is the least considered by German shoppers 401 (Emberger-Klein and Menrad, 2018). These results were also confirmed by Lampert, Menrad and 402 Emberger-Klein (2017) who found that German consumers food choice behaviour is more likely to 403 be driven by the factors such as price and production method rather than by CF information. Other 404 findings show that Danish consumers also prioritize health benefits information and perceived taste 405 over environmental-safety (Thøgersen and Nielsen, 2016). This was found particularly evident in the 406 case of countries like China, where food security is a foremost dilemma among consumers due to the 407 frequent food scandals happening in the country (Zhao et al., 2018). In a study in the Belgian market, 408 consumers paid lower attention to ecological footprints, compared to other sustainable labels, such as free range and animal welfare (Van Loo et al., 2014a). Consumers from Germany and Poland 409

prioritized individual beneficial information (e.g., less antibiotics, GMO-free feed, no microbial
contamination), as well as meat origin over the fact that the production reported a CF of zero (Grunert *et al.*, 2018).

413

414 *Product type*

Echeverría et al. (2014) found that Chilean consumers were willing to pay 29% over the average price 415 416 of milk but only 10% over the average price of bread if the CF label was present. The authors 417 concluded that the willingness to pay was product dependent, the higher the share of a product on the 418 monthly household expense, the lower the willingness to pay for that product. Italian consumers were 419 willing to pay an average premium of 30% for carbon labeled fresh milk (Canavari and Coderoni, 420 2019), however, the WTP was lower for carbon labeled chocolate bars (Vecchio and Annunziata, 421 2015). In a US study on apples and tomatoes (Onozaka and McFadden, 2011), a significant proportion 422 of consumers were willing to pay a premium for reducing their CF or requested a discounted price for products with higher CF. Similarly, in a South African study (Owusu-Sekvere, Mahlathi and 423 424 Jordaan, 2019), 86% of the respondents (middle and upper class only) were willing to pay premiums 425 for the reduction in both water usage and carbon emission in beef, displayed through the use of food 426 labels. CF label was the second element that mostly affected UK purchasers WTP for biscuits made 427 with upcycled ingredients (Grasso and Asioli, 2020). This study also confirms that using a CF label on food products which are environmentally sustainable in their nature can increase WTP, as for 428 example upcycled foods, which are made through ingredients that would not have been used for 429 430 human consumption otherwise, like coffee cherries for example, and therefore help decreasing food 431 waste and emissions (Roth, Jekle and Becker, 2019).

432

433 4.5 Habits

Food purchasing habits were also found to influence consumers' behaviour towards CF labelledfood. For example, United Kingdom consumers who normally purchased eco-sustainable labelled

436 foods (e.g., organic, fair-trade etc.) were found to have a more positive attitude towards CF food 437 products (Gadema and Oglethorpe, 2011). Similarly, Italian consumers who were used to buy eco-438 labelled foods showed higher willingness to pay for CF labelled foods (Canavari and Coderoni, 439 2019). Green purchase behaviour habits also influenced Egyptians' WTP for carbon footprint labels 440 (Mostafa, 2016). A study from Hartikainen et al. (2014) showed that Finnish consumers who usually bought ethical, local, and organic foods, were also more inclined to choose and pay more for foods 441 442 showing CF claims. Other habits, such as engaging in voluntarism activities positively impacted consumers' WTP for chocolate bars (Vecchio and Annunziata, 2015). On the contrary, repetitive 443 444 purchasing, as well as low willingness to try new food products negatively affect consumers attitude 445 and WTP for carbon labelled food products (Röös and Tjärnemo, 2011).

446

447 5. DISCUSSION

The following section provides a discussion of the results from the literature on consumers' behavior towards CF labels on foods products, followed by a summary of the implications for food manufacturers and policy makers. Based on the Alphabet Theory framework by Zepeda and Deal (2009), it emerged that demographics, attitudes, information seeking, knowledge, context, and habit factors affect consumers behaviour towards CF labels on foods.

453

About demographics, females, older in age, and with higher educational level and income, had a more 454 455 positive attitude and higher willingness to pay for CF labels on foods. Similar elements also emerged in the literature review by Rödiger and Hamm (2015) about consumers' behaviour for organic foods. 456 However, findings differed from ours from country to country in relation to some factors. For 457 458 example, females in the US had a higher WTP for organic foods, whereas males were WTP more in 459 Nepal. Similar to our results, both older and higher income people were WTP more for organic food 460 products. In terms of attitude, findings from existing academic literature showed that consumers 461 reporting higher levels of environmental concern, also showed a more positive attitude towards CF

labelled foods. In terms of information seeking, consumers showed little propensity to search for and 462 463 read CF labels, unless instructed to do so. Regarding knowledge, this literature found that consumers 464 still have a limited understanding of CF labels. This is also corroborated by another literature review on consumers' behaviour towards organic foods by who found that the knowledge about the organic 465 466 logo was limited among consumers from several European countries, such as Denmark, Germany, Italy etc. (Hemmerling et al., 2013). This might lead to the conclusion that consumers have generally 467 468 poor knowledge of sustainable food labels. About context, existing academic literature showed that when CF labels are examined together with other labels, like organic labels, the latter are preferred 469 470 more compared to the former (Onozaka and McFadden, 2011). In addition, it emerged that 471 consumers' WTP for CF labelled food is higher for those products that are perceived to be more 472 harmful for the environment. Similarly, the literature review on consumers' behaviour towards organic foods by Rödiger and Hamm (2015) shows that people are WTP more for food categories 473 474 like poultry and meat than for cereals and potatoes, because the organic logo increases their confidence in regard to the safety of the former. In terms of habits, the literature showed that 475 476 consumers who were already used to buy environmentally sustainable foods had a more positive 477 attitude towards CF labelled foods. This is confirmed also by Rödiger and Hamm (2015)who found 478 that those with a more positive attitude towards organic foods had a higher WTP for these products.

479

480 **5.1 Implications for food producers and policy makers**

Several implications for food producers can be derived from the outcomes of this review. First, because a diversity of factors has been demonstrated to influence consumers behaviour, these should be all taken into consideration when adopting the CF label for their products and targeting them to different consumer segments. Second, females, higher in age, with higher educational level and income seem to be the most appropriate target for carbon labelled food products, together with consumers who are already used to purchase environmentally friendlier foods. However, because of the limited knowledge that consumers showed towards CF labels, manufacturers are advised to also

provide some more information on this regard, so that people will be able to better understand their 488 489 meaning. Doing so, it is also more likely that consumers will drive towards environmentally friendlier 490 choices, increasing the demand and sales of these products. In addition, because consumers could 491 sometimes feel overwhelmed by the amount of information on food packaging, manufacturers are 492 advised to carefully select those few they believe are more appropriate in order to avoid increasing 493 the level of confusion. In addition, because the food product itself has been found to influence 494 consumers behaviour towards CF labels, we advise manufacturers to consider the environmental impact of their products before adopting CF label. Last, as different positions of the CF on the 495 496 packaging seem to affect consumers behaviour and WTP, manufacturers are advised to investigate 497 on this matter when designing the packaging of their products.

498

499 Given the challenges that consumers have in understanding CF labels (Hartikainen et al., 2014; 500 Thøgersen and Nielsen, 2016), policy makers and governments should take initiatives aimed at educating consumers on this topic to help them making more informed choices. Also, the 501 502 development of a commonly recognized footprint system is needed. In addition, it is important for 503 policy makers and governments to promote initiatives that could facilitate consumers towards a more 504 sustainable consumption (e.g., placing in-store sign placed close to climate-certified food products 505 (Elofsson et al., 2016). Finally, policy makers should also aim to support measures that allow a 506 reduction of prices for CF labelled foods, in order to allow all consumers to afford to purchase them. 507

508 6. CONCLUSIONS

509 This study contributes to the existing knowledge being the first to conduct a review of the literature 510 on consumers' attitude towards CF labelled foods. Overall, we see that people's behaviour is complex 511 and it is affected by several factors, such as demographics, habits, context etc. It also emerges that 512 there is need for a commonly recognizable CF system, as consumers seem unable to interpret the 513 current available labels and thus, are limited in making more sustainable choices. Having a familiar 514 CF labels will increase the likelihood that food manufacturers will adopt these instruments to 515 communicate to their consumers and that the latter will make more informed and sustainable choices. 516 At the same time, however, policy makers should implement new policies to educate people about 517 CF labels and promote initiatives to encourage sustainable eating and purchasing behaviour.

518

519 This paper also highlights several areas for future research. First, future studies should investigate 520 consumers from emerging countries, like Asia and South America for example, given the predominant focus on developed countries so far (Hertwich and Peters, 2009). Second, more research 521 522 on consumers' willingness to pay for CF labels together with other labels (e.g., animal welfare, 523 sustainability labels etc.) and packaging information (nutritional values, country of origin etc.) is 524 needed, in order to evaluate consumers' behaviour in a more 'chaotic' informational environment, 525 which better recreates a real purchasing environment (Vecchio and Annunziata, 2015). Third, further 526 application of experimental design techniques such as choice experiment in combination with new neuroscientific instruments, like eye-tracking and mouse-tracking is needed to better measure 527 528 consumers' attention towards CF labels (Van Loo et al., 2015). Fourth, because past studies found 529 that location, size and colour influenced consumers' attention to labels (Bialkova et al., 2014), as well 530 as design features (Becker et al., 2015), future studies should investigate whether positioning CF 531 labels in different section of the packaging, or playing with the shape or their size, will influence shoppers' behaviour and understanding. Fifth, consumer tests using real products, as well as 532 consumers' research on actual point of purchase or intervention are recommended using non-533 534 hypothetical choice experiments or experimental auctions in real market contexts (e.g., stores) (Lusk 535 and Shogren, 2007; Khachatryan et al., 2018). Sixth, more research combining the impact of CF 536 labels with sensory analysis (e.g., tasting) should be conducted to see people's reaction (Chen et al., 537 2018). Sixth, future studies may apply nudging or peer effects in investigating consumers' change towards more sustainable consumption patterns, which may favourably drive their behaviour 538 (Grebitus, Steiner and Veeman, 2015). Seventh, whether information on the amount of gCO2e saved 539

in food production in absolute or per cent terms (Medici, Canavari and Toselli, 2020) would have an 540 541 impact on consumers' behaviour should be further explored. Eight, the role of alternative chains/networks in favouring/hindering CF labels in a farm-to-fork strategy (Michel-Villarreal et al., 542 2019) needs further explorations. Ninth, given the growing importance that sustainable labels have 543 544 in informing people's food choices (Grunert, Hieke and Wills, 2014), further literature reviews on consumers' behaviour towards environmentally sustainable labels (e.g., rainforest alliances, organic, 545 546 fair trade etc.) should be conducted to provide the academia and the industries with an updated of the 547 status of knowledge on similar topics.

548

549 Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, ornot-for-profit sectors.

552

553 **References**

554 Akaichi, F. et al. (2016) 'Does Fair Trade Compete with Carbon Footprint and Organic Attributes

in the Eyes of Consumers? Results from a Pilot Study in Scotland, The Netherlands and France',

556 Journal of Agricultural and Environmental Ethics. Springer Netherlands, 29(6), pp. 969–984. doi:

557 10.1007/s10806-016-9642-7.

Baldo, G. L. et al. (2009) 'The carbon footprint measurement toolkit for the EU Ecolabel',

559 International Journal of Life Cycle Assessment, 14(7), pp. 591–596. doi: 10.1007/s11367-009-

560 0115-3.

561 Becker, M. W. et al. (2015) 'Front of pack labels enhance attention to nutrition information in novel

562 and commercial brands', *Food Policy*, 56, pp. 76–86. doi: 10.1016/j.foodpol.2015.08.001.

563 Bialkova, S. et al. (2014) 'Attention mediates the effect of nutrition label information on

564 consumers' choice: Evidence from a choice experiment involving eye-tracking', *Appetite*, 76, pp.

- 565 66–75. doi: 10.1016/j.appet.2013.11.021.
- de Boer, J., Hoogland, C. T. and Boersema, J. J. (2007) 'Towards more sustainable food choices:
- 567 Value priorities and motivational orientations', *Food Quality and Preference*, 18(7), pp. 985–996.
- 568 doi: 10.1016/j.foodqual.2007.04.002.
- 569 Brunner, F. et al. (2018) 'Carbon Label at a University Restaurant Label Implementation and
- 570 Evaluation', *Ecological Economics*. Elsevier, 146(December 2017), pp. 658–667. doi:
- 571 10.1016/j.ecolecon.2017.12.012.
- 572 Camilleri, A. R. et al. (2019) 'Consumers underestimate the emissions associated with food but are
- 573 aided by labels', *Nature Climate Change*, 9(1), pp. 53–58. doi: 10.1038/s41558-018-0354-z.
- 574 Canavari, M. and Coderoni, S. (2019) 'Green marketing strategies in the dairy sector: Consumer-
- 575 stated preferences for carbon footprint labels', *Strategic Change*, 28(4), pp. 233–240. doi:
- 576 10.1002/jsc.2264.
- 577 Canavari, M. and Coderoni, S. (2020) 'Consumer stated preferences for dairy products with carbon
- 578 footprint labels in Italy', *Agricultural and Food Economics*. Agricultural and Food Economics,
- 579 8(1), pp. 1–16. doi: 10.1186/s40100-019-0149-1.
- 580 Caputo, V. et al. (2013) 'Welfare Effects of Food Miles Labels', Journal of Consumer Affairs,
- 581 47(2), pp. 311–327. doi: 10.1111/joca.12009.
- 582 Caputo, V., Nayga, R. M. and Scarpa, R. (2013) 'Food miles or carbon emissions? Exploring
- 583 labelling preference for food transport footprint with a stated choice study', Australian Journal of
- 584 *Agricultural and Resource Economics*, 57(4), pp. 465–482. doi: 10.1111/1467-8489.12014.
- 585 Chen, X. et al. (2018) 'Eco-labeling in the Fresh Produce Market: Not All Environmentally
- 586 Friendly Labels Are Equally Valued', *Ecological Economics*, 154, pp. 201–210. doi:
- 587 10.1016/j.ecolecon.2018.07.014.
- 588 Colantuoni, F., Cicia, G., Del Giudice, T., Lass, D., Caracciolo, F., Lombardi, P. (2016)

- 589 'Heterogeneous preferences for domestic fresh produce: evidence from German and Italian early
- 590 potato markets', *Agribusiness*, 32(4), pp. 1–19.
- 591 Echeverría, R. et al. (2014) 'Willingness to pay for carbon footprint on foods', British Food
- 592 Journal, 116(2), pp. 186–196. doi: 10.1108/BFJ-07-2012-0292.
- 593 Elofsson, K. et al. (2016) 'The impact of climate information on milk demand: Evidence from a
- field experiment', *Food Policy*, 58, pp. 14–23. doi: 10.1016/j.foodpol.2015.11.002.
- 595 Emberger-Klein, A. and Menrad, K. (2018) 'The effect of information provision on supermarket
- 596 consumers' use of and preferences for carbon labels in Germany', Journal of Cleaner Production,
- 597 172, pp. 253–263. doi: 10.1016/j.jclepro.2017.10.105.
- 598 European Consumer Organisation (2020) One bite at a time: consumers and the transition to
- 599 *analysis of a survey of European.*
- 600 European Union (2015) *EU communication campaign on climate action*.
- 601 FAO (2016) *The state of food and agriculture: Climate change, agriculture and food security.*
- 602 Rome (Italy). Available at: http://www.fao.org/3/a-i6030e.pdf.
- 603 Feldmann, C. and Hamm, U. (2015) 'Consumers' perceptions and preferences for local food: A
- 604 review', Food Quality and Preference. Elsevier Ltd, 40(PA), pp. 152–164. doi:
- 605 10.1016/j.foodqual.2014.09.014.
- 606 Feucht, Y. and Zander, K. (2018) 'Consumers' preferences for carbon labels and the underlying
- 607 reasoning. A mixed methods approach in 6 European countries', Journal of Cleaner Production,
- 608 178, pp. 740–748. doi: 10.1016/j.jclepro.2017.12.236.
- 609 Gadema, Z. and Oglethorpe, D. (2011) 'The use and usefulness of carbon labelling food: A policy
- 610 perspective from a survey of UK supermarket shoppers', *Food Policy*, 36, pp. 815–822. doi:
- 611 10.1016/j.foodpol.2011.08.001.
- 612 Grasso, S. and Asioli, D. (2020) 'Consumer preferences for upcycled ingredients: A case study with

- 613 biscuits', *Food Quality and Preference*. Elsevier, 84(January), p. 103951. doi:
- 614 10.1016/j.foodqual.2020.103951.
- 615 Grebitus, C., Steiner, B. and Veeman, M. (2015) 'The roles of human values and generalized trust
- on stated preferences when food is labeled with environmental footprints: Insights from Germany',
- 617 *Food Policy*, 52, pp. 84–91. doi: 10.1016/j.foodpol.2014.06.011.
- 618 Grebitus, C., Steiner, B. and Veeman, M. M. (2016) 'Paying for sustainability: A cross-cultural
- analysis of consumers' valuations of food and non-food products labeled for carbon and water
- 620 footprints', Journal of Behavioral and Experimental Economics, 63, pp. 50–58. doi:
- 621 10.1016/j.socec.2016.05.003.
- 622 Grunert, K. G. et al. (2018) 'Consumer interest in environmental impact, safety, health and animal
- 623 welfare aspects of modern pig production: Results of a cross-national choice experiment', Meat

624 *Science*, 137, pp. 123–129. doi: 10.1016/j.meatsci.2017.11.022.

- 625 Grunert, K. G., Hieke, S. and Wills, J. (2014) 'Sustainability labels on food products: Consumer
- 626 motivation, understanding and use', *Food Policy*. Elsevier Ltd, 44, pp. 177–189.
- 627 Guagnano, G. A., Stern, P. C. and Dietz, T. (1995) 'Influences on Attitude-Behavior Relationships:
- 628 A Natural Experiment with Curbside Recycling', *Environment and Behavior*, 27(5), pp. 699–718.
- 629 doi: 10.1177/0013916595275005.
- 630 Guenther, M., Saunders, C. M. and Tait, P. R. (2012) 'Carbon labeling and consumer attitudes',
- 631 *Carbon Management*, 3(5), pp. 445–455. doi: 10.4155/cmt.12.50.
- Hartikainen, H. et al. (2014) 'Finnish consumer perceptions of carbon footprints and carbon
- 633 labelling of food products', *Journal of Cleaner Production*, 73, pp. 285–293. doi:
- 634 10.1016/j.jclepro.2013.09.018.
- Hemmerling, S. et al. (2013) 'Organic food labels as a signal of sensory quality-insights from a
- 636 cross-cultural consumer survey', *Organic Agriculture*. doi: 10.1007/s13165-013-0046-y.

- 637 Hertwich, E. G. and Peters, G. P. (2009) 'Carbon footprint of nations: A global, trade-linked
- 638 analysis', *Environmental Science and Technology*, 43(16), pp. 6414–6420. doi: 10.1021/es803496a.
- 639 Jansson, J., Marell, A. and Nordlund, A. (2010) 'Green consumer behavior: Determinants of
- 640 curtailment and eco-innovation adoption', *Journal of Consumer Marketing*, 27(4), pp. 358–370.
- 641 doi: 10.1108/07363761011052396.
- 642 Khachatryan, H. et al. (2018) 'How do consumer perceptions of "local" production benefits
- 643 influence their visual attention to state marketing programs?', *Agribusiness*. doi:
- 644 10.1002/agr.21547.
- 645 Kimura, A. et al. (2010) 'Interactive effects of carbon footprint information and its accessibility on
- value and subjective qualities of food products', *Appetite*, 55(2), pp. 271–278. doi:
- 647 10.1016/j.appet.2010.06.013.
- 648 Koistinen, L. *et al.* (2013) 'The impact of fat content, production methods and carbon footprint
- 649 information on consumer preferences for minced meat', Food Quality and Preference, (2), pp. 126-
- 650 136. doi: 10.1016/j.foodqual.2013.03.007.
- 651 Lampert, P., Menrad, K. and Emberger-Klein, A. (2017) 'Carbon information on vegetables: How
- does it affect the buying process?', *International Journal of Consumer Studies*, 41, pp. 618–626.
- 653 doi: 10.1111/ijcs.12375.
- Laureti, T. and Benedetti, I. (2018) 'Exploring pro-environmental food purchasing behaviour: An
- empirical analysis of Italian consumers', *Journal of Cleaner Production*. Elsevier, 172, pp. 3367–
 3378.
- 657 Lazzarini, G. A., Visschers, V. H. M. and Siegrist, M. (2017) 'Our own country is best: Factors
- 658 influencing consumers' sustainability perceptions of plant-based foods', *Food Quality and*
- 659 *Preference*, 60(September 2016), pp. 165–177. doi: 10.1016/j.foodqual.2017.04.008.
- 660 Li, Q., Long, R. and Chen, H. (2017) 'Empirical study of the willingness of consumers to purchase

- 661 low-carbon products by considering carbon labels: A case study', *Journal of Cleaner Production*,
- 662 161, pp. 1237–1250. doi: 10.1016/j.jclepro.2017.04.154.
- Li, X. *et al.* (2016) 'Consumer willingness to pay for beef grown using climate friendly production
 practices', *Food Policy*, 64, pp. 93–106. doi: 10.1016/j.foodpol.2016.09.003.
- Liu, Q., Yan, Z. and Zhou, J. (2017) 'Consumer choices and motives for eco-labeled products in
- 666 China: An empirical analysis based on the choice experiment', *Sustainability (Switzerland)*, 9(3),
- 667 pp. 1–12. doi: 10.3390/su9030331.
- 668 Van Loo, E. J. et al. (2014a) 'Consumers' valuation of sustainability labels on meat', Food Policy,
- 669 49(1), pp. 137–150. doi: 10.1016/j.foodpol.2014.07.002.
- 670 Van Loo, E. J. et al. (2014b) 'Consumers' valuation of sustainability labels on meat', Food Policy.
- 671 Elsevier Ltd, 49(P1), pp. 137–150. doi: 10.1016/j.foodpol.2014.07.002.
- 672 Van Loo, E. J. et al. (2015) 'Sustainability labels on coffee: Consumer preferences, willingness-to-
- pay and visual attention to attributes', *Ecological Economics*. Elsevier, 118, pp. 215–225.
- 674 Van Loo, E. J., Hoefkens, C. and Verbeke, W. (2017) 'Healthy, sustainable and plant-based eating:
- 675 Perceived (mis)match and involvement-based consumer segments as targets for future policy',
- 676 *Food Policy*, 69, pp. 46–57. doi: 10.1016/j.foodpol.2017.03.001.
- 677 Lusk, J. L. and Shogren, J. F. (2007) *Experimental Auctions. Methods and Applications in*
- 678 *Economic and Marketing Research*. Cambridge: Cambridge University Press.
- 679 Medici, M., Canavari, M. and Toselli, M. (2020) 'Interpreting environmental impacts resulting from
- 680 fruit cultivation in a business innovation perspective', Sustainability (Switzerland), 12(23), pp. 1–
- 681 14. doi: 10.3390/su12239793.
- 682 Meyerding, S. G. H. (2016) 'Consumer preferences for food labels on tomatoes in Germany A
- 683 comparison of a quasi-experiment and two stated preference approaches', Appetite, 103, pp. 105–
- 684 112. doi: 10.1016/j.appet.2016.03.025.

- 685 Meyerding, S. G. H., Schaffmann, A. L. and Lehberger, M. (2019) 'Consumer preferences for
- different designs of carbon footprint labelling on Tomatoes in Germany-Does Design Matter?',
- 687 *Sustainability (Switzerland)*, 11(6), pp. 1–30. doi: 10.3390/su11061587.
- 688 Michel-Villarreal, R. et al. (2019) 'Sustainability in Alternative Food Networks: A systematic
- 689 literature review', *Sustainability (Switzerland)*, 11(3). doi: 10.3390/su11030859.
- 690 Moser, A. K. (2016) 'Consumers' purchasing decisions regarding environmentally friendly
- 691 products: An empirical analysis of German consumers', Journal of Retailing and Consumer
- 692 Services, 31, pp. 389–397. doi: 10.1016/j.jretconser.2016.05.006.
- 693 Mostafa, M. M. (2016) 'Egyptian consumers' willingness to pay for carbon-labeled products: A
- 694 contingent valuation analysis of socio-economic factors', Journal of Cleaner Production. Elsevier
- 695 Ltd, 135, pp. 821–828. doi: 10.1016/j.jclepro.2016.06.168.
- 696 Onozaka, Y. and McFadden, D. T. (2011) 'Does local labeling complement or compete with other
- 697 sustainable labels? A conjoint analysis of direct and joint values for fresh produce claim', *American*

Journal of Agricultural Economics, 93(3), pp. 689–702. doi: 10.1093/ajae/aar005.

- 699 Owusu-Sekyere, E., Mahlathi, Y. and Jordaan, H. (2019) 'Understanding South African consumers'
- 700 preferences and market potential for products with low water and carbon footprints', *Agrekon*.
- 701 Taylor & Francis, 58(3), pp. 354–368. doi: 10.1080/03031853.2019.1589544.
- 702 Pomarici, E. et al. (2018) 'Young consumers' preferences for water-saving wines: An experimental
- 703 study', *Wine Economics and Policy*, 7(1), pp. 65–76. doi: 10.1016/j.wep.2018.02.002.
- 704 Poore, J. and Nemecek, T. (2018) 'Reducing food's environmental impacts through producers and
- consumers', *Science*, 306(6392), pp. 987–992. doi: 10.1126/science.aaq0216.
- 706 Rivaroli, S., Baldi, B. and Spadoni, R. (2020) 'Consumers' perception of food product
- 707 craftsmanship: A review of evidence', Food Quality and Preference. Elsevier, 79(September 2019),
- 708 p. 103796. doi: 10.1016/j.foodqual.2019.103796.

- 709 Rödiger, M. and Hamm, U. (2015) 'How are organic food prices affecting consumer behaviour? A
- 710 review', *Food Quality and Preference*, 43, pp. 10–20. doi: 10.1016/j.foodqual.2015.02.002.
- 711 Röös, E. and Tjärnemo, H. (2011) 'Challenges of carbon labelling of food products: A consumer
- research perspective', *British Food Journal*, 113(8), pp. 982–996. doi:
- 713 10.1108/00070701111153742.
- Roth, M., Jekle, M. and Becker, T. (2019) 'Opportunities for upcycling cereal byproducts with
- special focus on Distiller's grains', *Trends in Food Science and Technology*. Elsevier, 91(April),
- 716 pp. 282–293. doi: 10.1016/j.tifs.2019.07.041.
- 717 Schäufele, I. and Hamm, U. (2017) 'Consumers' perceptions, preferences and willingness-to-pay
- for wine with sustainability characteristics: A review', *Journal of Cleaner Production*, 147, pp.
- 719 379–394. doi: 10.1016/j.jclepro.2017.01.118.
- Shewmake, S. *et al.* (2015) 'Predicting consumer demand responses to carbon labels', *Ecological Economics*, 119, pp. 168–180. doi: 10.1016/j.ecolecon.2015.08.007.
- 722 Stampa, E., Schipmann-Schwarze, C. and Hamm, U. (2020) 'Consumer perceptions, preferences,
- and behavior regarding pasture-raised livestock products: A review', *Food Quality and Preference*.
- 724 Elsevier, 82, p. 103872. doi: 10.1016/j.foodqual.2020.103872.
- 725 Steiner, B. E., Peschel, A. O. and Grebitus, C. (2017) 'Multi-Product Category Choices Labeled for
- 726 Ecological Footprints: Exploring Psychographics and Evolved Psychological Biases for
- 727 Characterizing Latent Consumer Classes', *Ecological Economics*, 63, pp. 50–58. doi:
- 728 10.1016/j.ecolecon.2017.05.009.
- 729 Stern, P. C. et al. (1999) 'A value-belief-norm theory of support for social movements: The case of
- rionmentalism', *Human Ecology Review*, 6(2), pp. 81–97.
- 731 Thøgersen, J. and Nielsen, K. S. (2016) 'A better carbon footprint label', Journal of Cleaner
- 732 *Production*. Elsevier Ltd, 125, pp. 86–94. doi: 10.1016/j.jclepro.2016.03.098.

- 733 Vecchio, R. and Annunziata, A. (2012) 'Italian consumer awareness of layer hens' welfare
- 734 standards: A cluster analysis', International Journal of Consumer Studies, 36(6), pp. 647-655.
- 735 Vecchio, R. and Annunziata, A. (2015) 'Willingness-to-pay for sustainability-labelled chocolate:
- An experimental auction approach', Journal of Cleaner Production, 86, pp. 335–342. doi: 736
- 737 10.1016/j.jclepro.2014.08.006.
- Vega-Zamora, M. et al. (2014) 'Organic as a heuristic cue: What Spanish consumers mean by 738
- 739 organic foods', *Psychology and Marketing*, 31(5), pp. 349–359. doi: 10.1002/mar.20699.
- Vlaeminck, P., Jiang, T. and Vranken, L. (2014) 'Food labeling and eco-friendly consumption: 740
- Experimental evidence from a Belgian supermarket', *Ecological Economics*, 108, pp. 180–190. doi: 741
- 742 10.1016/j.ecolecon.2014.10.019.
- 743 Wong, E. Y. C., Chan, F. F. Y. and So, S. (2020) 'Consumer perceptions on product carbon
- 744 footprints and carbon labels of beverage merchandise in Hong Kong', Journal of Cleaner
- Production. Elsevier Ltd, 242, p. 118404. doi: 10.1016/j.jclepro.2019.118404. 745
- Zepeda, L. and Deal, D. (2009) 'Organic and local food consumer behaviour: Alphabet theory', 746
- International Journal of Consumer Studies, 33(6), pp. 697–705. doi: 10.1111/j.1470-747

748 6431.2009.00814.x.

- Zhao, R. et al. (2018) 'Consumers' perception, purchase intention, and willingness to pay for 749
- 750 carbon-labeled products: A case study of Chengdu in China', Journal of Cleaner Production, 171,
- 751 pp. 1664–1671. doi: 10.1016/j.jclepro.2017.10.143.
- 752 Zhou, S. et al. (2019) 'Carbon labels and "horizontal location effect": Can carbon labels increase
- 753 the choice of green product?', Global Ecology and Conservation. Elsevier Ltd, 18(5), pp. 1–13. doi: 10.1016/j.gecco.2019.e00609.
- 755

Appendix A

Table A1

Overview of the selected papers (n=38) about consumers behavior towards carbon footprint labels.

No.	Author	Торіс	Region	Sample Size	Methodology
1	Akaichi et al. (2016)	Investigate whether consumers' preferences and willingness to pay (WTP) for fair trade products are affected by the presence of other ethical food attributes.	Scotland, the Netherlands, and France	247	Choice experiment
2	Brunner et al. (2018)	To analyse the effects of implementing a label with greenhouse gas emission information on dishes at a restaurant.	Sweden	300-600 servings a day	In restaurant experiment
3	Camilleri et al. (2019)	Whether associating GHG emissions with more consumers-friendly energy emissions (e.g., light- bulb minutes) may shifts their purchase choices.	USA	120	Focus groups and menu- based questionnaire
4	Canavari and Coderoni (2019)	To estimate consumer's WTP for the purchase of 1 L of fresh milk with a lower carbon footprint label.	Italy	178	Choice experiment
5	Canavari and Coderoni (2020)	Analyse the factors determining a positive stated WTP.	Italy	178	Online survey
6	Caputo, Nayga and Scarpa (2013)	Whether consumers prefer the ecological footprint of food transport to be communicated using carbon dioxide or food miles label.	USA	200	Choice experiment

7	Caputo et al. (2013)	Consumer welfare effects of two food miles labels: "carbon dioxide (CO ₂) emission" label and "time and number of kilometers" label.	Italy	200	Survey and choice experiment
8	Chen <i>et al.</i> (2018)	WTP for strawberries produced using different environmentally friendly techniques.	USA	2525	Focus groups and survey
9	Colantuoni et al., (2016)	Heterogeneous preferences for domestic potatoes in the German and Italian markets.	Germany and Italy	1004 Italian 1009 German	Randomized Questionnaire Design
10	Echeverría et al. (2014)	To elicit consumers' willingness to pay (WTP) for the carbon footprint of food products (fluid milk and bread).	Chile	774	Choice experiment
11	Elofsson et al. (2016)	Whether voluntary carbon labelling affects milk demand.	Sweden	-	A randomized controlled field trial (RCT) carried out in 17 grocery stores
12	Emberger-Klein and Menrad (2018)	The effect of information provision on supermarket consumers.	Germany	379	A focus group and two in- store surveys
13	Feucht and Zander (2018)	Explore which label design would be the most appropriate and compare the preferences for carbon labels with preferences for the indications of organic and local production.	France, Germany, and UK	6007	Choice experiment
14	Gadema and Oglethorpe (2011)	Examining whether carbon facilitate consumers to make greener food purchasing decisions.	UK	428	Online survey
15	Grasso and Asioli (2020)	Estimating consumers WTP for biscuits made with upcycled ingredients.	UK	106	Choice experiment

16	Grebitus, Steiner and Veeman (2016)	Consumers' preferences for sustainable products as indicated by water and carbon footprint labels	Germany and Canada	1579 in Germany and 1551 in Canada	Choice experiment
17	Grebitus, Steiner and Veeman (2015)	Identify differences in consumers' choices as determined by trust and human values	Canada and Germany	1579	Focus group and online survey
18	Grunert, Hieke and Wills (2014)	Investigates the relationship between consumer motivation, understanding and use of sustainability labels on food products (fair trade, rainforest alliance, carbon footprint, and animal welfare).	UK, France, Germany, Spain, Sweden, and Poland	4408	Questionnaire
19	Grunert et al. (2018)	Comparing the effect on consumers between pig production attributes (e.g., ecological footprint, animal welfare and health-related aspects) and traditional attributes (e.g., fat content, color, origin, and price).	Germany and Poland	1007 in Germany and 988 in Poland	Choice experiment
20	Guenther, Saunders and Tait (2012)	Assessing knowledge and preferences towards carbon footprint labels.	UK and Japan	880	Online survey
21	Koistinen et al. (2013)	Consumers' preferences towards meat type, method of production, fat content, price, and presence of carbon footprint information.	Finland	1623	Questionnaire
22	Hartikainen <i>et al.</i> (2014)	Explore how Finnish consumers perceive the communication of carbon footprints for food products.	Finland	1010	Five semi-structured focus groups and an online- survey
23	Lampert, Menrad and Emberger-Klein (2017)	Analyse whether information on the product	Germany	232	Information display matrix (IDM)

		carbon footprint is a relevant factor within the search process of purchase decision.			
24	Meyerding (2016)	Consumer preferences for origin, price, and food labels (organic, carbon label, locally grown).	Germany	645	Choice Experiment
25	Meyerding, Schaffmann and Lehberger (2019)	Consumer preferences for different designs of carbon labels on tomatoes.	Germany	598	Choice experiment
26	Mostafa (2016)	Estimating consumers WTP for carbon footprint labels on different products.	Egypt	1260	Single-bound and double- bound dichotomous choice models
27	Onozaka and McFadden (2011)	Interactive effects of sustainable labels (organic, fair trade, and carbon footprint) and location claims.	USA	1052	Survey-Conjoint choice experiment
28	Owusu-Sekyere, Mahlathi and Jordaan (2019)	South African consumers' preferences and market potential for products with low water and carbon footprints.	South Africa	402 households	Face to café interviews, questionnaire, and choice experiment
29	Shewmake <i>et al.</i> (2015)	Estimate how consumers respond to information from carbon footprint label on 42 different products.	-	-	EI-CCD model
30	Steiner, Peschel and Grebitus (2017)	Identifying consumer segments regarding pro- environmental choices.	Germany	1579	Choice experiment
31	Thøgersen and Nielsen (2016)	A test a version of the Carbon Trust labeling scheme was administer to consumers with the aim to create a more easily readable label.	Denmark	359	Choice-based conjoint analysis
32	Van Loo <i>et al.</i> (2014)	Consumers' preferences and WTP for a set of sustainability claims on chicken breast (free range	Belgium	359	Choice experiment

		claims, organic labels, welfare label and carbon footprint labels).			
33	Van Loo <i>et al.</i> (2015)	Investigate consumers' visual attention paid by consumers to the sustainability information on food.	Belgium	6500	Cross-sectional consumers survey
34	Vecchio and Annunziata, (2015)	Analyses the determinants of their willingness to pay (WTP) for chocolate bars with different sustainability labels.	Italy	80	Experimental auction
35	Vlaeminck, Jiang and Vranken, (2014)	Evaluate whether consumers' food consumption is eco-friendlier when the information about a product's environmental impact is more easily accessible.	Belgium	230	Questionnaire
36	Wong, Chan and So (2020)	Consumer perceptions on product carbon footprints and carbon labels of beverage merchandise in China (Hong Kong).	China	1000	Survey
37	Zhao et al. (2018)	Explore consumers' perception, their purchase intention and willingness to pay for carbon labels.	China	1132	Choice experiment
38	Zhou et al. (2019)	Investigate whether the position of carbon labels on package can influence consumers choice.	China	602	Laboratory experiment using survey and physical stimulus